JP2004107186A - Method for manufacturing nanosphere particle ceria compound powder having easy sintering property - Google Patents

Method for manufacturing nanosphere particle ceria compound powder having easy sintering property Download PDF

Info

Publication number
JP2004107186A
JP2004107186A JP2002275987A JP2002275987A JP2004107186A JP 2004107186 A JP2004107186 A JP 2004107186A JP 2002275987 A JP2002275987 A JP 2002275987A JP 2002275987 A JP2002275987 A JP 2002275987A JP 2004107186 A JP2004107186 A JP 2004107186A
Authority
JP
Japan
Prior art keywords
powder
aqueous solution
nitrate
temperature
ammonium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002275987A
Other languages
Japanese (ja)
Other versions
JP3861144B2 (en
Inventor
Toshiyuki Mori
森 利之
Wang Yarong
Ji−Guang Li
Li Ji-Guang
Takayasu Ikegami
池上 隆康
Mutsumi Nishimura
西村 睦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002275987A priority Critical patent/JP3861144B2/en
Publication of JP2004107186A publication Critical patent/JP2004107186A/en
Application granted granted Critical
Publication of JP3861144B2 publication Critical patent/JP3861144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide spheric ceria powder particles having a nanoparticle size and high monodispersion property from an easily available material. <P>SOLUTION: The nanosphere particle ceria compound powder having easy sintering property is obtained by the following steps. A divalent or trivalent metal (M) nitrate is mixed with a cerium nitrate to obtain M<SB>x</SB>Ce<SB>1-x</SB>O<SB>2-δ</SB>, wherein x satisfies 0.05≤x≤0.3 and δ represents the oxygen deficient amount determined from the balance of charges in cations and anions. The obtained mixture is mixed with ammonium hydrogen carbonate as a precipitating agent in the molar ratio ranging from 2.5 to 15 of (concentration of divalent or trivalent metal nitrate aqueous solution)/(concentration of ammonium carbonate aqueous solution) to precipitate cerium carbonate expressed by Ce<SB>1-x</SB>M<SB>x</SB>(OH)<SB>y</SB>(CO<SB>3</SB>)<SB>z</SB>H<SB>2</SB>O, wherein x, y, z satisfy 0.05≤x≤0.3, 0.05≤y≤1 and 0.05≤z≤2, respectively. Then the product is aged at ≥50°C and ≤70°C, washed and calcined at a temperature of ≥400°C and ≤750°C to obtain spheric particles having ≤50 nm average particle size. The particles are sintered at ≤1,000°C to obtain the density as high as ≥98% of the theoretical density. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、炭酸ガスセンサ、燃料電池用固体電解質、などに利用される原料粉末である易焼結性ナノ球状セリア系化合物粉末の製造方法に関するものである。
【0002】
【従来の技術と問題点】
セリア系化合物粉末の合成法として、セリウム塩と金属塩の混合溶液に、シュウ酸を加えて沈殿を得る方法、アンモニアや炭酸アンモニウムを沈殿剤として加える方法や金属アルコキシドを用いる方法などが用いられてきた。
シュウ酸塩を沈殿剤として用いる場合には、生成する粉末は、大きな凝集体の固まりとなり、その結晶化温度は最低でも700℃以上となる。そして、結晶化したセリア系化合物粉末の粒径は、サブミクロン以上と大きいため、センサ、燃料電池用固体電解質などに利用する場合、焼結温度が1500℃以上の高温においても、空孔を完全に取り除くことができず、特性の向上につながらないという欠点があった。
【0003】
また、アンモニアや炭酸アンモニウムを沈殿剤に用いる場合には、沈殿剤に含まれるアンモニア成分が、沈殿物質の中に残存し、沈殿物質を乾燥し、仮焼する際、粒子の形状が柱状になりやすく、そのため粉末の比表面積を低下させ、焼結性を低下させることから、ち密化のための温度が1600℃以上になるという欠点を有していた。
【0004】
アルコキシドを出発原料に用いる場合には、単分散粉末を作製することが可能であるが、アルコキシド原料が高価であることから、実用化に際しては、薄膜への応用に限定され、技術の利用分野がきわめて限られることから、実用化の妨げとなっていた。
【0005】
【課題を解決するための手段】
本発明者らは、上記従来技術の問題点に鑑み、鋭意検討を続けた結果、柱状になりやすい粒子の形状を制御し、凝集の少ない、球状粒子を作製するために必要な沈殿物質に求められる組成、仮焼条件などを検討することで、ナノサイズの粒径を有する易焼結性球状セリア系化合物粉末の製造条件を見出し、本発明を完成するに至った。
【0006】
すなわち、本発明の要旨とするところは、その第1は、(1)2価または3価の金属(M)硝酸塩とセリウムの硝酸塩をMCe1−x ―δ(ただし、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合し、この混合溶液と沈殿剤として炭酸水素アンモニウムを、〔2価または3価の金属(M)硝酸塩とセリウムの硝酸塩水溶液濃度〕/(炭酸アンモニウム水溶液濃度)のモル比が2.5から15になるように混合して、Ce1−x(OH)(CO・HO(ただし、0.05≦ x ≦0.3、0.05≦ y ≦ 1、0.05≦ z ≦2)で表されるセリウムカーボネートを沈殿させた後に、熟成を50℃以上、70℃以下の温度範囲で行い、洗浄後、400℃以上、750℃以下の温度で仮焼することで、平均粒径50ナノメーター以下の球状粒子となし、1000℃以下の温度で焼結することで、相対密度の98%以上にまで、ち密にすることを特徴とする、易焼結性ナノ球状セリア系化合物粉末の製造方法である。
【0007】
また、その第2は、(2)2価(M2+)と3価(M3+)の金属元素を含む硝酸塩とセリウムの硝酸塩を(M2+ 3+ 1−aCe1−x ―δ(ただし、0.01≦ a ≦0.5、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合し、この混合溶液と沈殿剤として炭酸水素アンモニウムを、〔2価(M2+)と3価(M3+)の金属元素を含む硝酸塩水溶液濃度〕/(炭酸アンモニウム水溶液濃度)のモル比が3から7になるように混合して、Ce1−x(M2+ 3+ 1−a(OH)(CO・HO(ただし、0.01≦ a ≦0.5、0.05≦ x ≦0.3、0.05≦y ≦ 1、0.05≦ z  ≦2)で表されるセリウムカーボネートを沈殿させた後に、熟成を55℃以上65℃以下の温度で行い、洗浄後、400℃以上750℃以下の温度で仮焼することで、平均粒径50ナノメーター以下の球状粒子となし、1000℃以下の温度で焼結することで、相対密度の98%以上にまで、ち密にすることを特徴とする、易焼結性ナノ球状セリア系化合物粉末の製造方法である。
【0008】
本発明における、ナノ球状粉末作製に必要不可欠なセリウムカーボネートの化学組成はCe1−x(OH)(CO・HO(ただし、0.05≦ x ≦0.3、0.05≦ y ≦ 1、0.05≦ z ≦ 2、Mは3価の金属元素を表す)またはCe1−x(M2+ 3+ 1−a(OH)(CO・HO(ただし、0.01≦ a ≦0.5、0.05≦ x ≦0.3、0.05≦ y ≦ 1、0.05≦ z ≦2、M2+及びM3+はそれぞれ、2価または3価金属元素を表す)でなければならない。沈殿物質にアンモニア成分が含まれると、沈殿が柱状に成長しやくなり、焼結性が低下するので好ましくない。
【0009】
aの範囲は、0.01以上0.5以下が好ましく、この範囲を下回ると2価と3価の元素を共存させる効果が十分に発揮されず、上述のセンサ、燃料電池用固体電解質などへ利用した際、特性向上につながらないことから好ましくない。また、この範囲を上回ると2価と3価金属元素が偏析をおこし、かえって、センサ、燃料電池用固体電解質などの特性を低下させることがあるので好ましくない。
xの範囲は0.05以上0.3以下でなければならず、この範囲を下回る場合は、上述のセンサ、燃料電池用固体電解質などへの応用に際して、仮焼粉末中に導入される酸素欠陥量が不足し、十分な特性が発揮されないので好ましくない。
【0010】
また、この範囲を上回ると、過剰な酸素欠陥が仮焼粉末中に導入され、かえってセンサ、燃料電池用固体電解質特性を低下させるので好ましくない。
yの範囲は、0.05以上、1以下とすることが好ましい。yの値は、反応溶液と沈殿剤のモル比やpHにより制御されるものであり、yの値がこの範囲を下回ると十分に沈殿が生成せず、ろ液中に多量のセリウムなどの金属元素が残り、収率が低下するうえ、柱状粒子と球状粒子が混在した凝集体ができてしまい、焼結性を著しく低下させるので好ましくない。また、この範囲を上回ると粒子間の凝集が強くなり、サブミクロンの凝集体となり、焼結性が低下するので好ましくない。
【0011】
zの範囲は、0.05以上、2以下とすることが好ましい。このzの値は、沈殿剤の濃度により制御可能であるが、この値が0.05を下回ると十分に沈殿が生成せず、ろ液中に多量のセリウムなどの金属元素が残り、収率が低下するうえ、柱状粒子と球状粒子が混在した凝集体ができてしまい、焼結性を著しく低下させるので好ましくない。また、この範囲を上回ると粒子間の凝集が強くなり、サブミクロンの凝集体となり、焼結性が低下するので好ましくない。
【0012】
また、2価または3価の金属(M)硝酸塩とセリウムの硝酸塩をMCe1−x―δ(ただし、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合する場合、〔2価または3価の金属(M)硝酸塩水溶液濃度〕/(炭酸アンモニウム水溶液濃度)のモル比は、2.5以上、15以下とすべきが相当である。この範囲を下回っても、上回っても、上記の好ましい組成の沈殿が作製できないので、この範囲でなければならない。この範囲を下回るかまたは上回る場合、柱状の粒子が沈殿中に残存し、仮焼粉末の焼結性を低下させるので好ましくない。
【0013】
