TW200831408A - Process for producing colloidal silica - Google Patents

Process for producing colloidal silica Download PDF

Info

Publication number
TW200831408A
TW200831408A TW96147404A TW96147404A TW200831408A TW 200831408 A TW200831408 A TW 200831408A TW 96147404 A TW96147404 A TW 96147404A TW 96147404 A TW96147404 A TW 96147404A TW 200831408 A TW200831408 A TW 200831408A
Authority
TW
Taiwan
Prior art keywords
acid
metal
colloidal
stage
cerium oxide
Prior art date
Application number
TW96147404A
Other languages
Chinese (zh)
Inventor
Taku Konishi
Original Assignee
Fuso Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Chemical Co Ltd filed Critical Fuso Chemical Co Ltd
Publication of TW200831408A publication Critical patent/TW200831408A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/141Preparation of hydrosols or aqueous dispersions
    • C01B33/1412Preparation of hydrosols or aqueous dispersions by oxidation of silicon in basic medium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

Disclosed is a method for producing a colloidal silica using silicon metal as a raw material, which enables to produce a colloidal silica having high concentration and low viscosity. Also disclosed a method for producing a colloidal silica using silicon metal as a raw material, which enables to produce a colloidal silica in short time with high yield without comprising a concentration step. Further disclosed is a method for producing a colloidal silica, which enables to easily control the particle size of silica contained in a colloidal silica. Specifically disclosed is a method for producing a colloidal silica comprising a step for obtaining a colloidal silica by reacting silicon metal (Si) with water in an aqueous solution containing an alkaline catalyst and a dispersing agent, wherein the dispersing agent is composed of one or more ionic substances selected from inorganic acids, organic acids and their salts. Also specifically disclosed is a method for producing a colloidal silica comprising a step for controlling the particle size of silica by adjusting the addition rate of silicon metal into an aqueous solution containing an alkaline catalyst and a dispersing agent.

Description

200831408 九、發明說明: 【發明所屬之技術領域】 本發明係有關於適合作 璃、硬碟等基板研磨_的新穎合物半導體、玻 =包二tr性觸媒及分散劑的=== 水反應來取得„氧切之:二 【先前技術】 矽。嗲二ΐ斗的•研磨劑或防滑劑等都採用膠質氧化 石夕烧氧化合物水解· 包括:將以金屬石夕為原料的 .,^ ♦、、'但合來取得的方法、使離子交換樹 :古 ,的水玻埤,使金屬矽中性或酸性化來取得 i. ::及將含無機-價鹼金屬化合物、銨、胺的水溶液 加^混合金屬石夕粉末或金屬石夕塊予以反應的方式。專利 文;、〜四,載的製作方式包含將金射與水反應來取得 二氧化::的纽,因為_個反應製程就能取得膠質氧化 石夕,就‘程數少這點與其他製作方式比較後較為有利。 專利文獻五舉出以金屬石夕為原料的膠質氧化石夕的製作 二^^在反應製程就能以3 0 %的高濃度且8 0 %以上 化,方法。該文獻記载二氧切的 ^:Si+2〇H^H2〇-.si〇3-+2H2i 聚合反應:Si〇3、H2〇—Si〇2 + 2〇H— (2) 總反應式:Si+2H2〇〜Si〇2+2H2t (3) 5 200831408 只要反應確實進行的話,如(3) m ^ _ )所不,因為驗性觸 媒的存在,金屬石夕就會形成膠貝氣化石々lL Ddr 1 1 ,此時,1 m ο 1 的金屬石夕會消耗2mo 1的水,生成lm〇 )的石夕與〜 ο 1的氫。 然而,該製作#式在水與金屬石夕的反應製程有個問 題,即隨著反應液的濃度變高,其黏度也會跟著升高。於 是’在將反應液與未反應的K ’查過濾的精製製程裡i黏度 升高會導致過濾性與產率變差。200831408 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a novel semiconductor, glass, and a dispersant suitable for polishing a substrate such as a glass or a hard disk. The reaction is to obtain the oxygen cut: two [prior art] 矽. 嗲 ΐ 的 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ^ ♦,, 'but the method of obtaining, the ion exchange tree: ancient, water glass, the metal bismuth neutral or acidified to obtain i. :: and will contain inorganic-valent alkali metal compounds, ammonium, The aqueous solution of the amine is mixed with the metal stone powder or the metal stone block to react. The patent text; the ~ four, the production method includes the reaction of gold and water to obtain the oxidation:: New Zealand, because _ The reaction process can obtain colloidal oxidized stone, and it is advantageous to compare the number of processes with other production methods. Patent Document 5 cites the production of colloidal oxidized olivine with metal shixi as raw material. Can be at a high concentration of 30% and 8 0 %化化,方法. This document describes the dioxin-cut::Si+2〇H^H2〇-.si〇3-+2H2i polymerization: Si〇3, H2〇-Si〇2 + 2〇H— (2) Total reaction formula: Si+2H2〇~Si〇2+2H2t (3) 5 200831408 As long as the reaction does proceed, as in (3) m ^ _ ), because of the presence of the organic catalyst, It will form a rubberized fossil 々lL Ddr 1 1 , at this time, 1 m ο 1 of the metal stone will consume 2mo 1 of water, generating lm 〇) of the stone eve with ~ ο 1 of hydrogen. However, the production # There is a problem in the reaction process between water and metal shi, that is, as the concentration of the reaction liquid becomes higher, the viscosity thereof also increases. Thus, 'in the refining process of filtering the reaction solution with unreacted K' The increase in viscosity of i will result in poor filterability and yield.

反之,為了提高膠質氧化矽的過濾性與產率,欲取得 低黏度且高濃度的膠質氧化石夕’必須另行進行反應液的濃 縮製程,因而出現耗費多餘經費與時間的問題。 專利文獻六記載添加硫酸鈉或氯化鈉等無機鹽來使膠 質氧化矽高濃度化的方法。然而,儘管該方法能取得某種 程度的高濃度膠質氧化矽,但是它並非使金屬矽粉末與鹼 性水溶液反應來取得膠質氧化矽的方法。意即,專利文獻 六記載的製作方式是歷經非常複雜的製程將膠質氧化矽的 粒子形成一定大小後,添加前述無機鹽,進行高濃度濃縮 的方法。也就是說,在專利文獻六記載的方法中,該無機 鹽並非被添加在反應中的反應液裡,因為偈限在矽粒形成 後,因此製造效率低。要是在矽粒形成前添加分散劑,不 只無法製造出低黏度且高濃度的膠質氧化矽,還會因為黏 度升高,導致作業效率嚴重不佳。 意即,以金屬碎為原料製造膠質氧化梦時’為了盡量 抑制製程數、提供簡便的製作方式,無須濃縮就能形成高 濃度及低黏度的膠質氧化矽的製作方式,至今還未被發明。 更進一步說,在製造適用各種用途的膠質氧化矽時, 6 200831408 必須調整其中的石夕粒徑。如:用於精密鑄造鱗型、 維成型、耐火物成型等黏結劑的膠質氧化矽,其中、△ 2好是結合力強的小粒徑。另外,用於消光塗料的 劑或基板的研磨劑、紙製品或纖維防滑劑等膠 ” mii㈣最好是大粒徑。大粒徑的石夕具有高遮蔽性及 况到粒輕控制,專利讀—〜四記載㈣ =溶解金屬石夕使其溶膠化的手法上,並未提及調節=3 ^專利文獻七介紹在含氩氧化銨的水性膠質氧化石夕的 添加金屬碎,就能累積水性膠質氧切中的原 大小來調整粒子的膠質氧化矽的製作方式。’、 ^而’根據該專利文獻七記载的發明調整膠質氧化石夕 必須在製造出膠質氧化錢進行粒子調整製 壬口而出現耗費太多經費與時間的問題。 了,在以金財為原料所製造的膠質氧切中,除 調整數的簡便製作方式外’還要能在反應製程 4貝乳切的帅徑。但是,目前並未有這類發明。 =以通用的膠質氧化石夕的製作方式來說,包括廣為 場,交換法’即以陽離子交換樹脂處理稀釋的水玻 粒枝m納的活财酸水溶液,局部熱誠後生成石夕 石夕醆水〜^熱分散液_時,花時間加人前述活性 法,夕粒以雪球狀生長之方法,據該方 氧化矽1衣造含小粒子或大粒子等任意石夕粒徑的膠質 =化矽,攻後,將矽濃度2〜5重量百分 矽赵過蒸發濃縮或超過遽濃縮,取得石夕濃度2卜5 0 7 200831408 重夏百分比的水轉質氧切。(參 /總之,非專利文獻一記載的膠質I專利文獻-)。 係猎由限制切_的加熱分的的製作方式’ 此,1添加石夕酸水溶液的速度來控制粒徑。ί 成或離子交換處理的製程,甚至用來提高石夕 π粍賈過多時間和經費的問題。 【專利文獻一】美國專利第2 6 1 4 9 9 3號 【專利文獻二】美國專利第2 6丄4 9 9 4號 【專利文獻三】美國專利第2 6 1 4 9 9 5號 【專利文獻四】特公昭4 9 一 4 6 3 7號On the other hand, in order to improve the filterability and productivity of the colloidal cerium oxide, it is necessary to separately carry out the concentration-reduction process of the reaction liquid to obtain a low-viscosity and high-concentration colloidal oxidized oxide, which causes a problem of excessive expense and time. Patent Document 6 describes a method of adding a mineral salt such as sodium sulfate or sodium chloride to increase the concentration of colloidal cerium oxide. However, although this method can achieve a certain degree of high concentration of colloidal cerium oxide, it is not a method of reacting metal cerium powder with an aqueous alkali solution to obtain colloidal cerium oxide. In other words, the production method described in Patent Document 6 is a method in which the particles of the colloidal cerium oxide are formed into a certain size after a very complicated process, and the inorganic salt is added and concentrated at a high concentration. That is, in the method described in Patent Document 6, the inorganic salt is not added to the reaction liquid in the reaction, and since the limit is formed after the formation of the particles, the production efficiency is low. If a dispersant is added before the formation of the granules, it is not only impossible to produce a low-viscosity and high-concentration colloidal cerium oxide, but also because the viscosity is increased, resulting in a serious work efficiency. That is to say, when the colloidal oxidized dream is made of metal scrap as a raw material, in order to suppress the number of processes and provide a simple production method, a high-concentration and low-viscosity colloidal cerium oxide can be formed without concentration, and has not been invented yet. Furthermore, in the manufacture of colloidal cerium oxide for various purposes, 6 200831408 must adjust the particle size of the stone. For example, colloidal cerium oxide used for precision casting scale type, dimensional forming, refractory forming and other bonding agents, wherein Δ 2 is a small particle size with strong binding force. In addition, the agent for the matting coating or the abrasive of the substrate, the paper product or the fiber anti-slip agent, etc. mii (4) is preferably a large particle size. The large particle size of Shi Xi has high shielding and conditional light control, patent reading -~4 records (4) = The method of dissolving metal sol is sol-gel, and there is no mention of adjustment = 3 ^ Patent Document 7 introduces the addition of metal granules on the hydrated oxidized oxidized arsenic oxide containing argon ammonium oxide, which can accumulate water. The original size of the colloidal oxygen cutting is used to adjust the preparation method of the colloidal cerium oxide of the particles. ', ^ and 'Adjusting the colloidal oxidized oxide according to the invention described in Patent Document 7 must produce a colloidal oxidized money for particle adjustment and gargle There is a problem that it takes too much money and time. In the colloidal oxygen cutting made of gold as raw material, in addition to the simple production method of the adjustment number, it is also necessary to be able to cut the hair in the reaction process. There is no such invention at present. = In the production of general-purpose colloidal oxide oxide, including the extensive field, the exchange method is to treat the diluted water-glass pellets with cation exchange resin. The solution, after local enthusiasm, generates Shi Xi Shi Xi Xishui ~ ^ heat dispersion _, when the time is added to the above-mentioned active method, the granules are grown in the form of snowballs, according to the cerium oxide 1 coating containing small particles or The colloid of any stone particle size such as large particles = phlegm, after the attack, the concentration of strontium is 2~5 wt%, and the concentration of 矽 蒸发 is concentrated or exceeds 遽, and the concentration of Shi Xi is 2 b 5 7 7 200831408 Water-transfer oxygen-cutting (refer to / in addition, the colloidal I patent document described in Non-Patent Document 1). The method of making the heating fraction by limiting the cut_ This is controlled by the speed of adding the aqueous solution of the aqueous solution of the rock The process of λ or ion exchange treatment is even used to improve the problem of excessive time and expense of Shi Xi 粍 。 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 【 Patent No. 2 6丄4 9 9 4 [Patent Document 3] US Patent No. 2 6 1 4 9 9 5 [Patent Document 4] Special Gong Zhao 4 9 1 4 3 3 7

