JP5267758B2 - Method for producing hydrophobic silica powder - Google Patents

Method for producing hydrophobic silica powder Download PDF

Info

Publication number
JP5267758B2
JP5267758B2 JP2006180336A JP2006180336A JP5267758B2 JP 5267758 B2 JP5267758 B2 JP 5267758B2 JP 2006180336 A JP2006180336 A JP 2006180336A JP 2006180336 A JP2006180336 A JP 2006180336A JP 5267758 B2 JP5267758 B2 JP 5267758B2
Authority
JP
Japan
Prior art keywords
silica
colloidal silica
sol
mass
hydrophobized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180336A
Other languages
Japanese (ja)
Other versions
JP2007039323A (en
Inventor
桂子 吉武
博和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP2006180336A priority Critical patent/JP5267758B2/en
Publication of JP2007039323A publication Critical patent/JP2007039323A/en
Application granted granted Critical
Publication of JP5267758B2 publication Critical patent/JP5267758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently producing a hydrophobic silica powder excellently redispersible into an organic solvent. <P>SOLUTION: The method for producing the hydrophobic silica powder comprises the hydrophobization step of obtaining a hydrophobized colloidal silica slurry dispersion by adding 0.1 to 20 mmol, per 100 m<SP>2</SP>of the surface area of hydrophilic colloidal silica, disilazane compound represented by formula (1) (R<SP>1</SP><SB>3</SB>Si)<SB>2</SB>NH (wherein R<SP>1</SP>s are each independently selected from among 1-6C alkyl groups and a phenyl group) to a mixed solvent silica sol of a silica concentration of 5 to 50 mass% obtained by mixing a water-based silica sol containing hydrophilic colloidal silica of a specific surface area of 5.5 to 550 m<SP>2</SP>/g with a hydrophilic organic solvent in a mass ratio of 0.12 to 2.5 to the water in the water-based silica sol and aging the resultant mixture by heating to 50 to 100&deg;C. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は水性シリカゾルを原料として有機溶媒への再分散性に優れた疎水性シリカ粉末を製造する方法に関する。   The present invention relates to a method for producing a hydrophobic silica powder excellent in redispersibility in an organic solvent using an aqueous silica sol as a raw material.

従来、疎水性シリカ粉末の製造に用いられるシリカ原体として、沈降性シリカ、クロロシランの火炎熱分解によって製造される微細シリカ(一般にはフュームドシリカと呼ばれる。)が多く用いられている。疎水化処理方法としては、シリカ粉末を疎水化剤、例えば界面活性剤、シリコーンオイル、またはアルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシラザンなどのシリル化剤の気体に接触させて疎水化処理する方法、水を含有した親水性有機溶媒中でシリル化剤に接触させて疎水化処理する方法などがある。   Conventionally, fine silica (generally referred to as fumed silica) produced by flame pyrolysis of chlorosilane has been frequently used as a silica base used for producing hydrophobic silica powder. As a hydrophobizing treatment method, a hydrophobizing treatment is performed by bringing silica powder into contact with a hydrophobizing agent such as a surfactant, silicone oil, or a gas of a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisilazane. And a hydrophobizing treatment by contacting with a silylating agent in a hydrophilic organic solvent containing water.

しかしいずれの疎水化処理方法においても沈降性シリカ、フュームドシリカを用いた場合にはシリカ原体自体が凝集しているため、優れた分散性を有する疎水性シリカ粉末を得ることはできなかった。   However, in any of the hydrophobization treatment methods, when the precipitated silica or fumed silica is used, the silica base itself is agglomerated, so that a hydrophobic silica powder having excellent dispersibility could not be obtained. .

実際、以下の沈降性シリカ、フュームドシリカを用いる疎水化処理方法が開示されている。いずれの方法もシリカ原体の一次粒子径と疎水化処理後の凝集粒子径の関係について述べたものはなく、高分散性の疎水性シリカ粉末は得られていない。   Actually, the following hydrophobizing method using precipitated silica and fumed silica is disclosed. None of the methods described the relationship between the primary particle size of the silica raw material and the aggregated particle size after the hydrophobization treatment, and a highly dispersible hydrophobic silica powder has not been obtained.

親水性沈降シリカの水性懸濁液を、有機ケイ素化合物と親水性沈降シリカとの反応を促進させるのに十分な量の水−混和性有機溶媒の共存下で触媒量の酸及びオルガンシラン化合物と接触させて、疎水性沈降シリカを生成させる方法(特許文献1参照)。   An aqueous suspension of hydrophilic precipitated silica is mixed with a catalytic amount of acid and organsilane compound in the presence of a sufficient amount of a water-miscible organic solvent to promote the reaction between the organosilicon compound and the hydrophilic precipitated silica. A method of producing hydrophobic precipitated silica by contact (see Patent Document 1).

平均一次粒子径が5〜50nmで、ヘキサメチルジシラザンで表面処理して粒子表面のシラノール基を40%以上封鎖し、かつ残存シラノール基濃度が1.5個/nm2以下である酸化ケイ素粒子を得る方法(特許文献2参照)。 Silicon oxide particles having an average primary particle diameter of 5 to 50 nm, surface-treated with hexamethyldisilazane to block 40% or more of silanol groups on the particle surface, and a residual silanol group concentration of 1.5 / nm 2 or less (See Patent Document 2).

煙霧シリカをヘキサメチルジシラザン等の有機珪素化合物で疎水化80〜300g/lの嵩密度を有し、単位表面積あたりのOH基が0.5個/nm2以下であり、且つ粒子径45μm以上の凝集粒子が2000ppm以下であることを特徴とする疎水性煙霧シリカとその製造方法(特許文献3参照)。 Hydrophobic silica is hydrophobized with an organosilicon compound such as hexamethyldisilazane and has a bulk density of 80 to 300 g / l, OH groups per unit surface area of 0.5 / nm 2 or less, and a particle diameter of 45 μm or more Hydrophobic fumed silica, characterized in that the agglomerated particles are 2000 ppm or less, and a method for producing the same (see Patent Document 3).

フュームドシリカをポリシロキサンで処理した後、トリメチルシリル化剤で処理することを特徴とする疎水性シリカ粉末の製造方法。(特許文献4参照)。   A process for producing hydrophobic silica powder, characterized in that fumed silica is treated with polysiloxane and then treated with a trimethylsilylating agent. (See Patent Document 4).

シリコーンオイル系処理剤による一次表面処理、一次表面処理後の解砕、及び解砕後のアルキルシラザン系処理剤による二次表面処理を行うことを特徴とする高分散疎水性シリカ粉末とその製造方法(特許文献5参照)。   Highly-dispersed hydrophobic silica powder characterized by performing primary surface treatment with a silicone oil-based treatment agent, pulverization after the primary surface treatment, and secondary surface treatment with an alkylsilazane-based treatment agent after pulverization (See Patent Document 5).

一方シリカ原体として分散性の良いシリカゾルを出発原料として疎水化を行う方法も知られている。アルコールなどの親水性有機溶媒または水と親水性有機溶媒との混合溶媒を分散媒とするシリカゾルに、アルキルハロゲノシラン、アルキルアルコキシシラン、アルキルジシロキサンなどのシリル化剤を反応させた後に溶媒を除去し、疎水性シリカ粉末が得られている。これらの方法では有機溶媒分散シリカゾルの製造工程が煩雑であること、溶媒の置換や留去が必要であることなどの欠点がある。さらにアルキルハロゲノシランによる疎水化では腐食性の酸が副生するという欠点がある。また、アルキルアルコキシシランのうち、モノアルコキシシランは反応性がやや低く、ジアルコキシシラン及びトリアルコキシシランは縮合反応が起きやすく、この縮合反応により粒子間の架橋が起こることもあり、分散性の良い疎水性シリカ粉末を得るのは困難である。加えてアルコキシシランの自己縮合物を除去するのは困難である。また、アルキルジシロキサンは触媒として多量の鉱酸とともに反応させる必要があるため、腐食の問題が生じる原因となることや疎水化処理シリカから触媒の酸を除去する工程が煩雑になるという欠点がある。以下に開示されている技術の例を挙げる。   On the other hand, a method of hydrophobizing a silica sol with a highly dispersible silica sol as a starting material is also known. Silica sol using a hydrophilic organic solvent such as alcohol or a mixed solvent of water and hydrophilic organic solvent as a dispersion medium is reacted with a silylating agent such as alkylhalogenosilane, alkylalkoxysilane, or alkyldisiloxane, and then the solvent is removed. Thus, a hydrophobic silica powder is obtained. These methods have drawbacks such as a complicated manufacturing process of the organic solvent-dispersed silica sol and the need for solvent replacement and distillation. Furthermore, hydrophobization with alkylhalogenosilanes has the disadvantage that corrosive acids are by-produced. Of the alkylalkoxysilanes, monoalkoxysilanes are slightly less reactive, dialkoxysilanes and trialkoxysilanes tend to undergo condensation reactions, and the condensation reactions may cause cross-linking between particles, resulting in good dispersibility. It is difficult to obtain hydrophobic silica powder. In addition, it is difficult to remove the alkoxysilane self-condensate. In addition, since alkyldisiloxane needs to be reacted with a large amount of mineral acid as a catalyst, there are disadvantages that cause corrosion problems and the process of removing the catalyst acid from the hydrophobized silica is complicated. . Examples of the disclosed technology will be given below.

水分が10質量%以下のオルガノシリカゾルにシリル化剤を添加して反応させた後、溶媒を留去して、コロイド次元のシリカ粒子表面に炭素数1〜36のシリル基が1〜100/10nm2結合した、有機溶媒に均質に分散可能なシリカ粉末が得られることが記載されている(特許文献6参照)。 A silylating agent is added to and reacted with an organosilica sol having a water content of 10% by mass or less, and then the solvent is distilled off so that a silyl group having 1 to 36 carbon atoms is 1 to 100/10 nm on the surface of colloidal silica particles. It is described that a silica powder that is two- bonded and can be uniformly dispersed in an organic solvent is obtained (see Patent Document 6).