さらに、2価(M2+)と3価(M3+)の金属元素を含む硝酸塩とセリウムの硝酸塩を(M2+ 3+ 1−aCe1−x ―δ(ただし、0.01≦ a ≦0.5、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合する場合、〔2価(M2+)と3価(M3+)の金属元素を含む硝酸塩水溶液濃度〕/(炭酸アンモニウム水溶液濃度)のモル比は、3以上、7以下でなければならず、この範囲を下回っても、上回っても、上記の好ましい組成の沈殿が作製できないので、この範囲でなければならない。
この範囲を下回るかまたは上回る場合、柱状の粒子が沈殿中に残存し、仮焼粉末の焼結性を低下させるので好ましくない。
【0014】
2価または3価の金属硝酸塩、セリウムの硝酸塩と炭酸水素アンモニウムを用いて沈殿を作製した場合は、50℃以上、70℃以下の温度で熟成を行なわなければならない。熟成温度がこの範囲を下回ると、沈殿中に柱状の粒子が共存してしまい、仮焼後にも、この柱状粒子が残存し、焼結性を低下させるので好ましくない。また、この温度範囲を超えるとせっかく生成した球状の粒子が凝集し、仮焼後もこの凝集がのこり、焼結性を著しく低下させるので好ましくない。
【0015】
また、2価(M2+)と3価(M3+)の金属元素を含む硝酸塩、セリウムの硝酸塩と炭酸水素アンモニウムを用いて沈殿を作製した場合は、55℃以上、65℃以下の温度で熟成する必要がある。熟成温度がこの範囲を下回ると、沈殿中に柱状の粒子が共存してしまい、仮焼後にもこの柱状粒子が残存し、焼結性を低下させるので好ましくない。この温度範囲を超えるとせっかく生成した球状の粒子が凝集し、仮焼後もこの凝集が残り、焼結性を著しく低下させるので好ましくない。 熟成温度については特に制限はないが、あまり長時間の熟成をおこなってもそれなりの効果しかないので、1時間から2時間程度の熟成時間で十分である。
【0016】
本発明に得られた沈殿物質は、沈殿生成後に水洗しなければならず、水洗を行わないと沈殿物質中にアンモニアが残存し、仮焼粉末中に柱状の粒子が混在するために好ましくない。水洗の回数については特に制限はないが、3回以上の水洗を行うことで、ほぼ完全にアンモニアを除去できるので、3回程度の水洗を行うことが好ましい。
水洗後、粉末は乾燥ガスなどを用いて乾燥を行い、空気中または酸素中で仮焼することで、結晶化させ、ほたる石型の結晶構造単一相にする必要があるが、その仮焼温度は400℃以上750℃以下でなければならない。この温度範囲を下回ると、十分に結晶化が進まず、残存する非晶質が、焼結中に不均一な粒成長を引き起こし、緻密化を妨げることから好ましくない。またこの温度範囲を上回ると、サブミクロン以上の粒径になって、焼結に1500℃以上の高温を必要とし、空孔が焼結体中に残りやすく、結果としてセンサや燃料電池用固体電解質の特性を低下させるので好ましくない。
【0017】
仮焼の際の雰囲気は、空気中でも、酸素気流中でも同様な効果を得られるが、なるべく酸素分圧の高い雰囲気で仮焼することが、沈殿物質中に含まれる不純物を完全に燃焼させるうえで好ましい。また、仮焼時間にも特に制限はないが、低い温度で仮焼するほど、粉末中に炭酸ガスや水分が残りやすいので、400℃または500℃で仮焼する場合は、10時間以上仮焼する必要があるが、それ以上の温度で仮焼する場合は、あまり長くしてもさほどの効果は期待できず、1時間から4時間程度仮焼すれば十分である。
得られたナノ球状粉末を焼結するには、特に制限はないが、大気中、900℃以上で焼結することにより、相対密度98%以上の高密度焼結体を作製することができる。
【0018】
次に、本発明の具体的態様とその意義について、以下に記載する実施例と比較例により、開示、説明するが、これらの例は、あくまでも本発明を容易に理解し得るようにする一助としてであって、これによって本発明を限定する趣旨ではない。すなわち、本発明の内容は、これらの実施例及び比較例によって制限されるものではない。
【0019】
【実施例】
実施例1;
配合がGd0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸ガドリウム(純度99.9%)を用いて、硝酸ガドリウム水溶液と炭酸水素アンモニウム水溶液のモル比が10となるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.8Gd0.2(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を作成し、ホタル石単一の結晶相からなることをX線回折試験により確認した。図1には、X線回折試験による結晶相の同定結果を示す。
得られた仮焼粉末の走査型電子顕微鏡観察像(SEM像)を図2に示す。得られた粉末は、平均粒子径が30ナノメーターの球状粒子であった。
この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。得られた焼結体は、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。また、焼結体表面のSEM像を図3に示すとともに、上記の結果を表1にまとめて示した。
【0020】
実施例2;
配合がGd0.1Ce0.91.95になるように、出発原料として、0.45モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸ガドリウム(純度99.9%)を用いて、硝酸ガドリウム水溶液と炭酸水素アンモニウムの水溶液のモル比が、8となるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。
得られた前駆体粉末の化学分析結果から、その組成は、Ce0.9Gd0.1(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を作製した。また、仮焼粉末は実施例1の図1同様、ホタル石単一の結晶相からなっており、実施例1の図2同様に、平均粒子径が30ナノメーターの球状粒子であった。
この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。得られた焼結体は、実施例1同様、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。本実施例においても実施例1同様、上記の結果を表1にまとめて示した。
【0021】
実施例3;
配合がY0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸イットリウム(純度99.9%)を用いて、硝酸イットリウム水溶液と炭酸水素アンモニウム水溶液のモル比が3になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、65℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。
得られた前駆体粉末の化学分析結果から、その組成は、Ce0.80.2(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認した。得られた仮焼粉末の平均粒子径は、35ナノメーターであり、実施例1同様の球状粒子であった。 この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。こうして得られた焼結体は、実施例1同様、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。
本実施例においても、他の実施例同様に得られた結果を表1にまとめて示した。
【0022】
実施例4;
配合がSm0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸サマリウム(純度99.9%)を用いて、硝酸サマリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、3になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、55℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。
得られた前駆体粉末の化学分析結果から、その組成は、Ce0.8Sm0.2(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中450℃の温度で12時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認した。得られた仮焼粉末の平均粒子径は25ナノメーターであり、実施例1同様の球状粒子であった。 この粉末を金型成形した後、2t/cmの静水圧成形を行った後、900℃、4時間、空気中において焼結を行った。こうして得られた焼結体は、実施例1同様、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。
本実施例においても、他の実施例同様、得られた結果を表1にまとめて示した。
【0023】
実施例5;
配合が(Sm0.9Sr0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸サマリウム(純度99.9%)及び0.0055モル/lの硝酸ストロンチウムを用いて、硝酸サマリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、5になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、62℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.825(Sm0.9Sr0.10.175(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認した。また、仮焼粉末の平均粒子径は40ナノメーターであり、実施例1同様の球状粒子であった。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。こうして得られた焼結体は、実施例1同様、理論密度の98%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。
また本実施例においても上記の結果を表1にまとめて示した。
【0024】
実施例6;
配合が(Gd0.9Sr0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸ガドリウム(純度99.9%)及び0.0055モル/lの硝酸ストロンチウムを用いて、硝酸ガドリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、6になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.825(Gd0.9Sr0.10.175(OH)0.2(CO1.4・HOであった。
前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認した。また仮焼粉末の平均粒子径は35ナノメーターであり、実施例1同様の球状粒子であった。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、得られた焼結体は、実施例1同様、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。
また本実施例においても上記の結果を表1にまとめて示した。
【0025】
実施例7;
配合が(Y0.9Ba0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸イットリウム(純度99.9%)及び0.0055モル/リットルの硝酸バリウムを用いて、硝酸イットリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、4になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。 炭酸水素アンモニウム滴下終了後、57℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.825(Y0.9Ba0.10.175(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中450℃の温度で12時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認した。また、仮焼粉末の平均粒子径は30ナノメーターであり、実施例1同様の球状粒子であった。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、900℃、4時間、空気中において焼結を行ったところ、得られた焼結体は、実施例1同様、理論密度の99%にまで高密度化しており、焼結体表面には大きな空孔は認められず、ち密化が進んでいることが分かった。
また本実施例においても上記の結果を表1にまとめて示した。
【0026】
【表1】