【專利文獻五】特開昭4 9 一 6 4 5 9 5號公報 【專利文獻六】特公昭3 7 一 9 9 6 ;[號公報 【專利文獻七】特公昭4 8 — 1 3 8 3 3號 、,【非專利文獻一】吉田明利著,化學與工業,第4 R 卷第5號Ρ45(1992) 【發明内容】 本發明的課題係在以金屬矽為原料的膠質氧化矽之製 作方法中形成高濃度且低黏度的膠質氧化矽。 匕本I月其他課題係在提供一種以金屬石夕為原料的膠質 ^化矽之製作方法,無須將經由金屬矽與水反應取得的膠 貝氧化矽濃縮,就能將未反應的殘渣濾除,以短時間、高 產率精製出膠質氧化矽。 本發明其他課題係提供一膠質氧化矽之製作方法,在 200831408 严知性水洛液及金屬石夕的反應液中使水與金屬矽反應來取 得膠質氧切的製程中,以較少$程就能輕鬆調整膠質氧 ,石夕中㈣㈣’製造含小粒子到场子等雜徑的膠質 氣化石々。 ' 本舍明係提供一種膠質氧化石夕 觸媒及分散劑的水溶液中,使金 氧化梦之製程,其中前述分散劑是選自於 '、惠、:機酸或該等之鹽之一種以上的離子性物質。 其中im分散劑是選自於驗、雜 上的無機酸及/或其鹽。 < 種以 其中前述分散毅錢酸鹽,該鹽是選自於盘 、L 1 :NH4、胺或四級氫氧化銨的鹽之—種以上 其中前述分散劑是選自於草酸、棒。 來酸、酒石酸、戊二酸、己二酸、庚二酸:V;果酸、馬 酸、反丁烯二酸、苯二甲酸、甲心酸、兩二 戊酸⑼基丁酸、正己酸、3,3_二甲基丁酸、=其丁酸、 4-甲基戊酸、n_庚酸、2_己酸甲醋、n•辛酸 二丁酸、 酸、水揚酸、甘油酸或乳酸之一種二甘醇 鹽。 哉酸及/或其 •其中耵述分散劑是有機酸鹽,該鹽選自於 L 1、NH4、胺或四級氫氧化銨的鹽之—種以、a、K、 其中前述鹼性觸媒為一種或多種含鈉 者。[Patent Document 5] Unexamined No. 4 9 - 6 4 5 9 5 [Patent Document 6] Special Gong Zhao 3 7 - 9 9 6 ; [No. Bulletin [Patent Document 7] Special Gong Zhao 4 8 - 1 3 8 3 3 No., [Non-Patent Document 1] Yoshida Akira, Chemicals and Industry, 4th R, No. 5, Ρ 45 (1992) [Disclosed] The subject of the present invention is a method for producing colloidal cerium oxide using metal ruthenium as a raw material A high concentration and low viscosity colloidal cerium oxide is formed. In the other month of this month, I will provide a method for the preparation of a gelatinized ruthenium which is made of metal as a raw material. It is possible to filter unreacted residue without concentrating the cerium oxide cerium obtained by reacting the metal ruthenium with water. The gelatinous cerium oxide is refined in a short time and in a high yield. Another object of the present invention is to provide a method for preparing a colloidal cerium oxide, which is prepared by reacting water with a metal ruthenium in a reaction liquid of 200831408 succinct water hydrazine solution and metal shixi to obtain a colloidal oxygen cleavage process. It is easy to adjust the colloidal oxygen, Shi Xizhong (four) (four) 'manufacturing a colloidal gas fossil with small particles to the field and other impurities. The present invention provides a process for oxidizing gold in an aqueous solution of a colloidal oxidized oxide catalyst and a dispersing agent, wherein the dispersing agent is selected from the group consisting of ', hui, an organic acid or one or more of the salts. Ionic material. Wherein the im dispersant is an inorganic acid and/or a salt thereof selected from the group consisting of impurities and impurities. <wherein the above-mentioned dispersion of the acid salt, which is selected from the group consisting of a disk, a salt of L 1 :NH 4 , an amine or a quaternary ammonium hydroxide, wherein the dispersant is selected from the group consisting of oxalic acid and a bar. Acid, tartaric acid, glutaric acid, adipic acid, pimelic acid: V; fruit acid, horse acid, fumaric acid, phthalic acid, methylic acid, dipentanoic acid (9) butyric acid, n-hexanoic acid, 3,3_Dimethylbutyric acid, =butyric acid, 4-methylpentanoic acid, n-heptanoic acid, 2-hexanoic acid methyl vinegar, n-octanoic acid dibutyric acid, acid, salicylic acid, glyceric acid or a diethylene glycol salt of lactic acid. Capric acid and/or its dispersing agent is an organic acid salt selected from the group consisting of L 1 , NH 4 , amine or a salt of a quaternary ammonium hydroxide, a, K, wherein the aforementioned basic touch The medium is one or more sodium-containing.