平均粒子直径が4nmより大きい親水性コロイド状シリカを濃塩酸、イソプロパノール、ヘキサメチルジシロキサンの混合溶媒に添加して疎水化処理し、次いで疎水性コロイド状シリカを疎水性有機溶媒で抽出し加熱還流後、シラン化合物を添加し、加熱還流して疎水化処理を行っている(特許文献7参照)。   Hydrophilic colloidal silica with an average particle diameter larger than 4 nm is added to a mixed solvent of concentrated hydrochloric acid, isopropanol, and hexamethyldisiloxane for hydrophobic treatment, and then the hydrophobic colloidal silica is extracted with a hydrophobic organic solvent and heated to reflux. Thereafter, a silane compound is added, and the mixture is heated to reflux to perform a hydrophobic treatment (see Patent Document 7).

テトラアルコキシシラン化合物を塩基性物質とともに加水分解することにより、親水性シリカ微粒子水性分散液を調製し、アルコールを除去する。次いでアルキルトリアルコキシシラン化合物でシリカ微粒子を疎水化し、溶媒をケトン系溶媒に置換し、シラザン化合物あるいはトリアルキルアルコキシシラン化合物でシリカ微粒子表面に残存する反応性基をトリオルガノシリル化し、最後に溶媒を減圧留去して表面処理シリカを得ている(特許文献8参照)。   By hydrolyzing the tetraalkoxysilane compound together with a basic substance, an aqueous dispersion of hydrophilic silica fine particles is prepared and alcohol is removed. Next, the silica fine particles are hydrophobized with an alkyltrialkoxysilane compound, the solvent is replaced with a ketone solvent, the reactive groups remaining on the surface of the silica fine particles are triorganosilylated with a silazane compound or a trialkylalkoxysilane compound, and finally the solvent is removed. Distilled under reduced pressure to obtain surface-treated silica (see Patent Document 8).

メタノール中でアルキルシリケートを加水分解して得られたメタノール分散シリカに、含有するシリカ1モルに対して5モル%以上のトリメチルシリル化剤を添加し反応させた後、余剰のトリメチルシリル化剤及び分散溶媒を留去して、表面がシリル化処理された、分散性に優れたシリカ粉末が得られることが記載されている。例えばテトラメトキシシランをメタノール中でアンモニア水存在下に加水分解して得られたメタノール分散シリカに、含有するシリカ1モルに対して20モル%のメトキシトリメチルシランを添加し、過剰のシリル化剤を回収した後、乾燥して疎水化シリカ粉末を得ている(特許文献9参照)。
特開2000-327321号公報 特開平07−286095号公報 特開2000-256008号公報 特開2002−256170号公報 特開2004−168559号公報 特開昭58−145614号公報 特開2000−080201号公報 特開2000−044226号公報 特開平03−187913号公報
After adding 5 mol% or more of a trimethylsilylating agent to methanol-dispersed silica obtained by hydrolyzing alkyl silicate in methanol and reacting with 1 mol of silica contained, the excess trimethylsilylating agent and dispersion solvent It is described that a silica powder excellent in dispersibility can be obtained by distilling off the water. For example, 20 mol% of methoxytrimethylsilane is added to 1 mol of silica contained in methanol-dispersed silica obtained by hydrolyzing tetramethoxysilane in methanol in the presence of aqueous ammonia, and excess silylating agent is added. After the recovery, it is dried to obtain a hydrophobized silica powder (see Patent Document 9).
JP 2000-327321 A Japanese Patent Application Laid-Open No. 07-286095 JP 2000-256008 A JP 2002-256170 A JP 2004-168559 A JP 58-145614 A JP 2000-080201 A JP 2000-042426 A Japanese Patent Laid-Open No. 03-187913

本発明は有機溶媒への再分散性に優れた疎水性シリカ粉末を効率良く製造する方法を提供する。   The present invention provides a method for efficiently producing a hydrophobic silica powder excellent in redispersibility in an organic solvent.

本発明の疎水性シリカ粉末の製造法は、比表面積5.5〜550m2/gの親水性コロイド状シリカを含有する水性シリカゾルに、該水性シリカゾルの水に対して親水性有機溶媒を質量比0.12〜2.5で混合して得られる、シリカ濃度5〜50質量%の混合溶媒シリカゾルに、式(1)
(R1 3Si)2NH (1)
(式中の各R1はそれぞれ独立に選択される炭素原子数が1〜6のアルキル基またはフェニル基である。)
で表されるジシラザン化合物を、親水性コロイド状シリカの表面積100m2当たり0.1〜20ミリモル添加し、50〜100℃の温度で加熱して熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得る疎水化処理工程を含む。
In the method for producing the hydrophobic silica powder of the present invention, a hydrophilic organic solvent is contained in an aqueous silica sol containing hydrophilic colloidal silica having a specific surface area of 5.5 to 550 m 2 / g. To a mixed solvent silica sol having a silica concentration of 5 to 50% by mass obtained by mixing at 0.12 to 2.5, the formula (1)
(R 1 3 Si) 2 NH (1)
(In the formula, each R 1 is an independently selected alkyl group having 1 to 6 carbon atoms or a phenyl group.)
The disilazane compound represented by the formula (1) is added in an amount of 0.1 to 20 mmol per 100 m 2 of the surface area of hydrophilic colloidal silica, and is heated and matured at a temperature of 50 to 100 ° C. to form a hydrophobized colloidal silica slurry. Including a hydrophobizing step of obtaining a dispersion.

その好ましい態様は以下に示される。   The preferable aspect is shown below.

該疎水化処理工程に続いて、得られた疎水化処理コロイド状シリカのスラリー状分散液を撹拌下に50〜100℃の温度で加熱して熟成することにより、分散液中にて疎水化処理コロイド状シリカを顆粒状に造粒させる工程を含むこと。   Subsequent to the hydrophobizing treatment step, the obtained hydrophobized colloidal silica slurry dispersion is aged by heating at 50 to 100 ° C. with stirring to be hydrophobized in the dispersion. Including the step of granulating colloidal silica into granules.

特に本発明は、下記の(A)、(B)、(C)及び(D)工程を含む、疎水性シリカ粉末の製造法に関する
(A):比表面積5.5〜550m/gの親水性コロイド状シリカを含有する水性シリカゾルに、該水性シリカゾルの水に対して親水性有機溶媒を質量比0.12〜2.5で混合して得られる、シリカ濃度5〜50質量%の混合溶媒シリカゾルに、式(1)
(R Si)NH (1)
(式中の各Rはそれぞれ独立に選択される炭素原子数が1〜6のアルキル基またはフェニル基である。)
で表されるジシラザン化合物を、親水性コロイド状シリカの表面積100m当たり0.1〜20ミリモル添加し、50〜70℃の温度で加熱して熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得る疎水化処理工程、
(B):(A)工程で得られたスラリー状分散液を撹拌下に50〜100℃の温度で且つ疎水化処理工程における温度よりもより高い温度で加熱して熟成することにより、分散液中にて疎水化処理コロイド状シリカを顆粒状に造粒させる工程、
(C):(B)工程で得られた顆粒状に造粒された疎水化処理コロイド状シリカと分散液中の液相とを分別する工程、及び
(D):(C)工程で得られた顆粒状の疎水化処理コロイド状シリカのケーキを乾燥する工程。
Especially this invention relates to the manufacturing method of hydrophobic silica powder including the following (A), (B), (C) and (D) process.
(A): An aqueous silica sol containing hydrophilic colloidal silica having a specific surface area of 5.5 to 550 m 2 / g is mixed with a hydrophilic organic solvent at a mass ratio of 0.12 to 2.5 with respect to the water of the aqueous silica sol. A mixed solvent silica sol having a silica concentration of 5 to 50% by mass obtained by mixing is mixed with the formula (1).
(R 1 3 Si) 2 NH (1)
(In the formula, each R 1 is an independently selected alkyl group having 1 to 6 carbon atoms or a phenyl group.)
The disilazane compound represented by the formula (1) is added in an amount of 0.1 to 20 mmol per 100 m 2 of the surface area of hydrophilic colloidal silica and heated at a temperature of 50 to 70 ° C. for aging to make a hydrophobized colloidal silica slurry. A hydrophobizing step for obtaining a dispersion;
(B): The slurry-like dispersion obtained in the step (A) is aged by heating at 50 to 100 ° C. with stirring and at a temperature higher than the temperature in the hydrophobization treatment step. A step of granulating the hydrophobized colloidal silica into granules,
(C): a step of separating the hydrophobized colloidal silica granulated in the step (B) and the liquid phase in the dispersion, and (D): obtained in the step (C) Drying the granular hydrophobized colloidal silica cake.

上記式(1)で表されるジシラザン化合物としてヘキサメチルジシラザンを用いること。   Use hexamethyldisilazane as the disilazane compound represented by the above formula (1).

本発明の製造法は様々な粒子径を有する水性シリカゾルに対して有効である。シリカ原体に高い分散性を有する水性シリカゾルを用いることにより、疎水化処理後も各種有機溶媒に対して高い再分散性を有する疎水性シリカ粉末が得られること、水性シリカゾルに親水性有機溶媒を混合することによりジシラザン化合物と親水性コロイド状シリカとの接触が促進されること、ならびに疎水化処理後にスラリー状、好ましくは顆粒状の疎水化処理コロイド状シリカと液相とが分相するため、ろ過等の簡便な方法により疎水化されたシリカを取り出すことができることなど、本発明の製造法により簡便な装置で簡素な疎水化処理工程による疎水性シリカ粉末の製造が可能となる。   The production method of the present invention is effective for aqueous silica sols having various particle sizes. By using an aqueous silica sol having a high dispersibility in the silica base, a hydrophobic silica powder having a high redispersibility with respect to various organic solvents can be obtained even after the hydrophobization treatment. By mixing, the contact between the disilazane compound and the hydrophilic colloidal silica is promoted, and since the slurry-like, preferably the granular hydrophobized colloidal silica and the liquid phase are separated after the hydrophobization treatment, Hydrophobic silica powder can be produced by a simple hydrophobization treatment process with a simple apparatus by the production method of the present invention, such as being able to take out the hydrophobized silica by a simple method such as filtration.