Figure 2004107186
【0027】
比較例1;
配合がGd0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸ガドリウム(純度99.9%)を用いて、硝酸ガドリウムの混合水溶液と炭酸水素アンモニウム水溶液のモル比が、25となるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、(NH0.15Ce0.8Gd0.2(OH)0.35(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様に、ホタル石単一の結晶相からなることをX線回折試験により確認した。 しかし、仮焼粉末は、主として柱状粒子からなり、その平均粒子径は100ナノメーターであった。
この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、得られた焼結体の密度は、理論密度の79%でしかなかった。焼結体表面には多くの大きな空孔が認められ、緻密化が十分に進んでいないことが分かった。
本比較例の結果を表2にまとめて示した。
【0028】
比較例2;
配合がGd0.1Ce0.91.95になるように、出発原料として、0.45モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸ガドリウム(純度99.9%)を用いて、硝酸ガドリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、1となるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、(NH0.09Ce0.9Gd0.1(OH)0.02(CO0.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は実施例1同様に、ホタル石単一の結晶相からなることをX線回折試験により確認したが、得られた仮焼粉末は、主として柱状粒子からなり、その平均粒子径は110ナノメーターであった。
この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。得られた焼結体の密度は、理論密度の75%でしかなく、焼結体表面には多くの大きな空孔が認められ、緻密化が十分に進んでいないことが分かった。
本比較例の結果も比較例1同様、表2にまとめて示した。
【0029】
比較例3;
配合がY0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸イットリウム(純度99.9%)を用いて、硝酸イットリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、10になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、65℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.80.2(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中300℃の温度で1時間仮焼してセリア系化合物粉末を得た。仮焼粉末は非晶質からなり、結晶相はX線回折試験では確認できなかった。得られた仮焼粉末の平均粒子径が10ナノメーターであり、粒子の形態は球状であったが、この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、その焼結体の密度は、理論密度の70%でしかなく、焼結体表面には多くの大きな空孔が認められ、ち密化が十分に進んでいないことが分かった。
本比較例の結果も他の比較例同様、表2にまとめて示した。
【0030】
比較例4
配合がSm0.2Ce0.81.9になるように、出発原料として、0.20モル/リットルの硝酸セリウム(純度99.99%)及び0.05モル/リットルの硝酸サマリウム(純度99.9%)を用いて、硝酸サマリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、10になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、55℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。 得られた前駆体粉末の化学分析結果から、その組成は、Ce0.8Sm0.2(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中1000℃の温度で1時間仮焼してセリア系化合物粉末を作製し、実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認したが、得られた仮焼粉末の平均粒子径が350ナノメーターであり、1次粒子が強く凝集した会合粒子となっていた。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1100℃、4時間、空気中において焼結を行ったところ、焼結体の密度は、理論密度の72%であった。焼結体表面には多くの大きな空孔が認められ、ち密化が十分に進んでいないことが分かった。
また、本比較例の結果も他の比較例同様、表2にまとめて示した。
【0031】
比較例5;
配合が(Sm0.9Sr0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸サマリウム(純度99.9%)及び0.0055モル/lの硝酸ストロンチウムを用いて、硝酸サマリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、5になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。 炭酸水素アンモニウム滴下終了後、80℃の温度で、1時間熟成処理を行った。 こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.825(Sm0.9Sr0.10.175(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を作成し、実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認したが、仮焼粉末の平均粒子径は90ナノメーターであり、1次粒子が凝集した会合粒子となっていた。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、焼結体の密度は、理論密度の79%であり、焼結体表面には多くの大きな空孔が認められ、ち密化が十分に進んでいないことが分かった。
本比較例の結果も他の比較例同様、表2にまとめて示した。
【0032】
比較例6;
配合が(Sm0.9Sr0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸サマリウム(純度99.9%)及び0.0055モル/lの硝酸ストロンチウムを用いて、硝酸サマリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、5になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。 炭酸水素アンモニウム滴下終了後、40℃の温度で、1時間熟成処理を行った。 こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。得られた前駆体粉末の化学分析結果から、その組成は、Ce0.825(Sm0.9Sr0.10.175(OH)0.2(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を作成し、実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認したが、仮焼粉末の平均粒子径は100ナノメーターであり、柱状粒子と球状粒子が共存し、凝集した会合粒子となっていた。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、焼結体の密度は、理論密度の74%であった。焼結体表面には多くの大きな空孔が認められ、緻密化が十分に進んでいないことが分かった。
本比較例の結果も他の比較例同様、表2にまとめて示した。
【0033】
比較例7;
配合が(Gd0.9Sr0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/リットルの硝酸ガドリウム(純度99.9%)及び0.0055モル/lの硝酸ストロンチウムを用いて、硝酸ガドリウム水溶液と炭酸水素アンモニウム水溶液のモル比が、10になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成処理を行った。こうして得られた沈殿は水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。前駆体粉末の化学分析結果から、その組成は、(NH0.15Ce0.825(Gd0.9Sr0.10.175(OH)0.35(CO1.4・HOであった。前駆体粉末は引き続き、空気中700℃の温度で1時間仮焼してセリア系化合物粉末を作成し、実施例1同様、ホタル石単一の結晶相からなることをX線回折試験により確認したが、その平均粒子径は110ナノメーターであり、粉末の形態は、主として柱状粒子からものであった。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行ったところ、焼結体は、理論密度の72%の密度でしかなかった。焼結体表面には多くの大きな空孔が認められ、ち密化が十分に進んでいないことが分かった。
本比較例の結果も他の比較例同様、表2にまとめて示した。
【0034】
比較例8;
配合が(Y0.9Ba0.10.175Ce0.8251.9になるように、出発原料として、0.26モル/lの硝酸セリウム(純度99.99%)、0.05モル/lの硝酸イットリウム(純度99.9%)及び0.0055モル/lの硝酸バリウムを用いて、硝酸イットリウムの混合水溶液と炭酸水素アンモニウム水溶液のモル比が、1になるように炭酸水素アンモニウム水溶液を調製し、出発原料混合水溶液中に炭酸水素アンモニウム水溶液を毎分1ミリリットルの速度で滴下して沈殿を作製した。 炭酸水素アンモニウム滴下終了後、60℃の温度で、1時間熟成処理を行った。 こうして得られた沈殿は、水洗処理とろ過を3回繰り返したのち、乾燥窒素ガス中において乾燥し、前駆体粉末を作製した。前駆体粉末の化学分析結果から、その組成は、Ce0.825(Y0.9Ba0.10.175(OH)0.02(CO0.03・HOであった。前駆体粉末は引き続き、空気中450℃の温度で12時間仮焼してセリア系化合物粉末を作成し、ホタル石単一の結晶相からなることをX線回折試験により確認したが、仮焼粉末の平均粒子径は68ナノメーターであり、柱状粒子と球状粒子が混在した粉末であった。この粉末を金型成形した後、2t/cmの静水圧成形を行った後、1000℃、4時間、空気中において焼結を行った。得られた焼結体は、理論密度の79%の密度であり、焼結体表面には多くの大きな空孔が認められ、ち密化が十分に進んでいないことが分かった。
本比較例の結果も他の比較例同様、表2にまとめて示した。
【0035】
【表2】
Figure 2004107186
【0036】
以上に示す実施例、比較例、そして、これら実施例、比較例をそれぞれ各まとめた表1、表2から明らかなように、反応溶液として調整した硝酸塩溶液とこれに沈殿剤として添加する炭酸水素アンモニウムとの混合モル比、すなわち、(硝酸塩溶液濃度)/(炭酸アンモニウム濃度)のモル比を、2.5から15、好ましくは、3から7の範囲に入るように調整することを要件事項とした、本件各発明の規定範囲を満たして成るものは、何れも仮焼した段階で単一結晶相の、50ナノメーター以下の単分散性に富んだ粉末粒子が得られ、1000℃以下の温度で焼結した段階で理論密度の98%以上にまで達する緻密化した焼結体が得られたのに対し、上記規定範囲外の比較例によるものは、非晶質を含む生成物が生じることもあり、必ずしも単一結晶相が生成するものではなく、仮焼粒子した段階の粉末粒子も、50ナノメーターを大幅に超えるものから、極めて微細な粒子までの不揃いな粉末であり、焼結段階でも密度は極めて低いものであった。
【0037】
【発明の効果】
本発明は、極めて入手容易な硝酸塩から出発し、しかもその主たる要件事項とする操作が、モル比の調整という、操作要領としては極めて平易な操作により、凝集性の少ない、単分散性に富んだナノサイズ球状セリア粒子であって、容易に相対密度が98%以上にまで緻密にすることが出来る、セリア粉末粒子を得ることに成功したものである。近年、セラミックスの技術分野においても、ますますその材料設計に際しては高精度設計が求められてきている現状にあり、かかる要求は、各種センサ、燃料電池用固体電解質、などに極めて良く利用され、供される原料粉末であるセリア系粉末粒子においてもその例外ではない。本発明は、かかる要求に応えられるセリア粉末を提供するものであり、しかも、前示したように容易に得られる材料から出発し、通常の操作、配慮によって極めて困難な課題を達成することが出来た点は、高く評価することが出来るもので、実用性に富み、その意義は大きい。今後、セリア粉末を利用する技術分野において、その発展に寄与するところ極めて大であると期待される。
【図面の簡単な説明】
【図1】本発明の製造方法による仮焼セリア粉末(実施例1)のX線回折図。
【図2】本発明の製造方法による仮焼セリア粉末(実施例1)のSEM像を示す図。
【図3】本発明の製造方法によるセリア焼結体表面(実施例1)のSEM像を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an easily sinterable nanospherical ceria-based compound powder, which is a raw material powder used for a carbon dioxide sensor, a solid electrolyte for a fuel cell, and the like.
[0002]
[Conventional technology and problems]
As a method for synthesizing a ceria-based compound powder, a method of adding oxalic acid to a mixed solution of a cerium salt and a metal salt to obtain a precipitate, a method of adding ammonia or ammonium carbonate as a precipitant, a method of using a metal alkoxide, and the like have been used. Was.
When oxalate is used as the precipitant, the resulting powder is a large aggregate of agglomerates, the crystallization temperature of which is at least 700 ° C. or higher. Since the crystallized ceria-based compound powder has a large particle size of submicron or more, when used for sensors, solid electrolytes for fuel cells, etc., pores are completely formed even at a high sintering temperature of 1500 ° C or more. However, there was a drawback that the characteristics could not be improved and the characteristics were not improved.
[0003]
When ammonia or ammonium carbonate is used as the precipitant, the ammonia component contained in the precipitant remains in the precipitated material, and when the precipitated material is dried and calcined, the particle shape becomes columnar. Therefore, since the specific surface area of the powder is reduced and the sinterability is reduced, the temperature for densification is 1600 ° C. or more.
[0004]
When an alkoxide is used as a starting material, it is possible to produce a monodispersed powder, but since the alkoxide raw material is expensive, in practical use, it is limited to application to a thin film, and the field of application of the technology is limited. This was extremely limited, which hindered practical application.
[0005]
[Means for Solving the Problems]
The present inventors, in view of the above-mentioned problems of the prior art, have conducted intensive studies and, as a result, have controlled the shape of particles that are likely to be columnar and have reduced agglomeration, and have sought a sedimentary substance necessary for producing spherical particles. By examining the composition, calcination conditions, and the like to be obtained, the production conditions for the easily sinterable spherical ceria-based compound powder having a nano-sized particle size were found, and the present invention was completed.
[0006]
That is, the gist of the present invention is that, first, (1) divalent or trivalent metal (M) nitrate and cerium nitrate are converted into MxCe1-xO2 ―Δ(However, 0.05 ≦ {x} ≦ 0.3, δ represents the amount of oxygen deficiency determined from the balance between the charge of the cation and the anion), and the mixed solution was mixed with ammonium bicarbonate as a precipitant. , [Divalent or trivalent metal (M) nitrate and cerium nitrate aqueous solution concentration] / (ammonium carbonate aqueous solution concentration) in a molar ratio of 2.5 to 15 to obtain Ce.1-xMx(OH)y(CO3)z・ H2After precipitating cerium carbonate represented by O (0.05 ≦ {x} ≦ 0.3, 0.05 ≦ {y} ≦ {1, 0.05 ≦ {z} ≦ 2), aging is performed at 50 ° C. or more and 70 ° C. Performed in the following temperature range, washed, and calcined at a temperature of 400 ° C. or more and 750 ° C. or less to form spherical particles having an average particle size of 50 nm or less, and sintering at a temperature of 1000 ° C. or less. A method for producing an easily sinterable nano-spherical ceria-based compound powder, wherein the powder is made dense to 98% or more of the relative density.
[0007]
The second is (2) divalent (M2+) And trivalent (M3+) And nitrate containing cerium (M)2+ aM3+ 1-a)xCe1-xO2 ―Δ(However, 0.01 ≦ {a} ≦ 0.5, 0.05 ≦ {x} ≦ 0.3, δ represents the amount of oxygen vacancies determined from the balance between the charge of the cation and the anion). Ammonium bicarbonate as a mixed solution and a precipitant was used.2+) And trivalent (M3+)) (Concentration of aqueous nitrate solution containing metal element) / (concentration of aqueous ammonium carbonate solution) in a molar ratio of 3 to 7,1-x(M2+ aM3+ 1-a)x(OH)y(CO3)z・ H2Cerium carbonate represented by O (where 0.01 ≦ {a} ≦ 0.5, 0.05 ≦ {x} ≦ 0.3, 0.05 ≦ y} ≦ {1, 0.05 ≦ {z} ≦ 2) was precipitated. Thereafter, aging is performed at a temperature of 55 ° C. or more and 65 ° C. or less, and after washing, calcining is performed at a temperature of 400 ° C. or more and 750 ° C. or less. This is a method for producing an easily sinterable nano-sphere ceria-based compound powder, characterized in that the powder is densified to 98% or more of the relative density by sintering at a temperature.
