JP5259933B2 - Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive - Google Patents
Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive Download PDFInfo
- Publication number
- JP5259933B2 JP5259933B2 JP2006187113A JP2006187113A JP5259933B2 JP 5259933 B2 JP5259933 B2 JP 5259933B2 JP 2006187113 A JP2006187113 A JP 2006187113A JP 2006187113 A JP2006187113 A JP 2006187113A JP 5259933 B2 JP5259933 B2 JP 5259933B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- cerium
- carbonate
- raw material
- based abrasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052684 Cerium Inorganic materials 0.000 title claims description 101
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 title claims description 100
- 239000002994 raw material Substances 0.000 title claims description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 171
- -1 rare earth carbonate Chemical class 0.000 claims description 138
- 238000005498 polishing Methods 0.000 claims description 64
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 21
- 239000000463 material Substances 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 11
- 238000000634 powder X-ray diffraction Methods 0.000 claims description 5
- 229910000420 cerium oxide Inorganic materials 0.000 claims description 4
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims description 4
- 238000005070 sampling Methods 0.000 claims description 4
- 150000002910 rare earth metals Chemical class 0.000 description 27
- 238000001354 calcination Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 239000003082 abrasive agent Substances 0.000 description 18
- 239000011521 glass Substances 0.000 description 18
- 238000011282 treatment Methods 0.000 description 15
- 238000002441 X-ray diffraction Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 12
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 10
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 10
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 10
- 239000001099 ammonium carbonate Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000007654 immersion Methods 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 7
- 238000010298 pulverizing process Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910052779 Neodymium Inorganic materials 0.000 description 4
- 229910052746 lanthanum Inorganic materials 0.000 description 4
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 description 3
- ITOJEBDYSWRTML-UHFFFAOYSA-N carbon tetroxide Chemical compound O=C1OOO1 ITOJEBDYSWRTML-UHFFFAOYSA-N 0.000 description 3
- JYYOBHFYCIDXHH-UHFFFAOYSA-N carbonic acid;hydrate Chemical compound O.OC(O)=O JYYOBHFYCIDXHH-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- 150000000703 Cerium Chemical class 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- XHUUWBOPPIDIBL-UHFFFAOYSA-H cerium(3+) tricarbonate octahydrate Chemical compound O.O.O.O.O.O.O.O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O XHUUWBOPPIDIBL-UHFFFAOYSA-H 0.000 description 2
- SBLDRQWVOSCPAD-UHFFFAOYSA-K cerium(3+);carbonate;hydroxide Chemical compound [OH-].[Ce+3].[O-]C([O-])=O SBLDRQWVOSCPAD-UHFFFAOYSA-K 0.000 description 2
- KHSBAWXKALEJFR-UHFFFAOYSA-H cerium(3+);tricarbonate;hydrate Chemical compound O.[Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O KHSBAWXKALEJFR-UHFFFAOYSA-H 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000010333 wet classification Methods 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Description
本発明は、セリウム系研摩材用原料、セリウム系研摩材に関する。詳しくは、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩、及び希土類炭酸塩又は希土類酸化物を含有し、セリウムを主成分とするセリウム系研摩材用原料及びそれより得られるセリウム系研摩材に関する。 The present invention relates to a cerium-based abrasive material and a cerium-based abrasive material. Specifically, the present invention relates to a raw material for a cerium-based abrasive containing a rare earth monooxycarbonate or rare earth hydroxide carbonate, and a rare earth carbonate or rare earth oxide, and containing cerium as a main component, and a cerium-based abrasive obtained therefrom.
セリウム系研摩材は、ハードディスク用ガラス基板、液晶又はプラズマディスプレイ用ガラス基板、CRT用ガラス等のガラス、水晶、半導体等の研摩に用いられ、特に、ガラスや水晶の研摩に好適なものである。 The cerium-based abrasive is used for polishing glass such as a glass substrate for hard disk, a glass substrate for liquid crystal or plasma display, and glass for CRT, crystal, semiconductor, etc., and is particularly suitable for polishing glass or crystal.
従来より、このセリウム系研摩材の製造方法として、セリウム系希土類炭酸塩を水溶液中に浸漬させた状態で加熱することによって粉砕する工程を有するものが知られている。この先行技術には、浸漬加熱処理により炭酸塩がモノオキシ炭酸塩になることが記載されている(特許文献1参照)。 Conventionally, as a method for producing this cerium-based abrasive, one having a step of pulverizing by heating a cerium-based rare earth carbonate immersed in an aqueous solution is known. This prior art describes that a carbonate is converted to a monooxy carbonate by immersion heat treatment (see Patent Document 1).
また、セリウム系研摩材の原料としては、セリウム系希土類炭酸塩およびセリウム系希土類酸化物を主成分として含み、1000℃で1時間加熱した場合の強熱減量が乾燥重量基準で0.5〜25%であることを特徴とするものが知られている(特許文献2参照)。さらに、セリウム塩をはじめとする希土類塩と希土類塩との反応における化学理論量の3倍以上の炭酸水素アンモニウムを水に混ぜて加熱して、沈殿生成した希土類水酸化炭酸塩を焼成するセリウム系研摩材の製造方法が知られている(特許文献3参照)。 The raw material for the cerium-based abrasive contains cerium-based rare earth carbonate and cerium-based rare earth oxide as main components, and the ignition loss when heated at 1000 ° C. for 1 hour is 0.5 to 25 on a dry weight basis. % Is known (see Patent Document 2). Furthermore, a cerium-based calcination is produced by mixing ammonium hydrogen carbonate, which is more than three times the theoretical amount in the reaction of rare earth salts such as cerium salts, with rare earth salts, and then heating the mixture to heat the precipitated rare earth hydroxide carbonate. A method for producing an abrasive is known (see Patent Document 3).
ところで、特許文献1に記載された浸漬加熱処理により得られたモノオキシ炭酸塩からなる原料、特許文献2に記載された炭酸塩及び酸化物を含有する強熱減量が調整された原料、或いは、特許文献3に記載された希土類水酸化炭酸塩からなる原料では、セリウム系研摩材の製造に使用すると、研摩速度が大きく、研摩傷発生の少ない優れた研摩材を製造することができる。しかし、これら先行技術の原料から製造されたセリウム系研摩材は、最近のハードディスク用等のガラス基板の研摩、即ち、非常に高精度な表面精度が要求される研摩用途においては、十分満足すべき研摩が行えなかった。 By the way, the raw material which consists of the monooxy carbonate obtained by the immersion heat processing described in patent document 1, the raw material which adjusted the ignition loss containing the carbonate and oxide described in patent document 2, or patent When the raw material composed of the rare earth hydroxide carbonate described in Document 3 is used for the production of a cerium-based abrasive, it can produce an excellent abrasive with a high polishing speed and less generation of scratches. However, cerium-based abrasives manufactured from these prior art raw materials should be sufficiently satisfactory in recent polishing of glass substrates for hard disks, that is, in polishing applications that require extremely high surface accuracy. I could not polish.
そこで、本発明は、表面精度に優れた研摩面が得られると共に研摩速度が大きなセリウム系研摩材を製造するために好適なセリウム系研摩材用の原料を提供するものである。また、本発明は、その原料を用いたセリウム系研摩材の製造方法を提供し、非常に高精度の研摩面を実現できると共に研摩速度が大きなセリウム系研摩材を提供することを目的とする。 Therefore, the present invention provides a raw material for a cerium-based abrasive suitable for producing a cerium-based abrasive that provides a polished surface with excellent surface accuracy and has a high polishing speed. Another object of the present invention is to provide a method for producing a cerium-based abrasive using the raw material, and to provide a cerium-based abrasive that can realize a highly accurate polished surface and has a high polishing speed.
上記課題を解決すべく、本発明に係るセリウム系研摩材用原料は、希土類炭酸塩又は希土類酸化物の少なくとも一方、及び希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方を含有し、希土類元素としてはセリウムを主成分とするものとした。このような原料をセリウム系研摩材の製造に使用すると、焙焼時に焼結が均一かつ適度に起こり、研摩に使用したとき、研摩速度が大きく、精度のよい研摩面が得られる研摩材を製造できる。 In order to solve the above problems, a raw material for a cerium-based abrasive according to the present invention contains at least one of a rare earth carbonate or a rare earth oxide, and at least one of a rare earth monooxy carbonate or a rare earth hydroxide carbonate, and a rare earth element. As the main component, cerium was used as the main component. When such raw materials are used for the production of cerium-based abrasives, sintering occurs uniformly and moderately during roasting, and when used for polishing, an abrasive that produces a polished surface with high polishing speed and high accuracy is manufactured. it can.
本発明に係るセリウム系研摩材用原料では、希土類元素としてはセリウムを主成分とする必要がある。主成分という意味は、原料を酸化物に換算した含有量のうち、希土類元素の中ではセリウムが最も多いこと、すなわち全希土酸化物換算量中では酸化セリウム含有量が最も多いことを示す。そして、原料における全希土酸化物換算量中の酸化セリウム含有量(CeO2/TREO)は、40質量%以上が好ましく、50質量%以上がより好ましい。このような原料であると、研摩速度が大きく、長寿命のセリウム系研摩材を製造できるからである。 In the cerium-based abrasive raw material according to the present invention, the rare earth element needs to contain cerium as a main component. The meaning of the main component indicates that the cerium content is the largest among the rare earth elements among the content of the raw material converted into an oxide, that is, the cerium oxide content is the highest among all the rare earth oxide equivalents. The cerium oxide content in the total rare earth oxide equivalent weight in the raw material (CeO 2 / TREO) is preferably at least 40 mass%, more preferably at least 50 wt%. This is because such a raw material has a high polishing rate and can produce a long-life cerium-based abrasive.
