JP2007061989A - Polishing composite-oxide particle and slurry abrasive - Google Patents

Polishing composite-oxide particle and slurry abrasive Download PDF

Info

Publication number
JP2007061989A
JP2007061989A JP2005254507A JP2005254507A JP2007061989A JP 2007061989 A JP2007061989 A JP 2007061989A JP 2005254507 A JP2005254507 A JP 2005254507A JP 2005254507 A JP2005254507 A JP 2005254507A JP 2007061989 A JP2007061989 A JP 2007061989A
Authority
JP
Japan
Prior art keywords
polishing
particles
oxide
abrasive
cerium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005254507A
Other languages
Japanese (ja)
Inventor
Mikio Kishimoto
幹雄 岸本
Itaru Oshita
格 大下
Toshio Kanzaki
壽夫 神崎
Katsunori Kojima
克典 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2005254507A priority Critical patent/JP2007061989A/en
Publication of JP2007061989A publication Critical patent/JP2007061989A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a slurry abrasive capable of efficiently polishing glass substrates, quartz substrates, semiconductor devices, optical lenses, hard disk substrates, and photomasks or the like, and also, capable of achieving excellent surface smoothness. <P>SOLUTION: The slurry abrasive is composed by dispersing a substance, in which an average particle size is set from 2 nm to 300 nm and particles as abrasive grains are made of a composite oxide composed of a cerium oxide, zirconium oxide, and silicon oxide, into a solvent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主としてガラス基板、石英基板、半導体デバイス、光学レンズ、ハードデイスク基板、フォトマスク等の表面研磨に適した複合酸化物粒子に関する。さらに詳しくは、セリウム、ジルコニウムおよび珪素を特定の範囲で含有する特定の粒子サイズの複合酸化物粒子およびこれを砥粒として用いたスラリー状研磨材に関する。   The present invention mainly relates to composite oxide particles suitable for surface polishing of glass substrates, quartz substrates, semiconductor devices, optical lenses, hard disk substrates, photomasks and the like. More specifically, the present invention relates to a composite oxide particle having a specific particle size containing cerium, zirconium and silicon in a specific range, and a slurry-like abrasive using the same as an abrasive.

レンズ、液晶ディスプレーやプラズマディスプレー、光ファイバ、光コネクタフォトマスクなどのガラス素材や、半導体基板、配線基板などの半導体デバイス、石英基板、水晶発信子などの水晶デバイスなどにおいては、これらを構成している光学部品や半導体の表面あるいは端面の状態が、その光学特性や半導体特性ひいては製品価値に大きな影響を及ぼす。そこで、これらの部品の表面や端面は極めて高精度に研磨することが要求される。   Glass materials such as lenses, liquid crystal displays and plasma displays, optical fibers and optical connector photomasks, semiconductor devices such as semiconductor substrates and wiring boards, quartz devices such as quartz substrates and crystal oscillators, etc. The state of the surface or the end face of the optical component or semiconductor that has a great influence on the optical characteristics, semiconductor characteristics, and thus the product value. Therefore, it is required to polish the surfaces and end faces of these parts with extremely high accuracy.

従来、このような部材の研磨作業では、粗研磨するための1次研磨から始まり、最終的には仕上げ研磨による精密研磨により、キズのない極めて高精度の表面、端面に仕上げられる。この仕上げ研磨用には、通常コロイダルシリカを分散させたスラリー研磨液が使用されている。例えば特許文献1には、平均粒子径が10〜100nmの真球状のコロイダルシリカを分散させた研磨材を用いて二酸化シリコン膜を研磨する例が記載されている。また、特許文献2には、長径が7〜1000nmで(短径/長径)=0.3〜0.7である特殊な形状のコロイダルシリカが半導体ウエハー研磨に適していることが記載されている。しかし、このようなコロイダルシリカ研磨材は、シリコンウエハーのような同種の物質の研磨には適しているが、一般に研磨能力が弱く、無機系の硬い表面層を有する部材を研磨するには、研磨に極めて長時間要するという課題があった。   Conventionally, the polishing operation of such a member starts from primary polishing for rough polishing, and is finally finished to a highly accurate surface and end surface without scratches by precision polishing by finish polishing. For the final polishing, a slurry polishing liquid in which colloidal silica is dispersed is usually used. For example, Patent Document 1 describes an example in which a silicon dioxide film is polished using an abrasive in which true spherical colloidal silica having an average particle diameter of 10 to 100 nm is dispersed. Patent Document 2 describes that colloidal silica having a special shape having a major axis of 7 to 1000 nm (minor axis / major axis) = 0.3 to 0.7 is suitable for semiconductor wafer polishing. . However, such colloidal silica abrasives are suitable for polishing the same kind of materials as silicon wafers, but generally have poor polishing ability and are used for polishing members having a hard inorganic surface layer. There was a problem that it took an extremely long time.

研磨剤粒子(砥粒)として、シリカよりも硬く、かつエッジによる研磨能を高めるために、形状を板状にした酸化アルミニウム粒子も知られている。例えば特許文献3には、研磨剤粒子として優れた性能を示す板状酸化アルミニウム粒子が記載されている。しかしながら、この種の公知の板状酸化アルミニウム粒子は、粒子径がサブミクロンサイズと大きく、粗研磨用途には適しているが、仕上げ研磨のような精密研磨用としては不適である。   As abrasive particles (abrasive grains), aluminum oxide particles that are harder than silica and have a plate shape in order to enhance the polishing ability by the edge are also known. For example, Patent Document 3 describes plate-like aluminum oxide particles that exhibit excellent performance as abrasive particles. However, this type of known plate-like aluminum oxide particles has a large particle size of submicron and is suitable for rough polishing applications, but is not suitable for precision polishing such as finish polishing.

一方、仕上げ研磨用の研磨材としては酸化セリウム粒子が汎用されている。例えば特許文献4には、酸化セリウム粒子の化学的に活性な性質を利用して、酸化セリウム粒子の水分散体を使ったSiO2 絶縁膜の研磨例が数多く示されている。酸化セリウム粒子は、上記のシリカ系やアルミナ系の研磨剤粒子に比べて硬度は低いが、優れた仕上げ研磨特性を示す。すなわち、従来の研磨剤粒子と異なり、その化学的性質を利用することにより、他の研磨材では得られない優れた仕上げ研磨性を示す。しかし, その反面、本質的に材料としての硬度が低く、研磨力も弱いため、その適用範囲も限られていた。 On the other hand, cerium oxide particles are widely used as polishing materials for finish polishing. For example, Patent Document 4 discloses many examples of polishing an SiO 2 insulating film using an aqueous dispersion of cerium oxide particles by utilizing the chemically active properties of cerium oxide particles. The cerium oxide particles have a lower hardness than the above silica-based and alumina-based abrasive particles, but exhibit excellent finish polishing characteristics. That is, unlike conventional abrasive particles, by utilizing its chemical properties, it exhibits excellent finish polishability that cannot be obtained with other abrasives. However, on the other hand, the hardness as a material is essentially low and the polishing power is weak, so the application range is limited.