[0008]
In the present invention, the chemical composition of cerium carbonate, which is indispensable for producing nano spherical powder, is Ce.1-xMx(OH)y(CO3)z・ H2O (however, 0.05 ≦ {x} ≦ 0.3, 0.05 ≦ {y} ≦ {1, 0.05 ≦ {z} ≦ 2, M represents a trivalent metal element) or Ce1-x(M2+ aM3+ 1-a)x(OH)y(CO3)z・ H2O (however, 0.01 ≦ {a} ≦ 0.5, 0.05 ≦ {x} ≦ 0.3, 0.05 ≦ {y} ≦ {1, 0.05 ≦ {z} ≦ 2, M2+And M3+Represents a divalent or trivalent metal element, respectively). If the precipitated material contains an ammonia component, the precipitate is likely to grow into a columnar shape and the sinterability is reduced, which is not preferable.
[0009]
The range of a is preferably 0.01 or more and 0.5 or less, and if it is less than this range, the effect of coexisting divalent and trivalent elements will not be sufficiently exerted, and the above-mentioned sensor and solid electrolyte for fuel cells will not be obtained. When used, it is not preferable because it does not lead to improvement in characteristics. On the other hand, if it exceeds this range, the divalent and trivalent metal elements will segregate, and on the contrary, the characteristics of the sensor, the solid electrolyte for a fuel cell and the like may be deteriorated.
The range of x must be not less than 0.05 and not more than 0.3, and if it is less than this range, oxygen vacancies introduced into the calcined powder in application to the above-mentioned sensor, solid electrolyte for a fuel cell, etc. It is not preferable because the amount is insufficient and sufficient characteristics are not exhibited.
[0010]
If the amount exceeds this range, excessive oxygen vacancies are introduced into the calcined powder, which degrades the solid electrolyte characteristics for sensors and fuel cells, which is not preferable.
The range of y is preferably 0.05 or more and 1 or less. The value of y is controlled by the molar ratio between the reaction solution and the precipitant or the pH. When the value of y is below this range, a sufficient amount of precipitate is not generated, and a large amount of metal such as cerium is contained in the filtrate. It is not preferable because the elements remain, the yield is reduced, and an aggregate in which the columnar particles and the spherical particles are mixed is formed, and the sinterability is significantly reduced. On the other hand, if the ratio exceeds this range, the cohesion between the particles becomes strong, resulting in a submicron agglomerate, and the sinterability decreases, which is not preferable.
[0011]
The range of z is preferably 0.05 or more and 2 or less. The value of z can be controlled by the concentration of the precipitant, but if the value is less than 0.05, a sufficient amount of precipitate is not generated, a large amount of metal element such as cerium remains in the filtrate, and the yield is low. Is reduced, and an aggregate in which the columnar particles and the spherical particles are mixed is formed, and the sinterability is remarkably reduced. On the other hand, if the ratio exceeds this range, the cohesion between the particles becomes strong, resulting in a submicron agglomerate, and the sinterability decreases, which is not preferable.
[0012]
In addition, divalent or trivalent metal (M) nitrate and cerium nitrate are represented by MxCe1-xO2−δ (where 0.05 ≦ {x} ≦ 0.3, where δ represents the amount of oxygen vacancies determined from the balance between the charge of the cation and the anion); The molar ratio of (M) nitrate aqueous solution concentration) / (ammonium carbonate aqueous solution concentration) should be 2.5 or more and 15 or less, which is considerable. Below or above this range, a precipitate of the above-mentioned preferred composition cannot be produced, so it must be within this range. If the ratio is below or above this range, columnar particles remain in the precipitate, and the sinterability of the calcined powder is undesirably reduced.
[0013]
Furthermore, bivalent (M2+) And trivalent (M3+) And nitrate containing cerium (M)2+ aM3+ 1-a)xCe1-xO2 ―Δ(Where 0.01 ≦ {a} ≦ 0.5, 0.05 ≦ {x} ≦ 0.3, δ represents the amount of oxygen vacancies determined from the balance between the charge of the cation and the anion). [Divalent (M2+) And trivalent (M3+)) (Concentration of aqueous nitrate solution containing metal element) / (concentration of ammonium carbonate aqueous solution) must be 3 or more and 7 or less. Cannot be produced, so it must be within this range.
If the ratio is below or above this range, columnar particles remain in the precipitate, and the sinterability of the calcined powder is undesirably reduced.
[0014]
When a precipitate is prepared using a divalent or trivalent metal nitrate, a cerium nitrate and ammonium bicarbonate, aging must be performed at a temperature of 50 ° C. or more and 70 ° C. or less. If the aging temperature is lower than this range, columnar particles coexist in the precipitate, and the columnar particles remain even after calcination, which is not preferable because sinterability is reduced. On the other hand, if the temperature exceeds the above range, the spherical particles produced will aggregate, and even after calcination, the aggregation will remain, and the sinterability will be significantly reduced, which is not preferable.
[0015]
In addition, bivalent (M2+) And trivalent (M3+When a precipitate is prepared using nitrate containing a metal element, cerium nitrate and ammonium hydrogen carbonate, it is necessary to ripen at a temperature of 55 ° C. or more and 65 ° C. or less. If the aging temperature is lower than this range, columnar particles coexist in the precipitate, and the columnar particles remain even after calcination, which is not preferable because sinterability is reduced. Exceeding this temperature range is not preferred because the spherical particles generated are agglomerated and remain agglomerated even after calcination, significantly reducing sinterability. The ripening temperature is not particularly limited, but aging time of about 1 to 2 hours is sufficient because aging for a long time has only a certain effect.
[0016]
The precipitated material obtained in the present invention must be washed with water after the formation of the precipitate, and if not washed, ammonia remains in the precipitated material and columnar particles are mixed in the calcined powder, which is not preferable. Although the number of times of water washing is not particularly limited, ammonia can be almost completely removed by performing water washing three or more times. Therefore, it is preferable to perform water washing about three times.
After washing with water, the powder needs to be dried using a dry gas, etc., and calcined in air or oxygen to be crystallized to form a single phase of fluorite-type crystal structure. The temperature must be between 400 ° C. and 750 ° C. Below this temperature range, crystallization does not proceed sufficiently, and the remaining amorphous material is not preferable because it causes non-uniform grain growth during sintering and hinders densification. If the temperature exceeds this range, the particle size becomes submicron or more, a high temperature of 1500 ° C. or more is required for sintering, and pores tend to remain in the sintered body. As a result, solid electrolytes for sensors and fuel cells Is unfavorable because the characteristics of the polymer are deteriorated.
[0017]
The same effect can be obtained in the atmosphere at the time of calcination, even in air or in an oxygen stream.However, calcination in an atmosphere with a high oxygen partial pressure is necessary to completely burn the impurities contained in the precipitated material. preferable. The calcining time is not particularly limited. However, since calcining at a lower temperature tends to cause carbon dioxide gas and moisture to remain in the powder, calcining at 400 ° C. or 500 ° C. is not less than 10 hours. However, when calcining at a higher temperature, a considerable effect cannot be expected even if it is too long, and calcining for about 1 to 4 hours is sufficient.
There is no particular limitation on the sintering of the obtained nano spherical powder, but by sintering at 900 ° C. or higher in the air, a high-density sintered body having a relative density of 98% or higher can be produced.
[0018]
Next, specific embodiments of the present invention and the significance thereof will be disclosed and described with reference to Examples and Comparative Examples described below, but these examples are merely to help the present invention to be easily understood. However, this is not intended to limit the present invention. That is, the content of the present invention is not limited by these Examples and Comparative Examples.
[0019]
【Example】
Example 1;
The composition is Gd0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of gadolinium nitrate (purity 99.9%) as starting materials, An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 10, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.8Gd0.2(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at 700 ° C. for 1 hour to prepare a ceria-based compound powder, and it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. FIG. 1 shows the result of identification of the crystal phase by an X-ray diffraction test.
FIG. 2 shows a scanning electron microscope observation image (SEM image) of the obtained calcined powder. The obtained powder was spherical particles having an average particle diameter of 30 nanometers.
After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. The density of the obtained sintered body was increased to 99% of the theoretical density, no large pores were recognized on the surface of the sintered body, and it was found that the densification was progressing. FIG. 3 shows an SEM image of the surface of the sintered body, and Table 1 summarizes the above results.
[0020]
Example 2;
The composition is Gd0.1Ce0.9O1.95Using 0.45 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of gadolinium nitrate (purity 99.9%) as starting materials, an aqueous gadolinium nitrate solution was prepared. An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 8, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder.
From the chemical analysis result of the obtained precursor powder, the composition was Ce0.9Gd0.1(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at a temperature of 700 ° C. for 1 hour to prepare a ceria-based compound powder. Further, the calcined powder was composed of a single fluorite crystal phase, as in FIG. 1 of Example 1, and was spherical particles having an average particle diameter of 30 nanometers, as in FIG. 2 of Example 1.