そして、本発明のセリウム系研摩材では、管電圧40kV、管電流150mA、スキャン速度4°/分、サンプリング幅0.02°の条件にて、CuKα1線を用いた粉末X線回折測定を、2θ=5〜40°を含む範囲について測定したとき、2θが10.4±1.0°の範囲に出現する最大ピーク(a1)と28.3±0.7°の範囲に出現する最大ピーク(a2)のうち、大きい方のピーク(a)のピーク強度(A)と、2θが15.9±1.0°の範囲に出現する最大ピーク(b1)と17.8±0.5°の範囲に出現する最大ピーク(b2)のうち、大きい方のピーク(b)のピーク強度(B)と、から得られる比(B/A)が0.01〜2.0であることが好ましい。このピーク強度比(B/A)が0.01未満であると、このような原料から製造されたセリウム系研摩材により研摩を行うと研摩傷が発生しやすくなる。また、2.0を超えると、このような原料から製造されたセリウム系研摩材では研摩速度が低くなる。そして、このピーク強度比(B/A)が0.02〜1.7であるのがより好ましく、0.05〜1.5であることがさらに好ましい。 In the cerium-based abrasive of the present invention, powder X-ray diffraction measurement using a CuKα1 line was performed on 2θ under the conditions of a tube voltage of 40 kV, a tube current of 150 mA, a scan speed of 4 ° / min, and a sampling width of 0.02 °. When measured for a range including 5 to 40 °, the maximum peak (a1) that appears in the range of 2θ of 10.4 ± 1.0 ° and the maximum peak that appears in the range of 28.3 ± 0.7 ° ( Among the a2), the peak intensity (A) of the larger peak (a), the maximum peak (b1) appearing in the range of 25.9 ± 1.0 °, and 17.8 ± 0.5 ° It is preferable that the ratio (B / A) obtained from the peak intensity (B) of the larger peak (b) out of the maximum peak (b2) appearing in the range is 0.01 to 2.0. When the peak intensity ratio (B / A) is less than 0.01, polishing flaws are likely to occur when polishing is performed with a cerium-based abrasive produced from such a raw material. On the other hand, if it exceeds 2.0, the polishing rate of a cerium-based abrasive produced from such a raw material becomes low. And it is more preferable that this peak intensity ratio (B / A) is 0.02-1.7, and it is further more preferable that it is 0.05-1.5.
本発明における粉末X線回折測定については、Cu−Kα1 線を用い、管電圧40kV、管電流150mA、スキャン速度4°/分、サンプリング幅0.02°、スキャン範囲2θ=5〜40°を含む範囲、例えば5〜80°とする。 For the powder X-ray diffraction measurement in the present invention, Cu-Kα1 ray is used, tube voltage 40 kV, tube current 150 mA, scan speed 4 ° / min, sampling width 0.02 °, scan range 2θ = 5-40 °. The range is, for example, 5 to 80 °.
また、粉末X線回折測定により得られるピーク強度については、バックグラウンドが無視できない場合、X線回折のピーク強度のチャート図において、可能であれば下方接線となるように基線を引いて、ピーク位置でのトップ強度から下方接線の強度を差し引いたものをピーク強度とする。例えば、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩を含有する希土類炭酸塩を仮焼した原料の場合、28.3±0.7°に出現する最大ピークは、酸化物のやや幅広いピークであり、基線は通常、20°付近〜40°付近に引ける場合が多い。 In addition, regarding the peak intensity obtained by powder X-ray diffraction measurement, when the background cannot be ignored, in the chart of the peak intensity of X-ray diffraction, if possible, the base line is drawn so as to be the lower tangent, and the peak position The peak intensity is obtained by subtracting the intensity of the lower tangent from the top intensity at. For example, in the case of a raw material obtained by calcining a rare earth carbonate containing a rare earth monooxy carbonate or a rare earth hydroxide carbonate, the maximum peak appearing at 28.3 ± 0.7 ° is a slightly broad peak of the oxide, In many cases, the base line can usually be drawn around 20 ° to 40 °.
また、各物質のX線回折における最大ピークに関しては、具体的には以下のようになる。例えば、2θが10.4±1.0°の範囲に出現する最大ピークは、炭酸セリウム水和物(ICDDカードNo.38−0377、Ce2(CO3)3・8H2O)のものであり、セリウム以外にランタンやネオジムなどの希土類元素が含まれていてもほぼ同じ位置にピークが出る。 Further, the maximum peak in the X-ray diffraction of each substance is specifically as follows. For example, the maximum peak that appears in the range of 2θ of 10.4 ± 1.0 ° is that of cerium carbonate hydrate (ICDD card No. 38-0377, Ce 2 (CO 3 ) 3 · 8H 2 O). Yes, even if rare earth elements such as lanthanum and neodymium are included in addition to cerium, a peak appears at almost the same position.
2θが28.3±0.7°の範囲に出現する最大ピークは、通常、酸化セリウム(CeO2)(ICDDカードNo.34−0394又は43−1002)、Ce0.75Nd0.25O1.875(ICDDカードNo.28−0266)、Ce0.5Nd0.5O1.75(ICDDカードNo.28−0267)のものである。高純度CeO2の場合は、約28.6°に最大ピークが出現する傾向となるが、セリウム以外にランタンやネオジムなどの希土類元素が含まれると低角度側へシフトする。また、この範囲には炭酸セリウム八水和物のピークも存在するが、炭酸セリウム八水和物のピークの強度は10.4°付近のものが飛びぬけて大きいため、10.4±1.0°の最大ピークよりも、28.3±0.7°の最大ピークの方が大きい場合には影響しないものとなる。尚、本明細書においては、これらの酸化物のピークをCe(IV)含有希土類酸化物のピークと総称する場合がある。 The maximum peaks appearing in the range of 2θ of 28.3 ± 0.7 ° are usually cerium oxide (CeO 2 ) (ICDD card No. 34-0394 or 43-1002), Ce 0.75 Nd 0.25 O. 1.875 (ICDD card No. 28-0266), Ce 0.5 Nd 0.5 O 1.75 (ICDD card No. 28-0267). In the case of high-purity CeO 2 , the maximum peak tends to appear at about 28.6 °, but if a rare earth element such as lanthanum or neodymium is included in addition to cerium, the peak shifts to a lower angle side. Moreover, although the peak of cerium carbonate octahydrate also exists in this range, the intensity of the peak of cerium carbonate octahydrate is 10.4 ± 1. If the maximum peak at 28.3 ± 0.7 ° is larger than the maximum peak at 0 °, there is no effect. In the present specification, these oxide peaks may be collectively referred to as Ce (IV) -containing rare earth oxide peaks.
2θが15.9±1.0°の範囲に出現する最大ピークは、モノオキシ炭酸セリウム(Ce2(CO3)2O・H2O)(ICDDカードNo.44−0617)のものであるが、セリウム以外にランタンやネオジムなどの希土類元素を含まれていてもほぼ同じ位置にピークが出る。 The maximum peak appearing in the range of 2θ of 15.9 ± 1.0 ° is that of cerium monooxycarbonate (Ce 2 (CO 3 ) 2 O.H 2 O) (ICDD card No. 44-0617). In addition to cerium, even if it contains rare earth elements such as lanthanum and neodymium, a peak appears at almost the same position.
2θが17.8±0.5°の範囲に出現する最大ピークは、水酸化炭酸セリウム(CeCO3OH)(ICDDカードNo.32−0189)のものであるが、セリウム以外にランタンやネオジムなどの希土類元素を含まれていてもほぼ同じ位置にピークが出る。 The maximum peak that appears in the range of 2θ of 17.8 ± 0.5 ° is that of cerium hydroxide carbonate (CeCO 3 OH) (ICDD card No. 32-0189), but besides cerium, lanthanum, neodymium, etc. Even if the rare earth element is contained, a peak appears at almost the same position.
本発明に係るセリウム系研摩材用原料は、温度1000℃、2時間の乾燥質量基準の強熱減量が5質量%〜45質量%であることが好ましい。この強熱減量は、対象物であるセリウム系研摩材用原料を、予め105℃で十分乾燥した後の質量減少率により特定するものである。強熱減量が5質量%未満であると、製造された研摩材は研摩傷を発生しやすいものとなり、45質量%を超えると、製造された研摩材の研摩速度が小さくなる傾向となる。そして、酸化物を含有しない原料では25〜40質量%が好ましく、酸化物を含有する原料では、5〜25質量%が好ましい。 The cerium-based abrasive raw material according to the present invention preferably has a loss on ignition on the basis of dry mass at a temperature of 1000 ° C. for 2 hours of 5 mass% to 45 mass%. This ignition loss is specified by the mass reduction rate after the cerium-based abrasive raw material that is the object is sufficiently dried at 105 ° C. in advance. When the loss on ignition is less than 5% by mass, the manufactured abrasive tends to generate abrasive flaws, and when it exceeds 45% by mass, the polishing rate of the manufactured abrasive tends to decrease. And in the raw material which does not contain an oxide, 25-40 mass% is preferable, and in the raw material containing an oxide, 5-25 mass% is preferable.
上記した本発明に係るセリウム系研摩材用原料(以下、単に原料と称する場合がある)は、希土類モノオキシ炭酸塩、希土類水酸化炭酸塩、及び希土類炭酸塩、希土類酸化物を材料(以下、これら物質を単に材料と称する場合がある)として製造できるものであるが、これら材料は以下のようにして得ることができる。 The cerium-based abrasive raw material according to the present invention described above (hereinafter sometimes simply referred to as a raw material) is made of a rare earth monooxy carbonate, a rare earth hydroxide carbonate, a rare earth carbonate, or a rare earth oxide (hereinafter referred to as these materials). Substances may be referred to simply as materials), but these materials can be obtained as follows.