本発明で得られた疎水性シリカ粉末は電子写真等のトナー用外添剤や樹脂の内添剤、ハードコート剤、撥水化剤、難燃剤等として有用である。   The hydrophobic silica powder obtained in the present invention is useful as an external additive for toner such as electrophotography, an internal additive for resin, a hard coat agent, a water repellent, a flame retardant and the like.

本発明で使用する水性シリカゾルは比表面積5.5〜550m2/g、好ましくは5.5〜300m2/gの親水性コロイド状シリカを含有する5〜55質量%のシリカ濃度を有する水性シリカゾルを用いることができるが、10〜55質量%のシリカ濃度を有する水性シリカゾルが好ましい。水性シリカゾルは、例えば水ガラスを原料として公知の方法により製造することができる。 The aqueous silica sol used in the present invention is an aqueous silica sol having a silica concentration of 5 to 55% by mass containing hydrophilic colloidal silica having a specific surface area of 5.5 to 550 m 2 / g, preferably 5.5 to 300 m 2 / g. However, an aqueous silica sol having a silica concentration of 10 to 55% by mass is preferable. The aqueous silica sol can be produced by a known method using, for example, water glass as a raw material.

親水性コロイド状シリカの粒子径は窒素吸着法(BET法)により求めた比表面積S(m2/g)からD(nm)=2720/Sの式で計算される。よって、親水性コロイド状シリカのBET法粒子径は5nm以上であり、好ましくは9nm以上である。親水性コロイド状シリカのBET法粒子径が5nm未満の水性シリカゾルでは高濃度化が困難であり、更にその表面処理には該コロイド状シリカの単位質量当たり多くのシリル化剤を必要とする。 The particle size of the hydrophilic colloidal silica is calculated from the specific surface area S (m 2 / g) determined by the nitrogen adsorption method (BET method) by the formula D (nm) = 2720 / S. Therefore, the BET method particle diameter of hydrophilic colloidal silica is 5 nm or more, preferably 9 nm or more. It is difficult to achieve a high concentration with an aqueous silica sol having a BET particle diameter of less than 5 nm for hydrophilic colloidal silica, and the surface treatment requires a large amount of silylating agent per unit mass of the colloidal silica.

使用する水性シリカゾルは遊離するアルカリ金属イオンを含まない水性シリカゾルであることが好ましい。遊離するアルカリ金属イオンを含むアルカリ性水性シリカゾルを原料に用いると、シリル化剤と親水性コロイド状シリカ表面のシラノール基との反応性が低下し、シリル化剤の反応率の低下や、疎水性シリカ粉末の疎水化度に悪影響を及ぼす。遊離のアルカリ金属イオンを含まない水性シリカゾルは、例えばNaイオンを含むアルカリ性水性シリカゾルの遊離するNaイオンを、陽イオン交換等の方法で除去することにより得ることができる。得られる水性シリカゾルとして酸性水性シリカゾルが挙げられる。またアンモニア、アミンなどで安定化された水性シリカゾルも原料として用いることができる。   The aqueous silica sol to be used is preferably an aqueous silica sol containing no free alkali metal ions. When an alkaline aqueous silica sol containing liberated alkali metal ions is used as a raw material, the reactivity between the silylating agent and the silanol group on the surface of the hydrophilic colloidal silica is reduced, the reaction rate of the silylating agent is reduced, and hydrophobic silica is used. It adversely affects the hydrophobicity of the powder. An aqueous silica sol containing no free alkali metal ions can be obtained, for example, by removing Na ions released from an alkaline aqueous silica sol containing Na ions by a method such as cation exchange. Examples of the aqueous silica sol obtained include acidic aqueous silica sol. An aqueous silica sol stabilized with ammonia, amine, or the like can also be used as a raw material.

本発明に使用する疎水化剤はジシラザン化合物であり、具体的には、ヘキサメチルジシラザン、ジ−n−ブチルテトラメチルジシラザン、ジビニルテトラメチルジシラザン、ジフェニルテトラメチルジシラザン、テトラフェニルジメチルジシラザンからなる群から選ばれる化合物の少なくとも1種類以上であることが好ましく、へキサメチルジシラザンが特に好ましい。水性シリカゾルに親水性有機溶媒を混合して得られる混合溶媒シリカゾルに、ジシラザン化合物を親水性コロイド状シリカの表面積100m2当たり0.1〜20ミリモル、好ましくは0.5〜10ミリモル添加する。過剰のジシラザン化合物を使用しても疎水化反応に消費されず、経済的にも非効率である。また、ジシラザン化合物が不足すると疎水性が不十分になる原因になる。 The hydrophobizing agent used in the present invention is a disilazane compound, specifically, hexamethyldisilazane, di-n-butyltetramethyldisilazane, divinyltetramethyldisilazane, diphenyltetramethyldisilazane, tetraphenyldimethyldisilazane. It is preferably at least one compound selected from the group consisting of silazanes, and hexamethyldisilazane is particularly preferred. The disilazane compound is added to the mixed solvent silica sol obtained by mixing the hydrophilic organic solvent with the aqueous silica sol in an amount of 0.1 to 20 mmol, preferably 0.5 to 10 mmol, per 100 m 2 of the surface area of the hydrophilic colloidal silica. Even if an excess of the disilazane compound is used, it is not consumed in the hydrophobization reaction, and it is economically inefficient. Further, when the disilazane compound is insufficient, the hydrophobicity becomes insufficient.

本発明の疎水化処理後の形態としては、疎水化処理コロイド状シリカのスラリー状分散液または疎水化処理コロイド状シリカの顆粒状生成物であり、液相と分相した状態にすることが必要である。スラリー状とはコロイド状シリカが凝集して形成された微粒子が混合溶媒中に分散しており、市販の濾紙等で濾別が可能な状態を示す。また、顆粒状とはスラリー状分散液中で疎水化処理コロイド状シリカが0.1mm以上に造粒された状態を示す。疎水化処理コロイド状シリカのスラリー状分散液または顆粒状生成物を得るためには混合溶媒シリカゾルの親水性有機溶媒と水との質量比が重要である。   The form after the hydrophobization treatment of the present invention is a slurry dispersion of hydrophobized colloidal silica or a granulated product of hydrophobized colloidal silica, and it is necessary to make the phase separated from the liquid phase. It is. Slurry means a state in which fine particles formed by agglomeration of colloidal silica are dispersed in a mixed solvent and can be separated by filtration with commercially available filter paper or the like. The granular form means a state in which the hydrophobized colloidal silica is granulated to 0.1 mm or more in the slurry dispersion. In order to obtain a slurry-like dispersion or granular product of hydrophobized colloidal silica, the mass ratio of the hydrophilic organic solvent of the mixed solvent silica sol to water is important.

本発明の混合溶媒シリカゾルには、ジシラザン化合物と親水性コロイド状シリカの接触を促進するために十分な量の親水性有機溶媒の存在が必要である。該混合溶媒シリカゾルは、使用する水性シリカゾルの水に対して質量比として0.12〜2.5の親水性有機溶媒を混合して調製することが好ましい。該質量比が0.12未満の場合は混合溶媒へのジシラザン化合物の溶解性が低く、ジシラザン化合物と親水性コロイド状シリカの接触が不十分になったり、疎水化されたコロイド状シリカと混合溶媒との親和性が悪いため、疎水化反応の進行とともに疎水化処理されたコロイド状シリカが塊状に析出して製造が困難になることがある。そして、該質量比が2.5より大きい場合には疎水化されたコロイド状シリカが混合溶媒にゾル状に分散したままでスラリー状分散液が得ることができず、濾別ができない場合や、疎水化処理工程中で不安定になりゲル状に増粘する場合があり、後者の場合には実質的に製造することができない。
親水性有機溶媒としては、例えば、水との相溶限界の存在しないメタノール、エタノール、1−プロパノール、イソプロパノール、tert-ブタノールなどの沸点100℃以下のアルコール類が好ましく、水及びシラザン化合物との混和性ならびに乾燥工程において除去のしやすさという観点からイソプロパノールが最も好ましい。また、混合溶媒シリカゾル中の適切な親水性有機溶媒と水との質量比は親水性有機溶媒の種類で異なり、親水性有機溶媒と水及びジシラザン化合物との混和性が良いほど混合溶媒シリカゾル中の水に対する親水性有機溶媒の質量比は小さくなる。
The mixed solvent silica sol of the present invention requires the presence of a sufficient amount of the hydrophilic organic solvent to promote contact between the disilazane compound and the hydrophilic colloidal silica. The mixed solvent silica sol is preferably prepared by mixing a hydrophilic organic solvent having a mass ratio of 0.12 to 2.5 with respect to the water of the aqueous silica sol to be used. When the mass ratio is less than 0.12, the solubility of the disilazane compound in the mixed solvent is low, the contact between the disilazane compound and the hydrophilic colloidal silica is insufficient, or the colloidal silica and the mixed solvent that have been hydrophobized. In this case, the colloidal silica that has been subjected to the hydrophobization treatment may precipitate in the form of a lump as the hydrophobization reaction proceeds, making it difficult to manufacture. And when the mass ratio is larger than 2.5, when the colloidal silica hydrophobized cannot be obtained in the form of a slurry dispersion while being dispersed in the mixed solvent in a sol form, and cannot be separated by filtration, In some cases, it becomes unstable during the hydrophobization treatment process and thickens in a gel form. In the latter case, it cannot be produced substantially.
As the hydrophilic organic solvent, for example, alcohols having a boiling point of 100 ° C. or less such as methanol, ethanol, 1-propanol, isopropanol, tert-butanol and the like having no compatibility limit with water are preferable, and miscible with water and a silazane compound. Isopropanol is most preferred from the standpoint of the properties and ease of removal in the drying step. In addition, the mass ratio of the appropriate hydrophilic organic solvent and water in the mixed solvent silica sol differs depending on the type of the hydrophilic organic solvent, and the better the miscibility of the hydrophilic organic solvent with water and the disilazane compound, the better the mixed solvent silica sol has. The mass ratio of the hydrophilic organic solvent to water becomes small.