このような酸化セリウム系研磨材の問題点を改良して、さらに汎用性のある研磨材とするために、他の研磨剤粒子を酸化セリウム粒子と混合して使用することも知られている。例えば特許文献5には、酸化セリウム粒子とコロイダルシリカ粒子を混合使用することが記載されている。ただ、このような混合粒子を使用した研磨材では、酸化セリウム粒子とコロイダルシリカの中間的な特性は得られるものの、本質的にこれらの研磨剤粒子の問題点を解決したものとはなっていない。また2種類以上の研磨剤粒子を混合してスラリー研磨材とした場合、これらの粒子の媒体中での分散性や沈降性が異なるため、 スラリーとしての特性が不安定になるという問題がある。   It is also known to use other abrasive particles mixed with cerium oxide particles in order to improve the problems of such a cerium oxide-based abrasive and make it a more versatile abrasive. For example, Patent Document 5 describes that a mixture of cerium oxide particles and colloidal silica particles is used. However, although abrasives using such mixed particles can provide intermediate properties between cerium oxide particles and colloidal silica, they have not essentially solved the problems of these abrasive particles. . In addition, when two or more kinds of abrasive particles are mixed to form a slurry abrasive, the dispersibility and sedimentation of these particles in the medium are different, and there is a problem that the characteristics as a slurry become unstable.

比較的柔らかい酸化珪素や酸化セリウム粒子を使用して研磨力を高くするためには、大きな粒子径の粒子を使用することが効果的である。しかし、大きな研磨剤粒子を使用すると、比較的大きな研磨力が得られる反面、スクラッチと呼ばれる微細なキズが多数発生し、表面を精密に仕上げることが難しくなる。このような一度研磨で生じたキズを除去し、平滑度の高い研磨面を得るためには非常に長時間の作業を要する。   In order to increase polishing power using relatively soft silicon oxide or cerium oxide particles, it is effective to use particles having a large particle diameter. However, when large abrasive particles are used, a relatively large polishing force can be obtained. On the other hand, many fine scratches called scratches are generated, and it is difficult to finish the surface precisely. In order to remove such scratches once generated by polishing and obtain a polished surface with high smoothness, a very long work is required.

酸化セリウムとこれよりも硬度の高い酸化ジルコニウムとを複合化した粒子を分散させたスラリー状研磨材が半導体の絶縁膜用研磨に適していることも知られている(例えば特許文献6)。しかし、この種の複合酸化物粒子は、半導体の絶縁膜研磨には適しているが、その適用範囲は比較的限定されており、ガラス素材や石英素材を研磨に使用すると研磨キズが入りやすいという問題があった。   It is also known that a slurry-like abrasive in which particles obtained by combining cerium oxide and zirconium oxide having higher hardness is dispersed is suitable for polishing an insulating film of a semiconductor (for example, Patent Document 6). However, this type of composite oxide particle is suitable for polishing an insulating film of a semiconductor, but its application range is relatively limited, and when a glass material or a quartz material is used for polishing, polishing scratches are likely to occur. There was a problem.

特開平8−267356号公報JP-A-8-267356 特開平7−221059号公報Japanese Patent Laid-Open No. 7-221059 特開平1−109082号公報Japanese Patent Laid-Open No. 1-109082 特開平9−270402号公報JP-A-9-270402 特開平9−132770号公報JP-A-9-132770 特開2001−348563号公報JP 2001-348563 A

本発明は、上述したような従来の研磨材がもっていた弱点を克服すべくなされたもので、総合的に見て従来の研磨材よりも適用範囲が広く、しかも優れた研磨特性を有する研磨材を実現することを課題とするものである。さらに具体的に言えば、本発明の目的は、半導体基板、石英素材、ガラス素材、光学レンズ、ハードデイスク基板、フォトマスク等の表面研磨、特に仕上げ研磨(精密研磨)に適した研磨材を提供することにある。   The present invention has been made to overcome the weaknesses of the conventional abrasives as described above, and has a wider range of application than conventional abrasives as a whole, and has excellent polishing characteristics. It is a subject to realize. More specifically, the object of the present invention is to provide an abrasive suitable for surface polishing, particularly finish polishing (precision polishing) of semiconductor substrates, quartz materials, glass materials, optical lenses, hard disk substrates, photomasks and the like. There is.

上記の目的を達成するため、本発明に係る研磨用の粒子は、平均粒子サイズが2nmから300nmと小さいが、砥粒となる粒子を、酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる複合酸化物で構成したものである。すなわち、硬度はそれほど大きくないが、化学的研磨作用の大きい酸化セリウムを主構成物質とし、この酸化セリウムに、酸化セリウムより硬度の高い酸化ジルコニウムと、酸化セリウムより硬度の低い酸化珪素とを含有させた複合酸化物とすることにより、酸化セリウムの有する化学研磨性を維持したまま、酸化ジルコニウムと酸化珪素とを含有させることによる適度な硬度を付与して、汎用性のある研磨材としたものである。   In order to achieve the above object, the polishing particles according to the present invention have an average particle size as small as 2 to 300 nm, but the particles to be abrasive grains are composite oxides composed of cerium oxide, zirconium oxide and silicon oxide. It is composed. In other words, cerium oxide, which is not very high in hardness but has a large chemical polishing action, is the main constituent, and this cerium oxide contains zirconium oxide having a hardness higher than that of cerium oxide and silicon oxide having a hardness lower than that of cerium oxide. By using a composite oxide, it is possible to provide an appropriate hardness by adding zirconium oxide and silicon oxide while maintaining the chemical polishing property possessed by cerium oxide, thereby providing a versatile abrasive. is there.

なお、本発明でいう「平均粒子サイズ」は、電子顕微鏡を使って撮影(倍率:10万倍)した粒子の写真上で100個の粒子の大きさを測定し、その平均値として求めたものである。   The “average particle size” as used in the present invention is a value obtained by measuring the size of 100 particles on a photograph of particles photographed with an electron microscope (magnification: 100,000 times) and obtaining the average value thereof. It is.

このように本発明では、酸化セリウムを主構成物質として、さらに酸化ジルコニウムと酸化珪素を含有させた3元系の複合酸化物とすることにより、被研磨体の種類に依存せず石英やガラスなど広範囲の被研磨体に対して優れた研磨性を示す研磨用複合酸化物粒子およびそのスラリー状研磨材を提供するものである。   As described above, in the present invention, cerium oxide is used as a main constituent material, and a ternary composite oxide containing zirconium oxide and silicon oxide is used. The present invention provides a composite oxide particle for polishing and a slurry-like polishing material thereof exhibiting excellent polishing properties over a wide range of objects to be polished.

従来、研磨用粒子として酸化セリウム粒子やコロイダルシリカ粒子、酸化アルミニム粒子、酸化セリウム−酸化ジルコニウム複合酸化物粒子などが用いられてきたが、本発明では、酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる複合酸化物粒子とすることにより、平均粒子サイズが2nmから300nmと小さいことによる優れた鏡面研磨性と、酸化セリウムによる化学研磨性とを有し、さらに硬度の異なる3種類の酸化物を共に含有させたことによる適度な硬度をも有する精密研磨に適した研磨材としたものである。   Conventionally, cerium oxide particles, colloidal silica particles, aluminum oxide particles, cerium oxide-zirconium oxide composite oxide particles, and the like have been used as polishing particles. In the present invention, a composite composed of cerium oxide, zirconium oxide, and silicon oxide is used. By using oxide particles, it has excellent mirror polishability due to the average particle size being as small as 2 nm to 300 nm, chemical polishability with cerium oxide, and further contains three kinds of oxides having different hardness. Therefore, an abrasive suitable for precision polishing having an appropriate hardness is obtained.