まず、本発明における希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩は、次のようにして得られる希土類炭酸塩或いはその中間物質である希土類精製液を利用して製造できる。つまり、セリウム含有希土類精鉱を硫酸分解法またはアルカリ分解法により分解後、分別沈殿、分別溶解によって、主として希土類元素以外の不純物を分離除去し、必要に応じて溶媒抽出法にて、主として希土類成分を分離、精製して希土類精製液を作製する。そして、この希土類精製液と炭酸水素アンモニウム等の炭酸系沈澱剤と混合することにより希土類炭酸塩の沈澱が生成する。これをろ過、水洗して希土類炭酸塩が作製される。このようにして得られた希土類炭酸塩は、X線回折測定を行うと、炭酸セリウム水和物(ICDDカードNo.38−0377、Ce2(CO3)3・8H2O)とほぼ一致する回折パターンが得られ、モノオキシ炭酸セリウム(Ce2(CO3)2O・H2O)(ICDDカードNo.44−0617)や水酸化炭酸セリウム(CeCO3OH)(ICDDカードNo.32−0189)とは異なるものである。 First, the rare earth monooxy carbonate or rare earth hydroxide carbonate in the present invention can be produced by using a rare earth carbonate obtained as follows or a rare earth refined liquid which is an intermediate substance thereof. In other words, after cerium-containing rare earth concentrate is decomposed by sulfuric acid decomposition method or alkali decomposition method, impurities other than rare earth elements are separated and removed mainly by fractional precipitation and fractional dissolution, and if necessary, mainly by rare earth components by solvent extraction method Is separated and purified to prepare a rare earth purified liquid. Then, the rare earth carbonate precipitate is produced by mixing the rare earth refined liquid with a carbonate-based precipitant such as ammonium hydrogen carbonate. This is filtered and washed with water to produce a rare earth carbonate. The rare earth carbonate thus obtained is almost identical to cerium carbonate hydrate (ICDD card No. 38-0377, Ce 2 (CO 3 ) 3 · 8H 2 O) by X-ray diffraction measurement. A diffraction pattern is obtained, and cerium monooxycarbonate (Ce 2 (CO 3 ) 2 O.H 2 O) (ICDD card No. 44-0617) or cerium hydroxide carbonate (CeCO 3 OH) (ICDD card No. 32-0189) ) Is different.
本発明における希土類モノオキシ炭酸塩は、上記希土類炭酸塩と水とを混合し、60〜100℃にて加熱することにより製造可能である。加熱に関しては、水を希土類炭酸塩と混合する前に加熱しておいても、混合後加熱してもよい。 The rare earth monooxy carbonate in the present invention can be produced by mixing the rare earth carbonate and water and heating at 60 to 100 ° C. Regarding heating, the water may be heated before mixing with the rare earth carbonate or may be heated after mixing.
また、上記希土類精製液と炭酸水素アンモニウム等の炭酸系沈澱剤とを混合すると希土類炭酸塩の沈澱が生成し、これをろ過、水洗すれば希土類炭酸塩となるが、本発明における希土類水酸化炭酸塩は、ろ過、水洗を行わず、つまり沈澱生成したままの状態で、あるいは、炭酸系沈澱剤、アンモニア水等のアルカリを追加して、60〜100℃に加熱処理することで生成することができる。そして、上記希土類炭酸塩の沈澱生成に使用する炭酸系沈澱剤の量を希土類精製液に対する理論量の1.2倍以上とするか、沈澱生成後、沈澱剤またはアンモニア水等のアルカリを追加してから加熱するとほぼ確実に水酸化炭酸塩を製造することができる。 Further, when the above rare earth refined solution and a carbonate-type precipitant such as ammonium hydrogen carbonate are mixed, a precipitate of rare earth carbonate is formed, and when this is filtered and washed with water, it becomes a rare earth carbonate. The salt may be produced by heat treatment at 60 to 100 ° C. without filtration or washing with water, that is, in a state where the precipitate is produced, or by adding an alkali such as a carbonate-based precipitant or ammonia water. it can. Then, the amount of the carbonate-based precipitant used for the precipitation of the rare earth carbonate is set to 1.2 times or more of the theoretical amount relative to the rare earth refined liquid, or after the precipitation is formed, an alkali such as a precipitant or ammonia water is added. When heated, the hydroxide carbonate can be produced almost certainly.
さらに、本発明における希土類酸化物は、上記希土類炭酸塩、蓚酸塩、水酸化物等を焙焼することによって製造可能だが、希土類炭酸塩を550〜750℃の温度で10時間以上、好ましくは24時間以上焙焼して製造したものが、研摩傷発生が少なく、研摩速度の大きいセリウム系研摩材を製造するための原料として好適なものである。 Furthermore, the rare earth oxide in the present invention can be produced by roasting the rare earth carbonate, oxalate, hydroxide and the like, but the rare earth carbonate is heated at a temperature of 550 to 750 ° C. for 10 hours or more, preferably 24 A product produced by roasting for more than an hour is suitable as a raw material for producing a cerium-based abrasive with a small number of abrasive scratches and a high polishing rate.
そして、本発明のセリウム系研摩材用原料は、希土類炭酸塩又は希土類酸化物の少なくとも一方、及び希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方を含有するように混合して製造できるが、この時の混合比は次のようにする。セリウム系研摩材用原料について、混合後仮焼しないで使用する場合には、希土類炭酸塩又は希土類酸化物
: 希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩 のTREO質量における混合比率を95:5 〜5:95とすることが好ましい。より好ましくは、90:10〜10:90、更に好ましは80:20〜20:80とする。このような比率で混合すると、上記したX線回折ピーク強度比が好適な範囲にあるものを容易に得ることができる。また、原料を混合後仮焼して使用する場合は、上記混合比率は、20:1よりも、希土類モノオキシ炭酸塩又は水酸化炭酸塩の方が多くなるような混合比を選択すればよいものである。なお、本発明において、原料を製造する場合の焙焼とは、X線回折測定において希土類酸化物のピークだけが観察されるように焼成することをいい、また原料を製造する場合の仮焼とは、X線回折測定において希土類酸化物以外のピーク(希土類モノオキシ炭酸塩、希土類水酸化炭酸塩、希土類炭酸塩等)が残る状態まで焼成することをいう。
The raw material for the cerium-based abrasive of the present invention can be produced by mixing so as to contain at least one of a rare earth carbonate or a rare earth oxide, and at least one of a rare earth monooxy carbonate or a rare earth hydroxide carbonate, The mixing ratio at this time is as follows. When the cerium-based abrasive raw material is used without being calcined after mixing, the mixing ratio in the TREO mass of rare earth carbonate or rare earth oxide: rare earth monooxy carbonate or rare earth hydroxide carbonate is 95: 5 to 5 : 95 is preferable. More preferably, it is 90:10 to 10:90, and further preferably 80:20 to 20:80. When mixed at such a ratio, the above-mentioned X-ray diffraction peak intensity ratio can be easily obtained in a suitable range. In addition, when the raw materials are mixed and calcined and used, the mixing ratio may be selected so that the rare earth monooxy carbonate or hydroxide carbonate is larger than 20: 1. It is. In the present invention, roasting in the case of producing a raw material means firing so that only the peak of the rare earth oxide is observed in the X-ray diffraction measurement, and calcination in the case of producing the raw material. Refers to firing to a state where peaks other than rare earth oxides (rare earth monooxy carbonate, rare earth hydroxide carbonate, rare earth carbonate, etc.) remain in the X-ray diffraction measurement.
さらに、本発明のセリウム系研摩材用原料を製造する場合、混合した後の原料に含まれる希土類元素としてはセリウムが主成分であることを要する。そして、CeO2/TREOは40質量%以上が好ましく、50質量%以上がさらに好ましいものである。また、混合前の各材料、つまり、希土類モノオキシ炭酸塩、希土類水酸化炭酸塩、希土類炭酸塩、希土類酸化物についても40質量%以上、或いは50質量%以上のCeO2/TREOであることが好ましい。例えば、希土類元素としてのセリウムが主成分で、CeO2/TREOが40質量%以上、或いは50質量%である希土類炭酸塩、またはこの希土類炭酸塩を550〜750℃にて10時間以上焙焼して製造した希土類酸化物の少なくとも一方と、この希土類炭酸塩より製造された希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方とを混合するようにすれば、混合前の各材料のCeO2/TREOを、混合後の原料のそれと同じにすることができる。 Furthermore, when manufacturing the raw material for cerium-based abrasives of the present invention, it is necessary that cerium is a main component as the rare earth element contained in the raw material after mixing. CeO 2 / TREO is preferably 40% by mass or more, and more preferably 50% by mass or more. In addition, each material before mixing, that is, rare earth monooxy carbonate, rare earth hydroxide carbonate, rare earth carbonate, and rare earth oxide is preferably 40% by mass or more, or 50% by mass or more of CeO 2 / TREO. . For example, a rare earth carbonate mainly composed of cerium as a rare earth element and CeO 2 / TREO of 40% by mass or 50% by mass, or this rare earth carbonate is roasted at 550 to 750 ° C. for 10 hours or more. If at least one of the rare earth oxides prepared in this way and at least one of the rare earth monooxy carbonate or rare earth hydroxide carbonate produced from the rare earth carbonate are mixed, the CeO 2 / The TREO can be the same as that of the raw material after mixing.
また、本発明に係るセリウム系研摩材用原料は、希土類炭酸塩に蒸気処理を施すことにより、一部を希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩にして得ることもできる。ここで用いる蒸気は、一般的な蒸気発生用ボイラーにて発生させた100℃以上の蒸気を使用することができ、蒸気使用量は、TREO1kg当たり0.05〜0.5kgが好ましい。なお、蒸気処理に寄れば、モノオキシ炭酸セリウムが生成しやすい。 Moreover, the raw material for cerium-based abrasives according to the present invention can be partially obtained as a rare earth monooxycarbonate or a rare earth hydroxide carbonate by subjecting the rare earth carbonate to steam treatment. As the steam used here, steam of 100 ° C. or higher generated by a general steam generating boiler can be used, and the amount of steam used is preferably 0.05 to 0.5 kg per 1 kg of TREO. Note that cerium monooxycarbonate is likely to be produced when subjected to steam treatment.