混合溶媒シリカゾルにおいては、シリカ濃度は5〜50質量%が好ましい。混合溶媒シリカゾル中のシリカ濃度が5質量%より低いと疎水性シリカ粉末の製造効率が低くなり、また親水性コロイド状シリカとジシラザン化合物との接触効率が低下して、親水性コロイド状シリカの表面積当たりのジシラザン化合物の必要量が多くなるため好ましくない。また該シリカ濃度が50質量%を超えると疎水化処理工程において混合溶媒シリカゾルが著しく増粘するため、撹拌が困難になり均質な疎水化処理を行うことが難しくなる。   In the mixed solvent silica sol, the silica concentration is preferably 5 to 50% by mass. When the silica concentration in the mixed solvent silica sol is lower than 5% by mass, the production efficiency of the hydrophobic silica powder is lowered, and the contact efficiency between the hydrophilic colloidal silica and the disilazane compound is lowered, so that the surface area of the hydrophilic colloidal silica is decreased. This is not preferable because the required amount of per-disilazan compound increases. On the other hand, when the silica concentration exceeds 50% by mass, the mixed solvent silica sol is remarkably thickened in the hydrophobizing treatment step, so that stirring becomes difficult and it becomes difficult to perform a uniform hydrophobizing treatment.

疎水化処理コロイド状シリカのスラリー状分散液を得るために適切な混合溶媒シリカゾル中のシリカ濃度ならびに親水性有機溶媒と水との質量比は、親水性コロイド状シリカのBET法粒子径ならびに親水性有機溶媒の種類に依存する。また、適切な組成の混合溶媒シリカゾルを調製するには、親水性コロイド状シリカのBET法粒子径が小さいほど、親水性コロイド状シリカの質量に対して添加する親水性有機溶媒の質量は多くなる傾向にある。   In order to obtain a slurry dispersion of hydrophobized colloidal silica, the silica concentration in the mixed solvent silica sol and the mass ratio of the hydrophilic organic solvent to water are determined by the BET particle size and hydrophilicity of the hydrophilic colloidal silica. Depends on the type of organic solvent. In order to prepare a mixed solvent silica sol having an appropriate composition, the smaller the BET particle diameter of the hydrophilic colloidal silica, the larger the mass of the hydrophilic organic solvent added relative to the mass of the hydrophilic colloidal silica. There is a tendency.

本発明の方法では、ジシラザン化合物添加時の混合溶媒シリカゾルの温度は特に限定されないが、親水性コロイド状シリカとジシラザン化合物との反応を促進するため、ジシラザン化合物添加時は混合溶媒シリカゾルの温度を50℃〜70℃に調整することが好ましい。70℃を超えると反応が激しく、ジシラザン化合物の反応時に発生するアンモニアによって発泡することがある。また、ジシラザン化合物添加後に混合溶媒シリカゾルを50℃〜100℃の温度で加熱して0.5時間以上熟成することにより、混合溶媒シリカゾルが疎水化処理コロイド状シリカのスラリー状分散液になるまで疎水化反応を促進させるとよい。熟成時間が0.5時間未満であると疎水化処理が不十分になることがある。スラリー状にすることにより、疎水化処理コロイド状シリカの液相からの分離が容易になり、ろ過等の簡便な方法により疎水化処理コロイド状シリカを容易に取り出すことができる。   In the method of the present invention, the temperature of the mixed solvent silica sol at the time of addition of the disilazane compound is not particularly limited. It is preferable to adjust to ℃-70 ℃. When the temperature exceeds 70 ° C., the reaction is intense, and foaming may occur due to ammonia generated during the reaction of the disilazane compound. Further, after adding the disilazane compound, the mixed solvent silica sol is heated at a temperature of 50 ° C. to 100 ° C. and aged for 0.5 hour or longer, so that the mixed solvent silica sol becomes hydrophobic until it becomes a slurry dispersion of hydrophobized colloidal silica. It is good to promote the chemical reaction. If the aging time is less than 0.5 hour, the hydrophobization treatment may be insufficient. By making it into a slurry state, separation of the hydrophobized colloidal silica from the liquid phase becomes easy, and the hydrophobized colloidal silica can be easily taken out by a simple method such as filtration.

更に疎水化処理工程に続いて、得られた疎水化処理コロイド状シリカのスラリー状分散液を撹拌下に50〜100℃の温度で加熱して熟成することにより、分散液中にて疎水化処理コロイド状シリカを0.1mm以上の顆粒状に造粒させるとよい。撹拌操作によって顆粒状に造粒することにより疎水化処理後に実施する液相との分離工程の作業性が著しく改善される。造粒工程の液相の温度は疎水化処理工程と同一温度で実施することが可能であるが、疎水化処理工程より高い温度にすることにより造粒を促進することもできる。この顆粒の大きさ及びその粒度分布は特に限定されないが、平均の大きさが5mm以下であることが好ましい。5mmより大きい場合、造粒中に撹拌抵抗が大きくなったり、造粒後に反応装置からの取り出しが困難になることがある。   Further, following the hydrophobization treatment step, the obtained hydrophobized colloidal silica slurry dispersion is aged by heating at 50 to 100 ° C. with stirring, thereby hydrophobizing the dispersion. Colloidal silica is preferably granulated into granules of 0.1 mm or more. By granulating into granules by stirring operation, the workability of the separation step from the liquid phase performed after the hydrophobization treatment is remarkably improved. The temperature of the liquid phase in the granulation step can be carried out at the same temperature as in the hydrophobization treatment step, but granulation can be promoted by setting the temperature higher than that in the hydrophobization treatment step. The size of the granules and the particle size distribution are not particularly limited, but the average size is preferably 5 mm or less. If it is larger than 5 mm, the stirring resistance may increase during granulation, or it may be difficult to remove from the reactor after granulation.

疎水化処理後、液相との分離方法は特に限定されないが、公知の方法によってスラリー状または顆粒状の疎水化処理コロイド状シリカと液相とを分離することができる。例えば、ろ過による濾別や遠心分離、液相の蒸留留去などが挙げられる。   After the hydrophobization treatment, the separation method from the liquid phase is not particularly limited, but the slurry-like or granulated hydrophobization colloidal silica and the liquid phase can be separated by a known method. Examples thereof include filtration by filtration, centrifugation, and liquid phase distillation.

分離工程で得られたスラリー状または顆粒状の疎水化処理コロイド状シリカのケーキの乾燥方法は特に限定されないが、熱風乾燥やマイクロ波乾燥、赤外線乾燥、超音波乾燥、真空乾燥など公知の方法で乾燥することができる。乾燥温度は特に限定されないが、好ましくは200℃以下である。200℃より高いと疎水化処理コロイド状シリカ表面に残存するシラノール基の縮合による一次粒子同士の結合が起こりやすくなる。この結合は乾式粉砕では解離されにくく、結果として疎水性シリカ粉末の有機溶媒への再分散性が悪くなる。また分離工程と乾燥工程はフィルタードライヤーなどの装置を用いて一連の工程として行うこともできる。このようにして得られた疎水性シリカは、アルコール、ケトン、エーテル、芳香族炭化水素、脂肪族炭化水素などほとんどの有機溶媒に均質に分散する。   The drying method of the slurry-like or granulated hydrophobized colloidal silica cake obtained in the separation step is not particularly limited, but may be a known method such as hot air drying, microwave drying, infrared drying, ultrasonic drying, vacuum drying, etc. Can be dried. Although a drying temperature is not specifically limited, Preferably it is 200 degrees C or less. When the temperature is higher than 200 ° C., the primary particles are likely to be bonded to each other by condensation of silanol groups remaining on the surface of the hydrophobized colloidal silica. This bond is not easily dissociated by dry pulverization, and as a result, the redispersibility of the hydrophobic silica powder in an organic solvent is deteriorated. The separation step and the drying step can also be performed as a series of steps using an apparatus such as a filter dryer. The hydrophobic silica thus obtained is homogeneously dispersed in most organic solvents such as alcohols, ketones, ethers, aromatic hydrocarbons and aliphatic hydrocarbons.

また粉砕を乾燥工程の途中で行うことにより乾燥時間を短縮することができる。   Further, the drying time can be shortened by performing the pulverization in the middle of the drying step.

乾燥された疎水化処理シリカを粉体用ミル等で粉砕し、粉末状の疎水性シリカを得ることができる。粉砕方法は特に限定されないが、ジェットミル、振動ミル、ボールミル、アトライターなどの乾式粉砕装置を用いることができる。   The dried hydrophobized silica can be pulverized with a powder mill or the like to obtain powdered hydrophobic silica. The pulverization method is not particularly limited, and a dry pulverization apparatus such as a jet mill, a vibration mill, a ball mill, or an attritor can be used.