上記複合酸化物粒子の平均粒子サイズが2nmより小さい場合は、粒子そのものの硬度が高くても研磨性が低くなり、平均粒子サイズが300nmより大きい場合は、研磨時にキズが入りやすくなる。複合酸化物粒子中の酸化セリウム、酸化ジルコニウムおよび酸化珪素の含有量は、それぞれ50〜93重量%、5〜48重量%、2〜45重量%の範囲が好ましい。それぞれの酸化物がこの範囲内のときに、優れた鏡面研磨性と同時に、酸化セリウムによる化学研磨性と、さらに硬度の異なる3種類の酸化物粒子の相乗効果により、適度な硬度を有する精密研磨に適した研磨材となる。   When the average particle size of the composite oxide particles is smaller than 2 nm, the abrasiveness is low even when the hardness of the particles themselves is high. When the average particle size is larger than 300 nm, scratches are easily generated during polishing. The contents of cerium oxide, zirconium oxide and silicon oxide in the composite oxide particles are preferably in the range of 50 to 93% by weight, 5 to 48% by weight and 2 to 45% by weight, respectively. When each oxide is within this range, precision polishing with moderate hardness is achieved by synergistic effect of chemical polishing by cerium oxide and three kinds of oxide particles with different hardness as well as excellent mirror polishing. It becomes an abrasive suitable for.

本発明の複合酸化物粒子は、これを液状の媒体に分散させてスラリー状研磨材として使用することが好ましい。この場合の媒体は特に限定されるものではないが、水が最も安価で好ましい。このスラリー状研磨材に、各種の分散剤を添加することも可能である。   The composite oxide particles of the present invention are preferably used as a slurry abrasive by dispersing them in a liquid medium. The medium in this case is not particularly limited, but water is the cheapest and preferable. It is also possible to add various dispersing agents to this slurry-like abrasive.

以上のように、本発明の研磨用複合酸化物粒子は、その平均粒子サイズを2nmから300nmとし、かつ酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる構成とすることにより、酸化セリウムの有する化学研磨性を維持したまま、適度な硬度を付与することに成功したものである。したがって、このような複合酸化物粒子を水等の媒体に分散させてなる本発明のスラリー状研磨材を用いれば、ガラス基板、石英基板、半導体デバイス、光学レンズ、ハードデイスク基板、フォトマスク等、広範囲の被研磨体を効率良く研磨することができ、かつ平滑性の高い表面に仕上げることができる。   As described above, the composite oxide particles for polishing of the present invention have an average particle size of 2 nm to 300 nm and are composed of cerium oxide, zirconium oxide, and silicon oxide, so that the chemical polishing properties possessed by cerium oxide are achieved. While maintaining the above, it has succeeded in imparting an appropriate hardness. Therefore, if the slurry-like abrasive of the present invention in which such complex oxide particles are dispersed in a medium such as water is used, a wide range of glass substrates, quartz substrates, semiconductor devices, optical lenses, hard disk substrates, photomasks, etc. The object to be polished can be efficiently polished and finished to a highly smooth surface.

次に、本発明の複合酸化物粒子およびこの粒子を用いたスラリー状研磨材の実施の形態を具体的に説明する。   Next, embodiments of the composite oxide particle of the present invention and a slurry-like abrasive using the particle will be specifically described.

〈酸化セリウム−酸化ジルコニウム−酸化珪素複合酸化物粒子の製造法〉
本発明の研磨用複合酸化物粒子は、例えば以下のような(沈殿物の作製)→(水熱処理)→(加熱処理)という工程を経ることによって製造される。
<Method for producing cerium oxide-zirconium oxide-silicon oxide composite oxide particles>
The composite oxide particles for polishing of the present invention are produced, for example, through the following steps (preparation of precipitate) → (hydrothermal treatment) → (heat treatment).

(沈殿物の作製)
所定量のセリウム塩、ジルコニウム塩および珪酸塩を水に溶解し、セリウム、ジルコニウムおよび珪素イオンを含有する金属塩水溶液を調整する。金属塩の種類としては特に限定されるものではなく、塩化物、硝酸塩、硫酸塩、ナトリウム塩などが使用できる。これとは別に、アルカリ水溶液を調整する。アルカリとしては、水酸化ナトリウム、水酸化カリウム、アンモニア水溶液などが挙げられる。
(Preparation of precipitate)
A predetermined amount of cerium salt, zirconium salt and silicate are dissolved in water to prepare an aqueous metal salt solution containing cerium, zirconium and silicon ions. The type of metal salt is not particularly limited, and chlorides, nitrates, sulfates, sodium salts and the like can be used. Separately, an alkaline aqueous solution is prepared. Examples of the alkali include sodium hydroxide, potassium hydroxide, and an aqueous ammonia solution.

最終目的物である複合酸化物粒子中の酸化セリウム、酸化ジルコニウムおよび酸化珪素の含有量は、それぞれ50〜93重量%、5〜48重量%、2〜45重量%の範囲のときに鏡面研磨性と化学研研磨性および適度な硬度を有する研磨材となるが、この含有量は沈殿物作製時の各金属塩の添加量でほぼ決まる。   When the content of cerium oxide, zirconium oxide and silicon oxide in the final target composite oxide particles is in the range of 50 to 93% by weight, 5 to 48% by weight and 2 to 45% by weight, mirror polishing However, this content is almost determined by the amount of each metal salt added during the preparation of the precipitate.

前記アルカリ水溶液に前記金属塩水溶液を滴下する。このとき、溶液のpHが多少高くても、セリウムとジルコニウムは水酸化物あるいは水和物として沈殿物を生成するが、溶液のpHが高すぎると珪素は両性物質のため沈殿物を生成しなくなる。一方、pHが中性付近では、珪素は水酸化物あるいは水和物として沈殿物を生成するが、セリウムおよびジルコニウムは沈殿物を生成しない。したがって、このpHの調整は重要で、pHが8〜11の範囲になるように調整する。この微妙なpH調整のため、アルカリ水溶液に金属塩水溶液を加えた後、必要に応じてさらに塩酸等の水溶液を滴下して、pH調整を行うこともできる。生成した沈殿物を含む懸濁液は、これを室温において1日程度熟成することが好ましい。この熟成も、その後の水熱反応を効果的に行わせる上で効果的である。   The metal salt aqueous solution is dropped into the alkaline aqueous solution. At this time, even if the pH of the solution is somewhat high, cerium and zirconium generate precipitates as hydroxides or hydrates, but if the pH of the solution is too high, silicon will not generate precipitates due to amphoteric substances. . On the other hand, when the pH is near neutral, silicon produces a precipitate as a hydroxide or hydrate, but cerium and zirconium do not produce a precipitate. Therefore, adjustment of this pH is important, and it adjusts so that pH may become the range of 8-11. For this fine pH adjustment, after adding a metal salt aqueous solution to an alkaline aqueous solution, an aqueous solution such as hydrochloric acid can be further dropped as necessary to adjust the pH. The suspension containing the formed precipitate is preferably aged at room temperature for about 1 day. This aging is also effective in effectively performing the subsequent hydrothermal reaction.