別の方法として、希土類炭酸塩を低温(40℃以上60℃未満)浸漬加熱処理をすることで、希土類炭酸塩の一部を希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩にし、本発明に係るセリウム系研摩材用原料を製造することも可能である。この場合、希土類炭酸塩と水とを混合後加熱してもよいし、加熱した水に希土類炭酸塩を混合してもよい。また、40℃未満であると希土類モノオキシ炭酸塩が生成しにくく、60℃以上になると希土類モノオキシ炭酸塩の割合が多くなりすぎる傾向となる。水の代わりに希薄アンモニア水と混合して低温浸漬加熱すると、一部が希土類水酸化炭酸塩又はモノオキシ炭酸塩となった希土類炭酸塩を得ることができる。 As another method, the rare earth carbonate is subjected to a low temperature (40 ° C. or more and less than 60 ° C.) immersion heat treatment, so that a part of the rare earth carbonate is changed to a rare earth monooxy carbonate or a rare earth hydroxide carbonate, and the cerium according to the present invention. It is also possible to produce raw materials for system abrasives. In this case, the rare earth carbonate and water may be mixed and then heated, or the rare earth carbonate may be mixed with the heated water. Further, when the temperature is lower than 40 ° C., rare earth monooxy carbonate is hardly generated, and when the temperature is 60 ° C. or higher, the ratio of the rare earth monooxy carbonate tends to be excessive. When mixed with dilute aqueous ammonia instead of water and heated at low temperature, a rare earth carbonate partially made of rare earth hydroxide carbonate or monooxy carbonate can be obtained.
さらに、上記した希土類炭酸塩製造時に、一部を希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩にすることにより、本発明に係るセリウム系研摩材用原料を製造することも可能である。上記希土類精製液と沈澱剤との混合を、50℃以上の温度で行うと、一部が希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩とすることができる。通常、この方法の場合は希土類モノオキシ炭酸塩を生成し易いが、炭酸系沈澱剤を理論量の1.5倍以上使用すれば、希土類水酸化炭酸塩が生成しやすくなる。 Furthermore, the raw material for a cerium-based abrasive according to the present invention can be produced by partially using rare earth monooxycarbonate or rare earth hydroxide carbonate during the production of the rare earth carbonate. When the rare earth purified liquid and the precipitating agent are mixed at a temperature of 50 ° C. or higher, a part thereof can be a rare earth monooxy carbonate or a rare earth hydroxide carbonate. Usually, in this method, a rare earth monooxycarbonate is likely to be produced, but if a carbonate-based precipitant is used 1.5 times or more of the theoretical amount, a rare earth hydroxide carbonate is likely to be produced.
本発明のセリウム系研摩材用原料は、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩を仮焼することにより製造することもできる。仮焼温度200〜600℃、仮焼時間1〜72時間が好適である。具体的には、仮焼温度200℃では24〜72時間、400℃では4〜48時間、600℃では1〜12時間が好適な仮焼処理となる。そして、仮焼により原料を製造する場合、仮焼後の強熱減量が5〜25質量%となるように仮焼することが好ましい。本発明のセリウム系研摩材用原料におけるX線回折では、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方、及び希土類酸化物のピークが確認できるものとなる。 The raw material for the cerium-based abrasive of the present invention can also be produced by calcining rare earth monooxycarbonate or rare earth hydroxide carbonate. A calcination temperature of 200 to 600 ° C. and a calcination time of 1 to 72 hours are suitable. Specifically, the calcining temperature is preferably 24 to 72 hours at 200 ° C., 4 to 48 hours at 400 ° C., and 1 to 12 hours at 600 ° C. And when manufacturing a raw material by calcination, it is preferable to calcine so that the ignition loss after calcination may be 5-25 mass%. In the X-ray diffraction of the cerium-based abrasive raw material of the present invention, at least one of a rare earth monooxy carbonate or a rare earth hydroxide carbonate and a rare earth oxide peak can be confirmed.
また、この仮焼処理は、上記した各材料を混合調整により製造した原料、希土類炭酸塩に蒸気処理を施して製造した原料、希土類炭酸塩を低温浸漬加熱処理して製造した原料、希土類炭酸塩製造の際にその一部を希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩にして製造した原料、の各原料に対して行うことも可能である。仮焼処理をした原料により製造したセリウム系研摩材であると、高精度の被研摩面でありながら、研摩速度を大きくすることができる。この仮焼処理の場合、仮焼に供用する原料には希土類酸化物を含有していないようにすることが好ましい。好適な仮焼温度、仮焼時間、強熱減量については、上記と同様である。そして、希土類モノオキシ炭酸塩または希土類水酸化炭酸塩の少なくとも一方と、希土類炭酸塩を含有する原料とを仮焼した場合、2θで10.4±1.0°に出現する希土類炭酸塩のピークは消失する傾向となるが、そのピークが検出されることもある。 In addition, this calcining treatment includes a raw material produced by mixing and adjusting the above materials, a raw material produced by subjecting a rare earth carbonate to steam treatment, a raw material produced by subjecting a rare earth carbonate to low-temperature immersion heating treatment, and a rare earth carbonate. It is also possible to carry out the process for each raw material produced by converting a part of the rare earth monooxycarbonate or rare earth hydroxide carbonate during production. A cerium-based abrasive produced from a calcined raw material can increase the polishing speed while having a highly accurate surface to be polished. In the case of this calcination treatment, it is preferable that the raw material used for calcination does not contain a rare earth oxide. Suitable calcining temperature, calcining time, and ignition loss are the same as above. When at least one of rare earth monooxy carbonate or rare earth hydroxide carbonate and a raw material containing rare earth carbonate are calcined, the peak of rare earth carbonate appearing at 10.4 ± 1.0 ° at 2θ is Although it tends to disappear, the peak may be detected.
本発明のセリウム系研摩材用原料は、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方と、仮焼済み希土類炭酸塩とを混合して製造することもできる。この場合、一部に仮焼された希土類炭酸塩を含む希土類炭酸塩或いは、上記した仮焼条件により仮焼した希土類炭酸塩を用いることできる。 The cerium-based abrasive raw material of the present invention can also be produced by mixing at least one of a rare earth monooxy carbonate or a rare earth hydroxide carbonate and a calcined rare earth carbonate. In this case, a rare earth carbonate partially containing a rare earth carbonate that has been partially calcined or a rare earth carbonate that has been calcined under the above calcining conditions can be used.
さらに、上記した希土類炭酸塩を仮焼処理し、その仮焼済み希土類炭酸塩の一部を希土類モノオキシ炭酸塩または希土類水酸化炭酸塩とされたものを、上記した蒸気処理又は低温浸漬加熱処理を行うことによっても、本発明に係るセリウム系研摩材用原料を製造することができる。 Furthermore, the above-mentioned rare earth carbonate is calcined, and a part of the calcined rare earth carbonate is converted to a rare earth monooxy carbonate or a rare earth hydroxide carbonate, and the above steam treatment or low-temperature immersion heat treatment is performed. By carrying out, the raw material for cerium-based abrasives according to the present invention can also be produced.
上記した本発明のセリウム系研摩材用原料を用いてセリウム系研摩材を製造する場合、600〜1200℃にて当該原料を焙焼するようにすることのが好ましい。焙焼温度が600℃未満であると、得られたセリウム系研摩材の研摩速度が小さくなり、1200℃を超えると、得られたセリウム系研摩材によって研摩すると研摩傷が多く発生する傾向となる。この焙焼温度は700〜1100℃がより好ましい。そして、焙焼時間としては、0.2〜72時間が好ましく、0.5〜48時間がより好ましい。焙焼時間が0.2時間未満であると、得られたセリウム系研摩の研摩速度が小さくなり、72時間を超えると研摩傷が多く発生する傾向となる。 When producing a cerium-based abrasive using the above-described cerium-based abrasive material of the present invention, the raw material is preferably roasted at 600 to 1200 ° C. When the roasting temperature is less than 600 ° C., the polishing speed of the obtained cerium-based abrasive is reduced. When the roasting temperature is higher than 1200 ° C., polishing with the obtained cerium-based abrasive tends to generate a lot of scratches. . As for this roasting temperature, 700-1100 degreeC is more preferable. And as baking time, 0.2 to 72 hours are preferable, and 0.5 to 48 hours are more preferable. When the roasting time is less than 0.2 hours, the polishing speed of the obtained cerium-based polishing becomes small, and when it exceeds 72 hours, many abrasive scratches tend to occur.
また、本発明のセリウム系研摩材用原料を用いてセリウム系研摩材を製造する場合、当該原料を、レーザ回折・散乱法による小粒径側からの累積体積50%の粒径(D50)が0.3〜4.0μmとなるように、粉砕することが好ましい。この粉砕処理には、湿式の媒体ミルを用いることが好ましい。通常、粉砕媒体は球状のものを使用し、直径0.2〜5mmのものを用いることが好ましい。球状以外の媒体の場合、体積が直径0.2〜5mmの球と同じ範囲が好ましい。尚、湿式粉砕処理をする場合には、焙焼前に、ろ過、乾燥、解砕しておくことが好ましいものである。 Further, when producing a cerium-based abrasive using the raw material for cerium-based abrasive of the present invention, the raw material has a particle size (D50) having a cumulative volume of 50% from the small particle size side by the laser diffraction / scattering method. It is preferable to grind | pulverize so that it may become 0.3-4.0 micrometers. It is preferable to use a wet medium mill for the pulverization treatment. Usually, it is preferable to use a pulverizing medium having a diameter of 0.2 to 5 mm. In the case of a medium other than a sphere, the same range as a sphere having a diameter of 0.2 to 5 mm is preferable. In addition, when performing a wet grinding process, it is preferable to filter, dry, and crush before baking.