各実施例及び比較例は以下の撹拌条件で疎水化処理工程ならびに造粒工程を実施した。
実施例1
1リットルガラス製反応容器;内径85mm
ファウドラー翼(直径70mm)、毎分250回転
造粒工程の液温:74℃
実施例2、4
2リットルガラス製反応容器;内径130mm
ファウドラー翼(直径100mm)、毎分250回転
造粒工程の液温:75℃
実施例3、5
2リットルガラス製反応容器;内径130mm
ファウドラー翼(直径100mm)、毎分150回転
造粒工程の液温:76℃
比較例1、3、5
1リットルガラス製反応容器;内径85mm
ファウドラー翼(直径70mm)、毎分200回転
比較例2、4
1リットルガラス製反応容器;内径85mm
ファウドラー翼(直径70mm)、毎分500回転
In each Example and Comparative Example, the hydrophobization treatment step and the granulation step were performed under the following stirring conditions.
Example 1
1 liter glass reaction vessel with an inner diameter of 85 mm
Faudler wing (diameter 70mm), 250 rotations per minute Liquid temperature of granulation process: 74 ° C
Examples 2 and 4
2 liter glass reaction vessel with an inner diameter of 130 mm
Faudler wing (diameter 100mm), 250 rotations per minute Liquid temperature of granulation process: 75 ° C
Examples 3 and 5
2 liter glass reaction vessel with an inner diameter of 130 mm
Faudler wing (diameter 100mm), 150 revolutions per minute Liquid temperature of granulation process: 76 ° C
Comparative Examples 1, 3, 5
1 liter glass reaction vessel with an inner diameter of 85 mm
Faudler wing (diameter 70 mm), 200 revolutions per minute Comparative Examples 2 and 4
1 liter glass reaction vessel with an inner diameter of 85 mm
Faudler wing (70mm diameter), 500 revolutions per minute

実施例1
市販の酸性水性シリカゾル(商品名:スノーテックス(登録商標)−O、日産化学工業(株)製)、シリカ濃度20質量%、pH3.0、BET法粒子径12nm)をロータリーエバポレーターでシリカ濃度33%まで濃縮し、濃縮酸性水性シリカゾルを得た。続いて、撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、該濃縮酸性水性シリカゾル450g、純水75g、イソプロパノール(IPA)225gを添加し、シリカ濃度20.0質量%、IPA濃度30.0質量%、水分量50質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン75g(親水性コロイド状シリカの表面積100m2当たり1.4ミリモル)を滴下した。該混合溶媒シリカゾルを30分間混合した後、70℃に加熱し1時間熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得た。次いで、この疎水化処理コロイド状シリカのスラリー状分散液を還流状態で撹拌下に3時間熟成することにより顆粒状に造粒させた。ブフナー漏斗(ADVANTEC製定性濾紙No.131)によって顆粒状の疎水化処理コロイド状シリカと液相とを濾別し、得られた顆粒状の疎水化処理コロイド状シリカのケーキを120℃で乾燥した。次に、乾燥させた顆粒状の疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行い、更に150℃で乾燥して150gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末はメチルエチルケトンにゾル状に再分散した。
Example 1
Commercially available acidic aqueous silica sol (trade name: Snowtex (registered trademark) -O, manufactured by Nissan Chemical Industries, Ltd.), silica concentration 20 mass%, pH 3.0, BET method particle size 12 nm) with a rotary evaporator, silica concentration 33 % To obtain a concentrated acidic aqueous silica sol. Subsequently, 450 g of the concentrated acidic aqueous silica sol, 75 g of pure water, and 225 g of isopropanol (IPA) were added to a 1 liter glass reaction vessel equipped with a stirrer, a dropping funnel, a condenser, and a thermometer. A mixed solvent silica sol having 0% by mass, an IPA concentration of 30.0% by mass, and a water content of 50% by mass was prepared. This mixed solvent silica sol was heated to 65 ° C., and 75 g of hexamethyldisilazane (1.4 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The mixed solvent silica sol was mixed for 30 minutes and then heated to 70 ° C. and aged for 1 hour to obtain a slurry dispersion of hydrophobized colloidal silica. Next, this hydrophobized colloidal silica slurry dispersion was granulated into granules by aging under reflux for 3 hours with stirring. The granular hydrophobized colloidal silica and the liquid phase were separated by filtration with a Buchner funnel (Qualitative filter paper No. 131 manufactured by ADVANTEC), and the obtained hydrophobized colloidal silica cake was dried at 120 ° C. . Next, the dried granular hydrophobized colloidal silica was pulverized by a powder mill and further dried at 150 ° C. to obtain 150 g of hydrophobic silica powder. The obtained hydrophobic silica powder was re-dispersed in the form of a sol in methyl ethyl ketone.

またこの疎水性シリカ粉末はその他の有機溶媒では、メタノール、エタノール、イソプロパノール、メチルイソブチルケトン、酢酸エチル、トルエン、メタクリル酸メチルモノマー、ポリジメチルシロキサン、n−ヘキサン、テトラヒドロキシフランにメチルエチルケトンの場合と同様にゾル状に再分散した。   In addition, this hydrophobic silica powder is the same as other organic solvents such as methanol, ethanol, isopropanol, methyl isobutyl ketone, ethyl acetate, toluene, methyl methacrylate monomer, polydimethylsiloxane, n-hexane, tetrahydroxyfuran and methyl ethyl ketone. Re-dispersed in a sol form.

実施例2
撹拌機、滴下漏斗、冷却管、温度計を備えた2リットルのガラス製反応容器に、酸性水性シリカゾル(シリカ濃度31.5質量%、pH2.5、BET法粒子径80nm)1200g、純水75g、イソプロパノール(IPA)350gを添加し、シリカ濃度23.3質量%、IPA濃度21.5質量%、水分量55.2質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン80g(親水性コロイド状シリカの表面積100m2当たり3.9ミリモル)を滴下した。該混合溶媒シリカゾルを30分間混合した後、70℃に加熱し1時間熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得た。次いで、この疎水化処理コロイド状シリカのスラリー状分散液を還流状態で撹拌下に3時間熟成することにより顆粒状に造粒させた。ブフナー漏斗(ADVANTEC製定性濾紙No.131)によって顆粒状の疎水化処理コロイド状シリカと液相とを濾別し、得られた顆粒状の疎水化処理コロイド状シリカのケーキを120℃で乾燥した。次に、乾燥させた顆粒状の疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行い、更に200℃で乾燥して380gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末はメチルエチルケトンにゾル状に再分散した。
Example 2
In a 2 liter glass reaction vessel equipped with a stirrer, dropping funnel, condenser, and thermometer, acidic aqueous silica sol (silica concentration 31.5 mass%, pH 2.5, BET particle size 80 nm) 1200 g, pure water 75 g Then, 350 g of isopropanol (IPA) was added to prepare a mixed solvent silica sol having a silica concentration of 23.3 mass%, an IPA concentration of 21.5 mass%, and a water content of 55.2 mass%. This mixed solvent silica sol was heated to 65 ° C., and 80 g of hexamethyldisilazane (3.9 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The mixed solvent silica sol was mixed for 30 minutes and then heated to 70 ° C. and aged for 1 hour to obtain a slurry dispersion of hydrophobized colloidal silica. Next, this hydrophobized colloidal silica slurry dispersion was granulated into granules by aging under reflux for 3 hours with stirring. The granular hydrophobized colloidal silica and the liquid phase were separated by filtration with a Buchner funnel (Qualitative filter paper No. 131 manufactured by ADVANTEC), and the obtained hydrophobized colloidal silica cake was dried at 120 ° C. . Next, the dried granular hydrophobized colloidal silica was pulverized by a powder mill and further dried at 200 ° C. to obtain 380 g of hydrophobic silica powder. The obtained hydrophobic silica powder was re-dispersed in the form of a sol in methyl ethyl ketone.

実施例3
撹拌機、滴下漏斗、冷却管、温度計を備えた2リットルのガラス製反応容器に、市販のアルカリ性水性シリカゾル(製品名:MP−2040、日産化学工業(株)製)、シリカ濃度40質量%、pH9.4、BET法粒子径120nm)を陽イオン交換して得られる酸性水性シリカゾル(シリカ濃度35質量%、pH2.0)1430g、純水270g、イソプロパノール(IPA)300gを添加し、シリカ濃度25.0質量%、IPA濃度15.0質量%、水分量60.0質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン86g(親水性コロイド状シリカの表面積100m2当たり5.0ミリモル)を滴下した。該混合溶媒シリカゾルを15分間混合した後、70℃に加熱し30分熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得た。次いで、この疎水化処理コロイド状シリカのスラリー状分散液を還流状態で撹拌下に3時間熟成することにより顆粒状に造粒させた。ブフナー漏斗(ADVANTEC製定性濾紙No.131)によって顆粒状の疎水化処理コロイド状シリカと液相とを濾別し、得られた顆粒状の疎水化処理コロイド状シリカのケーキを120℃で乾燥した。次に、乾燥させた顆粒状の疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行い、更に200℃で乾燥して500gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末はメチルエチルケトンにゾル状に再分散した。
Example 3
In a 2 liter glass reaction vessel equipped with a stirrer, dropping funnel, condenser, thermometer, commercially available alkaline aqueous silica sol (product name: MP-2040, manufactured by Nissan Chemical Industries, Ltd.), silica concentration 40% by mass , PH 9.4, BET particle size 120 nm) obtained by cation exchange, 1430 g of acidic aqueous silica sol (silica concentration 35 mass%, pH 2.0), 270 g of pure water, 300 g of isopropanol (IPA) were added, and the silica concentration A mixed solvent silica sol having 25.0% by mass, IPA concentration of 15.0% by mass and water content of 60.0% by mass was prepared. This mixed solvent silica sol was heated to 65 ° C., and 86 g of hexamethyldisilazane (5.0 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The mixed solvent silica sol was mixed for 15 minutes, then heated to 70 ° C. and aged for 30 minutes to obtain a slurry dispersion of hydrophobized colloidal silica. Next, this hydrophobized colloidal silica slurry dispersion was granulated into granules by aging under reflux for 3 hours with stirring. The granular hydrophobized colloidal silica and the liquid phase were separated by filtration with a Buchner funnel (Qualitative filter paper No. 131 manufactured by ADVANTEC), and the obtained hydrophobized colloidal silica cake was dried at 120 ° C. . Next, the dried granular hydrophobized colloidal silica was pulverized by a powder mill and further dried at 200 ° C. to obtain 500 g of hydrophobic silica powder. The obtained hydrophobic silica powder was re-dispersed in the form of a sol in methyl ethyl ketone.