After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. The density of the obtained sintered body was increased to 99% of the theoretical density as in Example 1, and no large pores were observed on the surface of the sintered body, indicating that the densification was progressing. . In this example, as in Example 1, the above results are summarized in Table 1.
[0021]
Example 3;
Formula Y0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of yttrium nitrate (purity 99.9%) as starting materials, an aqueous solution of yttrium nitrate was used. An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 3, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of the starting materials at a rate of 1 ml / min to produce a precipitate. After the completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 65 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder.
From the chemical analysis result of the obtained precursor powder, the composition was Ce0.8Y0.2(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at a temperature of 700 ° C. for 1 hour to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder had a single fluorite crystal phase. The average particle size of the obtained calcined powder was 35 nanometers, and was the same spherical particle as in Example 1.後 After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. The sintered body thus obtained has a density of 99% of the theoretical density as in Example 1, no large pores are observed on the surface of the sintered body, and it is understood that the densification has progressed. Was.
In this example, the results obtained in the same manner as the other examples are shown in Table 1.
[0022]
Example 4;
Formulation is Sm0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of samarium nitrate (purity 99.9%) as starting materials, An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 3, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of the starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging treatment was performed at a temperature of 55 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder.
From the chemical analysis result of the obtained precursor powder, the composition was Ce0.8Sm0.2(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at 450 ° C. for 12 hours to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder had a single fluorite crystal phase. The average particle size of the obtained calcined powder was 25 nanometers, and was spherical particles as in Example 1.後 After molding this powder in a mold, 2t / cm2Was sintered in air at 900 ° C. for 4 hours. The sintered body thus obtained has a density of 99% of the theoretical density as in Example 1, no large pores are observed on the surface of the sintered body, and it is understood that the densification has progressed. Was.
In this example, as in the other examples, the obtained results are summarized in Table 1.
[0023]
Example 5;
The composition is (Sm0.9Sr0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l cerium nitrate (purity 99.99%), 0.05 mol / l samarium nitrate (purity 99.9%) and 0.0055 mol / l Using strontium nitrate, an aqueous solution of ammonium bicarbonate is prepared so that the molar ratio of the aqueous solution of samarium nitrate and the aqueous solution of ammonium hydrogen carbonate becomes 5, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. After the completion of dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 62 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.825(Sm0.9Sr0.1)0.175(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at a temperature of 700 ° C. for 1 hour to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder had a single fluorite crystal phase. The average particle size of the calcined powder was 40 nanometers, and was spherical particles as in Example 1. After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. As in Example 1, the sintered body thus obtained was densified to 98% of the theoretical density, no large pores were observed on the surface of the sintered body, and it was found that the densification was progressing. Was.
Also in the present example, the above results are summarized in Table 1.
[0024]
Example 6;
The composition is (Gd0.9Sr0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l cerium nitrate (purity 99.99%), 0.05 mol / l gadolinium nitrate (purity 99.9%) and 0.0055 mol / l Using strontium nitrate, an aqueous solution of ammonium bicarbonate is prepared so that the molar ratio of the aqueous solution of gadolinium nitrate and the aqueous solution of ammonium hydrogen carbonate becomes 6, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of the starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. After the completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.825(Gd0.9Sr0.1)0.175(OH)0.2(CO3)1.4・ H2O.
The precursor powder was subsequently calcined in air at a temperature of 700 ° C. for 1 hour to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder had a single fluorite crystal phase. The average particle size of the calcined powder was 35 nanometers, and was spherical particles as in Example 1. After molding this powder in a mold, 2t / cm2After sintering in air at 1000 ° C. for 4 hours after the isostatic pressing, the obtained sintered body was densified to 99% of the theoretical density similarly to Example 1. No large pores were found on the surface of the sintered body, indicating that the densification was progressing.
Also in the present example, the above results are summarized in Table 1.
[0025]
Example 7;
The composition is (Y0.9Ba0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l of cerium nitrate (purity 99.99%), 0.05 mol / l of yttrium nitrate (purity 99.9%) and 0.0055 mol / l of Using barium nitrate, an aqueous solution of ammonium hydrogen carbonate is prepared so that the molar ratio of the aqueous solution of yttrium nitrate and the aqueous solution of ammonium hydrogen carbonate becomes 4, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. (4) After the completion of dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 57 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.825(Y0.9Ba0.1)0.175(OH)0.2(CO3)1.4・ H2O. The precursor powder was then calcined in air at 450 ° C. for 12 hours to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder had a single fluorite crystal phase. The average particle size of the calcined powder was 30 nanometers, and was spherical particles as in Example 1. After molding this powder in a mold, 2t / cm2After sintering in air at 900 ° C. for 4 hours after the isostatic pressing, the obtained sintered body was densified to 99% of the theoretical density similarly to Example 1. No large pores were found on the surface of the sintered body, indicating that the densification was progressing.
Also in the present example, the above results are summarized in Table 1.
[0026]
[Table 1]
Figure 2004107186
[0027]
Comparative Example 1;
The composition is Gd0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of gadolinium nitrate (purity 99.9%) as starting materials, a mixture of gadolinium nitrate was used. An aqueous solution of ammonium hydrogen carbonate was prepared so that the molar ratio of the aqueous solution and the aqueous solution of ammonium hydrogen carbonate was 25, and the aqueous solution of ammonium hydrogen carbonate was dropped into the aqueous solution of the mixture of the starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the result of chemical analysis of the obtained precursor powder, its composition was (NH4)0.15Ce0.8Gd0.2(OH)0.35(CO3)1.4・ H2O. The precursor powder was then calcined in air at a temperature of 700 ° C. for 1 hour to obtain a ceria-based compound powder. As in Example 1, it was confirmed by an X-ray diffraction test that the calcined powder was composed of a single fluorite crystal phase. However, the calcined powder was mainly composed of columnar particles, and the average particle size was 100 nanometers.
After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours, and the density of the obtained sintered body was only 79% of the theoretical density. Many large pores were observed on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
Table 2 summarizes the results of this comparative example.
[0028]
Comparative Example 2;
The composition is Gd0.1Ce0.9O1.95Using 0.45 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of gadolinium nitrate (purity 99.9%) as starting materials, An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 1, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the result of chemical analysis of the obtained precursor powder, its composition was (NH4)0.09Ce0.9Gd0.1(OH)0.02(CO3)0.4・ H2O. The precursor powder was then calcined in air at a temperature of 700 ° C. for 1 hour to obtain a ceria-based compound powder. As in Example 1, the calcined powder was confirmed to be composed of a single fluorite crystal phase by an X-ray diffraction test. However, the calcined powder obtained was mainly composed of columnar particles, and the average particle diameter was 110. It was nanometer.
After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. The density of the obtained sintered body was only 75% of the theoretical density, and many large pores were recognized on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in Comparative Example 1.
[0029]
Comparative Example 3;
Formula Y0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of yttrium nitrate (purity 99.9%) as starting materials, an aqueous solution of yttrium nitrate was used. An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 10, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 65 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.8Y0.2(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined in air at a temperature of 300 ° C. for 1 hour to obtain a ceria-based compound powder. The calcined powder was amorphous, and the crystal phase could not be confirmed by an X-ray diffraction test. The average particle size of the obtained calcined powder was 10 nanometers, and the shape of the particles was spherical.2After sintering in air at 1000 ° C. for 4 hours, the density of the sintered body is only 70% of the theoretical density. Large pores were observed, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in the other comparative examples.
[0030]
Comparative Example 4