(水熱処理)
セリウム、ジルコニウムおよび珪素からなる水酸化物あるいは水和物の沈殿物を含む懸濁液を、オートクレーブ等を用いて水熱処理する。この水熱処理において、上記の沈殿物を含む懸濁液をそのまま水熱処理しても構わないが、水洗により、上記沈殿物以外の生成物や残存物を除去し、その後NaOHなどにより再度pH調整することが好ましい。この時のpHの値は、8〜11とすることが好まし。このpHより低いと、水熱処理時に結晶成長が不十分になり、また高すぎると、水熱処理中に珪素の水酸化物あるいは水和物が再溶解して、仕込み組成と水熱処理後の組成が異なりやすくなる。
(Hydrothermal treatment)
A suspension containing a hydroxide or hydrate precipitate comprising cerium, zirconium and silicon is hydrothermally treated using an autoclave or the like. In this hydrothermal treatment, the suspension containing the precipitate may be hydrothermally treated as it is, but the product and the residue other than the precipitate are removed by washing with water, and then the pH is adjusted again with NaOH or the like. It is preferable. The pH value at this time is preferably 8-11. If it is lower than this pH, crystal growth becomes insufficient during hydrothermal treatment, and if it is too high, silicon hydroxide or hydrate is redissolved during hydrothermal treatment, and the charged composition and the composition after hydrothermal treatment are reduced. It becomes easy to be different.

水熱処理温度は、110℃から300℃の範囲が好ましい。この温度より低いと、水熱処理の効果が不十分になり、粒子サイズ分布が広くなったり、処理後の水酸化物あるいは水和物の結晶性が悪くなって、その後の熱処理工程で焼結しやすくなったする。一方、この温度より高いと発生圧力が高くなるため、装置が高価なものとなり、メリットはない。   The hydrothermal treatment temperature is preferably in the range of 110 ° C to 300 ° C. Below this temperature, the effect of hydrothermal treatment becomes inadequate, the particle size distribution becomes wide, the crystallinity of the hydroxide or hydrate after treatment deteriorates, and it is sintered in the subsequent heat treatment step. It will be easier. On the other hand, when the temperature is higher than this temperature, the generated pressure becomes high, so that the apparatus becomes expensive and there is no merit.

水熱処理時間は、1時間から4時間の範囲が好ましい。水熱処理時間が短すぎると、上述した水熱処理温度が低い場合と同様の問題が生じやすくなる。一方、水熱時間が長すぎても特に問題となることはないが、水熱処理の効果が飽和し、製造コストが高くなるだけで、メリットがない。   The hydrothermal treatment time is preferably in the range of 1 hour to 4 hours. When the hydrothermal treatment time is too short, the same problem as when the hydrothermal treatment temperature is low is likely to occur. On the other hand, even if the hydrothermal time is too long, there is no particular problem, but the effect of the hydrothermal treatment is saturated, the production cost is increased, and there is no merit.

最終的に得られる複合酸化物粒子として、粒子サイズ分布の良好なものを得る上で、この水熱処理は有効であるが、水熱処理を省いても本発明の目的とする複合酸化物粒子を得ることができる。水熱処理工程を加えると製造コストが高くなるため、低コストで本発明の複合酸化物粒子を得るには、水熱処理工程を省略することができる。   Although the hydrothermal treatment is effective in obtaining the final composite oxide particles having a good particle size distribution, the composite oxide particles targeted by the present invention can be obtained even if the hydrothermal treatment is omitted. be able to. When the hydrothermal treatment step is added, the production cost increases, and thus the hydrothermal treatment step can be omitted to obtain the composite oxide particles of the present invention at a low cost.

(加熱処理)
上述した処理により得られたセリウム、ジルコニウムおよび珪素からなる水酸化物あるいは水和物粒子は、ろ過、乾燥した後、加熱処理を行うが、ろ過する前に、水洗によりpHを7〜8の付近の中性領域に調整しておくことが好ましい。
(Heat treatment)
The hydroxide or hydrate particles comprising cerium, zirconium and silicon obtained by the above-described treatment are filtered and dried, and then subjected to heat treatment. Before filtration, the pH is around 7-8 by washing with water. It is preferable to adjust to the neutral region.

ろ過、乾燥した水酸化物あるいは水和物は、加熱処理により酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる複合酸化物粒子とすることができる。雰囲気は特に限定されないが、空気中加熱が、最も製造コストがかからないため好ましい。   The filtered or dried hydroxide or hydrate can be made into composite oxide particles comprising cerium oxide, zirconium oxide and silicon oxide by heat treatment. The atmosphere is not particularly limited, but heating in air is preferable because it is the least expensive to manufacture.

加熱処理温度は、400℃から1000℃の範囲が好ましく、500℃から900℃の範囲が特に好ましい。この温度より低いと、上記処理により得られた水酸化物あるいは水和物粒子が、酸化物粒子へ変化しにくく、さらに酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる均一な複合酸化物を形成しにくくなる。一方、高すぎると焼結により粒子サイズが大きくなったり、さらに粒子径分布が広くなる。   The heat treatment temperature is preferably in the range of 400 ° C to 1000 ° C, particularly preferably in the range of 500 ° C to 900 ° C. If the temperature is lower than this, the hydroxide or hydrate particles obtained by the above treatment are difficult to change into oxide particles, and it is difficult to form a uniform composite oxide composed of cerium oxide, zirconium oxide and silicon oxide. Become. On the other hand, if it is too high, the particle size becomes larger due to sintering, and the particle size distribution becomes wider.

この加熱処理により、酸化セリウム−酸化ジルコニウム−酸化珪素からなる複合酸化物粒子の1次粒子が適度に結合した2次粒子を形成する。研磨時には、この2次粒子が1次粒子に解砕することにより被研磨体を研磨しながらキズのない平滑な表面を創生する。   By this heat treatment, secondary particles in which primary particles of composite oxide particles composed of cerium oxide-zirconium oxide-silicon oxide are appropriately bonded are formed. At the time of polishing, the secondary particles are crushed into primary particles to create a smooth surface without scratches while polishing the object to be polished.

このようにして得られた複合酸化物粒子は、平均粒子サイズが2nmから300nmの範囲にあり、酸化セリウムによる化学研磨性と、さらに硬度の異なる3種類の酸化物粒子が含まれていることによって得られる適度な硬度との相乗効果により、精密研磨に適した研磨材となる。   The composite oxide particles obtained in this way have an average particle size in the range of 2 nm to 300 nm, and contain three types of oxide particles having different chemical polishing properties with cerium oxide and different hardness. Due to the synergistic effect with the appropriate hardness obtained, it becomes an abrasive suitable for precision polishing.