或i )的金屬—價氫氧化物之混合物/ )、卸(W 其中以孔徑l//m的濾膜將前述膠f 後,其動黏度在4mm2/s以下。 夕過濾精製 200831408 上 其中刖述膠質氧化矽的矽濃度在2 0重量百分比以 上述膠質氧化矽之製作方法,至少具備以下階段: 〔階I又一〕製作含水、鹼性觸媒及分散劑的水溶液; 〔階段二〕準備業已將金屬矽分散至水中的漿狀液或 金屬$夕;及 〔階段三〕在階段一所取得的水溶液中,以大致固定 速度添加階段二所準備的漿狀液或金屬石夕,或是在階段一 所取付的水溶液中,以大致固定速度添加階段二所準備的 聚狀液或金屬石夕的同時,以大致固定速度添加驗性觸媒。 、其中在前述階段三係藉由控制前述漿狀液或金屬妙 添加速度來取得含希望矽粒徑的膠質氧化矽。 、 旦上,質氧化矽之製作方法,係以每小時的金 加置為每小時反應液量的丄〜95重 夕外 添加速度。 0重里百分比作為前述 其中前述階段三所取得的膠質氧化矽 徑,其一次粒徑為6〜8 〇 n m。 3的矽粒 本發明另提供-種膠質氧化石夕之製 以下階段: 女至少具備 〔階段I〕製作含水及鹼性觸媒的水溶液; 〔階段I I〕準備業已將金屬矽分散至 或金屬石夕;及 中的漿狀液 …3段111〕在階段1所取得的水溶液中 口疋速度添加階段j工所準備的 Μ大致 階段1所取得的水溶液中,以大致固錢 10 200831408 所準備的漿狀液或金屬石夕的同時,以大致固定速度加入驗 性觸媒。 其中在前述階段I係藉由控制業已將金屬矽分散至水 中的漿狀液或金屬矽的添加速度來取得含希望矽粒徑的膠 質氧化矽。 本發明之膠質氧化矽之製作方法是以金屬矽(S i ) 為原料的膠質氧化矽之製作方法,包括一在含鹼性觸媒 及分散劑的水溶液中,使金屬石夕與水反應來取得膠質氧 化矽的反應製程。所取得的膠質氧化矽為高濃度且低黏 度。進一步說,則是該矽濃度在考慮膠質氧化矽的用途 下,最好介於2 0重量百分比以上、5 0重量百分比以 下。因此,在反應製程之後無須濃縮膠質氧化矽,所以 較為經濟,同時,因為該膠質氧化矽屬低黏度,過濾性 佳,能以短時間、高產率精製而成,因此,以金屬石夕為 原料的膠質氧化矽之製作方法就能以工業用途製造出金 屬石夕。 根據本發明製作方法,無論在矽粒形成前或形成後 使用分散劑都無妨,因此,作業效率高。即使在石夕粒形 成前添加分散劑,也不會使膠質氧化矽升高。 再者,本發明膠質氧化矽之製作方法是以金屬矽(S i )為原料的膠質氧化矽之製作方法,能在反應製程調 整膠質氧化矽中的矽粒徑。因此,無須在膠質氧化矽形 成後調整粒徑,能以較少製程輕鬆製造出含希望矽粒徑 的膠質氧化矽。 【實施方式】 本發明膠質氧化矽之製作方法,其特徵在於至少包括 11 200831408 一在媒及分散編 水反應來取得膠質氧化 ”^屬石夕(s 1 )與 膠質氧化石夕之製作方法。衣私。以下將詳細說明本發明 (-)氧切最好由叮四個製程製造。 、八严屬子化製程(以下有時單稱製程(-)),· 的非活性處理製程(以τ有時單稱製程J)); 及王萄石夕與水的反應製程(以下有時單稱製程(三)); ((:)))膠質氧化矽的過濾精製製程(以下有時單稱製程 =製程㈠是將作為原料的金切粒子化的製程。 . :、原料使用的金屬矽無特別限制,使用合金 所使用的金屬石夕會直接影響製造出的谬質氧ί 石夕的j度,因此,最好使用純度高的金屬石夕。 製程(一)雖然沒有特別限制將金屬牛 但是以粉碎金屬石夕的方法為佳 子^的方法’ 〇"m。其理由在於购賴〜4 難進行的傾向。 (“0_的話’反應有較 前述製程(二)是將製程(―) 行非活性化的製程。 所取件的金屬粒子進 在製程㈠中粉碎變成粒狀的金屬發 使用剛粉:的金射’因為表面活性過高、: (二)W最好先將金屬矽實施非活性 二在衣私 化處理可舉以使用氧化氣所進行的表^化處二述非活性 12 200831408 接著說明製程(三)中的金屬矽與水的反應製程。 本發明膠質氧切之製作方法中,該製程(三)是本發 的必要製程。 x 製程(二)是在含驗性觸媒及分散劑的水溶液中使 屬石夕與水反應來取得膠質氧切。製程(三)最適 的水、驗性觸媒、分散劑如下。 製程(二)所使用的金屬矽最好使用製程(―) 程(二)所採行的金屬矽粒。 衣 製程(三)所使用的水即使是純水也無妨,但田 好使用含離子性雜質較多的自來水、天然水、 取 回收水等。 ”⑺人、 製程(三)所使用的鹼性觸媒並無特別限制,值3 最好使用祕金屬-價氫氧化物。進—步說,如氫氧H 氫氧化鉀、氫氧⑽、氫氧化铯錢―,單獨或= ,用皆可。總之就是使用氫氧化納、A氧化钟、氫氧化^ 寺金屬氫氧化物的強驗’其中又以氫氧化鈉最佳。並理 在於這些金屬氫氧化物在金屬矽的溶解性十分優显二、 製程(三)所使用的分散劑只要是從酸 鹽、有機酸、有機酸鹽中選擇的離子性物質即可,#特 的=子=質最好能降低膠質_如 ^刀政媒中的黏度。本發明相關的分散劑,以單獨或组 口夕種後使用皆可。然而,由於膠質氧化 以 下的話就會出現凝結,因此,最好Η、、 Ρ 氧切的ρ Η不會降到7以下疋添加分散劑後,膠質 無機酸包括鹽酸、石肖酸'硫酸、鱗酸、亞鱗酸、次石舞 -夂、k基破酸酉日、猶、焦碟酸、—酸、四氟㈣酸、 13 200831408 六氟化磷酸、苯磺酸及萘磺酸鹽,其中又以鹽酸、硝酸、 硫酸最佳。 有機酸包括檸檬酸、草酸、蘋果酸、馬來酸、酒石酸、 戊二酸、己二酸、庚二酸、破ίό酸、丙二酸、反丁稀二酸、 苯二曱酸、曱酸、醋酸、丙酸、丁酸、戊酸、2-曱基丁酸、 正己酸、3,3-二曱基丁酸、2-乙基丁酸、4-甲基戊酸、η-庚 酸、2-曱基己酸、η-辛酸、2-乙基已酸、苯甲酸、甘醇酸、 水揚酸、甘油酸及乳酸。 前述無機酸及有機酸的鹽列舉與N a、Κ、L i、 Ν Η 4、胺、四級氫氧化銨的鹽。 無機酸鹽最好使用硫酸銨、鹽酸銨、硝酸銨、磷酸二 氫铵、碟酸氳二錢、棚酸銨八水合物等無機銨鹽。有機酸 鹽包括銨苯曱酸、檸檬酸三銨、檸檬酸氫二銨、草酸銨、 曱酸銨、水楊酸銨、己二酸銨、醋酸銨及擰檬酸四曱銨等 有機銨鹽。 前述分散劑中最好使用檸檬酸三銨、硫酸鈉、硝酸銨 及/或氯化鈉。 本發明相關的分散劑具有能考量膠質氧化矽的用途, 從無機酸、有機酸或其鹽中自由選擇有效物質的優點。 製程(三)中,在含鹼性觸媒及分散劑的水溶液中使 金屬矽與水反應的反應液,其溫度要高一點。其理由在於 溫度高的話,較能提高膠質氧化矽的產率。進一步說,反 應液的溫度最好調整到6 0〜9 0°C之間。又,本說明書 所謂的「反應液」意指在含驗性觸媒及分散劑的水溶液中 再加入金屬石夕,讓金屬^夕與水反應的水溶液。 14 200831408 製程(三)中鹼性觸媒 方法以氫氧化納作為鹼性觸媒時,全屬θ及的製作 =二〜OH(mol比)'=== "曰1 I達到•耳比,例如製作3 Q重量百 〇 乳化石夕’反應液最好含Q · 1 旦77比的膠質 氧化鈉。使用其他全眉#In 室里百分比的氫 反應性,最好添加性觸媒時’為了保留 反^外’反應液中氫氧化_濃度最好藉由反庫途中在 反應液添加氫氧域來保持—定好 ^應返中在 中的反應速度及金屬矽的溶解性,维二程(三) 在反應途巾分:欠添加驗性卿。 、產十,最好 衣k (―)巾分散義添加量並無㈣限制,但Η, 要,丨於所使用金屬矽總量的0.^9 一疋, 間。其理由在於即使添加的量超過2 · 5重旦刀比之 散效果也不會變得更好,又,添加量不到〇里d :的5舌,則揲法達到分散劑的效果,因此百: ;開=::=;_劑時,無論二: 以ΐ 結束都無妨,甚至分次添加好幾次也可 取好疋在反應前及/或反應途中添加。如在反應制 發現黏度沒有特別升高的話’即使反應結 石夕形成後躲加都沒_。 采轉貝乳化 製程(三)最好採用以下步驟A或步驟b。 (步驟A ) 〔階段一〕製作含水及鹼性觸媒的水溶液; 屬石夕;〔ί段二〕準備已將金屬料散至水後的漿狀液或金 15 200831408 〔階段三〕在階段一所取得的水溶液中,以大致固定 速度加入階段二所準備的漿狀液或金屬矽,或是在階段一 所取得的水溶液中,以大致固定速度加入階段二所準備的 漿狀液或金屬石夕的同時,以大致速度加入鹼性觸媒。 箣述階段一及階段二無論哪個先做都無妨。階段二中 先將金屬矽用水分散調成漿狀後,再加入含鹼性觸媒的水 溶液,就能預防金屬矽與鹼性觸媒因直接接觸反應而產生 劇烈發熱、發泡的情形。 階段三將階段二所準備的漿狀液或金屬矽加入階段一 的水溶液,該添加速度最好使用定量泵等以維持大致&固^。 如前述’為了達到鹼性觸媒在反應液的含量,階p一 所製作的水溶液,其鹼性觸媒的濃度最好在〇 · 〇 5 0重量百分比之間,特別是氫氧化鈉的話則以〇 ·丄〜 0重置百分比為佳,其他金屬氫氧化物的濃度最好 以匹配該化學當量與鹼性強度之間。 足 階段三將階段二所準備的漿狀液或金屬矽以大致 速度加入階段一的水溶液來作出反應液。在該反^、、 疋 金屬矽與水反應而形成膠質氧化矽。 …液中’ 八—〜一—不辰及取好維持—定, 此,階段二要以大致固定速度將驗性觸媒加入敢、才、 液。進一步說,當鹼性觸媒為氫氧化鈉的話,則:應 石夕的同時,也添加氫氧化鈉,以便將反應液巾 濃度維持在0 · 1〜2 . 0重量百分比之間:生觸 媒到反應液時,最好使用定量泵。 Γ ^ 如當反應液中鹼性濃度急速升高的話(音艮天 一 觸媒的速度過快的話),將出現劇烈發熱、氣性 16 200831408 十分危險。而驗性濃度度範 將變差,無論何者㈣衫好。反應性 接著說明步驟B。步驟B具有以下結構。 ^皆段a〕製作含水、·觸媒及分散劑的水溶液; 屬石夕段b〕準備已將金屬讀散至水後的漿狀液或金Or a mixture of metal-valent hydroxides of i) or unloading (W, wherein the dynamic viscosity of the rubber f is less than 4 mm 2 /s after the filter of pore size l / / m. The filter is refined in 200831408. The ruthenium concentration of the colloidal ruthenium oxide is 20% by weight, and the preparation method of the above ruthenium ruthenium oxide has at least the following stages: [Step I] to prepare an aqueous solution containing water, a basic catalyst and a dispersant; [Phase 2] Preparation a slurry or metal that has been dispersed in water to the earth; and [stage 3] in the aqueous solution obtained in the first stage, the slurry or metal stone prepared in the second stage is added at a substantially constant speed, or In the aqueous solution taken in the first stage, the poly-liquid or the metal slab prepared in the second stage is added at a substantially constant speed, and the inert catalyst is added at a substantially constant speed. The slurry or metal is added at a speed to obtain a colloidal cerium oxide having a desired cerium particle size. On the other hand, the method for producing the cerium oxide is set to 9.5 to 95 per hour of gold. The extra-time addition rate is 0% by weight as the colloidal ruthenium oxide diameter obtained in the above-mentioned stage 3, and the primary particle diameter is 6 to 8 〇nm. 3 矽 本 本 本 本 本 本 本 本 本 本 本 本Stage: Females have at least [stage I] aqueous solutions for the production of aqueous and alkaline catalysts; [stage II] preparations have been dispersed to or metal cerium; and the slurry in the middle...3 paragraphs 111] in stage 1 In the obtained aqueous solution, the aqueous solution obtained in the first stage of the enthalpy speed addition stage j is prepared in a substantially fixed speed at the same time as the slurry or metal slab prepared in the form of the fuel 10 10 710 408. In the foregoing stage I, the colloidal cerium oxide containing the desired cerium particle size is obtained by controlling the addition rate of the slurry or the metal cerium which has dispersed the metal cerium in water. The method for producing the cerium cerium oxide of the present invention The method for preparing colloidal cerium oxide using metal cerium (S i ) as a raw material comprises reacting metal sill with water in an aqueous solution containing a basic catalyst and a dispersing agent to obtain a rubber The reaction process of cerium oxide. The obtained cerium cerium oxide is high in concentration and low in viscosity. Further, the cerium concentration is preferably more than 20% by weight and 50% by weight in consideration of the use of colloidal cerium oxide. Therefore, it is not economical to concentrate the colloidal cerium oxide after the reaction process, and at the same time, because the colloidal cerium oxide has low viscosity and good filterability, it can be refined in a short time and high yield, and therefore, The method for producing colloidal cerium oxide as a raw material can produce metal slabs for industrial use. According to the production method of the present invention, it is possible to use a dispersing agent before or after the formation of cerium particles, and therefore, work efficiency is high. The addition of a dispersing agent before the formation of the granules does not increase the colloidal cerium oxide. Furthermore, the preparation method of the colloidal cerium oxide of the present invention is a method for preparing colloidal cerium oxide using metal cerium (S i ) as a raw material, and can adjust the cerium particle size in the colloidal cerium oxide in the reaction process. Therefore, it is not necessary to adjust the particle size after the formation of the colloidal cerium oxide, and the colloidal cerium oxide having the desired cerium particle size can be easily produced with a small number of processes. [Embodiment] The method for producing colloidal cerium oxide according to the present invention is characterized in that it comprises at least 11 200831408 a method for producing a colloidal oxidation of a colloidal oxidized "S 1" and a colloidal oxidized stone in a medium and a dispersion water-synthesis reaction. The invention will be described in detail below. (-) The oxygen cutting is preferably manufactured by four processes. The eight-legend sub-process (hereinafter sometimes referred to as the process (-)), the inactive process ( τ is sometimes referred to as the process J)); and the reaction process of Wang Shixi and water (hereinafter sometimes referred to as the process (3)); ((:))) Filtration and purification process of colloidal cerium oxide (hereinafter sometimes Weighing process = process (1) is a process of cutting gold into a raw material. : : The metal ruthenium used for raw materials is not particularly limited, and the metal shovel used in the alloy directly affects the enamel oxygen produced by the alloy. j degree, therefore, it is best to use a high purity metal stone eve. Process (a) Although there is no special restriction on the metal cattle, but the method of crushing the metal stone eve is a good method ^ 〇 " m. The reason is to buy ~4 Difficult to proceed. ("0_ The phrase 'reaction is more than the aforementioned process (2) is the process of inactivating the process (-). The metal particles of the taken part are pulverized into a granular metal in the process (1). The surface activity is too high, (2) W is best to carry out the inactivation of the metal ruthenium. The treatment of the hexafluoride can be carried out by using the oxidizing gas. The second embodiment of the inactive 12 200831408 Next, the process (3) The process of reacting metal ruthenium with water. In the method for producing colloidal oxygen dicing in the present invention, the process (3) is a necessary process of the present invention. The process (2) is in an aqueous solution containing an organic catalyst and a dispersant. The genus is reacted with water to obtain colloidal oxygen cutting. Process (3) The most suitable water, test catalyst and dispersing agent are as follows. The metal bismuth used in the process (2) is preferably used in the process (―) (2) The metal granules used are the same. The water used in the coating process (3) may be pure water, but Tian Hao uses tap water, natural water, and recycled water containing more ionic impurities. "(7) Person, Process (3) Alkaline used The medium is not particularly limited, and the value 3 is preferably a secret metal-valent hydroxide. For example, hydrogen hydroxide, potassium hydroxide, hydrogen (10), or cesium hydroxide, alone or =, can be used. In short, the use of sodium hydroxide, A oxidation clock, hydrogen hydroxide ^ Temple metal hydroxide strong test 'which is best sodium hydroxide. And the reason is that these metal hydroxides are very good in the solubility of metal ruthenium The dispersant used in the process (3) may be an ionic substance selected from the group consisting of an acid salt, an organic acid, and an organic acid salt, and the #特=子=质 preferably lowers the gum quality. The viscosity of the dispersant of the present invention may be used alone or in combination with the group. However, condensation may occur due to the oxidation of the gum. Therefore, it is preferable that the ρ Η of the Η, Ρ 氧 cut does not fall. After adding a dispersing agent to below 7 or less, the colloidal inorganic acid includes hydrochloric acid, tartaric acid 'sulfuric acid, scaly acid, squaric acid, sulphide-salt, k-based acid-breaking day, jujube, pyroic acid, acid, Tetrafluoro(tetra) acid, 13 200831408 hexafluorophosphoric acid, benzenesulfonic acid and naphthalene sulfonate, of which salt Acid, nitric acid and sulfuric acid are the best. Organic acids include citric acid, oxalic acid, malic acid, maleic acid, tartaric acid, glutaric acid, adipic acid, pimelic acid, succinic acid, malonic acid, succinic acid, benzoic acid, citric acid , acetic acid, propionic acid, butyric acid, valeric acid, 2-mercaptobutyric acid, n-hexanoic acid, 3,3-dimercaptobutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, η-heptanoic acid , 2-mercaptohexanoic acid, η-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, and lactic acid. The salts of the above inorganic acid and organic acid are exemplified by salts of Na, Κ, L i, Ν 4, amine, and quaternary ammonium hydroxide. As the inorganic acid salt, an inorganic ammonium salt such as ammonium sulfate, ammonium hydrogen hydrochloride, ammonium nitrate, ammonium dihydrogen phosphate, bismuth oxalate or ammonium octaate octahydrate is preferably used. Organic acid salts include organic ammonium salts such as ammonium benzoic acid, triammonium citrate, diammonium hydrogen citrate, ammonium oxalate, ammonium citrate, ammonium salicylate, ammonium adipate, ammonium acetate and tetraammonium citrate. . Among the above dispersants, triammonium citrate, sodium sulfate, ammonium nitrate and/or sodium chloride are preferably used. The dispersant according to the present invention has an advantage of being able to measure colloidal cerium oxide, and freely selecting an effective substance from an inorganic acid, an organic acid or a salt thereof. In the process (3), the temperature of the reaction liquid which reacts the metal ruthenium with water in an aqueous solution containing a basic catalyst and a dispersant is higher. The reason is that the high temperature can increase the yield of colloidal cerium oxide. Further, the temperature of the reaction solution is preferably adjusted to between 60 and 90 °C. Further, the term "reaction liquid" as used herein means an aqueous solution in which a metal stone is added to an aqueous solution containing an organic catalyst and a dispersing agent to react the metal with water. 14 200831408 Process (3) In the alkaline catalyst method, when sodium hydroxide is used as the basic catalyst, the production is all θ and = 2 ~ OH (mol ratio) '=== "曰1 I reach•ear ratio For example, it is preferable to prepare a 3 Q weight 〇 emulsified stone eve 'reaction liquid containing a Q · 1 dan 77 ratio of colloidal sodium oxide. Use the hydrogen reactivity of the percentage of the other full eyebrow #In chamber, preferably when adding a catalytic catalyst, in order to retain the concentration of hydroxide in the reaction solution, it is preferable to add the hydrogen and oxygen domain in the reaction solution by means of the reverse reservoir. Keep-fixed ^ should return to the middle of the reaction speed and the solubility of metal bismuth, Wei two-way (three) in the reaction road towel: owed to add inspection. , production ten, the best clothing k (-) towel dispersion of the amount of addition does not have (four) restrictions, but Η, want, 丨 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所 所The reason is that even if the amount added exceeds 2 · 5, the effect of the weight of the knife is not better, and the amount of addition is less than the 5 tongues of the d:, the effect of the dispersant is achieved, so Hundreds: ;Open =::=; _ When the agent is used, no matter two: It is fine to end with ΐ, even if it is added several times in several times, it can be taken before the reaction and/or during the reaction. If the viscosity is not particularly elevated in the reaction system, then even if the reaction is formed, it will not be evaded. It is best to use the following step A or step b for the emulsification process (3). (Step A) [Phase 1] Preparation of an aqueous solution of aqueous and alkaline catalysts; belonging to Shi Xi; [ί 2] Preparing a slurry or gold after the metal material has been dispersed into water 15 200831408 [Phase 3] In a obtained aqueous solution, the slurry or metal crucible prepared in the second stage is added at a substantially constant speed, or the slurry or metal prepared in the second stage is added to the aqueous solution obtained in the stage one at a substantially constant speed. At the same time as Shi Xi, the alkaline catalyst was added at an approximate speed. Talk about Phase 1 and Phase 2, no matter which one is done first. In the second stage, the metal crucible is firstly dispersed in water to form a slurry, and then an aqueous solution containing an alkaline catalyst is added to prevent the metal crucible and the alkaline catalyst from being heated and foamed by direct contact reaction. In the third stage, the slurry or metal ruthenium prepared in the second stage is added to the aqueous solution of the first stage, and the addition speed is preferably performed by using a metering pump or the like to maintain the approximate & As described above, in order to achieve the content of the basic catalyst in the reaction liquid, the concentration of the alkaline catalyst is preferably between 〇· 〇 50% by weight, especially sodium hydroxide. It is preferred to use a 重置·丄~0 reset percentage, and the concentration of other metal hydroxides is preferably matched between the chemical equivalent and the basic strength. In the third stage, the slurry or metal ruthenium prepared in the second stage is added to the aqueous solution of the first stage at a substantially speed to prepare the reaction liquid. The ruthenium, ruthenium metal reacts with water to form colloidal ruthenium oxide. ...in the liquid 'eight-~ one--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Further, when the alkaline catalyst is sodium hydroxide, sodium hydroxide should be added at the same time as the stone eve, so as to maintain the concentration of the reaction liquid towel at 0 · 1~2. 0% by weight: raw contact When the medium is used in the reaction solution, it is preferable to use a metering pump. Γ ^ If the alkaline concentration in the reaction solution rises sharply (the speed of the catalyst is too fast), severe heat and gas will occur. 16 200831408 Very dangerous. And the concentration of the test concentration will be worse, no matter which (four) shirt is good. Reactivity Next, the step B will be explained. Step B has the following structure. ^有段段 a] Preparation of aqueous solution containing water, catalyst and dispersant; 属石夕段 b) Preparing a slurry or gold after the metal has been read to water