Formulation is Sm0.2Ce0.8O1.9Using 0.20 mol / l of cerium nitrate (purity 99.99%) and 0.05 mol / l of samarium nitrate (purity 99.9%) as starting materials, An aqueous solution of ammonium hydrogencarbonate was prepared so that the molar ratio of the aqueous solution of ammonium hydrogencarbonate was 10, and an aqueous solution of ammonium hydrogencarbonate was dropped into the mixed aqueous solution of starting materials at a rate of 1 milliliter per minute to produce a precipitate. After the completion of ammonium hydrogen carbonate dropping, aging treatment was performed at a temperature of 55 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder.か ら From the result of chemical analysis of the obtained precursor powder, its composition is Ce0.8Sm0.2(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined at a temperature of 1000 ° C. for 1 hour in air to produce a ceria-based compound powder, and as in Example 1, it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. However, the average particle size of the obtained calcined powder was 350 nanometers, and the primary particles were aggregated particles which were strongly aggregated. After molding this powder in a mold, 2t / cm2After performing isostatic pressing of 1100 ° C. for 4 hours in air, the density of the sintered body was 72% of the theoretical density. Many large pores were observed on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
Table 2 also shows the results of this comparative example, as in the other comparative examples.
[0031]
Comparative Example 5;
The composition is (Sm0.9Sr0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l cerium nitrate (purity 99.99%), 0.05 mol / l samarium nitrate (purity 99.9%) and 0.0055 mol / l Using strontium nitrate, an aqueous solution of ammonium bicarbonate is prepared so that the molar ratio of the aqueous solution of samarium nitrate and the aqueous solution of ammonium hydrogen carbonate becomes 5, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. (4) After the completion of dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 80 ° C. for 1 hour.沈 殿 The obtained precipitate was subjected to water washing and filtration three times, and then dried in a dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.825(Sm0.9Sr0.1)0.175(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined at a temperature of 700 ° C. for 1 hour in air to prepare a ceria-based compound powder, and as in Example 1, it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. However, the average particle diameter of the calcined powder was 90 nanometers and the primary particles were aggregated particles. After molding this powder in a mold, 2t / cm2And then sintered in air at 1000 ° C. for 4 hours. The density of the sintered body is 79% of the theoretical density, and many large voids are formed on the surface of the sintered body. Holes were observed, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in the other comparative examples.
[0032]
Comparative Example 6;
The composition is (Sm0.9Sr0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l cerium nitrate (purity 99.99%), 0.05 mol / l samarium nitrate (purity 99.9%) and 0.0055 mol / l Using strontium nitrate, an aqueous solution of ammonium bicarbonate is prepared so that the molar ratio of the aqueous solution of samarium nitrate and the aqueous solution of ammonium hydrogen carbonate becomes 5, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. (4) After completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 40 ° C. for 1 hour.沈 殿 The obtained precipitate was subjected to water washing and filtration three times, and then dried in a dry nitrogen gas to prepare a precursor powder. From the chemical analysis result of the obtained precursor powder, the composition was Ce0.825(Sm0.9Sr0.1)0.175(OH)0.2(CO3)1.4・ H2O. The precursor powder was subsequently calcined at a temperature of 700 ° C. for 1 hour in air to prepare a ceria-based compound powder, and as in Example 1, it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. However, the average particle size of the calcined powder was 100 nanometers, and the columnar particles and the spherical particles coexisted to form aggregated associated particles. After molding this powder in a mold, 2t / cm2And then sintered in air at 1000 ° C. for 4 hours. The density of the sintered body was 74% of the theoretical density. Many large pores were observed on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in the other comparative examples.
[0033]
Comparative Example 7;
The composition is (Gd0.9Sr0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l of cerium nitrate (purity 99.99%), 0.05 mol / l of gadolinium nitrate (purity 99.9%) and 0.0055 mol / l of Using strontium nitrate, an aqueous solution of ammonium bicarbonate is prepared so that the molar ratio of the aqueous solution of gadolinium nitrate and the aqueous solution of ammonium hydrogen carbonate is 10, and the aqueous solution of ammonium hydrogen carbonate is mixed with the aqueous solution of starting materials at a rate of 1 ml / min. A precipitate was prepared by dropwise addition. After the completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 60 ° C. for 1 hour. The precipitate thus obtained was washed and filtered three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the results of the chemical analysis of the precursor powder, the composition was (NH4)0.15Ce0.825(Gd0.9Sr0.1)0.175(OH)0.35(CO3)1.4・ H2O. The precursor powder was subsequently calcined at a temperature of 700 ° C. for 1 hour in air to prepare a ceria-based compound powder, and as in Example 1, it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. However, the average particle size was 110 nanometers, and the form of the powder was mainly from columnar particles. After molding this powder in a mold, 2t / cm2Was performed in air at 1000 ° C. for 4 hours, and the sintered body had a density of only 72% of the theoretical density. Many large pores were observed on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in the other comparative examples.
[0034]
Comparative Example 8;
The composition is (Y0.9Ba0.1)0.175Ce0.825O1.9As starting materials, 0.26 mol / l cerium nitrate (purity 99.99%), 0.05 mol / l yttrium nitrate (purity 99.9%) and 0.0055 mol / l Using barium nitrate, an aqueous solution of ammonium bicarbonate was prepared so that the molar ratio of the mixed aqueous solution of yttrium nitrate and the aqueous solution of ammonium bicarbonate was 1, and the aqueous solution of ammonium bicarbonate was added to the mixed aqueous solution of starting materials at 1 ml / min. A precipitate was made by dropping at a rate. (4) After completion of the dropping of ammonium bicarbonate, aging treatment was performed at a temperature of 60 ° C. for 1 hour.沈 殿 The precipitate thus obtained was subjected to water washing and filtration three times, and then dried in dry nitrogen gas to prepare a precursor powder. From the result of the chemical analysis of the precursor powder, the composition was Ce0.825(Y0.9Ba0.1)0.175(OH)0.02(CO3)0.03・ H2O. The precursor powder was subsequently calcined in air at 450 ° C. for 12 hours to form a ceria-based compound powder, and it was confirmed by an X-ray diffraction test that the precursor powder consisted of a single fluorite crystal phase. Was 68 nanometers in average, and was a powder in which columnar particles and spherical particles were mixed. After molding this powder in a mold, 2t / cm2Was sintered in air at 1000 ° C. for 4 hours. The obtained sintered body had a density of 79% of the theoretical density, and many large pores were recognized on the surface of the sintered body, indicating that the densification was not sufficiently advanced.
The results of this comparative example are also shown in Table 2 as in the other comparative examples.
[0035]
[Table 2]
Figure 2004107186
[0036]
As is clear from Tables 1 and 2 in which the above-described Examples and Comparative Examples, and these Examples and Comparative Examples are summarized, respectively, a nitrate solution prepared as a reaction solution and hydrogen carbonate added thereto as a precipitant are added. The requirement is to adjust the molar ratio of mixture with ammonium, that is, the molar ratio of (nitrate solution concentration) / (ammonium carbonate concentration) to fall within the range of 2.5 to 15, preferably 3 to 7. In any of the inventions satisfying the specified range of the present invention, powder particles having a single crystal phase and having a high monodispersity of 50 nm or less can be obtained at the stage of calcination, and a temperature of 1000 ° C or less. In the stage of sintering, a densified sintered body that reaches 98% or more of the theoretical density was obtained, whereas in the case of the comparative example outside the above specified range, a product containing an amorphous material was generated. There is always A single crystal phase is not generated, and the powder particles at the stage of calcined particles are irregular powders ranging from significantly exceeding 50 nanometers to extremely fine particles, and the density is extremely high even at the sintering stage. It was low.
[0037]
【The invention's effect】
The present invention starts from a nitrate which is extremely easily available, and furthermore, the operation which is the main requirement is adjustment of a molar ratio. It has succeeded in obtaining ceria powder particles which are nano-sized spherical ceria particles and whose relative density can be easily increased to 98% or more. In recent years, even in the technical field of ceramics, high-precision design has been increasingly required for material design, and such requirements have been extremely well used for various sensors, solid electrolytes for fuel cells, and the like. The ceria-based powder particles, which are raw material powders, are no exception. The present invention provides a ceria powder that can meet such demands, and can achieve extremely difficult problems by ordinary operations and considerations, starting from easily obtainable materials as described above. The point that can be highly evaluated is rich in practicality, and its significance is great. In the future, in the technical field using ceria powder, it is expected to be extremely large in contributing to its development.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction diagram of a calcined ceria powder (Example 1) produced by the production method of the present invention.
FIG. 2 is a view showing an SEM image of a calcined ceria powder (Example 1) according to the production method of the present invention.
FIG. 3 is a view showing an SEM image of a ceria sintered body surface (Example 1) according to a production method of the present invention.