そして、本発明のセリウム系研摩材用原料を用いてセリウム系研摩材を製造する場合、焙焼後に、乾式粉砕及び乾式分級を行うことが好ましい。焙焼後、湿式粉砕又は湿式分級を行って、セリウム系研摩材スラリーを得ることもできる。当然に、セリウム系研摩材粉末を水等の分散媒と混合することによっても研摩材スラリーを得ることができ、湿式粉砕又は湿式分級を行って得たスラリーを乾燥、粉砕してセリウム系研摩材粉末を得ることも可能である。 And when manufacturing a cerium type abrasive | polishing material using the raw material for cerium type abrasives of this invention, it is preferable to perform a dry grinding | pulverization and a dry classification after baking. After roasting, wet grinding or wet classification can be performed to obtain a cerium-based abrasive slurry. Naturally, an abrasive slurry can also be obtained by mixing cerium-based abrasive powder with a dispersion medium such as water, and the slurry obtained by wet pulverization or wet classification is dried and pulverized to obtain a cerium-based abrasive. It is also possible to obtain a powder.
本発明によれば、研摩速度が大きく、研摩傷発生の少ない優れたセリウム系研摩材を容易に製造することができる。特に、最近のハードディスク用のガラス基板のような研摩、即ち、非常に高精度の表面精度を要求される研摩用途に、極めて好適にセリウム系研摩材を提供することが可能となる。 According to the present invention, it is possible to easily manufacture an excellent cerium-based abrasive with a high polishing speed and less generation of polishing scratches. In particular, it is possible to provide a cerium-based abrasive for polishing such as a glass substrate for a hard disk, that is, a polishing application that requires extremely high surface accuracy.
以下、本発明における最良の実施形態を実施例に基づいて説明するが、本発明は下記実施例に限定されるものではない。 Hereinafter, although the best mode in the present invention is described based on an example, the present invention is not limited to the following example.
まず、本実施例のセリウム系研摩材を製造した際に用いたセリウム系研摩材用原料について説明する。表1に、本実施例で使用した原料種別の一部を示している。 First, the cerium-based abrasive raw material used when the cerium-based abrasive of this example was manufactured will be described. Table 1 shows some of the raw material types used in this example.
表1に示すd1〜d18の各原料は、希土類炭酸塩(c1)、希土類酸化物(c2)、希土類モノオキシ炭酸塩(c3)、希土類水酸化炭酸塩(c4)のいずれかを所定比率で混合調整して得られたものである。そこで、各原料の材料として用いたc1〜c4の材料について説明する。 Each raw material of d1 to d18 shown in Table 1 is a mixture of a rare earth carbonate (c1), a rare earth oxide (c2), a rare earth monooxycarbonate (c3), or a rare earth hydroxide carbonate (c4) at a predetermined ratio. It was obtained by adjusting. Therefore, the materials c1 to c4 used as the raw materials will be described.
希土類炭酸塩(c1:CeO2/TREO60質量%)は、次のようにして製造した。中国産希土類炭酸塩(CeO2/TREO60質量%、この材料をc0とする)を塩酸に溶解後、ろ過、水希釈を行い、TREO52g/L、pH2.0の希土類溶解液を得た。そして、炭酸水素アンモニウム水溶液(0.5mol/L、約20℃)を攪拌しているところへ、前記希土類溶解液(約20℃)を一定の添加速度で60分間かけて添加し、沈澱を生成し、ろ過、水洗して沈澱を回収した。なお、炭酸水素アンモニウムの使用量は、希土類元素に対する理論量の1.2倍であった。この希土類炭酸塩(c1)のX線回折パターンを調べたところ、Ce2(CO3)3・8H2Oと一致しており、希土類モノオキシ炭酸塩(Ce2(CO3)2O・H2O)や希土類水酸化炭酸塩(CeCO3OH)のピークは観察されなかった。また中国産希土類炭酸塩(c0)も同じ結果であった。 Rare earth carbonate (c1: CeO 2 / TREO 60 mass%) was produced as follows. Chinese rare earth carbonate (CeO 2 / TREO 60 mass%, this material is c0) was dissolved in hydrochloric acid, filtered and diluted with water to obtain a rare earth solution of TREO 52 g / L, pH 2.0. Then, the rare earth solution (about 20 ° C.) is added over 60 minutes at a constant addition rate to the stirring solution of the ammonium hydrogen carbonate aqueous solution (0.5 mol / L, about 20 ° C.) to form a precipitate. The precipitate was recovered by filtration and washing with water. The amount of ammonium hydrogen carbonate used was 1.2 times the theoretical amount with respect to rare earth elements. When the X-ray diffraction pattern of the rare earth carbonate (c1) was examined, it was consistent with Ce 2 (CO 3 ) 3 · 8H 2 O, and the rare earth monooxy carbonate (Ce 2 (CO 3 ) 2 O · H 2 O) and rare earth hydroxide hydroxide (CeCO 3 OH) peaks were not observed. The same result was obtained with Chinese rare earth carbonate (c0).
希土類酸化物(c2:CeO2/TREO60質量%)は、上記希土類炭酸塩(c1)
を720℃にて48時間焼成することにより得た。この希土類酸化物(c2)のX線回折パターンを調べたところ、Ce(IV)含有希土類酸化物と一致しており、希土類炭酸塩(Ce2(CO3)3・8H2O)、希土類モノオキシ炭酸塩(Ce2(CO3)2O・H2O)や希土類水酸化炭酸塩(CeCO3OH)のピークは観察されなかった。
The rare earth oxide (c2: CeO 2 / TREO 60 mass%) is composed of the rare earth carbonate (c1).
Was obtained by baking at 720 ° C. for 48 hours. When the X-ray diffraction pattern of the rare earth oxide (c2) was examined, it was consistent with the Ce (IV) -containing rare earth oxide, and rare earth carbonate (Ce 2 (CO 3 ) 3 · 8H 2 O), rare earth monooxy The peaks of carbonate (Ce 2 (CO 3 ) 2 O · H 2 O) and rare earth hydroxide carbonate (CeCO 3 OH) were not observed.
希土類モノオキシ炭酸塩(c3:CeO2/TREO60質量%)は、上記希土類炭酸塩(c1)と純水を質量比
1:2で混合し、90℃に昇温して、90℃を12時間維持した後、50℃まで放冷してからろ過することによって得た。この希土類モノオキシ炭酸塩(c3)のX線回折パターンを調べたところ、希土類モノオキシ炭酸塩(Ce2(CO3)2O・H2O)と一致しており、Ce(IV)含有希土類酸化物、希土類炭酸塩(Ce2(CO3)3・8H2O)、希土類水酸化炭酸塩(CeCO3OH)のピークは観察されなかった。
Rare earth monooxy carbonate (c3: CeO 2 / TREO 60 mass%) is a mixture of the rare earth carbonate (c1) and pure water at a mass ratio of 1: 2, heated to 90 ° C., and maintained at 90 ° C. for 12 hours. And then cooled to 50 ° C. and then filtered. When the X-ray diffraction pattern of the rare earth monooxycarbonate (c3) was examined, it was consistent with the rare earth monooxycarbonate (Ce 2 (CO 3 ) 2 O.H 2 O), and the Ce (IV) -containing rare earth oxide , rare earth carbonate (Ce 2 (CO 3) 3 · 8H 2 O), peaks of the rare earth hydroxycarbonate (CeCO 3 OH) was observed.
希土類水酸化炭酸塩(c4:CeO2/TREO 60質量%)は、炭酸水素アンモニウム水溶液(0.5mol/L、約20℃)を攪拌しているところへ、上記した希土類炭酸塩における希土類溶解液(TREO52g/L、pH2.0、約20℃)を一定の添加速度で60分間かけて添加し、沈澱を生成した後、ろ過しないまま90℃まで昇温し、90℃で12時間維持し、50℃まで放冷してからろ過、水洗して得た。尚、炭酸水素アンモニウムの使用量は、希土類元素に対する理論量の1.5倍であった。希土類水酸化炭酸塩(c4)のX線回折パターンを調べたところ、希土類水酸化炭酸塩(CeCO3OH)と一致しており、Ce(IV)含有希土類酸化物、希土類炭酸塩(Ce2(CO3)3・8H2O)、希土類モノオキシ炭酸塩(Ce2(CO3)2O・H2O)のピークは観察されなかった。 The rare earth hydroxide carbonate (c4: CeO 2 / TREO 60% by mass) was mixed with an aqueous solution of ammonium hydrogen carbonate (0.5 mol / L, about 20 ° C.), and the rare earth solution in the rare earth carbonate described above was stirred. (TREO 52 g / L, pH 2.0, about 20 ° C.) was added over 60 minutes at a constant addition rate, and after forming a precipitate, the temperature was raised to 90 ° C. without filtration and maintained at 90 ° C. for 12 hours. The mixture was allowed to cool to 50 ° C. and then filtered and washed with water. The amount of ammonium hydrogen carbonate used was 1.5 times the theoretical amount with respect to rare earth elements. When the X-ray diffraction pattern of the rare earth hydroxide carbonate (c4) was examined, it was in agreement with the rare earth hydroxide carbonate (CeCO 3 OH), and the Ce (IV) -containing rare earth oxide, rare earth carbonate (Ce 2 ( The peaks of CO 3 ) 3 · 8H 2 O) and rare earth monooxycarbonate (Ce 2 (CO 3 ) 2 O · H 2 O) were not observed.