階段C〕在階段a所取得的水溶液中,以大致固定 速度加入^又b所準備的漿狀液或金屬石夕,或是在階段a 所取得的水溶液中,以大致固定速度加入階段5所準備的 t狀液或金屬矽的同時,以大致固定速度加入鹼性觸媒的 階段’藉由控制前述裝狀液或金屬石夕的添加速度來取得含 希望矽粒徑的膠質氧化矽。 前述階段a及階段b的步驟及在階段c以大致固定速 度添加驗性觸媒的添加速度及添加量最好採用前述步驟A 所描述的部分。 說明階段c中藉由控制添加速度來調整矽粒徑。意 即,步驟A與步驟B不同處在於在步驟B的階段c中,矽 粒大小可藉由控制添加速度來刻意調整這部分。 進一步說,添加速度部分,每小時金屬矽的添加量最 好是每小時反應液量的1〜9·5重量百分比。 如金屬矽每小時的添加量以每小時反應液量的4·3 〜9 · 5重量百分比來說的話,意即加快添加速度,就會 得到粒梭約6〜1 9 n m的小石夕粒。 另一方面,金屬石夕每小時的添加量以每小時反應液量 的1〜4 ·2重量百分比來說的話,意即滅缓添加速度,就 17 200831408 能得到粒徑約2 0〜8 0 n m的大矽粒。囡⑴^ A 吻此’稭由批告il 漿狀液或至屬石夕添加到反應液的速度,就能曰人X 徑的膠Ϊ氧切。 ^布望粒 添加速度過快的話,氫的出現變明顯, 、 四此,+公含 險,速度過慢的話,反應性變差,兩者都不好。因此 、 添加速度來說’每小時金屬石夕的添加量最极η — 、 、六-认1 Q r _ 野疋母小時反應 液置的1〜9·5重量百分比。Stage C] In the aqueous solution obtained in stage a, the slurry or metal stone prepared by the addition of b is added at a substantially constant speed, or the aqueous solution obtained in stage a is added to the stage 5 at a substantially constant speed. The t-shaped liquid or the metal ruthenium is prepared, and the stage of adding the alkaline catalyst at a substantially constant rate is obtained by controlling the addition rate of the above-mentioned liquid or metal slab to obtain a cerium oxide cerium having a desired cerium particle diameter. The steps of the aforementioned stages a and b and the addition speed and addition amount of the inert catalyst added at a substantially constant rate in the stage c are preferably those described in the aforementioned step A. It is indicated that the crucible particle size is adjusted by controlling the addition speed in the stage c. That is, step A differs from step B in that in stage c of step B, the particle size can be deliberately adjusted by controlling the rate of addition. Further, in the rate of addition, the amount of metal ruthenium added per hour is preferably from 1 to 9·5 weight percent of the amount of the reaction liquid per hour. For example, if the amount of metal lanthanum added per hour is 4·3 ~9 · 5 weight percent of the reaction liquid per hour, that is, the speed of addition is increased, and the pebbles of about 6 to 1 9 n m of the granules are obtained. On the other hand, if the amount of metal stone added per hour is 1 to 4 · 2 weight percent of the amount of the reaction liquid per hour, that is, the rate of addition is slowed down, and the particle size of about 2 0 to 8 0 can be obtained at 17 200831408. Large granules of nm.囡(1)^ A Kiss this 'straw' by the speed of the il slurry or the addition of the genus to the reaction liquid, you can cut the X-diameter of the capsule. ^Women granules If the addition speed is too fast, the appearance of hydrogen becomes obvious, and four, + public risk, if the speed is too slow, the reactivity is worse, neither is good. Therefore, the rate of addition is 'the maximum amount of η-, 、, six-recognition 1 Q r _ 疋 疋 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 小时 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

進一步說,在鹼性水溶液使用氫氧化鈉的話,每小日士 金屬矽的添加量最好是每小時反應液量的3〜5 ·=重= 百分比。如前述,藉由控制粒徑就能有效製造出含粒徑二 6〜8 0 n m的矽的膠質氧化矽。 二、 反應結束後,利用濾網濾除未反應的金屬矽,形成膠 質氧化矽。 夕 夕 依據粒I之不同,能廣泛用在各種用途,特別是4 〇 〜8〇nm的膠質氧化矽,因為來自粒子硬度的研磨力, 尤其是研磨性與表面精度的平衡性佳,因此可用在鋁片、 玻璃、熱酸化膜基板、石夕晶圓等精磨上。而且,4 〇 n m, 尤以3 0 n m以下粒徑的膠質氧化矽,因為透明度高,適 合作為提南塑膠硬度的濾片使用。 在前述步驟A及步驟B中的階段一與a製作含水、鹼 性觸媒及分散劑的水溶液,在階段二與b準備已將金屬矽 分散至水後的漿狀液或金屬矽。但是,以本發明的變更範 例’在階段一與a製作含水及鹼性觸媒的水溶液,到 了 b再準備已將分散劑與金屬石夕分散至水後的漿 狀液也然妨。此時,在階段三與c以大致固定速度將含金 屬石夕與分散劑的餘液加人含水、驗性觸制水溶液。該 18 200831408 黎質氧化梦,無須 濾除,以短時間、 變更範例一樣能形成高濃度且低粘度的 濃縮膠質氧化矽,即可將未反應的殘凌 高產率精製出膠質氧化矽。 在本發明相關的製程(三)所取得的膠質氧化石夕灌产 咼且黏度低。因此,該製程之後無須將膠質氧化 卜^ ^ 即本發_質=㈣製作方式即使”_製^^ 妨)。而且,该膠質氧化矽黏度低,濾過性俨,处 、 且高產率精製而成,因此,利用以金屬石夕為土原:的 化石夕的製作方式即可製造出工業用_質氧化梦。再者乳 製程㈢所使用的分散齡論切細彡成前或形成後予 力二皆可作業效率高。意即即使在雜形成前私 分散劑,膠質氧化石夕的黏度也不會升高。 本發刪的製程(三)採用前述步驟B的話,除了 上述優點’還能在水與金屬石夕的反應製程中調整石夕粒徑。 因此κΐ在膠質氧化㊉形成後調整粒徑,能以較少製 輕鬆製造出含希望錄㈣膠質氧切。而且,由於= 液含分散劑’因此所形成㈣分散性高,能有效控制粒徑。 更進-步? ’ 2該步驟Β製造出的膠質氧化矽,不僅黏 低、濃度咼,退能從幾n m的微小粒子到丄〇 〇 n m自由 調整粒徑。因此,從需要高濃度且透雜的濾_重視研 磨速度的砥粒,運用範圍相當廣。 π ‘程()、、'σ束後(元成將襞狀液或金屬;ς夕添加到反 應液後)’將反應液料在—定時間下促使金屬料行溶解 反應,之後冷部。W述溶解反應所需的維持時間無特 制,但是,最好自氫產生完後維持二〜十小時。 製程(三)所取得的反應液中膠質氧化石夕的濃度最好 19 200831408 在2 0〜5 〇重量百分比。 ^ =外,剐述階段一或3所製成的水溶液不含分散劑的 活思即即使反應液中不含分散劑,也能藉由添加速度來 =粒子:這部分由以下實_以十二表示。此^ j 貝氧化梦以包括具備以下階段卜丨I丨的步驟C的夢作 方式製造。所使用的驗性觸媒、水、金屬石夕使用與前 驟A及步驟B相同者最佳。 〔階段I〕製作含水及鹼性觸媒的水溶液; 〔认1 1〕準備6將金屬⑪分散至水後的漿狀液或 i J在階段 π ^ ^ ……α 1八·^丨取侍的水溶液中,以大致 固疋速度加人階段丨丨解備㈣狀液或 階段1所轉的水歸巾,以大致固定速度加人階 所準備的綠錢金屬料㈣,从 ,觸媒的階t ’藉由控制前述漿狀液或金屬⑦二力口^ 來取得含寧望矽粒徑的膠質氧化石夕。 又 該步步驟B的說明記載,前述添加速 的添加1最好是每小時反缝量的卜9 · 5重^ •5重量百分比來;:;=,量的4. 得到粒徑約Η 9 nm二:即加快添加速度,就 另一方面,金屬石夕备小 的卜4.2重量百分比來力^以每小時反應液 能得到粒鐵0〜8 〇 :舌’思即減緩添加速度’ 8〇nm的比較上較大矽粒。因此 20 200831408 藉由控制漿狀液或金屬矽添加到反應液的速度,就能取得 含希望粒徑6〜8 0 n m之間的膠質氧化石夕。 接著說明製程(四)。 製程(三)所取得的反應液可視需要加入以過濾方式 濾除未反應的殘渣來將膠質氧化矽精製而成的製程(製程 (四))。 前述過濾法並無特別限制,但是包括濾網過濾、減壓 過濾、加壓過濾等方法。進一步說,以減壓後作成殘渣餅 再分離的方法最佳,因為該方法不僅作業容易,還能提高 膠質氧化矽的產率。 該製程(四)以過濾精製製程取得膠質氧化矽,將製 程(三)所取得矽濃度2 0〜5 0重量百分比的膠質氧化 石夕,以2 5 °C,孔徑1 // m、直徑9 0 mm的濾膜經過0 · 0 7 5 m P a減壓過濾十分鐘後,其產率達到6 0 %以 上,甚至在80%以上。 此外,本說明書中所謂的「產率」是以(形成的矽 量mol/添加的金屬石夕量mol )xl〇〇(%)計算得出。 在前述製程(四)之後所取得的膠質氧化矽,其矽 濃度達到3 0重量百分比以上,甚至在3 5重量百分比 以上,濃度極高。再者,其動黏度達到4 mm 2 / s以下, 甚至在2 · 7 3mm2/s以下,黏度低。 膠質氧化矽中所含矽粒的一次粒徑最好是7〜8 0 η m,甚至在1 0〜4〇nm,二次粒徑最好是1 0〜1 5 〇nm,甚至在1 2〜1 2〇nm。含這些石夕粒徑的膠質 氧化石夕,黏度低且非常穩定,有用性高,商品價值也高。 21 200831408 ET法)求出的是根據N2吸附法(B 則是以光學散射法均粒徑,二次粒徑 woo)量剛的;二使用大缘電子社細^ #J 4^ ί \ 财火物.陶究纖^取得的膠質氧化石夕適合作為精密鑄造. 塑膠·金屬的黏結#卜纖維製品.塑料防滑劑、 用 的研磨劑或是觸媒、觸媒载體、土壤硬化劑之 以下藉由實施例進一步說明本發明。 二製程(三)步驟八的膠質氧 〔貫施例一〕 R I:,度4 0"m的金屬矽粉粉碎,作出平均粒度 的金財。將該金㈣在_ 機氧化,實施非活性處理。 飞u下使用仏 μ在=1L容量的攪拌機與還流裝置的氟素樹脂内襯 板材(Teflon Lining)反應瓶加入自來水丄6 5 •丄、 驗性觸媒氫氧化鈉(含特級9 7%) 1 · 3 3 g、分^ 确酸錢1 · 0 6 g,祕時,液温升高到8代,將^ 非活性處理的金屬則8 · 8g分散至自來水3 3 4 . 8 g調成漿狀,制定f泵持續則、時以—定速度加入 狀液。在此同時,-樣蚊量泵持續則、時以4速^加 入1 0重量百分比的氫氧化納水溶液2 2 . 9 g。 接著持續二小時的溶解反應,冷卻後,以丄#、9 〇 d i amm的濾膜進行〇 . 0 7 5mpa的減壓過濾,濾 22 200831408 除未反應的殘渣。所形成的膠質氧化矽為濃度3 4 · 7重 量百分比、一次粒徑2 2 n m、二次粒徑3 3 n m的單分 散狀粒子,動黏度為2 · 7 3 m m 2 / s。此外,經過減 壓過濾十分鐘後,其過濾量2 14*6g、產率81%。 〔實施例二〕 以添加氯化納來代替頌酸銨作為分散劑(化學當量與 硝酸銨相同),其餘部分與實施例一相同。所形成的膠質氧 化石夕為濃度3 4 · 3 4重量百分比、一次粒徑2 3 · 4 6 # nm、二次粒徑4 7 · 4 nm的單分散狀粒子。動黏度為 2 · 49mm2/s。此外,經過減壓過濾十分鐘後,其 過濾量2 2 8 · 8 g、產率8 0%。 〔實施例三〕 以添加檸檬酸三銨來代替硝酸銨作為分散劑(化學當 量與硝酸銨相同),其餘部分與實施例一相同。所形成的膠 質氧化矽為濃度3 1 · 2 6重量百分比、一次粒徑1 9 η m、二次粒徑2 7 · 8 n m的單分散狀粒子。動黏度為3· 5 4 mm2 / s。此外,經過減壓過濾十分鐘後,其過濾 ‘量220*4g、產率81%。 〔實施例四〕 以添加硫酸納來代替墙酸銨作為分散劑(化學當量與 硝酸銨相同),其餘部分與實施例一相同。所形成的膠質氧 化矽為濃度3 2 · 0 8重量百分比、一次粒徑1 9 · 4 5 n m、二次粒徑3 0 · 7 n m的粒子。動黏度為2 · 4 4 m m 2 /s。此外,經過減壓過濾十分鐘後,其過濾量2 08 · 8g、產率80%。 23 200831408 〔實施例五〕 在具備1L容量的攪拌機與還流裝置的氟素樹脂内襯 板材反應瓶加入自來水i 9 8 ·丄g、鹼性觸媒氫氧化鈉 (含特級9 7%) 〇 · 8 9 g,攪拌時,液溫升高到8 〇 C ’將施以貫施例一非活性處理的金屬石夕6 6 · 2 g分散 至自來水4 2 7 · 6 g調成漿狀,再用定量泵持續四小時 以一定速度加入該漿狀液。在此同時,一樣用定量泵持續 三小時均量加入1 0重量百分比的氫氧化鈉水溶液1 5 · 3 g。之後,再混合加入該1 〇重量百分比的硝酸鉀水溶 液6 · 0 g。接著持續二小時的溶解反應,冷卻後,以工 /^、90d i amm的滤膜進行0 · 〇7 5mPa的減壓 過濾,濾除未反應的殘渣。所形成的膠質氧化矽為濃度2 3 · 2重量百分比、一次粒徑1 8 n m、二次粒徑2 6 11 m的單分散狀粒子,動黏度為2.15mm2/s。此外, 經過減壓過濾十分鐘後,其過濾量1 4 5 · 8 g、產率8 3 %。該膠質氧化石夕經過三個月室温保存後,黏度維持在 2 · 28mm2/S,幾乎不變,屬於低粘度且穩定的溶 〔比較例一〕 除不添加分散劑外,其餘部分與實施例一相同。所形 成的膠質氧化㈣濃度2 9重量百分比、—次粒徑2丄n =次粒# 2 2 n m的單分散狀粒子。動黏度高,為4 · mP a此外過減壓過濾十分鐘後,其過滤量6 · 5 g、產率 5 8 %。 〔比較例二〕 除不添加分散劑外,其餘部分與實施例五相同。所形 24 200831408 成的膠質氧化矽為濃度19 8 n m、二次粒徑2 8 :里白刀比-人粒傻1 為2 . 6〇m 2 的早/刀政狀粒子。動黏度稍高, ^*131 · 〇 ’㈣減m十分鐘後,其過 I里丄d丄〇 g、產率7 4 、 三個月室温保存後,黏度增加,為6 經過 溶膠。 的 <貝%例—·分散劑添加量對於過it性的影響> 5二::d 3金屬梦粉粉碎,作出平均粒度 同。根據前述實施例一記載的方/、’、補的5法相 劑添加量的不同而改變:社表知過nt分散 的、、天Λ旦^ 、、、口果如表一所示,表一中硝酸銨 U里(重I百分比)是相對於金屬石夕的添加量。 _【表二 濾過性 C g ) s ) 4.95 2·78土 ~2J32 ~238? "2^297" mm2/ 產率(%τ [58 73 76 ^ 81 80 80 ,對 里之石肖酸鐘添加量(會吾 百分比)Further, when sodium hydroxide is used in the alkaline aqueous solution, the amount of metal ruthenium added per cubic meter is preferably 3 to 5 · = weight = percentage of the amount of the reaction liquid per hour. As described above, by controlling the particle diameter, colloidal cerium oxide containing cerium having a particle diameter of 6 to 80 n m can be efficiently produced. 2. After the reaction is completed, the unreacted metal ruthenium is filtered by a sieve to form a ruthenium oxide. Depending on the particle I, it can be widely used in various applications, especially colloidal cerium oxide of 4 〇 to 8 〇 nm, because the grinding force from the hardness of the particles, especially the balance between the abrasiveness and the surface precision, is available. It is used for fine grinding on aluminum sheets, glass, thermal acidified film substrates, and Shixi wafers. Moreover, 4 〇 n m, especially colloidal cerium oxide with a particle size of less than 30 n m, because of its high transparency, it is suitable for use as a filter for the hardness of the plastic. In the first step A and the step B, an aqueous solution of an aqueous, alkaline catalyst and a dispersing agent is prepared, and in the second and b stages, a slurry or a metal crucible in which the metal cerium has been dispersed into water is prepared. However, in the modified example of the present invention, an aqueous solution of an aqueous and alkaline catalyst is produced in the first stage and the a, and a slurry obtained by dispersing the dispersing agent and the metal cerium to water is prepared. At this time, the remaining liquid containing the metal slag and the dispersing agent is added to the aqueous solution in an aqueous solution at a substantially constant speed in stages 3 and c. The 18 200831408 Lie Oxidation Dream can be used to form a high-concentration and low-viscosity concentrated colloidal cerium oxide in a short time and in a modified manner, and the unreacted residue can be purified into a colloidal cerium oxide at a high yield. The colloidal oxidized oxide obtained in the process (3) related to the present invention has a high yield and low viscosity. Therefore, after the process, it is not necessary to oxidize the colloidal material, that is, the present invention has a low-viscosity, a low-viscosity, a high-yield refinement. Therefore, it is possible to manufacture an industrial oxidative dream by using the method of making a fossil of the metal stone as the original: the re-distribution theory used in the milk process (3) is cut before or after the formation. Force II can work with high efficiency, which means that even in the formation of pre-disinfecting agent, the viscosity of colloidal oxidized stone will not increase. The process of the present invention (3), in addition to the above advantages, It is possible to adjust the particle size of Shishi in the reaction process of water and metal shixi. Therefore, κΐ adjusts the particle size after the formation of oxidized oxidized ketone, and can easily produce the colloidal oxygen cleavage with the hope of recording (4). Containing dispersant' Therefore, it forms (4) high dispersibility and can effectively control the particle size. Further step-by-step 2 This step produces a colloidal cerium oxide that not only has low viscosity, concentration 咼, but also decomposes tiny particles from a few nm. Free adjustment to 丄〇〇nm Therefore, from the need for high concentration and permeability of the filter _ the importance of the grinding speed of the granules, the application range is quite wide. π 'Cheng (), after the σ beam (yuan into the sputum or metal; After the reaction liquid, the reaction liquid is allowed to dissolve in the metal material for a certain period of time, and then the cold portion. The maintenance time required for the dissolution reaction is not specially prepared, but it is preferable to maintain the second time after the hydrogen generation. Ten hours. Process (3) The concentration of colloidal oxidized oxide in the reaction liquid obtained is preferably 19 200831408 at a weight percentage of 2 0 to 5 ^. ^ =, the aqueous solution prepared in the first or third stage is not dispersed. The activity of the agent is that even if the reaction solution does not contain a dispersant, it can be added by the speed = particle: this part is represented by the following _ to twelve. This ^ 贝 氧化 氧化 以 以 具备 氧化 氧化 氧化 氧化 氧化The method of dream C is manufactured by the method of dream C. The use of the inert catalyst, water, and metal slab is the same as that of the previous step A and step B. [Phase I] An aqueous solution of aqueous and alkaline catalyst is produced; 1 1] Prepare 6 to disperse the metal 11 into water after the slurry or i J In the aqueous solution of the stage π ^ ^ ...... α 1 八 丨 丨 丨 , 加 加 加 丨 大致 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液 水溶液The green money metal material prepared in the order (4), from the catalyst t', by controlling the slurry or metal 7 to obtain the colloidal oxidized stone with the particle size of Ningwang. The description of B indicates that the addition speed 1 of the above-mentioned addition speed is preferably an amount of the back-slit amount of 9.5 /5 重量 重量 重量 重量 ; ; ; ; ; ; Speed up the addition speed, on the other hand, the metal stone is small and 4.2% by weight. The hourly reaction liquid can get the granular iron 0~8 〇: the tongue 'think slows the addition speed' 8 〇nm comparison Largeer granules. Therefore, by controlling the rate at which the slurry or the metal ruthenium is added to the reaction liquid, it is possible to obtain a colloidal oxidized oxide having a desired particle diameter of 6 to 80 nm. Next, the process (four) will be explained. The reaction liquid obtained in the process (3) may be added to a process in which the unreacted residue is filtered by filtration to refine the colloidal cerium oxide (process (4)). The above filtration method is not particularly limited, but includes methods such as sieve filtration, vacuum filtration, and pressure filtration. Further, the method of separating the residue into a residue after decompression is preferred because the method is not only easy to handle but also improves the yield of colloidal cerium oxide. The process (4) obtains colloidal cerium oxide by a filtration refining process, and obtains a cerium concentration of 20 to 50 weight percent of colloidal oxidized oxide in the process (3), at a temperature of 2 5 ° C, a pore diameter of 1 // m, and a diameter of 9 After the 0 mm filter was filtered under reduced pressure of 0 · 0 7 5 m P a for 10 minutes, the yield reached 60% or more, even above 80%. Further, the "yield" referred to in the present specification is calculated based on (formed amount of moles of mol/molar of added metal) xl (%). The colloidal cerium oxide obtained after the aforementioned process (4) has a cerium concentration of more than 30% by weight, even above 35% by weight, and the concentration is extremely high. Furthermore, the dynamic viscosity is below 4 mm 2 / s, even below 2 · 7 3 mm 2 / s, and the viscosity is low. The primary particle diameter of the cerium particles contained in the colloidal cerium oxide is preferably 7 to 80 η m, even at 10 to 4 〇 nm, and the secondary particle diameter is preferably 10 to 15 〇 nm, even at 1 2 ~1 2〇nm. The colloidal oxidized stone containing these granules has a low viscosity and is very stable, has high usefulness, and has high commercial value. 21 200831408 ET method) is based on the N2 adsorption method (B is the optical scattering method, the average particle size, the secondary particle size woo); the second use of the edge of the electronic society fine ^ #J 4^ ί \ Fire material. Ceramic fiber is the best for precision casting. Plastic and metal bonding #布纤维制品. Plastic anti-slip agent, abrasive or catalyst, catalyst carrier, soil hardener The invention is further illustrated by the following examples. The second process (3) Step 8 of colloidal oxygen [Comparative Example 1] R I: The degree of 4 0"m metal bismuth powder is pulverized to make the average grain size of the gold. The gold (4) was oxidized in a machine to carry out an inactive treatment. In the reactor of the fluorinated resin lining plate (Teflon Lining) with a 仏μ at a capacity of =1L and a reflux device, a tap water 丄6 5 丄, an experimental catalyst sodium hydroxide (including a special grade of 7%) is used. 1 · 3 3 g, minutes ^ Acid money 1 · 0 6 g, when the temperature is raised to 8 generations, the non-reactive metal is 8 · 8g dispersed to tap water 3 3 4 . 8 g In the form of a slurry, if the f pump is continued, the liquid is added at a constant rate. At the same time, the -like mosquito pump continued to be loaded with 10% by weight of aqueous sodium hydroxide solution 22.9 g at 4 rpm. Then, the dissolution reaction was continued for two hours, and after cooling, it was filtered with a filter of 丄#, 9 〇 d i amm. Vacuum filtration of 0 7 5 mpa, filtration 22 200831408 Except the unreacted residue. The formed colloidal cerium oxide is a single-divided particle having a concentration of 3 4 · 7 weight percent, a primary particle diameter of 2 2 n m and a secondary particle diameter of 3 3 n m, and the dynamic viscosity is 2 · 7 3 m 2 / s. Further, after filtration for 10 minutes under reduced pressure, the filtration amount was 2 14 * 6 g, and the yield was 81%. [Example 2] Ammonium chloride was added in place of ammonium ruthenate as a dispersing agent (stoichiometric equivalent to ammonium nitrate), and the rest was the same as in Example 1. The formed colloidal oxide is a monodisperse particle having a concentration of 3 4 · 34 4 % by weight, a primary particle diameter of 2 3 · 4 6 # nm, and a secondary particle diameter of 4 7 · 4 nm. The dynamic viscosity is 2 · 49mm2 / s. Further, after filtering for 10 minutes under reduced pressure, the filtration amount was 2 2 8 · 8 g, and the yield was 80%. [Example 3] Triammonium citrate was added instead of ammonium nitrate as a dispersing agent (chemical equivalent to ammonium nitrate), and the rest was the same as in Example 1. The formed colloidal cerium oxide is a monodisperse particle having a concentration of 3 1 · 26 6 % by weight, a primary particle diameter of 19 η m , and a secondary particle diameter of 2 7 · 8 n m. The dynamic viscosity is 3·5 4 mm2 / s. Further, after filtering for 10 minutes under reduced pressure, it was filtered to have a quantity of 220*4 g and a yield of 81%. [Example 4] Ammonium sulfate was added instead of ammonium hyaluronate as a dispersing agent (stoichiometric equivalent to ammonium nitrate), and the rest was the same as in the first embodiment. The formed colloidal cerium oxide is a particle having a concentration of 3 2 · 0 8 % by weight, a primary particle diameter of 1 9 · 4 5 n m , and a secondary particle diameter of 3 0 · 7 n m. The dynamic viscosity is 2 · 4 4 m 2 /s. Further, after filtration for 10 minutes under reduced pressure, the filtration amount was 2 08 · 8 g, and the yield was 80%. 23 200831408 [Example 5] In a fluorocarbon resin-lined sheet reaction vessel equipped with a 1 L capacity mixer and a reflow device, tap water i 9 8 ·丄g, alkaline catalyst sodium hydroxide (including special grade 9 7%) 〇· 8 9 g, when the temperature is raised, the liquid temperature is raised to 8 〇C'. The metal in the case of inactive treatment, 6 6 · 2 g, is dispersed to tap water 4 2 7 · 6 g to make a slurry. The slurry was added at a rate with a metering pump for four hours. At the same time, a 10 wt% aqueous solution of sodium hydroxide 1 5 · 3 g was added by means of a metering pump for three hours. Thereafter, the 1 〇 weight percent potassium nitrate aqueous solution 6·0 g was further mixed. Then, the dissolution reaction was continued for two hours, and after cooling, it was filtered under reduced pressure of 0 · 〇7 5 mPa by a filter of 90 ° i amm, and the unreacted residue was filtered off. The formed colloidal cerium oxide is a monodisperse particle having a concentration of 2 3 · 2 weight percent, a primary particle diameter of 18 n m and a secondary particle diameter of 2 6 11 m, and the dynamic viscosity is 2.15 mm 2 /s. Further, after filtering for 10 minutes under reduced pressure, the filtration amount was 1 4 5 · 8 g, and the yield was 83%. After the gelatinous oxidized stone was stored at room temperature for three months, the viscosity was maintained at 2 · 28 mm 2 / S, which was almost unchanged, and belonged to low viscosity and stable dissolution [Comparative Example 1] Except that no dispersant was added, the rest and examples The same. The formed colloidal oxidized (iv) monodisperse particles having a concentration of 29% by weight and a secondary particle size of 2丄n = subgranules #2 2 n m. The dynamic viscosity is high, which is 4 · mP a. After 10 minutes of filtration under reduced pressure, the filtration amount is 6 · 5 g and the yield is 58 %. [Comparative Example 2] The same procedure as in Example 5 except that no dispersant was added. Shaped 24 200831408 The colloidal cerium oxide is a concentration of 19 8 n m, and the secondary particle size is 2 8 : the white knife ratio - the human grain silly 1 is 2. 6 〇 m 2 of the early / knife-shaped particles. The viscosity is slightly higher, ^*131 · 〇 '(4) minus ten minutes, after I 丄d丄〇 g, yield 7 4, after three months of storage at room temperature, the viscosity increases to 6 after the sol. <Bei%%--The effect of the amount of dispersant added on the over-activity> 5 2::d 3 Metal Dream Powder pulverized, and the average particle size was the same. According to the first embodiment, the amount of the addition of the 5 phase method of the square/, ', and the supplement is changed: the NS is known to have nt dispersed, and the scorpion is as shown in Table 1, Table 1 The medium ammonium nitrate U (heavy I percentage) is the amount added relative to the metal stone. _[Table 2 filter C g ) s ) 4.95 2·78 soil ~ 2J32 ~ 238? "2^297" mm2/ Yield (%τ [58 73 76 ^ 81 80 80 , the stone clock Add amount (will be my percentage)

6.3 63.1 77.6 —94.7 Τ〇7·4 Tijy 、如表一所示,以金屬石夕為原料的膠質氧化石夕的製作方 式,在鹼性觸媒的存在下,在使金屬矽與水反應的反應製 程添加分散劑,就能形成低黏度的膠質氧化石夕。因此,根 據本發明的製作方式能以高過濾性與高產率取得膠質氧化 石夕。 25 200831408 特別是分散劑的添加量相姆於所使用的金屬矽,已知 若為0·54〜1·71重量百分比,則產率73%以上、 動黏度3 · 5 9 2mm2/s以下、過濾性6 3 ·工呈以 <矽粒役與金屬矽添加速度的關係> 作成如下的實施例六及比較例三,暸解矽粒徑與金屬 石夕添加速度的關係。 〔實施例六〕 將平均粒度4 〇 // m的金屬石夕粉粉碎,作出平均粒度 的金屬石夕。將該金屬石夕在—般大氣環境下使用乾燥 機氧化’貫施非活性處理。將取得的金屬石夕粉末9 8 . 8g 刀放至超純水3 3 4 . 8g,調成漿狀液。 在具備i L容量的授拌機與還流裝置的氣素樹脂内襯 板材反應瓶以液溫80t準備含Na〇H〇.8重量百分 匕=超純水命液1 6 6 . 4 3g。接著,用定量泵持續四 i、rr定速度加入前述聚狀液。在此同時,一樣用定量 栗持續四小時以—定速度加6.3 63.1 77.6 —94.7 Τ〇7·4 Tijy, as shown in Table 1, the production method of colloidal oxidized stone in the form of metal ceramsite, in the presence of alkaline catalyst, reacts metal ruthenium with water. By adding a dispersant to the reaction process, a low-viscosity colloidal oxidized stone can be formed. Therefore, according to the production method of the present invention, colloidal oxidized stone can be obtained with high filterability and high yield. 25 200831408 In particular, the amount of the dispersant added is comparable to the metal ruthenium used, and it is known that the yield is 73% or more, and the dynamic viscosity is 3 · 5 9 2 mm 2 / s or less, if it is 0·54 to 1.71% by weight. The filter property was as follows: < Relationship between granules and metal ruthenium addition rate> The following Example 6 and Comparative Example 3 were prepared to understand the relationship between the ruthenium particle diameter and the metal ruthenium addition rate. [Example 6] A metal powder of an average particle size of 4 〇 // m was pulverized to obtain a metal granule of an average particle size. The metal stone was oxidized in a general atmosphere using a dryer to perform an inactive treatment. The obtained metal stone powder 9 8 8 g knife was placed in ultrapure water 3 3 4 . 8 g, and the slurry was adjusted. The gas-phase resin lining plate reaction bottle with the i L capacity of the mixer and the reflow device was prepared to contain Na〇H〇.8 weight percent 液=ultra pure water life liquid 16 6 . 4 3g at a liquid temperature of 80t. Next, the above-mentioned poly-liquid was added by a metering pump at a constant rate of four rr. At the same time, the same amount of weight is used for four hours to increase the speed.

Η水溶液22 · 9g。 刀比的NaO 接著持續二小時的溶解反應,冷卻後,以 :U=T0.0 7 5mPa的減壓過渡,渡 為。所形成刪氧切切粒的一次粒徑 〔比較例三〕 將施以非活性處理的金屬石夕9 8 · 334.8g調成漿狀,再用定量泵持續八^以一°定= 26 200831408 狀液。在,時,-樣用定量泵持續八小時以 疋=又Q重里百分比的氫氧化鈉水溶 g,其餘部分與實施例六如π “ y 粒徑為3 5· 8nm。相同。所形成的膠質氧化石夕中石夕 心周整♦貝减石夕中石夕粒的 敗成的粒子越小,賴鑛,形_粒=大賴越快, <控制膠質氡切㈣粒徑的方法> 中,水溶液添加金屬梦漿狀液的製程 例不使用分散劑了、%又的不同而改變。此外,以下實施 〔實施例七〕 碎,:=;么〇_、含Si_以上的金綱 環境下I:: _的金屬石夕。該金屬石夕在-般大氣 石夕i機氧化’實施非活性處理。將取得的金屬 液。 散至超純水5 3 1 · 6 9g,調成漿狀 板材ίί備1 [容量的麟機與還流I置的氟素樹脂内襯 ==以液溫1〇『c準備含Na〇H〇 5重量百 二31容液2 2 3 g °接著’用定量栗持續一小時 速度加入前述漿狀液。 .接著持續四小時的溶解反應,冷卻後,卩1"、9 0 除二的濾膜進行〇 · 〇 7 5mP a的減壓過濾,濾 的脖二殘〉查’作出高純度膠質氧化石夕。該膠質氧化矽 v、工 Z 1 · 6 n m,純度 9 8 % 〇 27 200831408 〔實施例八〕 將施以非活性處理的金屬矽粉末4 5 · 2g分散至超 純水5 3 1 · 6 9g調成漿狀,持續十分鐘加入該漿狀液, 其餘部分與實施例七相同。所形成的膠質氧化矽中,矽粒 徑為8 · 5 n m。 〔實施例九〕 將施以非活性處理的金屬矽粉末4 5 · 2g分散至超 純水5 3 1 · 6 9 g調成漿狀,持續二十分鐘加入該漿狀 C 液,其餘部分與實施例七相同。所形成的膠質氧化矽中, 石夕粒徑為1 7 · 7 n m。 〔實施例十〕 將施以非活性處理的金屬矽粉末4 5 · 2g分散至超 純水5 3 1 · 6 9g調成漿狀,持續三小時加入該漿狀液, 其餘部分與實施例七相同。所形成的膠質氧化矽中,矽粒 徑為 2 4 · 6 n m。 〔實施例十一〕 { 將施以非活性處理的金屬矽粉末45 · 2g分散至超 純水5 3 1 · 6 9g調成漿狀,持續四小時加入該漿狀液, 其餘部分與實施例七相同。所形成的膠質氧化矽中,矽粒 徑為 2 8 · 2 n m。 〔實施例十二〕 將施以非活性處理的金屬矽粉末4 5 · 2g分散至超 純水5 3 1 · 6 9g調成漿狀,持續二小時加入該漿狀液, 其餘部分與實施例七相同。所形成的膠質氧化矽中,矽粒 徑為 2 2 · 6 n m。 28 200831408 實施例七〜十二中,金屬矽漿的添加時間、一次粒徑 及產率如表二所示。 29 200831408 【表二】 實施 例七 實施 例八 實瓦 例九 漿狀液添加 時間(分) 60 10 20〜 一次粒徑 (nm) ----- 21.6 8.5 17.7 產率(%) ~-———. 84 ------- 75 79~~ 貫施 實施 實施 例十 例十 例十 180 ------- 240 120 24.6 —---— 28.2 22.6 72 -—-— 70 82 二所示’藉由控制含金屬石夕漿狀液的添加速度, 得的膠質氧切—次粒徑。意即,速度越快, y成的粒子越小,速度越慢,形成的粒子越大。 能Μ制金⑽添加到驗性水溶液的速度,就 月匕凋整所取得的膠質氧化矽一次粒徑。 1 = ’僅為本發明最佳之—的具體實施例之 惟本發明之特徵並不脚此,並非用 \ Χ明,本發明之所有範圍應以下述之申請專利範 圍=準,凡合於本發明申請專利範圍之精神與其類似變化 一貝%例白應包含於本發明之範缚中,任何熟悉該項技 f者在本發明之領域内,可輕易思及之變化或修飾皆可涵 盍在以下本案之專利範圍。 【圖式簡單說明】 30Aqueous solution of 22 · 9g. The NaO of the knife ratio continued for two hours of dissolution, and after cooling, it was transitioned to a reduced pressure of :U=T0.0 7 5 mPa. The primary particle diameter of the formed oxygen-cut pellets [Comparative Example 3] The inactivated metal stone was applied to the slurry at 9 8 · 334.8 g, and then the metering pump was continued for 8 ° to 1 ° = 26 200831408 liquid. At the same time, the sample pump is sterilized with sodium hydroxide for a period of eight hours, and the remainder is the same as that of the sixth embodiment, such as π "y particle size of 35.8 nm. The formed colloid. The smaller the particles of the oxidized stone in the evening, the lower the granules of the stone, the smaller the particles, the faster the granules, the granules, the faster the granules, the faster the granules, the faster the granules, the < The process of adding a metal dreaming slurry to an aqueous solution is not changed by using a dispersing agent, and the % is changed. In addition, the following embodiment [Example 7] is broken, :=; 〇 〇, under the golden environment containing Si_ or more I:: _ metal stone eve. The metal stone eve in the ordinary atmosphere stone oxime machine oxidation 'inactive treatment. The metal liquid will be obtained. Disperse to ultrapure water 5 3 1 · 6 9g, into a paste Sheet ίί 1 [The capacity of the lining machine and the flow of the fluorinated resin lining == at the liquid temperature 1 〇 "c prepared with Na 〇 H 〇 5 weight hundred two 31 liquid 2 2 3 g ° then 'quantitative The chestnut is added to the slurry for one hour at a rate. Then, the dissolution reaction continues for four hours, and after cooling, the filter membrane of 卩1" 〇· 〇7 5mP a decompression filtration, filter the neck two residues> check 'made high purity colloidal oxidized oxide eve. The colloidal cerium oxide v, work Z 1 · 6 nm, purity 9 8 % 〇27 200831408 [Examples VIII] 4 5 · 2g of inactive metal cerium powder was dispersed into ultrapure water 5 3 1 · 6 9g to make a slurry, and the slurry was added for ten minutes, and the rest was the same as in the seventh embodiment. In the formed colloidal cerium oxide, the cerium particle size is 8 · 5 nm. [Example 9] 4 5 · 2 g of the metal cerium powder subjected to inactivation treatment is dispersed to ultrapure water 5 3 1 · 6 9 g to prepare a slurry The slurry was added to the slurry C for twenty minutes, and the rest was the same as in the seventh embodiment. In the formed colloidal cerium oxide, the particle size was 1.7 nm. [Example 10] Inactive The treated metal cerium powder 4 5 · 2g was dispersed into ultrapure water 5 3 1 · 6 9g to make a slurry, and the slurry was added for three hours, and the rest was the same as in Example 7. The formed colloidal cerium oxide, The particle size of the crucible is 2 4 · 6 nm. [Example 11] {Inactive metal powder will be applied 45 · 2g dispersed into ultrapure water 5 3 1 · 6 9g into a slurry, the slurry was added for four hours, and the rest was the same as in Example 7. The formed colloidal cerium oxide had a cerium particle size of 2 8 · 2 nm. [Example 12] 4 5 · 2g of inactive metal cerium powder was dispersed into ultrapure water 5 3 1 · 6 9g to make a slurry, and the slurry was added for 2 hours. Part is the same as in the seventh embodiment. In the formed colloidal cerium oxide, the cerium particle diameter is 2 2 · 6 n m. 28 200831408 In the examples 7 to 12, the addition time, primary particle size and yield of the metal syrup are shown in Table 2. 29 200831408 [Table 2] Example 7 Example VIII Shiwa Example 9 Slurry solution addition time (minutes) 60 10 20~ Primary particle size (nm) ----- 21.6 8.5 17.7 Yield (%) ~-- ——. 84 ------- 75 79~~ Implementation of the tenth case ten cases ten 180 ------- 240 120 24.6 —--- — 28.2 22.6 72 ——-— 70 82 The second is shown by the control of the rate of addition of the metal-containing slurry to obtain the colloidal oxygen cut-secondary particle size. That is, the faster the speed, the smaller the particles of y, the slower the speed, and the larger the particles formed. The rate at which the gold (10) can be added to the aqueous solution, and the primary particle size of the colloidal cerium oxide obtained by the aging. The invention is not limited to the specific embodiments of the invention, and is not intended to be used in the scope of the invention, and all the scope of the invention should be as follows. The spirit of the scope of the present invention and its similar variations are included in the scope of the present invention, and any one skilled in the art can easily think of changes or modifications in the field of the present invention. In the following patent scope of this case. [Simple description of the diagram] 30

Claims (1)