Claims (2)

2価または3価の金属(M)硝酸塩とセリウムの硝酸塩をMCe1−x ―δ(ただし、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合し、この混合溶液と沈殿剤として炭酸水素アンモニウムを、(2価または3価の金属硝酸塩水溶液濃度)/(炭酸アンモニウム水溶液濃度)のモル比が2.5から15になるように混合して、Ce1−x(OH)(CO・HO(ただし、0.05≦ x ≦0.3、0.05≦ y ≦ 1、0.05≦ z ≦ 2)で表されるセリウムカーボネートを沈殿させた後に、熟成を50℃以上70℃以下の温度で行い、洗浄後、400℃以上750℃以下の温度で仮焼することで、平均粒径50ナノメーター以下の球状粒子となし、1000℃以下の温度で焼結することで、理論密度の98%以上にまでち密化することを特徴とする、易焼結性ナノ球状セリア系化合物粉末の製造方法。M x Ce 1-x O 2 (where 0.05 ≦ x ≦ 0.3, where δ is determined from the balance between the charge of the cation and the anion) The mixture solution and ammonium bicarbonate as a precipitant are mixed at a molar ratio of (divalent or trivalent metal nitrate aqueous solution concentration) / (ammonium carbonate aqueous solution concentration). Mixing is performed so as to be 2.5 to 15, and Ce 1-x M x (OH) y (CO 3 ) z · H 2 O (provided that 0.05 ≦ x ≦ 0.3, 0.05 ≦ y ≦ 1, 0.05 ≦ z ≦ 2) After precipitating the cerium carbonate represented by 2), aging is performed at a temperature of 50 ° C or more and 70 ° C or less, and after washing, calcined at a temperature of 400 ° C or more and 750 ° C or less. By doing, the average particle size is 50 nanometers or less Spherical particles and without, by sintering at 1000 ° C. or less of the temperature, characterized in that the densified up to 98% of the theoretical density, the production method of the sinterability nano spherical ceria compound powder. 2価(M2+)と3価(M3+)の金属元素を含む硝酸塩とセリウムの硝酸塩を(M2+ 3+ 1−aCe1−x ―δ(ただし、0.01≦ a ≦0.5、0.05≦ x ≦0.3、δはカチオンとアニオンの電荷のバランスから決定される酸素欠陥量を表す)となるように混合し、この混合溶液と沈殿剤として炭酸水素アンモニウムを、(2価(M2+)と3価(M3+)の金属元素を含む硝酸塩水溶液濃度)/(炭酸アンモニウム水溶液濃度)のモル比が3から7になるように混合して、Ce1−x(M2+ 3+ 1−a(OH)(CO・HO(ただし、0.05≦ x ≦0.3、0.05≦ y ≦ 1、0.05≦ z ≦2)で表されるセリウムカーボネートを沈殿させた後に、熟成を55℃以上65℃以下の温度で行い、洗浄後、400℃以上750℃以下の温度で仮焼することで、平均粒径50ナノメーター以下の球状粒子となし、さらに1000℃以下の温度で焼結することで、理論密度の98%以上にまでち密にすることを特徴とする、易焼結性ナノ球状セリア系化合物粉末の製造方法。Nitrate containing divalent (M 2+ ) and trivalent (M 3+ ) metal elements and cerium nitrate are converted into (M 2+ a M 3 + 1 -a ) x Ce 1 -x O 2 (0.01 ≦ a ≤ 0.5, 0.05 ≤ x ≤ 0.3, δ represents the amount of oxygen vacancies determined from the balance between the charge of the cation and the anion). Ammonium hydrogen is mixed such that the molar ratio of (aqueous nitrate solution containing divalent (M 2+ ) and trivalent (M 3+ ) metal elements) / (aqueous ammonium carbonate solution) is 3 to 7, and Ce is mixed. 1-x (M 2+ a M 3 + 1 -a ) x (OH) y (CO 3 ) z · H 2 O (provided that 0.05 ≦ x ≦ 0.3, 0.05 ≦ y ≦ 1, 0. After precipitating the cerium carbonate represented by 05 ≦ z ≦ 2), The cleaning is performed at a temperature of 55 ° C to 65 ° C, and after cleaning, the particles are calcined at a temperature of 400 ° C to 750 ° C to form spherical particles having an average particle diameter of 50 nanometers or less. A method for producing an easily sinterable nano-spherical ceria-based compound powder, wherein the density is increased to 98% or more of the theoretical density by sintering.
JP2002275987A 2002-09-20 2002-09-20 Method for producing easily sinterable nanospherical ceria compound powder Expired - Lifetime JP3861144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275987A JP3861144B2 (en) 2002-09-20 2002-09-20 Method for producing easily sinterable nanospherical ceria compound powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275987A JP3861144B2 (en) 2002-09-20 2002-09-20 Method for producing easily sinterable nanospherical ceria compound powder

Publications (2)

Publication Number Publication Date
JP2004107186A true JP2004107186A (en) 2004-04-08
JP3861144B2 JP3861144B2 (en) 2006-12-20

Family

ID=32272012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275987A Expired - Lifetime JP3861144B2 (en) 2002-09-20 2002-09-20 Method for producing easily sinterable nanospherical ceria compound powder

Country Status (1)

Country Link
JP (1) JP3861144B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022835A (en) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd Rare earth element-added cerium oxide powder containing aluminum oxide
JP2007048653A (en) * 2005-08-11 2007-02-22 Kyocera Corp Solid electrolyte body and fuel battery cell
JP2007051057A (en) * 2005-08-12 2007-03-01 Degussa Ag Cerium oxide powder and cerium oxide dispersion liquid
CN1321896C (en) * 2004-04-14 2007-06-20 北京方正稀土科技研究所有限公司 Process for preparing nano cerium dioxide
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
KR100815051B1 (en) 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium carbonate nano powder
JP2008260673A (en) * 2007-03-20 2008-10-30 National Institute For Materials Science Rare earth element-doped ceria sintered body and its producing method
JP2009508795A (en) * 2005-09-20 2009-03-05 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
US7927391B2 (en) * 2005-07-20 2011-04-19 Treibacher Industrie Ag Ceria based glass polishing composition and a process for the manufacture thereof
CN102285678A (en) * 2011-06-09 2011-12-21 北京大学 Method for preparing cerium oxide nano particles and antioxidation use thereof
US8328893B2 (en) 2006-04-21 2012-12-11 Hitachi Chemical Co., Ltd. Method of producing oxide particles, slurry, polishing slurry, and method of polishing substrate
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same
JP2018508953A (en) * 2015-02-06 2018-03-29 シーリーズ インテレクチュアル プロパティ カンパニー リミティド Electrolyte formation method
US10978727B2 (en) 2015-02-06 2021-04-13 Ceres Intellectual Property Company Limited Electrolyte forming process for a metal-supported solid-oxide fuel cell
WO2023078944A1 (en) * 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide
WO2023078940A1 (en) * 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide
WO2023109515A1 (en) * 2021-12-14 2023-06-22 安集微电子(上海)有限公司 Method for synthesizing cerium oxide and chemical mechanical polishing solution

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321896C (en) * 2004-04-14 2007-06-20 北京方正稀土科技研究所有限公司 Process for preparing nano cerium dioxide
KR100815051B1 (en) 2005-06-22 2008-03-18 주식회사 엘지화학 Method for preparing cerium carbonate nano powder
JP2007022835A (en) * 2005-07-14 2007-02-01 Sumitomo Osaka Cement Co Ltd Rare earth element-added cerium oxide powder containing aluminum oxide
US7927391B2 (en) * 2005-07-20 2011-04-19 Treibacher Industrie Ag Ceria based glass polishing composition and a process for the manufacture thereof
JP2007048653A (en) * 2005-08-11 2007-02-22 Kyocera Corp Solid electrolyte body and fuel battery cell
JP2007051057A (en) * 2005-08-12 2007-03-01 Degussa Ag Cerium oxide powder and cerium oxide dispersion liquid
JP4653705B2 (en) * 2005-08-12 2011-03-16 エボニック デグサ ゲーエムベーハー Cerium oxide powder and cerium oxide dispersion
JP2009508795A (en) * 2005-09-20 2009-03-05 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
JP4917098B2 (en) * 2005-09-20 2012-04-18 エルジー・ケム・リミテッド Cerium carbonate powder and production method, cerium oxide powder produced therefrom and production method, and CMP slurry containing the same
US8361419B2 (en) 2005-09-20 2013-01-29 Lg Chem, Ltd. Cerium carbonate powder, method for preparing the same, cerium oxide powder made therefrom, method for preparing the same, and CMP slurry comprising the same
JP2007230800A (en) * 2006-02-28 2007-09-13 Nissan Motor Co Ltd Method for producing rare earth oxide
US8328893B2 (en) 2006-04-21 2012-12-11 Hitachi Chemical Co., Ltd. Method of producing oxide particles, slurry, polishing slurry, and method of polishing substrate
JP2008260673A (en) * 2007-03-20 2008-10-30 National Institute For Materials Science Rare earth element-doped ceria sintered body and its producing method
JP2013505884A (en) * 2009-09-10 2013-02-21 中国砿業大学(北京) Composite sintering aid and method for producing nanocrystalline ceramic at low temperature using the same
CN102285678A (en) * 2011-06-09 2011-12-21 北京大学 Method for preparing cerium oxide nano particles and antioxidation use thereof
JP2018508953A (en) * 2015-02-06 2018-03-29 シーリーズ インテレクチュアル プロパティ カンパニー リミティド Electrolyte formation method
US10897056B2 (en) 2015-02-06 2021-01-19 Ceres Intellectual Property Company Limited Electrolyte forming process
US10978727B2 (en) 2015-02-06 2021-04-13 Ceres Intellectual Property Company Limited Electrolyte forming process for a metal-supported solid-oxide fuel cell
WO2023078944A1 (en) * 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide
WO2023078940A1 (en) * 2021-11-08 2023-05-11 Rhodia Operations Cerium-gadolinium composite oxide
WO2023109515A1 (en) * 2021-12-14 2023-06-22 安集微电子(上海)有限公司 Method for synthesizing cerium oxide and chemical mechanical polishing solution

Also Published As

Publication number Publication date
JP3861144B2 (en) 2006-12-20

Similar Documents

Publication Publication Date Title
JP3861144B2 (en) Method for producing easily sinterable nanospherical ceria compound powder
Li et al. Characterization and sintering of nanocrystalline CeO2 powders synthesized by a mimic alkoxide method
JP4992003B2 (en) Method for producing metal oxide fine particles
TWI450864B (en) Method for preparing cerium carbonate, method for cerium oxide prepared and crystalline cerium oxide
JPH07187613A (en) Metal oxide power and its production
JP2528043B2 (en) Sintered ceramic body and manufacturing method thereof
Li et al. 10‐mol%‐Gd2O3‐Doped CeO2 solid solutions via carbonate coprecipitation: a comparative study
TW200844071A (en) Complex oxide powder, method for preparing the complex oxide powder, ceramic composition and ceramic electronic component comprising the complex oxide powder
JP3793802B2 (en) Production method of ceria powder with individual particles separated into nano size
JP2010105892A (en) Zirconia fine particle and method for producing the same
US20070086941A1 (en) Fine barium titanate particles
JP3713758B2 (en) Method for producing iron-containing composite oxide powder
US8431109B2 (en) Process for production of composition
Li et al. Sc2O3 nanopowders via hydroxyl precipitation: effects of sulfate ions on powder properties
US8715614B2 (en) High-gravity reactive precipitation process for the preparation of barium titanate powders
JP4162599B2 (en) Cerium-based composite oxide, its sintered body and production method
JP4729700B2 (en) Dy-doped nano ceria-based sintered body
Li et al. Wet‐Chemical Routes Leading to Scandia Nanopowders
JP4195931B2 (en) Scandium compound ultrafine particles and method for producing the same
JP2002020122A (en) Gallium compound powder, gallium oxide powder and method for producing the same
JP3906353B2 (en) YAG fine powder manufacturing method
JP5140909B2 (en) Rare earth element-containing cerium oxide powder containing aluminum oxide
JP2843908B2 (en) Method for producing yttrium oxide fine powder
KR101249991B1 (en) Method for Preparing Cerium Carbonate Powder Having Various Shape
CN112218841A (en) Zinc oxide powder for use in zinc oxide sintered body, and processes for producing these

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Ref document number: 3861144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term