〈複合酸化物粒子を用いたスラリー状研磨材の製造法〉
本発明の複合酸化物粒子を用いたスラリー状研磨材は、各種の分散剤を含む液状の媒体(主として水)に前記複合酸化物粒子を分散させることにより製造できる。この場合、複合酸化物粒子の濃度については特に制限はないが、粒子を分散させた分散液として取り扱う上で、通常0.5重量%以上40重量%以下で使用することが好ましい。この粒子の含有量が少ないと、研磨材としての効果が少なく、一方多いと、スラリーの流動性が悪くなり、研磨材としての操作性が悪くなる。
<Method for producing slurry-like abrasive using composite oxide particles>
The slurry-like abrasive using the composite oxide particles of the present invention can be produced by dispersing the composite oxide particles in a liquid medium (mainly water) containing various dispersants. In this case, the concentration of the composite oxide particles is not particularly limited. However, when handled as a dispersion liquid in which the particles are dispersed, it is usually preferable to use 0.5 to 40% by weight. When the content of the particles is small, the effect as an abrasive is small, while when the content is large, the fluidity of the slurry is deteriorated and the operability as the abrasive is deteriorated.

前記分散剤としては、被研磨体の材質により異なるが、例えば、半導体デバイスの研磨用にはナトリウムやカリウムなどの金属イオンや、ハロゲンや硫黄などを含まないものが好ましい。例えば、アクリル酸重合体やそのアンモニウム塩、ポリメタクリル酸やそのアンモニウム塩、ポリビニルアルコール等の水溶性有機高分子類、モノエタノールアミン、ジエタノールアミン等の水溶性アミン類等が好ましい分散剤として使用できる。金属イオンが残留することがそれほど問題にならない用途では、ポリメタリン酸ナトリウムのような無機系の分散剤を使用することもできる。   The dispersant varies depending on the material of the object to be polished. For example, a dispersant that does not contain metal ions such as sodium and potassium, halogen and sulfur is preferable for polishing semiconductor devices. For example, acrylic acid polymers and ammonium salts thereof, polymethacrylic acid and ammonium salts thereof, water-soluble organic polymers such as polyvinyl alcohol, water-soluble amines such as monoethanolamine and diethanolamine, and the like can be used as preferable dispersants. In applications where residual metal ions do not matter so much, an inorganic dispersant such as sodium polymetaphosphate can also be used.

本発明の研磨用複合酸化物粒子(研磨剤粒子)を分散させるにあたっては、水あるいは、水に上記の分散剤を添加した溶媒に、本発明の複合酸化物粒子を加えて、攪拌するだけでもスラリーとすることができるが、ホモミキサーや超音波分散機等を用いて分散すると、複合酸化物粒子が溶媒中により均一に分散したスラリー状研磨材とすることができる。精密研磨用のスラリー状研磨材としては、分散工程においてできる限り不純物の混入を避ける必要があることから、ミルタイプの分散機よりも、上記のような分散方法が好ましい。   In dispersing the composite oxide particles for polishing (abrasive particles) of the present invention, the composite oxide particles of the present invention are simply added to water or a solvent obtained by adding the above-mentioned dispersant to water and stirred. Although it can be made into a slurry, when it is dispersed using a homomixer, an ultrasonic disperser or the like, a slurry-like abrasive in which the composite oxide particles are dispersed more uniformly in the solvent can be obtained. As the slurry-like abrasive for precision polishing, the dispersion method as described above is preferable to the mill-type disperser because it is necessary to avoid contamination of impurities as much as possible in the dispersion step.

〈複合酸化物粒子の作製〉
800mlの水に0.75モルの水酸化ナトリウムを溶解してアルカリ水溶液を調整した。また、このアルカリ水溶液とは別に、350mlの水に0.063モルの塩化セリウム(III)七水和物と0.018モルの塩化ジルコニウム(III)七水和物とを溶解して塩化セリウム−塩化ジルコニウム混合水溶液を調整するとともに、50mlの水に0.012モルの珪酸ナトリウムを溶解して珪酸ナトリウム水溶液を調整した。
<Preparation of composite oxide particles>
An aqueous alkali solution was prepared by dissolving 0.75 mol of sodium hydroxide in 800 ml of water. Separately from this alkaline aqueous solution, 0.063 mol of cerium (III) chloride heptahydrate and 0.018 mol of zirconium (III) chloride heptahydrate were dissolved in 350 ml of water to prepare cerium chloride- While preparing the zirconium chloride mixed aqueous solution, 0.012 mol of sodium silicate was dissolved in 50 ml of water to prepare a sodium silicate aqueous solution.

前記アルカリ水溶液に、まず前記塩化セリウム−塩化ジルコニウム混合水溶液を滴下して、水酸化セリウムと水酸化ジルコニウムを含む沈殿物を作製した。このときのpHは10.8であった。約1時間攪拌した後、塩酸水溶液によりpHを8.5に調整し、さらに前記珪酸ナトリウム水溶液を滴下して、水酸化セリウムと水酸化ジルコニウムおよび珪酸からなる沈殿物を作製した。さらに、この沈殿物を含む懸濁液を室温で20時間熟成させ、その上澄み液を除去した後、この沈殿物(上澄み液除去後に残った沈殿物)を、オートクレーブに仕込み、200℃で2時間、水熱処理を施した。   First, the cerium chloride-zirconium chloride mixed aqueous solution was dropped into the alkaline aqueous solution to prepare a precipitate containing cerium hydroxide and zirconium hydroxide. The pH at this time was 10.8. After stirring for about 1 hour, the pH was adjusted to 8.5 with an aqueous hydrochloric acid solution, and the aqueous sodium silicate solution was further added dropwise to prepare a precipitate composed of cerium hydroxide, zirconium hydroxide and silicic acid. Further, the suspension containing the precipitate was aged at room temperature for 20 hours, and the supernatant was removed. Then, the precipitate (the precipitate remaining after removing the supernatant) was charged into an autoclave, and the suspension was stirred at 200 ° C. for 2 hours. Hydrothermal treatment was performed.

上記水熱処理により得られた生成物を、pHが8以下になるまで水洗した後、ろ過し、90℃で空気中乾燥した。さらに乳鉢で軽く解砕し、空気中800℃で2時間の加熱処理を行って酸化セリウム−酸化ジルコニウム−酸化珪素からなる複合酸化物粒子を得た。   The product obtained by the hydrothermal treatment was washed with water until the pH was 8 or less, filtered, and dried in air at 90 ° C. Further, the mixture was lightly crushed in a mortar and heat-treated in air at 800 ° C. for 2 hours to obtain composite oxide particles composed of cerium oxide-zirconium oxide-silicon oxide.

この複合酸化物粒子について、X線回折スペクトルを測定したところ、回折ピークは若干ブロードではあるが、CaF2 (フッ化カルシウム;蛍石)構造に対応するスペクトルが観測され、酸化セリウム、酸化ジルコニウムおよび酸化珪素が均一に置換された複合酸化物粒子が得られていることを確認した。さらに、透過電子顕微鏡で形状観察を行ったところ、2次粒子のサイズが100〜150nmの粒子であることがわかった。 When the X-ray diffraction spectrum of this composite oxide particle was measured, the diffraction peak was slightly broad, but a spectrum corresponding to the CaF 2 (calcium fluoride; fluorite) structure was observed, and cerium oxide, zirconium oxide and It was confirmed that composite oxide particles in which silicon oxide was uniformly substituted were obtained. Furthermore, when shape observation was performed with the transmission electron microscope, it turned out that the size of a secondary particle is a particle | grain of 100-150 nm.