200831408 十、申請專利範圍: 1、一種膠質氧化矽之製作方法,包括一在含鹼性 觸劑的水溶液中’使金屬石夕(s i )與水反應來 取付膠質氧化石夕之製程,其中前述分散劑是選自於無機 馱有機酸或該等之鹽之一種以上的離子性物質。 、i、如申請專利範圍第1項之膠質氧化矽之製作方 去〃中别述分散劑是選自於鹽酸、硝酸或硫酸之一種 以上的無機酸及/或其鹽。 j、=申請專利範圍第2項之膠質氧化⑨之製作方 / ,/、中岫述分散劑是無機酸鹽,該鹽是選自於與Na、 • N Η 4、知或四級氫氧化録的鹽之一種以上者。 、4、如申請專利範圍第丄項之膠質氧化矽之製作方 ^二其中刖述分散劑是選自於草酸、檸檬酸、蘋果酸、 、、:次〆酉石酉夂、戊二酸、己二酸、庚二酸、號轴酸、 丙:酸、反丁烯二酸、苯二甲酸、甲酸、醋酸、丙酸、 J =酸、2_甲基丁酸、正己酸、3,3_二甲基丁酸、2_ ^次、4_甲基戊酸、n_庚酸、2_己酸甲酯、n-辛酸、 本甲酉文、甘醇酸、水揚酸、甘 有機酸及八戈直錢。 由夂次礼酉夂之種以上的 八·月j处刀放劑疋有機酸鹽,該鹽係選自於與N a、 、1、NH4、胺或四級氫氧化銨的鹽之一種以上者。 化矽之制你1明專利範圍第1〜5項中任-項之膠質氧 (^)、卸(K)或鐘(Li)的金屬一價氫氧化物之 31 200831408 混合物。 化二::!專:範圍第1〜5項中任-項之膠質氧 孔徑1膜將前述膠質 虱化矽過濾精製後,其動黏度在4 mm2/s以下。 8、 如申請專利範圍第1〜5項中任—項之膠質氧 製作方法,其中前述膠質氧切㈣濃度在2 0 重罝百分比以上。 9、 如巾請專利範圍第丨項之膠質氧切之製作方 法,至少具備以下階段·· 〔ί1白奴一〕製作含水、鹼性觸媒及分散劑的水溶液; 〔階段二〕準備業已將金屬矽分散至水 或金屬矽;及 ^ 階段二〕在階段一所取得的水溶液中,以大致固 疋速度添加階段二所準備的漿狀液或金屬矽,或是在階 段-所取得的水料巾,以大朗定速度添加階段二所 準備的槳狀液或金屬料同時,以大朗定速度添加驗 性觸媒。 1 0、如申請專利範圍第9項之膠質氧化矽之製作 方法,其中在前述階段三係藉由控制前述漿狀液或金屬 石夕的添加:4度來取得含希望絲徑的膠質氧化石夕。 1 1、如申請專利範圍第9項或第1 〇項之膠質氧 化矽之=作方法,係以每小時的金屬矽添加量為每小時 反應液量的1〜9·5重量百分比作為前述添加速度。 1 2、如申請專利範圍第g項或第1 〇項之膠質氧 化石夕之製作方法’其中前述階段三所取得的膠質氧化石夕 32 200831408 中所^石夕教徑,其—次粒徑為6〜8Qnn^ 階段·· 種膠質氧切之製作方法,至少具備以下 匕又I〕‘作含水及驗性觸媒的水溶液,· 液或iii,1】〕準備業已將金屬矽分散至水中的漿狀 致固乂〕在階段1所取得的水溶液中,以大 是在階11所準備的漿狀液或金屬石夕,或 /的桌狀液或金屬矽的同時,以大致固定速 度加入鹼性觸媒。 13項之膠質氧化矽之製 1係藉由控制業已將金屬 發的添加速度來取得含希 1 4、如申請專利範圍第 作方法’其中在前述階段I I 石夕分散至水中的漿狀液或金屬 望矽粒徑的膠質氧化矽。 33 200831408 七、指定代表圖: (一) 本案指定代表圖為:無 (二) 本代表圖之元件符號簡單說明: 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 。200831408 X. Patent application scope: 1. A method for preparing colloidal cerium oxide, comprising: a process for reacting metal sill (si) with water in an aqueous solution containing an alkaline contact agent to recover colloidal oxidized stone, wherein the foregoing The dispersing agent is an ionic substance selected from the group consisting of an inorganic cerium organic acid or one or more of these salts. i, the preparation of the colloidal cerium oxide according to the first aspect of the patent application. The dispersing agent is one or more inorganic acids and/or salts thereof selected from the group consisting of hydrochloric acid, nitric acid or sulfuric acid. j, = the preparation of the granule oxidation of the second paragraph of the patent scope of the second party /, /, the dispersant is a mineral acid salt, the salt is selected from the same with Na, • N Η 4, known or four-stage oxidation One or more of the recorded salts. 4. The preparation of the colloidal cerium oxide according to the scope of the patent application is as follows: wherein the dispersing agent is selected from the group consisting of oxalic acid, citric acid, malic acid, and: euchondrine, glutaric acid, Adipic acid, pimelic acid, carboxylic acid, propane: acid, fumaric acid, phthalic acid, formic acid, acetic acid, propionic acid, J = acid, 2-methylbutyric acid, n-hexanoic acid, 3,3 _Dimethyl butyric acid, 2_^ times, 4-methylpentanoic acid, n-heptanoic acid, methyl 2-hexanoate, n-octanoic acid, methicillin, glycolic acid, salicylic acid, glycoic acid And eight straight money. The organic acid salt of the scalloping agent is selected from the group consisting of more than one of the salts of Na, 1, 1, NH4, amine or quaternary ammonium hydroxide. By.矽 矽 你 你 1 1 你 你 你 你 你 你 你 你 你 你 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2::! Special: The colloidal oxygen in the range of items 1 to 5 is the pore size of the membrane. After the filtration and purification of the above-mentioned colloidal bismuth telluride, the dynamic viscosity is below 4 mm 2 /s. 8. The method for producing colloidal oxygen according to any one of claims 1 to 5, wherein the concentration of the colloidal oxygen cut (4) is more than 20% by weight. 9. For the method of making the colloidal oxygen cutting of the scope of the patent scope, at least the following stages: · [ί1 白奴一] to prepare an aqueous solution of water, alkaline catalyst and dispersant; [stage 2] preparation has been The metal ruthenium is dispersed into water or metal ruthenium; and ^ Phase II] In the aqueous solution obtained in the first stage, the slurry or metal ruthenium prepared in the second stage is added at a substantially solid rate, or the water obtained in the stage The towel is added with the paddle liquid or metal material prepared in the second stage at a large speed, and the test catalyst is added at a large Langing speed. 10. The method for producing colloidal cerium oxide according to claim 9 of the patent application, wherein in the foregoing stage, the saccharide oxidized stone containing the desired wire diameter is obtained by controlling the addition of the slurry or the metal sap: 4 degrees. Xi. 1 1. The method for the determination of colloidal cerium oxide according to item 9 or item 1 of the patent application is as follows: the amount of metal lanthanum added per hour is 1 to 9·5 weight percent of the amount of the reaction liquid per hour. speed. 1 2. The method for preparing colloidal oxidized stone eve of the application of the scope of item g or item 1 of the patent, wherein the granules of the oxidized oxidized stone obtained in the above stage 3 2008 32 200831408 6~8Qnn^ Stage ··················································································· In the aqueous solution obtained in the stage 1, the slurry or the metal slab prepared in the step 11 or the table-like liquid or the metal ruthenium is added at a substantially constant speed. Alkaline catalyst. The 13th process of colloidal cerium oxide 1 is obtained by controlling the rate of addition of the metal, and the method of the method of the invention is as described in the above-mentioned stage II. Metallic cerium oxide particle size. 33 200831408 VII. Designation of representative drawings: (1) The representative representative of the case is: None (2) The symbol of the symbol of the representative figure is simple: 8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW96147404A 2006-12-12 2007-12-12 Process for producing colloidal silica TW200831408A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006335151 2006-12-12
JP2006335150 2006-12-12

Publications (1)

Publication Number Publication Date
TW200831408A true TW200831408A (en) 2008-08-01

Family

ID=39511658

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96147404A TW200831408A (en) 2006-12-12 2007-12-12 Process for producing colloidal silica

Country Status (4)

Country Link
JP (1) JP5155185B2 (en)
CN (1) CN101547860B (en)
TW (1) TW200831408A (en)
WO (1) WO2008072637A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307485A (en) * 2007-06-15 2008-12-25 Hiroshi Kokuta Method of controlling colloid particle diameter in water based film forming inorganic colloid solution
US8197782B2 (en) 2010-02-08 2012-06-12 Momentive Performance Materials Method for making high purity metal oxide particles and materials made thereof
US9249028B2 (en) 2010-02-08 2016-02-02 Momentive Performance Materials Inc. Method for making high purity metal oxide particles and materials made thereof
CN101973557B (en) * 2010-11-05 2012-05-23 北京化工大学 Method for preparing high-purity mono-disperse silicon dioxide hydrosol
CN103748037B (en) * 2011-09-16 2016-09-28 日产化学工业株式会社 The activated silica acid solution being purified and the manufacture method of Ludox
JP5972660B2 (en) * 2012-03-28 2016-08-17 株式会社アドマテックス Method for producing colloidal silica and method for producing slurry for CMP
EP2986670B1 (en) * 2013-04-17 2018-11-21 Silbond Corporation Method of making a silica sol
JP6203625B2 (en) * 2013-12-16 2017-09-27 株式会社アドマテックス Method for producing silica particles
JP6209072B2 (en) * 2013-12-16 2017-10-04 株式会社アドマテックス Method for producing silica particles
CN105036140B (en) * 2015-06-29 2017-05-24 安徽确成硅化学有限公司 Method for reducing viscosity of silicon dioxide slurry
JP7388750B2 (en) * 2019-02-19 2023-11-29 有限会社南日本ウェルネス Method for producing water-soluble nanocolloidal silica for ingestion by animals and plants, and water-soluble nanocolloidal silica for ingestion by animals and plants
JP7356864B2 (en) * 2019-10-30 2023-10-05 山口精研工業株式会社 Abrasive composition for magnetic disk substrate and method for polishing magnetic disk substrate
JP7356865B2 (en) * 2019-10-30 2023-10-05 山口精研工業株式会社 Abrasive composition for magnetic disk substrate and method for polishing magnetic disk substrate
CN117430117B (en) * 2023-10-25 2024-06-18 阳江市惠尔特新材料科技有限公司 Silica sol and manufacturing method and application thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591518A (en) * 1968-12-31 1971-07-06 Du Pont Silica aquasols and powders
JPS5510534B2 (en) * 1972-10-25 1980-03-17
JPS62288125A (en) * 1986-06-05 1987-12-15 Seiko Epson Corp Production of glass body by sol-gel method
CN86104144A (en) * 1986-12-29 1988-07-20 张扬正 The manufacture method of big particle diameter, low viscosity silicon sol
JP3119271B2 (en) * 1991-07-24 2000-12-18 日産化学工業株式会社 Alumina sol and method for producing the same
US5407600A (en) * 1991-07-23 1995-04-18 Nissan Chemical Industries, Ltd. Stable aqueous alumina sol and method for preparing the same
JP2002338232A (en) * 2001-05-18 2002-11-27 Nippon Chem Ind Co Ltd Secondary flocculated colloidal silica, method for producing the same and abrasive composition using the same
JP2004315300A (en) * 2003-04-17 2004-11-11 Nippon Steel Chem Co Ltd Silica fine particle, silica colloid in which silica fine particles are dispersed and method of manufacturing the same
JP4654713B2 (en) * 2004-03-16 2011-03-23 日産化学工業株式会社 Modified stannic oxide-zirconium oxide composite sol and method for producing the same

Also Published As

Publication number Publication date
WO2008072637A1 (en) 2008-06-19
CN101547860B (en) 2014-05-28
JPWO2008072637A1 (en) 2010-04-02
CN101547860A (en) 2009-09-30
JP5155185B2 (en) 2013-02-27

Similar Documents

Publication Publication Date Title
TW200831408A (en) Process for producing colloidal silica
JP5270344B2 (en) Silica sol and method for producing the same
TWI334882B (en) Polishing slurry and method of producing same
TWI343944B (en) Cmp slurry, preparation method thereof and method of polishing substrate using the same
KR101173313B1 (en) Alkali-resistant cocoon-shaped colloidal silica particle and process for producing the same
TWI331169B (en) Abrasive composition containing organic particles for chemical mechanical planarization
US5951724A (en) Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices
JP4566645B2 (en) Silica sol and method for producing the same
TWI323280B (en) Abrasive for silicon oxide, additive liquid and polishing method
TWI229117B (en) Aqueous dispersion containing cerium oxide-coated silicon powder, process for the production thereof and use
TWI331133B (en) Method for preparing of cerium oxide powder for chemical mechanical polishing and method for preparing of chemical mechanical polishing slurry using the same
JP4202257B2 (en) Method of forming particles for use in a chemical mechanical polishing slurry and particles formed by the method
JP2007532470A5 (en)
JP4011566B2 (en) Silica sol and method for producing the same
TW200821375A (en) Silicon carbide polishing method utilizing water-soluble oxidizers
TW200539935A (en) Colloidal compositions and methods of preparing same
TW201000612A (en) Colloidal silica for semiconductor wafer polishing and production method thereof
JPWO2019189610A1 (en) Method for producing silica particle dispersion, polishing composition and silica particle dispersion
TW201831643A (en) Polishing composition and polishing method
TWI343296B (en) Abrasive-free polishing system
JP2000345144A (en) Abrasive and polishing
JP2011136879A (en) Visible light-responsive titanium oxide-based fine particle dispersion and method for producing the same
JP2003027045A (en) Cerium oxide sol and abrasive
CN108140569A (en) Composition for polishing
JP7454930B2 (en) Silica sol manufacturing method