上記のようにして得られたc1〜c4の材料を、表1に示す各比率にて混合して、セリウム系研摩材用原料d1〜d18を製造した。また、d1〜d18の各原料は仮焼処理を行わなかった。尚、混合していない上記c0、c1、c3の材料については、比較例のセリウム系研摩材用原料として使用した。 The materials c1 to c4 obtained as described above were mixed at the respective ratios shown in Table 1 to produce cerium-based abrasive raw materials d1 to d18. Moreover, each raw material of d1-d18 did not perform a calcination process. In addition, about the material of said c0, c1, c3 which is not mixed, it used as a raw material for cerium type abrasives of a comparative example.
次に、表1に示した混合調製以外の方法により得られたセリウム系研摩材用原料について説明する。ここでは、上記した希土類炭酸塩(c1)製造時に、一部を希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩にすることにより原料を製造した場合を示す(以下、この製法を沈殿生成法と称する)。この沈殿生成法は、上記希土類炭酸塩(c1)を製造した際、中国産希土類炭酸塩(CeO2/TREO60質量%)を塩酸に溶解後、ろ過、水希釈を行い、TREO52g/L、pH2.0の希土類溶解液を得たが、これに沈殿剤である炭酸水素アンモニウム水溶液を所定条件で添加して、沈殿を生成して、原料を製造するものである。具体的には、攪拌した状態の炭酸水素アンモニウム水溶液(0.5mol/L、約20℃)へ、70℃に加温した希土類溶解液を一定の添加速度で60分間かけて添加し、沈澱を生成し、ろ過、水洗して沈澱を回収した。この沈殿生成法において、炭酸水素アンモニウムの使用量が、希土類元素に対する理論量の1.2倍の原料(e1)と、1.5倍の原料(e2)、2.0倍の原料(e3)の3種類を製造した。尚、これらのe1〜e3のセリウム系研摩材用原料は、CeO2/TREOが60質量%であった。 Next, the cerium-based abrasive raw material obtained by a method other than the mixing preparation shown in Table 1 will be described. Here, a case where a raw material is produced by making a part of the rare earth carbonate (c1) into a rare earth monooxycarbonate or a rare earth hydroxide carbonate (hereinafter, this production method is referred to as a precipitation generation method) is shown. . In this precipitation generation method, when the rare earth carbonate (c1) is produced, a Chinese rare earth carbonate (CeO 2 / TREO 60% by mass) is dissolved in hydrochloric acid, and then filtered and diluted with water to give TREO 52 g / L, pH 2. 0 rare earth solution was obtained, and an aqueous solution of ammonium hydrogen carbonate as a precipitating agent was added thereto under a predetermined condition to produce a precipitate to produce a raw material. Specifically, the rare earth solution heated to 70 ° C. was added to the stirred ammonium hydrogen carbonate aqueous solution (0.5 mol / L, about 20 ° C.) at a constant addition rate over 60 minutes, and precipitation was performed. The precipitate was collected by filtration and washing with water. In this precipitation generation method, the amount of ammonium hydrogen carbonate used is 1.2 times the theoretical amount of the rare earth element (e1), 1.5 times the amount of raw material (e2), 2.0 times the amount of raw material (e3) The following three types were manufactured. These e1 to e3 cerium-based abrasive materials had a CeO 2 / TREO content of 60% by mass.
混合調製以外の別の方法として、希土類炭酸塩に蒸気処理を施してセリウム系研摩材用原料を製造した(以下、蒸気処理法と称する)。この蒸気処理法では、上記希土類炭酸塩(c1)に、TREO1kgあたり、0.2kgの蒸気(140℃、118kPa(1.2kgf/cm2))を、5分間吹きかけてセリウム系研摩材用原料(e4)を製造した。 As another method other than the mixing preparation, a rare earth carbonate was steamed to produce a cerium-based abrasive material (hereinafter referred to as a steaming method). In this steam treatment method, 0.2 kg of steam (140 ° C., 118 kPa (1.2 kgf / cm 2 )) per 1 kg of TREO is sprayed on the rare earth carbonate (c1) for 5 minutes, and the raw material for cerium-based abrasive ( e4) was produced.
また、混合調製以外のさらに別の方法として、希土類炭酸塩(c1)を低温浸漬加熱処理してセリウム系研摩材用原料を製造した(以下、低温浸漬加熱処理法と称する)。この低温浸漬加熱処理法では、上記希土類炭酸塩(c1)と、純水とを、質量比1:2として混合(混合液温度20℃)し、その混合液を50℃に昇温し、50℃の状態で12時間保持後、ろ過することにより、セリウム系研摩材用原料(e5)を製造した。 Further, as another method other than the mixed preparation, a rare earth carbonate (c1) was subjected to a low temperature immersion heat treatment to produce a cerium-based abrasive raw material (hereinafter referred to as a low temperature immersion heat treatment method). In this low temperature immersion heat treatment method, the rare earth carbonate (c1) and pure water are mixed at a mass ratio of 1: 2 (mixed solution temperature 20 ° C.), and the mixed solution is heated to 50 ° C. A cerium-based abrasive raw material (e5) was produced by filtering after holding at 12 ° C. for 12 hours.
上記した各セリウム系研摩材用原料(d1〜d18、e1〜e5)は、CeO2/TREOが全て60質量%であるため、異なるCeO2/TREOの原料も製造した。CeO2/TREOが34質量%、40質量%、50質量%、≧99.9質量%の各中国産希土類炭酸塩を、上記希土類炭酸塩(c1)と同一条件にて処理し、希土類炭酸塩を調製後、蒸気処理して製造した。蒸気処理の条件は、上記e4の製造時と同じにした。ここでは、原料f1(CeO2/TREO34質量%、La2O3/TREO39質量%)、原料f2(CeO2/TREO40質量%、La2O3/TREO35質量%)、原料f3(CeO2/TREO50質量%、La2O3/TREO30質量%)、原料f4(CeO2/TREO≧99.9質量%)の4種類を製造した。 Since each of the cerium-based abrasive materials (d1 to d18, e1 to e5) described above has a CeO 2 / TREO content of 60% by mass, different CeO 2 / TREO materials were also produced. Each rare earth carbonate produced in China with a CeO 2 / TREO content of 34% by mass, 40% by mass, 50% by mass, and ≧ 99.9% by mass is treated under the same conditions as the rare earth carbonate (c1). After the preparation, it was produced by steam treatment. The conditions for the steam treatment were the same as in the production of e4. Here, raw material f1 (CeO 2 / TREO 34 mass%, La 2 O 3 / TREO 39 mass%), raw material f2 (CeO 2 / TREO 40 mass%, La 2 O 3 / TREO 35 mass%), raw material f3 (CeO 2 / TREO 50 4% of mass%, La 2 O 3 / TREO 30 mass%) and raw material f4 (CeO 2 /TREO≧99.9 mass%) were produced.
上記した各セリウム系研摩材用原料(d1〜d18、e1〜e5)に関しては、仮焼処理を施していないため、仮焼処理を行った原料も更に製造した。仮焼処理した原料としては、上記希土類炭酸塩(c1)を仮焼処理して製造した原料(g1)、上記希土類モノオキシ炭酸塩(c3)を仮焼処理して製造した原料(g2)、希土類水酸化炭酸塩(c4)を仮焼処理して製造した原料(g3)、上記沈殿生成法における沈殿剤使用量1.5倍で製造した原料(e2)を仮焼処理して製造した原料(g4)、上記蒸気処理法により製造した原料(e4)を仮焼して製造した原料(g5)の5種類を準備した。この5種類に関する仮焼処理は、すべて、500℃、6時間の仮焼条件で行った。 Since each cerium-based abrasive material (d1 to d18, e1 to e5) described above was not calcined, a calcined material was further produced. The calcined raw material includes a raw material (g1) produced by calcining the rare earth carbonate (c1), a raw material (g2) produced by calcining the rare earth monooxycarbonate (c3), a rare earth A raw material (g3) produced by calcining a hydroxide carbonate (c4), a raw material produced by calcining a raw material (e2) produced with a precipitant use amount of 1.5 times in the above precipitation generation method ( 5 types of the raw material (g5) manufactured by calcining the raw material (e4) manufactured by g4) and the said steam processing method were prepared. All of the five types of calcining treatments were performed under calcining conditions of 500 ° C. for 6 hours.
続いて、上述したセリウム系研摩材用原料を用いて製造したセリウム系研摩材について説明する。セリウム系研摩材の基本的な製造フローを図1に示す。使用した原料は、上記した原料d1〜d18、原料e1〜e5、原料f1〜f4、原料g1〜g5と、比較のために、中国産希土類炭酸塩(c0)、希土類炭酸塩(c1)、希土類モノオキシ炭酸塩(c3)も原料としてそのまま使用した。これら原料を図1に示す製造フローに従い、表2〜4に示す各セリウム系研摩材(実施例1〜40、比較例1〜9)を製造した。図1に示す製造フローについて説明すると、まず、湿式粉砕は、原料100kgに純水200kgを加えて、アトライター(三井鉱山(株)製:3mmφジルコニア製ボールの粉砕媒体使用)を用いて、5時間の湿式粉砕処理を行った。その後、フィルタープレスによりろ過をし、乾燥処理したものをアトマイザー(不二パウダル(株)製)を用いて解砕した。そして、解砕したものを900℃、48時間の焙焼処理をした後、上記アトマイザーを用いて粉砕処理をした。その後、分級装置(ターボクラシファイヤー:日清エンジニアリング(株)製)により、分級処理をして各セリウム系研摩材を製造した。 Subsequently, a cerium-based abrasive produced using the above-described cerium-based abrasive material will be described. A basic manufacturing flow of a cerium-based abrasive is shown in FIG. The raw materials used were the raw materials d1 to d18, the raw materials e1 to e5, the raw materials f1 to f4, and the raw materials g1 to g5. For comparison, rare earth carbonate (c0), rare earth carbonate (c1), rare earth Monooxycarbonate (c3) was also used as a raw material. Each cerium-based abrasive (Examples 1 to 40, Comparative Examples 1 to 9) shown in Tables 2 to 4 was produced using these raw materials according to the production flow shown in FIG. The manufacturing flow shown in FIG. 1 will be explained. First, wet pulverization is performed by adding 200 kg of pure water to 100 kg of raw material and using an attritor (made by Mitsui Mining Co., Ltd .: using 3 mmφ zirconia ball grinding media). A wet milling process for hours was performed. Then, it filtered with the filter press and pulverized what was dried and processed using the atomizer (Fuji Paudal Co., Ltd. product). And after crushing what was crushed at 900 degreeC for 48 hours, it grind | pulverized using the said atomizer. Then, each cerium-type abrasive was manufactured by classifying with a classifier (turbo classifier: manufactured by Nissin Engineering Co., Ltd.).