実施例4
実施例2において、120℃で乾燥させた顆粒状の疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行わずに200℃で乾燥した以外は同様の操作を行った。得られた疎水性シリカ粉末はメチルエチルケトンにゾル状に再分散した。
Example 4
In Example 2, the same operation was performed except that the granular hydrophobized colloidal silica dried at 120 ° C. was dried at 200 ° C. without being pulverized by a powder mill. The obtained hydrophobic silica powder was re-dispersed in the form of a sol in methyl ethyl ketone.

実施例5
実施例3において、120℃で乾燥させた顆粒状の疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行わずに200℃で乾燥した以外は同様の操作を行った。得られた疎水性シリカ粉末はメチルエチルケトンにゾル状に再分散した。
Example 5
In Example 3, the same operation was performed except that the granular hydrophobized colloidal silica dried at 120 ° C. was dried at 200 ° C. without being pulverized by a powder mill. The obtained hydrophobic silica powder was re-dispersed in the form of a sol in methyl ethyl ketone.

比較例1
撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、酸性水性シリカゾル(シリカ濃度31.5質量%、pH2.5、BET法粒子径80nm)150g、純水270g、イソプロパノール(IPA)30gを添加し、シリカ濃度10.5質量%、IPA濃度6.7質量%、水分量82.8質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン10g(親水性コロイド状シリカの表面積100m2当たり3.9ミリモル)を滴下した。添加したヘキサメチルジシラザンは直ちに混合溶媒シリカゾルと混じることなく表層に浮いていた。該混合溶媒シリカゾルを30分間混合した後70℃に加熱し1時間熟成しても疎水化処理コロイド状シリカのスラリー状分散液を得ることはできなかった。さらに還流状態で撹拌下に3時間熟成しても疎水化処理コロイド状シリカのスラリー状分散液を得ることはできなかった。
Comparative Example 1
In a 1 liter glass reaction vessel equipped with a stirrer, a dropping funnel, a condenser, and a thermometer, 150 g of acidic aqueous silica sol (silica concentration 31.5 mass%, pH 2.5, BET particle size 80 nm), 270 g of pure water Then, 30 g of isopropanol (IPA) was added to prepare a mixed solvent silica sol having a silica concentration of 10.5% by mass, an IPA concentration of 6.7% by mass, and a water content of 82.8% by mass. This mixed solvent silica sol was heated to 65 ° C., and 10 g of hexamethyldisilazane (3.9 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The added hexamethyldisilazane immediately floated on the surface layer without being mixed with the mixed solvent silica sol. Even if the mixed solvent silica sol was mixed for 30 minutes and then heated to 70 ° C. and aged for 1 hour, a slurry dispersion of hydrophobized colloidal silica could not be obtained. Further, even when the mixture was aged for 3 hours under stirring in a reflux state, a slurry dispersion of hydrophobized colloidal silica could not be obtained.

疎水化処理後の状態はゾル状のままで、ブフナー漏斗を用いて濾紙(ADVANTEC製定性濾紙No.131)による濾別ができなかったので、ゾル状の生成物を金属製のバットに移し、120℃で乾燥させた。得られたゾル状の生成物は液相を分離していないので乾燥効率が著しく悪く、乾燥に長時間を要した。乾燥した疎水化処理コロイド状シリカを粉体用ミルによる粉砕を行い、200℃で乾燥して48gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末は一部がメチルエチルケトンに再分散したが、再分散しない沈降物も生成した。   Since the state after the hydrophobization treatment remained in a sol state and could not be separated by a filter paper (ADVANTEC qualitative filter paper No. 131) using a Buchner funnel, the sol-like product was transferred to a metal vat, Dry at 120 ° C. Since the obtained sol-like product did not separate the liquid phase, the drying efficiency was remarkably poor, and it took a long time to dry. The dried hydrophobized colloidal silica was pulverized by a powder mill and dried at 200 ° C. to obtain 48 g of hydrophobic silica powder. Part of the obtained hydrophobic silica powder was redispersed in methyl ethyl ketone, but a precipitate that did not redisperse was also produced.

比較例2
市販の酸性水性シリカゾル(商品名:スノーテックス(登録商標)−O、日産化学工業(株)製)、シリカ濃度20質量%、pH3.0、BET法粒子径12nm)をロータリーエバポレーターでシリカ濃度33%質量まで濃縮した。続いて、撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、濃縮酸性水性シリカゾル200g、イソプロパノール(IPA)400gを添加し、シリカ濃度11.0質量%、IPA濃度66.7質量%、水分量22.3質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン34g(親水性コロイド状シリカの表面積100m2当たり1.4ミリモル)を滴下した。該混合溶媒シリカゾルを30分間混合した後、70℃に加熱し1時間熟成したが、ゾル状のままで疎水化処理コロイド状シリカのスラリー状分散液を得ることはできなかった。さらに還流状態で撹拌下に3時間熟成したが増粘したゲル状物が生成し、疎水化処理コロイド状シリカのスラリー状分散液を得ることはできなかった。該生成物はゲル状の疎水化処理シリカであり、ブフナー漏斗を用いて濾紙(ADVANTEC製 定性濾紙No.131)による濾別ができなかったので、該生成物を金属製のバットに移し、120℃の乾燥機に投入した。該生成物は液相を含んだままであり乾燥効率が著しく悪く、乾燥に長時間を要した。乾燥した疎水化処理シリカを粉体用ミルによる粉砕を行い、更に150℃で乾燥して69gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末は一部がメチルエチルケトンに再分散したが、再分散しない沈降物も生成した。
Comparative Example 2
Commercially available acidic aqueous silica sol (trade name: Snowtex (registered trademark) -O, manufactured by Nissan Chemical Industries, Ltd.), silica concentration 20 mass%, pH 3.0, BET method particle size 12 nm) with a rotary evaporator, silica concentration 33 Concentrated to% mass. Subsequently, 200 g of concentrated acidic aqueous silica sol and 400 g of isopropanol (IPA) were added to a 1 liter glass reaction vessel equipped with a stirrer, a dropping funnel, a condenser, and a thermometer, and a silica concentration of 11.0% by mass, IPA A mixed solvent silica sol having a concentration of 66.7% by mass and a water content of 22.3% by mass was prepared. This mixed solvent silica sol was heated to 65 ° C., and 34 g of hexamethyldisilazane (1.4 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The mixed solvent silica sol was mixed for 30 minutes and then heated to 70 ° C. and aged for 1 hour. However, a slurry dispersion of hydrophobized colloidal silica could not be obtained in the sol state. Further, although the mixture was aged for 3 hours under stirring in a reflux state, a thickened gel was formed, and a slurry dispersion of hydrophobized colloidal silica could not be obtained. Since the product was a gel-like hydrophobized silica and could not be filtered off with a filter paper (Qualitative filter paper No. 131 from ADVANTEC) using a Buchner funnel, the product was transferred to a metal vat. It put into the dryer of ℃. The product still contained the liquid phase, the drying efficiency was extremely poor, and drying took a long time. The dried hydrophobized silica was pulverized by a powder mill and further dried at 150 ° C. to obtain 69 g of hydrophobic silica powder. Part of the obtained hydrophobic silica powder was redispersed in methyl ethyl ketone, but a precipitate that did not redisperse was also produced.

比較例3
撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、酸性水性シリカゾル(シリカ濃度31.5質量%、pH2.5、BET法粒子径80nm)333g、純水87g、イソプロパノール(IPA)30gを添加し、シリカ濃度23.3質量%、IPA濃度5.0質量%、水71.7質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン22.5g(親水性コロイド状シリカの表面積100m2当たり3.9ミリモル)を滴下した。添加したヘキサメチルジシラザンは直ちに混合溶媒シリカゾルと混じることなく表層に浮いていた。該混合溶媒シリカゾルを30分間混合した後70℃に加熱し1時間熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得た。さらに還流状態にて撹拌下に熟成したが、熟成途中で疎水化処理コロイド状シリカの塊状生成物が多量に生成して撹拌抵抗が大きくなり、撹拌できなくなったので製造を中止した。
Comparative Example 3
In a 1 liter glass reaction vessel equipped with a stirrer, a dropping funnel, a condenser, and a thermometer, 333 g of acidic aqueous silica sol (silica concentration 31.5 mass%, pH 2.5, BET particle size 80 nm), 87 g of pure water Then, 30 g of isopropanol (IPA) was added to prepare a mixed solvent silica sol having a silica concentration of 23.3 mass%, an IPA concentration of 5.0 mass%, and water of 71.7 mass%. This mixed solvent silica sol was heated to 65 ° C., and 22.5 g of hexamethyldisilazane (3.9 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. The added hexamethyldisilazane immediately floated on the surface layer without being mixed with the mixed solvent silica sol. The mixed solvent silica sol was mixed for 30 minutes and then heated to 70 ° C. and aged for 1 hour to obtain a slurry dispersion of hydrophobized colloidal silica. Further, the mixture was ripened under stirring in a reflux state, but a large amount of a hydrophobized colloidal silica bulk product was formed during the ripening, and the stirring resistance increased.