〈スラリー状研磨材の作製〉
純水300mlに、上記の方法で作製した酸化セリウム−酸化ジルコニウム−酸化珪素複合酸化物粒子を30g添加し、ホモミキサーを用いて、回転数3000rpmで1時間分散させ、スラリー(スラリー状研磨材)を得た。得られたスラリーは1時間程度放置しても沈殿物は生じないが、1日放置すると、沈殿物が生成した。しかし、この分散液を再攪拌すると、元の安定な分散液となった。
<Preparation of slurry-like abrasive>
30 g of the cerium oxide-zirconium oxide-silicon oxide composite oxide particles prepared by the above method are added to 300 ml of pure water, and dispersed using a homomixer for 1 hour at a rotational speed of 3000 rpm, and slurry (slurry abrasive) Got. The obtained slurry did not produce a precipitate when left for about 1 hour, but a precipitate was formed when left for 1 day. However, when this dispersion was re-stirred, it became the original stable dispersion.

内容積300mlのボールミルポットに、実施例1において得られた複合酸化物粒子100gと、水200mlとを入れ、直径5mmのジルコニアビーズを使って1時間ボールミル分散した。   100 g of the composite oxide particles obtained in Example 1 and 200 ml of water were placed in a ball mill pot having an internal volume of 300 ml, and dispersed in a ball mill for 1 hour using zirconia beads having a diameter of 5 mm.

ボールミル分散後の複合酸化物粒子についてX線回折スペクトルを測定したところ、実施例1と同じくCaF2 構造に対応するスペクトルが観測され、また透過電子顕微鏡で形状観察を行ったところ、ほぼ1次粒子にまで解砕された平均粒子サイズが約10nmの粒子になっていることがわかった。さらに実施例1と同様の方法でスラリー状研磨材を作製した。このスラリーは極めて安定で、1日放置した後も、ほとんど沈殿物は生成しなかった。 When the X-ray diffraction spectrum was measured for the composite oxide particles after the ball mill dispersion, the spectrum corresponding to the CaF 2 structure was observed as in Example 1, and the shape was observed with a transmission electron microscope. It was found that the average particle size was crushed to a particle size of about 10 nm. Further, a slurry-like abrasive was produced in the same manner as in Example 1. This slurry was extremely stable, and almost no precipitate was formed after standing for 1 day.

実施例1における複合酸化物粒子の作製方法において、塩化セリウム、塩化ジルコニウムおよび珪酸ナトリウムの添加量として、塩化セリウムを0.063モルから0.050モルに、塩化ジルコニウムを0.018モルから0.035モルに、珪酸ナトリウムを0.012モルから0.018モルに変更した以外は、実施例1と同様にして水酸化セリウムと水酸化ジルコニウムおよび珪酸からなる沈殿物を作製し、さらに実施例1と同条件で加熱処理を行って酸化セリウム−酸化ジルコニウム−酸化珪素からなる複合酸化物粒子を作製した。   In the method for producing composite oxide particles in Example 1, cerium chloride, zirconium chloride, and sodium silicate were added in amounts of cerium chloride from 0.063 mol to 0.050 mol and zirconium chloride from 0.018 mol to 0.005 mol. A precipitate consisting of cerium hydroxide, zirconium hydroxide and silicic acid was prepared in the same manner as in Example 1 except that sodium silicate was changed from 0.012 mol to 0.018 mol in 035 mol. Were subjected to heat treatment under the same conditions as above to produce composite oxide particles composed of cerium oxide-zirconium oxide-silicon oxide.

得られた複合酸化物粒子について、X線回折スペクトルを測定したところ、CaF2 構造に対応するスペクトルが観測され、酸化セリウム、酸化ジルコニウムおよび酸化珪素が均一に置換された複合酸化物粒子が得られていることを確認した。さらに、透過電子顕微鏡で形状観察を行ったところ、2次粒子サイズが70〜100nmの粒子であることがわかった。さらに実施例1と同様にしてスラリー状研磨材を作製した。 When the X-ray diffraction spectrum of the obtained composite oxide particles was measured, a spectrum corresponding to the CaF 2 structure was observed, and composite oxide particles in which cerium oxide, zirconium oxide and silicon oxide were uniformly substituted were obtained. Confirmed that. Furthermore, when shape observation was performed with the transmission electron microscope, it turned out that it is a particle | grain with a secondary particle size of 70-100 nm. Further, a slurry-like abrasive was produced in the same manner as in Example 1.

実施例1における複合酸化物粒子の作製において、水熱処理工程を省いた以外は、実施例1と同様にして複合酸化物粒子を作製し、さらにスラリー状研磨材を作製した。   In the production of the composite oxide particles in Example 1, composite oxide particles were produced in the same manner as in Example 1 except that the hydrothermal treatment step was omitted, and further a slurry-like abrasive was produced.

得られた複合酸化物粒子について、X線回折スペクトルを測定したところ、CaF2 構造に対応するスペクトルが観測され、酸化セリウム、酸化ジルコニウムおよび酸化珪素が均一に置換された複合酸化物粒子が得られていることを確認した。さらに、透過電子顕微鏡で形状観察を行ったところ、2次粒子サイズが150〜200nmの粒子であることがわかった。 When the X-ray diffraction spectrum of the obtained composite oxide particles was measured, a spectrum corresponding to the CaF 2 structure was observed, and composite oxide particles in which cerium oxide, zirconium oxide and silicon oxide were uniformly substituted were obtained. Confirmed that. Furthermore, when shape observation was performed with the transmission electron microscope, it turned out that it is a particle | grain with a secondary particle size of 150-200 nm.

[比較例1]
実施例1において、塩化セリウムの添加量を0.063モルから0.074モルに変更し、塩化ジルコニウムおよび珪酸ナトリウムを添加することなく、塩化セリウムのみを用いて酸化セリウム粒子を作製した。
[Comparative Example 1]
In Example 1, the addition amount of cerium chloride was changed from 0.063 mol to 0.074 mol, and cerium oxide particles were produced using only cerium chloride without adding zirconium chloride and sodium silicate.

アルカリ水溶液に塩化セリウムの水溶液を滴下して、水酸化セリウムの沈殿物を作製した。このときのpHは10.6であった。この懸濁液を室温で20時間熟成させたのち、オートクレーブに仕込み、実施例1と同様に200℃で2時間、水熱処理を施した。さらに実施例1と同様に、水洗、ろ過、乾燥後、空気中800℃で2時間の加熱処理を行って酸化セリウム粒子を作製した。   An aqueous solution of cerium chloride was dropped into the alkaline aqueous solution to prepare a cerium hydroxide precipitate. The pH at this time was 10.6. This suspension was aged at room temperature for 20 hours, then charged in an autoclave and subjected to hydrothermal treatment at 200 ° C. for 2 hours in the same manner as in Example 1. Further, in the same manner as in Example 1, cerium oxide particles were produced by washing with water, filtering and drying, followed by heat treatment in air at 800 ° C. for 2 hours.

この酸化セリウム粒子について、X線回折スペクトルを測定したところ、CaF2 構造に対応するスペクトルが観測され、さらに、透過電子顕微鏡で形状観察を行ったところ、2次粒子が120〜150nmの粒子であることがわかった。 When the X-ray diffraction spectrum of this cerium oxide particle was measured, a spectrum corresponding to the CaF 2 structure was observed, and when the shape was observed with a transmission electron microscope, the secondary particles were 120 to 150 nm particles. I understood it.

この酸化セリウム粒子を用いて、実施例1と同様にして、スラリー状研磨材を作製した。   Using the cerium oxide particles, a slurry-like abrasive was produced in the same manner as in Example 1.

[比較例2]
実施例1において、塩化セリウムの添加量は0.063モルのまま、塩化ジルコニウムの添加量を0.009モルから0.011モルに変更した以外は、実施例1と同様の方法で、沈殿物を作製した後、オートクレーブに仕込み、200℃で2時間、水熱処理を施した。その後、実施例1と同様の方法で、水洗、ろ過、乾燥後、空気中800℃で2時間の加熱処理を行って酸化セリウム−酸化ジルコニウム複合酸化物粒子を作製した。
[Comparative Example 2]
In Example 1, the amount of cerium chloride was kept at 0.063 mol, and the amount of zirconium chloride was changed from 0.009 mol to 0.011 mol. After being prepared, it was charged into an autoclave and hydrothermally treated at 200 ° C. for 2 hours. Thereafter, in the same manner as in Example 1, after washing, filtering, and drying, heat treatment was performed in air at 800 ° C. for 2 hours to prepare cerium oxide-zirconium oxide composite oxide particles.

得られた複合酸化物粒子について、X線回折スペクトルを測定したところ、CaF2 構造に対応するスペクトルが観測され、また透過電子顕微鏡で形状観察を行ったところ、2次粒子が100〜150nmの粒子であることがわかった。 When the X-ray diffraction spectrum of the obtained composite oxide particles was measured, a spectrum corresponding to the CaF 2 structure was observed, and when the shape was observed with a transmission electron microscope, the secondary particles were particles of 100 to 150 nm. I found out that

この酸化セリウム−酸化ジルコニウム複合酸化物粒子を用いて、実施例1と同様にして、スラリー状研磨材を作製した。   Using the cerium oxide-zirconium oxide composite oxide particles, a slurry-like abrasive was produced in the same manner as in Example 1.

〔評価〕
研磨性評価にはムサシ電子社製の試料研磨機MA−200を使用し、被研磨体としてガラス板の研磨性を調べた。研磨定盤上にウレタン樹脂製の多孔質研磨パッドを貼り付け、このパッド上に直径3.5インチのガラス板を載せた。さらに、このガラス板の上から約1kgの重しを載せて、定盤を回転させながら、同時にガラス板を回転させ、実施例および比較例で作製したスラリー状研磨材を10ml/分の速度で定盤上に滴下しながら、ガラス板を研磨した。
[Evaluation]
For polishing evaluation, a sample polishing machine MA-200 manufactured by Musashi Electronics Co., Ltd. was used, and the polishing performance of the glass plate as the object to be polished was examined. A porous polishing pad made of urethane resin was stuck on the polishing surface plate, and a glass plate having a diameter of 3.5 inches was placed on this pad. Further, a weight of about 1 kg was placed on the glass plate, and while rotating the platen, the glass plate was rotated at the same time, and the slurry-like abrasives produced in Examples and Comparative Examples were fed at a rate of 10 ml / min. The glass plate was polished while dripping on the surface plate.

研磨効率は、1時間研磨後のガラス板の重量減少量から評価した。すなわち、研磨前および研磨後のガラス板の重量をそれぞれMbおよびMaとし、これらの測定値を〔(Mb−Ma)/Mb〕×100に代入して求めた。この値が大きいほど研磨効率が優れていることを示す。また、研磨後のガラス板の表面平滑性を評価するために、研磨後のガラス板表面のRaをZYGO製の表面粗さ計(NewView5000)を測定するとともに、表面の研磨キズの有無を光学顕微鏡(倍率:200倍)により調べた。   The polishing efficiency was evaluated from the weight reduction amount of the glass plate after polishing for 1 hour. That is, the weight of the glass plate before and after polishing was set to Mb and Ma, respectively, and these measured values were determined by substituting [(Mb−Ma) / Mb] × 100. It shows that polishing efficiency is excellent, so that this value is large. In addition, in order to evaluate the surface smoothness of the polished glass plate, the surface roughness meter (NewView 5000) made by ZYGO was measured for Ra on the polished glass plate surface, and the presence or absence of polishing scratches on the surface was measured with an optical microscope. (Magnification: 200 times).

表1に、以上の結果をまとめて示す。   Table 1 summarizes the above results.

Figure 2007061989
Figure 2007061989

表1から、本発明各実施例のスラリー状研磨材は、いずれも研磨効率が高く、かつ被研磨体の表面平滑性も良好であることがわかる。一方、酸化セリウムのみを用いた比較例1のスラリー状研磨材は、表面平滑性は良好であるが、研磨効率が本発明のいずれの実施例のものに比べても劣る。これは、比較例1のスラリー状研磨材は酸化セリウムの化学的研磨作用による研磨性はあるものの、酸化セリウムそのものの硬度が不足しているため、十分な研磨効率が得られなかったからであると考えられる。   From Table 1, it can be seen that each of the slurry-like abrasives of the examples of the present invention has high polishing efficiency and good surface smoothness of the object to be polished. On the other hand, the slurry-like abrasive of Comparative Example 1 using only cerium oxide has good surface smoothness, but the polishing efficiency is inferior to that of any of the examples of the present invention. This is because the slurry-like abrasive of Comparative Example 1 has a polishing property due to the chemical polishing action of cerium oxide, but the hardness of cerium oxide itself is insufficient, so that sufficient polishing efficiency could not be obtained. Conceivable.

酸化セリウムと酸化ジルコニウム複合酸化物を用いた比較例2のスラリー状研磨材では、比較的高い研磨効率は得られるが、表面平滑性に劣る。これは、硬度の高い酸化ジルコニウムとの複合酸化物としているため、研磨効率は高い反面、表面創生能力に劣るためと考えられる。また、本発明各実施例に係るスラリー状研磨材を用いたものは、いずれも研磨後の被研磨体表面にキズは見られなかったのに対し、比較例2に係るスラリー状研磨材を用いたものでは若干研磨キズが発生していることが認められた。   In the slurry-like abrasive of Comparative Example 2 using cerium oxide and zirconium oxide composite oxide, a relatively high polishing efficiency is obtained, but the surface smoothness is inferior. This is considered to be because the composite oxide with zirconium oxide having high hardness is high, and the polishing efficiency is high, but the surface creation ability is inferior. In addition, in all of the examples using the slurry-like abrasive according to each embodiment of the present invention, no scratch was found on the surface of the polished object after polishing, whereas the slurry-like abrasive according to Comparative Example 2 was used. It was confirmed that some scratches were generated in the samples.

本発明の研磨用複合酸化物粒子は、平均粒子サイズを2nm以上300nm以下とし、かつ酸化セリウム、酸化ジルコニウムおよび酸化珪素からなる複合酸化物で構成したものである。このように、化学的研磨作用の大きい酸化セリウムを主構成物質とし、さらに硬度の異なる酸化ジルコニウムと酸化珪素とを共に含有する複合酸化物とすることにより、酸化セリウムの有する化学研磨性を維持したまま、適度な硬度を付与することに成功したものである。   The composite oxide particles for polishing of the present invention are composed of composite oxides having an average particle size of 2 nm to 300 nm and comprising cerium oxide, zirconium oxide and silicon oxide. Thus, the chemical polishing property of cerium oxide was maintained by using cerium oxide having a large chemical polishing action as a main constituent material and a composite oxide containing both zirconium oxide and silicon oxide having different hardnesses. As it is, it has succeeded in imparting an appropriate hardness.

Claims (5)

酸化セリウム、酸化ジルコニウムおよび酸化珪素からなり、平均粒子サイズが2nm以上300nm以下である研磨用複合酸化物粒子。   Polishing composite oxide particles comprising cerium oxide, zirconium oxide and silicon oxide and having an average particle size of 2 nm to 300 nm. 酸化セリウム、酸化ジルコニウムおよび酸化珪素の含有量が、それぞれ50〜93重量%、5〜48重量%および2〜45重量%の範囲にある請求項1記載の研磨用複合酸化物粒子。   The composite oxide particles for polishing according to claim 1, wherein the contents of cerium oxide, zirconium oxide and silicon oxide are in the range of 50 to 93% by weight, 5 to 48% by weight and 2 to 45% by weight, respectively. 請求項1または2記載の研磨用複合酸化物粒子を液状の媒体に分散させたスラリー状研磨材。   A slurry-like abrasive in which the composite oxide particles for polishing according to claim 1 or 2 are dispersed in a liquid medium. 媒体が水である請求項3記載のスラリー状研磨材。   The slurry-like abrasive according to claim 3, wherein the medium is water. 媒体中に研磨用複合酸化物粒子を分散させるための分散剤が添加されている、請求項3または4記載のスラリー状研磨材。   The slurry-like abrasive according to claim 3 or 4, wherein a dispersant for dispersing the abrasive composite oxide particles is added to the medium.
JP2005254507A 2005-09-02 2005-09-02 Polishing composite-oxide particle and slurry abrasive Withdrawn JP2007061989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254507A JP2007061989A (en) 2005-09-02 2005-09-02 Polishing composite-oxide particle and slurry abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254507A JP2007061989A (en) 2005-09-02 2005-09-02 Polishing composite-oxide particle and slurry abrasive

Publications (1)

Publication Number Publication Date
JP2007061989A true JP2007061989A (en) 2007-03-15

Family

ID=37924781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254507A Withdrawn JP2007061989A (en) 2005-09-02 2005-09-02 Polishing composite-oxide particle and slurry abrasive

Country Status (1)

Country Link
JP (1) JP2007061989A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218555A (en) * 2008-02-14 2009-09-24 Hitachi Chem Co Ltd Cmp polishing solution and polishing method
JP2014167079A (en) * 2013-02-28 2014-09-11 Japan Fine Ceramics Center Polishing material
JP2017214271A (en) * 2016-04-22 2017-12-07 日揮触媒化成株式会社 Silica-based composite fine particle fluid dispersion, production method therefor and abrasive grain fluid dispersion including silica-based composite fine particle fluid dispersion
CN107553341A (en) * 2016-06-30 2018-01-09 北京远东恒嘉新材料有限公司 The Efficient utilization method of abrasive
WO2018221304A1 (en) * 2017-06-01 2018-12-06 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particles, and polishing agent including same
US10844259B2 (en) 2016-04-22 2020-11-24 Jgc Catalysts And Chemicals Ltd. Silica-based composite fine particle dispersion and method for manufacturing same
US11161751B2 (en) 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009218555A (en) * 2008-02-14 2009-09-24 Hitachi Chem Co Ltd Cmp polishing solution and polishing method
JP2014167079A (en) * 2013-02-28 2014-09-11 Japan Fine Ceramics Center Polishing material
JP2017214271A (en) * 2016-04-22 2017-12-07 日揮触媒化成株式会社 Silica-based composite fine particle fluid dispersion, production method therefor and abrasive grain fluid dispersion including silica-based composite fine particle fluid dispersion
US10844259B2 (en) 2016-04-22 2020-11-24 Jgc Catalysts And Chemicals Ltd. Silica-based composite fine particle dispersion and method for manufacturing same
CN107553341A (en) * 2016-06-30 2018-01-09 北京远东恒嘉新材料有限公司 The Efficient utilization method of abrasive
WO2018221304A1 (en) * 2017-06-01 2018-12-06 日揮触媒化成株式会社 Nanobubble-containing inorganic oxide fine particles, and polishing agent including same
US11505717B2 (en) 2017-06-01 2022-11-22 Jgc Catalysts And Chemicals Ltd. Nanobubble-containing inorganic oxide fine particle and abrasive containing same
US11161751B2 (en) 2017-11-15 2021-11-02 Saint-Gobain Ceramics & Plastics, Inc. Composition for conducting material removal operations and method for forming same

Similar Documents

Publication Publication Date Title
JP3457144B2 (en) Polishing composition
WO1999031195A1 (en) Abrasive, method of polishing wafer, and method of producing semiconductor device
JP5495508B2 (en) Abrasive particle dispersion and method for producing the same
JP2009051726A (en) Manufacturing method of cerium oxide, cerium oxide abrasive, grinding method of substrate therewith, and manufacturing method of semiconductor device
JP2003502255A (en) Improved ceria powder
JP2007036270A (en) Cerium oxide abrasive, and method of polishing substrate
JP2007061989A (en) Polishing composite-oxide particle and slurry abrasive
JP2008273780A (en) Modified silica-based sol and method for preparing the same
JP6358899B2 (en) Metal oxide particles and method for producing the same
JP2012011526A (en) Abrasive and manufacturing method thereof
JP5615529B2 (en) Inorganic oxide fine particle dispersion, polishing particle dispersion, and polishing composition
JP4178222B2 (en) Abrasive
JP2002338951A (en) Hydrothermally treated colloidal silica for polishing agent
JP5396047B2 (en) Abrasive slurry for glass
JP4955253B2 (en) Polishing composition for polishing device wafer edge, method for producing the same, and polishing method
JP4356636B2 (en) Cerium oxide manufacturing method, cerium oxide abrasive, substrate polishing method using the same, and semiconductor device manufacturing method
JP2010030041A (en) Cerium oxide abrasive and method of polishing substrate
JP4776387B2 (en) Cerium oxide abrasive and substrate polishing method
KR20070065509A (en) Method for preparing cerium oxide for high-accurate polishing
JP2005120180A (en) Polishing agent composition for siliceous material and polishing method using the same
JP2006116617A (en) Stationary abrasive grain grinding and polishing tool, manufacturing method thereof, and polishing method for body to be polished using the stationary abrasive grain grinding and polishing tool
KR100679460B1 (en) Cerium oxide and sheet-shaped mica complex abrasive material and method for manufacturing the same
JP4776388B2 (en) Cerium oxide abrasive and substrate polishing method
JP2004289170A (en) Cerium oxide polishing agent and method of polishing substrate
JP4445820B2 (en) Cerium oxide abrasive and substrate polishing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070709

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104