また、このセリウム系研摩材の製造では、製造条件である焙焼温度とフッ化処理とに関して、その条件を変更して行った。具体的には表2〜表4に示しているが、原料e4については焙焼温度を変えた試験実施した。また、原料f1〜原料f4については、焙焼温度900℃以外に、研摩材粒径が同じになるように温度調節した試験も実施した。また、フッ化処理については、原料e4、原料g4に関し、湿式粉砕後のスラリーを攪拌しながら、F/TREOで6質量%に相当する量の10%HFを添加したものを製造した。 Further, in the production of the cerium-based abrasive, the conditions were changed with respect to the baking conditions and the fluorination treatment, which are production conditions. Specifically, as shown in Tables 2 to 4, the raw material e4 was subjected to a test in which the roasting temperature was changed. Moreover, about the raw material f1-the raw material f4, the test which temperature-adjusted so that the abrasive particle size might become the same besides the baking temperature 900 degreeC was also implemented. As for the fluorination treatment, raw materials e4 and g4 were prepared by adding 10% HF in an amount corresponding to 6% by mass with F / TREO while stirring the slurry after wet pulverization.
得られた各セリウム系研摩材に関しては、平均粒径(D50)、BET法による比表面積の測定を行い、さらに研摩速度、研摩傷、被研摩面の表面性状(表面粗さRa、微小うねり)を調査した。その結果を表2〜表4に示す。また、使用した原料については、そのX線回折により得られた各ピーク強度及びその強度比、強熱減量を調べた。以下に、各測定に関して説明する。 For each of the obtained cerium-based abrasives, the average particle size (D 50 ) and the specific surface area were measured by the BET method. Further, the polishing speed, the scratches, and the surface properties of the surface to be polished (surface roughness Ra, minute waviness) )investigated. The results are shown in Tables 2-4. Moreover, about the used raw material, each peak intensity | strength obtained by the X-ray diffraction, its intensity ratio, and ignition loss were investigated. Hereinafter, each measurement will be described.
平均粒径(D50)の測定:レーザー回折・散乱法粒子径分布測定装置((株)堀場製作所製:LA−920)を使用して、各研摩材原料及び各セリウム系研摩材の粒度分布を測定することにより、平均粒径(D50:小粒径側からの累積質量50質量%における粒径<メジアン径>)を求めた。 Measurement of average particle size (D 50 ): Particle size distribution of each abrasive material and each cerium-based abrasive using a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd .: LA-920) Was measured to determine the average particle diameter (D 50 : particle diameter <median diameter> at a cumulative mass of 50% by mass from the small particle diameter side).
BET法比表面積(BET)の測定:JIS R 1626-1996(ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法)の「6.2 流動法 の(3.5)一点法」に準拠して、セリウム系研摩材の比表面積の測定を行った。その際、キャリアガスであるヘリウムと、吸着質ガスである窒素の混合ガスを使用した。 Measurement of BET specific surface area (BET): Conforms to “6.2 Flow method (3.5) single point method” in JIS R 1626-1996 (Method of measuring specific surface area of fine ceramic powder by gas adsorption BET method) Then, the specific surface area of the cerium-based abrasive was measured. At that time, a mixed gas of helium as a carrier gas and nitrogen as an adsorbate gas was used.
研摩速度:研摩機として、研摩試験機(HSP−2I型、台東精機(株)製)を用意した。この研摩試験機は、スラリー状の研摩材を研摩対象面に供給しながら、当該研摩対象面を研摩パッドで研摩するものである。研摩材スラリーの砥粒濃度は、100g/Lとした(分散媒は水のみ)。本研摩試験では、スラリー状の研摩材を5リットル/分の割合で供給することとし、研摩材を循環使用した。なお、研摩対象物は65mmφの平面パネル用ガラスとした。また、研摩パッドはポリウレタン製のものを使用した。研摩面に対する研摩パッドの圧力は9.8kPa(100g/cm2)とし、研摩試験機の回転速度は100min−1(rpm)に設定し、所定時間研摩をした。そして、特定時間の研摩処理を行った後、水洗、乾燥し、研摩前後のガラス重量を測定して研摩によるガラス重量の減少量を求め、この値に基づき研摩値を求めた。本研摩評価では、この研摩値を用いて研摩速度を評価した。なお、この研摩速度の評価値は、表4で示すように、比較例1のセリウム系研摩材により得られた研摩値を基準(100)とし、他の研摩速度の評価値を算定した。後述する研摩傷、算術平均微小うねり及び算術平均表面粗さ(Ra)の測定対象は、特定時間の研摩処理を行った後、水洗、乾燥したガラスである。 Polishing speed: A polishing tester (HSP-2I type, manufactured by Taito Seiki Co., Ltd.) was prepared as a polishing machine. This polishing tester polishes the polishing target surface with a polishing pad while supplying a slurry-like polishing material to the polishing target surface. The abrasive grain concentration of the abrasive slurry was 100 g / L (dispersion medium was water only). In this polishing test, a slurry-like abrasive was supplied at a rate of 5 liters / minute, and the abrasive was recycled. The polishing object was 65 mmφ flat panel glass. A polishing pad made of polyurethane was used. The polishing pad pressure on the polishing surface was 9.8 kPa (100 g / cm 2 ), the rotation speed of the polishing tester was set at 100 min −1 (rpm), and polishing was performed for a predetermined time. And after performing the polishing process for the specific time, it washed with water, dried, measured the glass weight before and behind polishing, calculated | required the reduction | decrease amount of the glass weight by polishing, and calculated | required the polishing value based on this value. In this polishing evaluation, the polishing rate was evaluated using this polishing value. In addition, as shown in Table 4, this polishing rate evaluation value was calculated based on the polishing value obtained with the cerium-based polishing material of Comparative Example 1 as a reference (100). The measurement object of the abrasive scratches, arithmetic average microwaviness, and arithmetic average surface roughness (Ra) described later is glass that has been subjected to a polishing treatment for a specific time, then washed with water and dried.
研摩傷:研摩傷評価は、30万ルクスのハロゲンランプを光源として用いる反射法で研摩後のガラス表面を観察し、大きな傷および微細な傷の数を点数化し、100点を満点として減点評価する方式で行った。この傷評価では、ハードディスク(HD)用あるいはLCD用のガラス基板の仕上げ研摩で要求される研摩精度を判断基準とした。具体的には表4及び表5中、「◎」は、98点以上(HD用・LCD用ガラス基板の仕上げ研摩に非常に好適)であることを、「○」は、98点未満95点以上(HD用・LCD用ガラス基板の仕上げ研摩に好適)であることを、「△」は、95点未満90点以上(HD用・LCD用ガラス基板の仕上げ研摩に使用可能)であることを、そして「×」は、90点未満(HD用・LCD用ガラス基板の仕上げ研摩に使用不可)であることを示す。 Abrasion scratches: Abrasion scratches are evaluated by observing the polished glass surface with a reflection method using a 300,000 lux halogen lamp as the light source, scoring the number of large and fine scratches, and then deducting the score from 100 points. The method was performed. In this scratch evaluation, the polishing accuracy required for finish polishing of a glass substrate for a hard disk (HD) or LCD was used as a criterion. Specifically, in Tables 4 and 5, “◎” is 98 points or more (very suitable for finishing polishing of glass substrates for HD and LCD), and “◯” is 95 points less than 98 points. That it is above (suitable for finishing polishing of HD / LCD glass substrates), and “△” is less than 95 points and 90 points or more (can be used for finishing polishing of HD / LCD glass substrates). "X" indicates that it is less than 90 points (cannot be used for finish polishing of glass substrates for HD and LCD).
算術平均微小うねり:算術平均微小うねりは、3次元表面構造解析顕微鏡(Zygo社製NewView200)を用い、測定波長を0.2〜1.4mmとして基板の所定領域を白色光で研摩面を走査して測定した。 Arithmetic average micro-waviness: The arithmetic average micro-waviness uses a three-dimensional surface structure analysis microscope (New View 200 manufactured by Zygo) to scan the polishing surface with white light at a measurement wavelength of 0.2 to 1.4 mm. Measured.
算術平均表面粗さRa:この算術平均表面粗さは、プルーブ顕微鏡SPA−400(エスエスアイ・ナノテクノロジー(株)製)を用いてDFM(ダイナミックフオースモード)を使用して、研摩表面の中の10μm×10μm範囲を測定することによって、算術平均表面粗さ(Ra:nm)値を求めた。 Arithmetic average surface roughness Ra: This arithmetic average surface roughness is determined by using DFM (dynamic force mode) with a probe microscope SPA-400 (manufactured by SSI Nanotechnology Co., Ltd.). The 10 μm × 10 μm range was measured to obtain the arithmetic average surface roughness (Ra: nm) value.