比較例4
市販の酸性水性シリカゾル(商品名:スノーテックス(登録商標)−O、日産化学工業(株)製、シリカ濃度20質量%、pH3.0、BET法粒子径12nm)をロータリーエバポレーターで、イソプロパノールを加えながら水とアルコールを減圧留出させた。この操作をシリカ濃度33質量%、水分量5.7質量%のイソプロパノール分散シリカゾルが得られるまで続けた。続いて、撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、該イソプロパノール分散シリカゾル364g、イソプロパノール(IPA)177g、純水59gを添加し、シリカ濃度20.0質量%、IPA濃度66.7質量%、水分量13.3質量%の混合溶媒シリカゾルを調製した。この混合溶媒シリカゾルを65℃まで加熱し、ヘキサメチルジシラザン62g(親水性コロイド状シリカの表面積100m2当たり1.4ミリモル)を滴下した。加熱と混合を続けたところ著しく増粘が起こり、内容物の撹拌ができなくなったので製造を中止した。
Comparative Example 4
Commercially available acidic aqueous silica sol (trade name: Snowtex (registered trademark) -O, manufactured by Nissan Chemical Industries, Ltd., silica concentration 20% by mass, pH 3.0, BET particle size 12 nm) was added with a rotary evaporator and isopropanol was added. Water and alcohol were distilled off under reduced pressure. This operation was continued until an isopropanol-dispersed silica sol having a silica concentration of 33% by mass and a water content of 5.7% by mass was obtained. Subsequently, 364 g of the isopropanol-dispersed silica sol, 177 g of isopropanol (IPA), and 59 g of pure water were added to a 1 liter glass reaction vessel equipped with a stirrer, a dropping funnel, a condenser, and a thermometer, and a silica concentration of 20.0 was added. A mixed solvent silica sol having a mass%, an IPA concentration of 66.7 mass%, and a water content of 13.3% by mass was prepared. This mixed solvent silica sol was heated to 65 ° C., and 62 g of hexamethyldisilazane (1.4 mmol per 100 m 2 of surface area of hydrophilic colloidal silica) was added dropwise. When heating and mixing were continued, the viscosity increased significantly and the contents could not be stirred, so the production was stopped.

比較例5
撹拌機、滴下漏斗、冷却管、温度計を備えた1リットルのガラス製反応容器に、市販の沈降性シリカパウダー(商品名:Zeosil(登録商標)1165MP、ローディア製、シリカ濃度90質量%、比表面積165m2/g、レーザー回折式分散粒子径273μm)100g、イソプロパノール(IPA)135g、純水215gを添加し、シリカ濃度20.0質量%、IPA濃度30.0質量%、水分量50.0質量%の沈降性シリカのスラリー状分散液を調製した。この沈降性シリカのスラリー状分散液を65℃まで加熱し、ヘキサメチルジシラザン45g(親水性沈降性シリカの表面積100m2当たり1.9ミリモル)を滴下した。該スラリー状分散液を30分間混合した後、70℃に加熱し1時間熟成した。さらに還流状態で撹拌下に3時間熟成し疎水化処理沈降性シリカのスラリー状分散液を得た。ブフナー漏斗を用いて濾紙(ADVANTEC製 定性濾紙No.131)によりスラリー状の疎水化処理沈降性シリカと液相とを濾別し、得られた疎水化処理沈降シリカのケーキを120℃で乾燥した。次に、乾燥させた疎水化処理沈降性シリカのケーキを粉体用ミルによる粉砕を行い、更に200℃で乾燥して98gの疎水性シリカ粉末を得た。得られた疎水性シリカ粉末はメチルエチルケトンに湿潤するのみであり、ゾル状に再分散しなかった。
Comparative Example 5
In a 1 liter glass reaction vessel equipped with a stirrer, dropping funnel, condenser, thermometer, commercially available precipitated silica powder (trade name: Zeosil (registered trademark) 1165MP, manufactured by Rhodia, silica concentration 90% by mass, ratio 100 g of surface area of 165 m 2 / g, laser diffraction type dispersed particle diameter 273 μm), 135 g of isopropanol (IPA) and 215 g of pure water were added, silica concentration was 20.0 mass%, IPA concentration was 30.0 mass%, and water content was 50.0. A slurry dispersion of mass% precipitated silica was prepared. This slurry dispersion of precipitated silica was heated to 65 ° C., and 45 g of hexamethyldisilazane (1.9 mmol per 100 m 2 of surface area of hydrophilic precipitated silica) was added dropwise. The slurry dispersion was mixed for 30 minutes, then heated to 70 ° C. and aged for 1 hour. Further, the mixture was aged for 3 hours under stirring in a reflux state to obtain a slurry dispersion of hydrophobized precipitating silica. Using a Buchner funnel, the slurry-like hydrophobized precipitated silica was separated from the liquid phase with a filter paper (Qualitative filter paper No. 131 manufactured by ADVANTEC), and the resulting hydrophobized precipitated silica cake was dried at 120 ° C. . Next, the dried hydrophobized precipitating silica cake was pulverized by a powder mill and further dried at 200 ° C. to obtain 98 g of hydrophobic silica powder. The obtained hydrophobic silica powder was only wetted with methyl ethyl ketone, and was not redispersed in a sol form.

評価
[疎水性シリカ粉末の分析方法]
(1)疎水性シリカ粉末中の炭素量
得られた疎水性シリカ粉末中の炭素量を、CHNS/Oアナライザー(PE2400シリーズII パーキンエルマー製)を用いて測定した。疎水性シリカ粉末単位表面積当たりのトリメチルシリル基の数(個/nm2)は以下の計算式(α)で算出した。
Evaluation [Analytical Method of Hydrophobic Silica Powder]
(1) Carbon content in hydrophobic silica powder The carbon content in the obtained hydrophobic silica powder was measured using a CHNS / O analyzer (PE2400 series II manufactured by PerkinElmer). The number of trimethylsilyl groups per unit surface area of hydrophobic silica powder (number / nm 2 ) was calculated by the following calculation formula (α).

A:トリメチルシリル基含有量(質量%)=炭素量(質量%)×(73.19/36.03)。   A: Trimethylsilyl group content (% by mass) = carbon amount (% by mass) × (73.19 / 36.03).

B:疎水性シリカ粉末1g当たりのトリメチルシリル基(個)=6.02×1023×(A/73.19)×10-2B: Trimethylsilyl group (g) per 1 g of hydrophobic silica powder = 6.02 × 10 23 × (A / 73.19) × 10 −2 .

C:疎水性シリカ粉末1g当たりの表面積(nm2)=疎水性シリカ粉末の比表面積(m2/g)×1018×固形分(質量%)×10-2C: Surface area per 1 g of hydrophobic silica powder (nm 2 ) = specific surface area of hydrophobic silica powder (m 2 / g) × 10 18 × solid content (mass%) × 10 −2

疎水性シリカ粉末単位表面積当たりのトリメチルシリル基の数(個/nm)=B/C (α)。
ここで固形分とは得られた疎水性シリカ粉末を800℃で焼成して得られる焼成残分のことである。
(2)疎水性シリカ粉末の分散粒子径
得られた疎水性シリカ粉末をメチルエチルケトンに分散し、分散粒子径を動的光散乱法(サブミクロン粒子アナライザー model N4、ベックマン・コールター社製)にて測定した。
(3)疎水化度:シリカ粉末試料0.20g(0.20 ±0.01g)を秤量し、100ccのガラス製ビーカー中の純水50mlに加え、シリカ粉末が液面に浮いた状態とした。マグネチックスターラで撹拌しながら、メタノールが直接試料に触れないようにビュレットを用いて液中に注入して、液面上にシリカ粉末試料が認められなくなったときを終点とする。このときのメタノール使用量をXmlとし、次式に従って疎水化度を求めた。
疎水化度(%)=X/(50+X)×100
評価結果は表1に示した。
Number of trimethylsilyl groups per unit surface area of the hydrophobic silica powder (number / nm 2 ) = B / C (α).
Here, the solid content is a baking residue obtained by baking the obtained hydrophobic silica powder at 800 ° C.
(2) Dispersed particle size of hydrophobic silica powder The obtained hydrophobic silica powder was dispersed in methyl ethyl ketone, and the dispersed particle size was measured by a dynamic light scattering method (submicron particle analyzer model N4, manufactured by Beckman Coulter, Inc.). did.
(3) Degree of hydrophobicity: 0.20 g (0.20 ± 0.01 g) of a silica powder sample was weighed and added to 50 ml of pure water in a 100 cc glass beaker so that the silica powder floated on the liquid surface. . While stirring with a magnetic stirrer, methanol is injected into the liquid using a burette so that the sample does not directly touch the sample, and the end point is when no silica powder sample is observed on the liquid surface. The amount of methanol used was X ml, and the degree of hydrophobicity was determined according to the following formula.
Hydrophobicity (%) = X / (50 + X) × 100
The evaluation results are shown in Table 1.

Figure 0005267758
Figure 0005267758

(4)有機溶媒分散性評価は以下のように行った。
ガラス製の20cc小瓶中で、得られた疎水性シリカ粉末1gをメチルエチルケトン9gに添加し、マグネッチックスターラーにて30分間混合した後、市販の超音波洗浄器にて30秒間分散させることにより分散液を調製した。次に得られた分散液をメチルエチルケトンで適宜希釈して、動的光散乱法(サブミクロン粒子アナライザー model N4、ベックマン・コールター社製)にて分散粒子径を測定した。
比較例1、2では分散液中に沈降性成分が存在するため、上澄みを適宜希釈して測定した。また、比較例5ではゾル状に分散せず、動的光散乱法では測定できなかったので、レーザー回折式粒度分布測定装置(SALD−7000、島津製作所製)にて分散粒子径を測定した。疎水性シリカ粉末の分散粒子径と原料に用いた水性シリカゾルの分散粒子径とを比較し、有機溶媒分散性評価を行った。
(4) Evaluation of organic solvent dispersibility was performed as follows.
In a 20 cc glass bottle, 1 g of the obtained hydrophobic silica powder is added to 9 g of methyl ethyl ketone, mixed for 30 minutes with a magnetic stirrer, and then dispersed for 30 seconds with a commercially available ultrasonic cleaner. Was prepared. Next, the obtained dispersion was appropriately diluted with methyl ethyl ketone, and the dispersed particle size was measured by a dynamic light scattering method (submicron particle analyzer model N4, manufactured by Beckman Coulter, Inc.).
In Comparative Examples 1 and 2, since the sedimentation component was present in the dispersion, the supernatant was appropriately diluted and measured. Further, since Comparative Example 5 was not dispersed in a sol form and could not be measured by the dynamic light scattering method, the dispersed particle size was measured with a laser diffraction particle size distribution measuring device (SALD-7000, manufactured by Shimadzu Corporation). The dispersion particle diameter of the hydrophobic silica powder was compared with the dispersion particle diameter of the aqueous silica sol used as the raw material, and the organic solvent dispersibility was evaluated.

Figure 0005267758
Figure 0005267758

以上、本発明の製造法により簡便な装置で簡素な疎水化処理工程による疎水性シリカ粉末の製造が可能となる。本発明で得られた疎水性シリカ粉末は電子写真等のトナー用外添剤や樹脂の内添剤、ハードコート剤、撥水化剤、難燃剤等として有用である。   As described above, the production method of the present invention makes it possible to produce a hydrophobic silica powder by a simple hydrophobization process using a simple apparatus. The hydrophobic silica powder obtained in the present invention is useful as an external additive for toner such as electrophotography, an internal additive for resin, a hard coat agent, a water repellent, a flame retardant and the like.

本発明は有機溶媒への再分散性に優れた疎水性シリカ粉末を効率良く製造する方法を提供する。本発明で得られた疎水性シリカ粉末は電子写真等のトナー用外添剤や樹脂の内添剤、ハードコート剤、撥水化剤、難燃剤等として有用である。
The present invention provides a method for efficiently producing a hydrophobic silica powder excellent in redispersibility in an organic solvent. The hydrophobic silica powder obtained in the present invention is useful as an external additive for toner such as electrophotography, an internal additive for resin, a hard coat agent, a water repellent, a flame retardant and the like.

Claims (2)

下記の(A)、(B)、(C)及び(D)工程を含む水性シリカ粉末の製造法。
(A):比表面積5.5〜550m/gの親水性コロイド状シリカを含有する水性シリカゾルに、該水性シリカゾルの水に対して親水性有機溶媒を質量比0.12〜2.5で混合して得られる、シリカ濃度5〜50質量%の混合溶媒シリカゾルに、
式(1)
(R Si)NH (1)
(式中の各Rはそれぞれ独立に選択される炭素原子数が1〜6のアルキル基またはフェニル基である。)
で表されるジシラザン化合物を、親水性コロイド状シリカの表面積100m当たり0.1〜20ミリモル添加し、50〜70℃の温度で加熱して熟成することにより疎水化処理コロイド状シリカのスラリー状分散液を得る疎水化処理工程、
(B):(A)工程で得られたスラリー状分散液を撹拌下に50〜100℃の温度で且つ疎水化処理工程における温度よりもより高い温度で加熱して熟成することにより、該分散液中で疎水化処理コロイド状シリカを顆粒状に造粒させる工程、
(C):(B)工程で得られた顆粒状に造粒された疎水化処理コロイド状シリカと該分散液中の液相とを分別する工程、及び
(D):(C)工程で得られた顆粒状の疎水化処理コロイド状シリカのケーキを乾燥する工程。
Following (A), (B), (C) and (D) the preparation of hydrophobicity silica powder comprising the step.
(A): An aqueous silica sol containing hydrophilic colloidal silica having a specific surface area of 5.5 to 550 m 2 / g is mixed with a hydrophilic organic solvent at a mass ratio of 0.12 to 2.5 with respect to the water of the aqueous silica sol. In a mixed solvent silica sol having a silica concentration of 5 to 50% by mass obtained by mixing,
Formula (1)
(R 1 3 Si) 2 NH (1)
(In the formula, each R 1 is an independently selected alkyl group having 1 to 6 carbon atoms or a phenyl group.)
The disilazane compound represented by the formula (1) is added in an amount of 0.1 to 20 mmol per 100 m 2 of the surface area of hydrophilic colloidal silica and heated at a temperature of 50 to 70 ° C. for aging to make a hydrophobized colloidal silica slurry. A hydrophobizing step for obtaining a dispersion;
(B): The slurry-like dispersion obtained in the step (A) is aged by heating at 50 to 100 ° C. with stirring and at a temperature higher than the temperature in the hydrophobic treatment step. A step of granulating the hydrophobized colloidal silica in a liquid,
(C): a step of separating the hydrophobized colloidal silica granulated in step (B) and the liquid phase in the dispersion, and (D): obtained in step (C). Drying the resulting hydrophobized colloidal silica cake.
式(1)で表されるジシラザン化合物がヘキサメチルジシラザンである請求項1に記載の製造法。 The process according to claim 1 , wherein the disilazane compound represented by the formula (1) is hexamethyldisilazane.
JP2006180336A 2005-07-04 2006-06-29 Method for producing hydrophobic silica powder Active JP5267758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180336A JP5267758B2 (en) 2005-07-04 2006-06-29 Method for producing hydrophobic silica powder

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005194765 2005-07-04
JP2005194765 2005-07-04
JP2006180336A JP5267758B2 (en) 2005-07-04 2006-06-29 Method for producing hydrophobic silica powder

Publications (2)

Publication Number Publication Date
JP2007039323A JP2007039323A (en) 2007-02-15
JP5267758B2 true JP5267758B2 (en) 2013-08-21

Family

ID=37797643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180336A Active JP5267758B2 (en) 2005-07-04 2006-06-29 Method for producing hydrophobic silica powder

Country Status (1)

Country Link
JP (1) JP5267758B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE507267T1 (en) * 2007-04-13 2011-05-15 Asahi Glass Co Ltd METHOD FOR PRODUCING A METAL OXIDE PARTICLE COATED WITH HYDROPHOBIZED SILICON OXIDE
JP5426869B2 (en) * 2008-11-19 2014-02-26 パナソニック株式会社 Method for producing mesoporous silica fine particles, mesoporous silica fine particle-containing composition, and mesoporous silica fine particle-containing molded product
JP5795840B2 (en) * 2010-03-31 2015-10-14 株式会社アドマテックス Silica particle material, silica particle material-containing composition, and silica particle surface treatment method
JP5811620B2 (en) 2010-12-13 2015-11-11 富士ゼロックス株式会社 Method for producing silica particles
JP5803468B2 (en) * 2011-09-14 2015-11-04 富士ゼロックス株式会社 Method for producing hydrophobic silica particles
JP5687785B2 (en) * 2014-03-10 2015-03-18 株式会社アドマテックス Method for surface treatment of silica particles
JP5865466B2 (en) * 2014-11-17 2016-02-17 株式会社アドマテックス Silica particle material and filler-containing resin composition
JP6995477B2 (en) * 2016-12-28 2022-01-14 日華化学株式会社 Method for manufacturing water repellent composition, water repellent fiber product and water repellent fiber product
JP7044889B2 (en) * 2018-01-25 2022-03-30 キャボット コーポレイション Aqueous hydrophobic silica dispersion
US11365126B2 (en) 2018-12-13 2022-06-21 Lg Chem, Ltd. Method for manufacturing aerogel blanket
CN113845117B (en) * 2020-06-28 2023-05-26 中国石油天然气股份有限公司 Oil-water amphiphilic silicon dioxide nano particle and preparation method thereof
WO2024167017A1 (en) * 2023-02-10 2024-08-15 日産化学株式会社 Hydrophobic silica sol, coating composition and method for producing same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032503B2 (en) * 1997-05-26 2008-01-16 日産化学工業株式会社 Method for producing hydrophobic organosilica sol
DE19756831A1 (en) * 1997-12-19 1999-07-01 Wacker Chemie Gmbh Silicon dioxide, which carries partially or completely silylated polysilicic acid chains on its surface
US6184408B1 (en) * 1999-04-28 2001-02-06 Dow Corning Corporation Method for preparation of hydrophobic precipitated silica
JP4888633B2 (en) * 2004-11-16 2012-02-29 日産化学工業株式会社 Method for producing hydrophobic silica powder

Also Published As

Publication number Publication date
JP2007039323A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
JP5267758B2 (en) Method for producing hydrophobic silica powder
US7186440B2 (en) Process for producing hydrophobic silica powder
JP5644789B2 (en) Powder composition
JP5032328B2 (en) Production of direct hydrophobic silica from aqueous colloidal silica dispersions
JP4888633B2 (en) Method for producing hydrophobic silica powder
EP1657283B1 (en) Process for producing hydrophobic silica powder
JP6013531B2 (en) Surface-treated metal oxide particles
KR101450781B1 (en) Method of producing silica particles
US4015031A (en) Process for hydrophobizing silicas and silicates with organosilanes
KR101470049B1 (en) Cyclic-treated metal oxide
WO2012057086A1 (en) Aerogel and method for producing same
JP5489505B2 (en) Method for producing hydrophobic silica particles
JP2000080201A (en) Production of hydrophobic non-aggregated colloidal silica
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
TWI841694B (en) Hydrophobic silica powder and colorant resin particles
JP4458396B2 (en) Method for producing high-purity hydrophilic organic solvent-dispersed silica sol, high-purity hydrophilic organic solvent-dispersed silica sol obtained by the method, method for producing high-purity organic solvent-dispersed silica sol, and high-purity organic solvent-dispersed silica sol obtained by the method
JP2003165718A (en) Non-porous spherical silica and method for producing the same
JPH0798655B2 (en) Method for producing surface-modified silica
JPH054325B2 (en)
JP5974986B2 (en) Silica-attached silicon particles and sintered mixed raw material, and method for producing silica-attached silicon particles and hydrophobic spherical silica fine particles
JP2021187692A (en) Porous metal oxide powder and method for producing the same
TW202244002A (en) Fumed silica powder with reduced silanol group density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090309

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120418

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120529

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R151 Written notification of patent or utility model registration

Ref document number: 5267758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350