X線回折:X線分析装置(マックサイエンス(株)製、MXP18)により各原料の結晶回折分析を行った。測定条件は、Cu−Kα1線を用い、管電圧40kV、管電流150mA、スキャン速度4°/分、サンプリング幅0.02°、スキャン範囲2θ=5°〜80°とした。そして、得られたX線回折パターンより、2θ=5〜40°を含む範囲内で、2θが10.4±1.0°の範囲に出現する最大ピーク(a1)と28.3±0.7°の範囲に出現する最大ピーク(a2)とを特定し、この双方の最大ピーク強度を比較して、大きい方のピーク強度(A)を決定した。同様に、2θが15.9±1.0°の範囲に出現する最大ピーク(b1)と17.8±0.5°の範囲に出現する最大ピーク(b2)とを特定し、この双方の最大ピーク強度を比較して、大きい方のピーク強度(B)と決定した。そして、そのピーク強度比(B/A)を算出した。 X-ray diffraction: Crystal diffraction analysis of each raw material was performed with an X-ray analyzer (manufactured by Mac Science, MXP18). The measurement conditions were Cu-Kα1 wire, tube voltage 40 kV, tube current 150 mA, scan speed 4 ° / min, sampling width 0.02 °, scan range 2θ = 5 ° -80 °. Then, from the obtained X-ray diffraction pattern, within the range including 2θ = 5 to 40 °, the maximum peak (a1) where 2θ appears in the range of 10.4 ± 1.0 ° and 28.3 ± 0. The maximum peak (a2) appearing in the range of 7 ° was identified, and the maximum peak intensity of both was compared to determine the larger peak intensity (A). Similarly, the maximum peak (b1) appearing in the range of 25.9 ± 1 ° ± 1.0 ° and the maximum peak (b2) appearing in the range of 17.8 ± 0.5 ° are specified, and both The maximum peak intensity was compared to determine the larger peak intensity (B). And the peak intensity ratio (B / A) was computed.
強熱減量:強熱減量は、原料を105℃、24時間乾燥したものについて、JIS K 0067−1992「化学製品の減量及び残分試験方法」の4.2強熱減量試験に準拠して測定した。但し、このJIS規格では、強熱温度が650±50℃と規定されているが、この温度では安定した結果が得られないため、強熱温度を1000±50℃として測定した。 Ignition loss: Ignition loss was measured in accordance with 4.2 ignition loss test of JIS K 0067-1992 "Method for weight loss and residue test" of raw materials dried at 105 ° C for 24 hours. did. However, in this JIS standard, the ignition temperature is stipulated as 650 ± 50 ° C. However, since the stable result cannot be obtained at this temperature, the ignition temperature was measured as 1000 ± 50 ° C.
表2〜表4に示すように、本実施例のセリウム系研摩材では、研摩速度や研摩傷に関して良好な特性を備えていることが判明した。特に、研摩傷や微小うねりの結果より、ハードディスク用のガラス基板のような研摩、即ち、非常に高精度の表面精度を要求される研摩用途に極めて好適なものとなることが判明した。 As shown in Tables 2 to 4, it was found that the cerium-based abrasive of this example had good characteristics with respect to the polishing speed and the scratches. In particular, the results of polishing scratches and micro undulations have proved to be extremely suitable for polishing such as glass substrates for hard disks, that is, for polishing applications that require extremely high surface accuracy.
Claims (5)
希土類炭酸塩又は希土類酸化物の少なくとも一方と、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方とが予め混合され、混合後仮焼しないで使用するものであり、
希土類炭酸塩又は希土類酸化物の少なくとも一方と、希土類モノオキシ炭酸塩又は希土類水酸化炭酸塩の少なくとも一方との混合は、全希土酸化物換算量による混合比率で90:10〜10:90の範囲であり、
当該セリウム系研摩材用原料を2θ=5〜40°を含む範囲について粉末X線回折測定をしたとき、2θが10.4±1.0°の範囲に出現する最大ピーク(a1)と28.3±0.7°の範囲に出現する最大ピーク(a2)のうち、大きい方のピーク(a)のピーク強度(A)と、
2θが15.9±1.0°の範囲に出現する最大ピーク(b1)と17.8±0.5°の範囲に出現する最大ピーク(b2)のうち、大きい方のピーク(b)のピーク強度(B)と、から得られる比(B/A)が0.02〜1.5であることを特徴とするセリウム系研摩材用原料。 In a raw material for a cerium-based abrasive containing at least one of a rare earth carbonate or a rare earth oxide, and at least one of a rare earth monooxy carbonate or a rare earth hydroxide carbonate, the rare earth element having cerium as a main component,
At least one of the rare earth carbonate or rare earth oxide and at least one of the rare earth monooxy carbonate or rare earth hydroxide carbonate are mixed in advance, and used without being calcined after mixing,
The mixing of at least one of the rare earth carbonate or rare earth oxide and at least one of the rare earth monooxy carbonate or rare earth hydroxide carbonate is in the range of 90:10 to 10:90 in terms of the mixing ratio based on the total rare earth oxide equivalent. And
When the cerium-based abrasive raw material is subjected to powder X-ray diffraction measurement for a range including 2θ = 5 to 40 °, the maximum peak (a1) appearing in the range of 2θ of 10.4 ± 1.0 ° and 28. Among the maximum peaks (a2) appearing in the range of 3 ± 0.7 °, the peak intensity (A) of the larger peak (a),
Of the maximum peak (b1) appearing in the range of 2θ 15.9 ± 1.0 ° and the maximum peak (b2) appearing in the range of 17.8 ± 0.5 °, the larger peak (b) A raw material for a cerium-based abrasive, which has a peak intensity (B) and a ratio (B / A) obtained from 0.02 to 1.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006187113A JP5259933B2 (en) | 2006-07-06 | 2006-07-06 | Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006187113A JP5259933B2 (en) | 2006-07-06 | 2006-07-06 | Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008013689A JP2008013689A (en) | 2008-01-24 |
JP5259933B2 true JP5259933B2 (en) | 2013-08-07 |
Family
ID=39071022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006187113A Active JP5259933B2 (en) | 2006-07-06 | 2006-07-06 | Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5259933B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101075966B1 (en) * | 2010-03-09 | 2011-10-21 | 주식회사 엘지화학 | Crystalline cerium oxide and preparation method of the same |
JP5721109B2 (en) * | 2012-07-31 | 2015-05-20 | 株式会社ノリタケカンパニーリミテド | Polishing system and abrasive life determination method |
CN103923602A (en) * | 2013-01-15 | 2014-07-16 | 安阳市岷山有色金属有限责任公司 | Manufacturing method for cerium based abrasive material |
CN103923603A (en) * | 2013-01-15 | 2014-07-16 | 安阳市岷山有色金属有限责任公司 | Oxide solid solution powder |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2794645B2 (en) * | 1991-10-15 | 1998-09-10 | 三徳金属工業株式会社 | Cerium oxide having oxygen absorbing / releasing ability and method for producing the same |
JP3440505B2 (en) * | 1993-09-14 | 2003-08-25 | 昭和電工株式会社 | Method for producing ceric oxide |
JP4160184B2 (en) * | 1998-11-24 | 2008-10-01 | 信越化学工業株式会社 | Method for producing basic cerium carbonate |
JP2003238943A (en) * | 2002-02-18 | 2003-08-27 | Fujimi Inc | Methods for producing cerium-based abrasive and cerium oxide contained therein |
JP4273920B2 (en) * | 2002-10-28 | 2009-06-03 | 日産化学工業株式会社 | Cerium oxide particles and production method by multi-stage firing |
JP2004175964A (en) * | 2002-11-28 | 2004-06-24 | Mitsui Mining & Smelting Co Ltd | Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process |
EP1934142B1 (en) * | 2005-09-20 | 2013-05-01 | LG Chem, Ltd. | Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and cmp slurry comprising the same |
-
2006
- 2006-07-06 JP JP2006187113A patent/JP5259933B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008013689A (en) | 2008-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI476153B (en) | Ceria material and method of forming same | |
US8226924B2 (en) | Method for producing boehmite particles and method for producing alumina particles | |
KR102090494B1 (en) | Cerium abrasive and manufacturing method | |
US6893477B2 (en) | Cerium-based abrasive material slurry and method for producing cerium-based abrasive material slurry | |
JPWO2006123562A1 (en) | Method for producing polishing composition | |
WO2001088056A1 (en) | Cerium based abrasive material, raw material thereof and method for their preparation | |
JP2012011526A (en) | Abrasive and manufacturing method thereof | |
JP4002740B2 (en) | Method for producing cerium-based abrasive | |
JP5259933B2 (en) | Raw material for cerium-based abrasive, method for producing cerium-based abrasive, and cerium-based abrasive | |
JP4450424B2 (en) | Cerium-based abrasive and its raw materials | |
JP4131870B2 (en) | Abrasive particle quality evaluation method, glass polishing method and abrasive composition for polishing glass | |
CN111051463B (en) | Method for producing raw material for cerium-based abrasive and method for producing cerium-based abrasive | |
JP5237542B2 (en) | Cerium oxide abrasive | |
JP4128906B2 (en) | Cerium-based abrasive and method for producing cerium-based abrasive | |
JP2007106890A (en) | Cerium-based abrasive material | |
JP2001062705A (en) | Alpha alumina polishing material for metal polishing and manufacture thereof | |
WO2007099799A1 (en) | Cerium-based abrasive material | |
JP3875668B2 (en) | Cerium-based abrasive containing fluorine and method for producing the same | |
TWI285674B (en) | Cerium-based abrasive and production process thereof | |
JP4070180B2 (en) | Method for producing cerium-based abrasive | |
JP3986384B2 (en) | Cerium-based abrasive and method for producing the same | |
JP2004175964A (en) | Manufacturing process of high purity cerium oxide abrasive, and high purity cerium oxide abrasive obtained by the process | |
JP4290465B2 (en) | Method for producing cerium-based abrasive mainly composed of cerium oxide | |
JP5861277B2 (en) | Zirconia abrasive | |
JP3986424B2 (en) | Cerium-based abrasive, method for producing cerium-based abrasive, and quality evaluation method for cerium-based abrasive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090512 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120327 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120524 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120928 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130110 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20130117 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130402 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130425 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160502 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5259933 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |