JP3280689B2 - Method for producing round rare earth oxide - Google Patents

Method for producing round rare earth oxide

Info

Publication number
JP3280689B2
JP3280689B2 JP06504492A JP6504492A JP3280689B2 JP 3280689 B2 JP3280689 B2 JP 3280689B2 JP 06504492 A JP06504492 A JP 06504492A JP 6504492 A JP6504492 A JP 6504492A JP 3280689 B2 JP3280689 B2 JP 3280689B2
Authority
JP
Japan
Prior art keywords
rare earth
oxalate
ion
carbonate
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06504492A
Other languages
Japanese (ja)
Other versions
JPH05270822A (en
Inventor
博章 藤井
彰夫 横手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP06504492A priority Critical patent/JP3280689B2/en
Publication of JPH05270822A publication Critical patent/JPH05270822A/en
Application granted granted Critical
Publication of JP3280689B2 publication Critical patent/JP3280689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/241Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion containing two or more rare earth metals, e.g. NdPrO3 or LaNdPrO3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/218Yttrium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非凝集性丸形結晶質希
土類酸化物の製造方法に関する。
The present invention relates to a method for producing a non-cohesive round crystalline rare earth oxide.

【0002】[0002]

【従来の技術】希土類酸化物は、カラーテレビ、照明用
ランプ等の蛍光体材料、機能性セラミックス用材料、電
子材料等として多用されており、かような用途において
は高純度であること、均一な粒度分布を有すること、か
さ密度が大きいこと、及び充填性、流動性、反応操作性
等が良いこと等が要求される。
2. Description of the Related Art Rare earth oxides are widely used as phosphor materials for color televisions, lighting lamps, etc., materials for functional ceramics, electronic materials, and the like. It is required to have a good particle size distribution, a high bulk density, and good filling properties, fluidity, reaction operability, and the like.

【0003】従来の希土類酸化物は、粒形が不定形であ
り、またその形状も針状、棒状等でかさ密度も小さく、
粒径も不揃いで不均一かつ広い粒度分布を有しているた
め、前記用途に使用する際には分級、破砕等の工程によ
り均一な粒径にする必要があり、操作の煩雑化、不純物
の混入等の問題がある。
[0003] Conventional rare earth oxides have an irregular grain shape, and have a needle-like or rod-like shape with a low bulk density.
Since the particle size is also uneven and has a non-uniform and wide particle size distribution, when used for the above-mentioned applications, it is necessary to make the particle size uniform by a process such as classification and crushing. There is a problem such as mixing.

【0004】また従来の希土類酸化物の製造方法として
は、鉱酸水溶液と苛性ソーダ、アンモニア水等とを反応
させて得られる水酸化物、鉱酸水溶液とシュウ酸、シュ
ウ酸アンモニウム等とを反応させて得られるシュウ酸希
土類粒子、又は鉱酸水溶液と炭酸アンモニウム、炭酸水
素アンモニウム等とを反応させて得られる炭酸希土類粒
子を濾別、洗浄、乾燥、焼成等により希土類酸化物とす
る方法が知られている。しかしながら、該方法により得
られる希土類酸化物の粒形は不均一であり、粒度分布も
不揃いであるという問題がある。
[0004] Further, as a conventional method for producing a rare earth oxide, a hydroxide obtained by reacting a mineral acid aqueous solution with caustic soda, aqueous ammonia, or the like, a mineral acid aqueous solution and oxalic acid, ammonium oxalate, or the like are reacted. A method is known in which rare earth oxalate particles obtained by reacting an aqueous solution of mineral acid or a mineral acid solution with ammonium carbonate, ammonium hydrogen carbonate, etc. are filtered, washed, dried, calcined, etc. to obtain a rare earth oxide. ing. However, there is a problem in that the grain shape of the rare earth oxide obtained by the method is non-uniform and the particle size distribution is not uniform.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、均一
な粒度分布を有する非凝集性丸形結晶質希土類酸化物の
製造方法を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention is to provide a method of <br/> manufacturing non-cohesive round crystalline rare earth oxide having a uniform particle size distribution.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

【0007】発明によれば、希土類イオンとシュウ酸
イオンとを反応させて得たシュウ酸希土類化合物と、希
土類イオンと炭酸イオンとを反応させて得た炭酸希土類
化合物とを混合し、該混合物を反応・熟成させて得られ
る希土類粒子を焼成させることを特徴とする非凝集性結
晶質希土類酸化物の製造方法が提供される。
According to the present invention, a rare earth oxalate compound obtained by reacting a rare earth ion with an oxalate ion is mixed with a rare earth carbonate compound obtained by reacting a rare earth ion with a carbonate ion. And a method for producing a non-aggregated crystalline rare earth oxide, characterized by calcining rare earth particles obtained by reacting and ripening.

【0008】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.

【0009】本発明の製造方法により得られる非凝集性
丸形結晶質希土類酸化物(以下、丸形希土類酸化物と略
す)としては、平均粒径が0.1〜10μmであり、非
凝集性及び丸形形状を有するものが挙げられる
The non-agglomerated round crystalline rare earth oxide (hereinafter abbreviated as round rare earth oxide) obtained by the production method of the present invention has an average particle diameter of 0.1 to 10 μm, And those having a round shape.

【0010】本発明において非凝集性とは、個々の粒子
が独立して存在しており、実質的に凝集部分がないこと
を意味する。また丸形とは、流動性、かさ密度を損なわ
ない程度に丸みがあり、楕円形状、中央部に空隙部を有
するドーナツ状、扁平球状、円盤状等のほぼ丸形を呈し
ておればよく、厳密に球形である必要はない。また好ま
しくは前記各形状の混合物として用いるのが望ましく、
特に前記楕円形状は、短径に対する長径の比が好ましく
は2.0、特に好ましくは1.5を超えるものであるの
が望ましい。
[0010] In the present invention, non-aggregating means that individual particles are present independently and have substantially no aggregated portion. In addition, the round shape, the fluidity, there is a roundness to the extent that the bulk density is not impaired, elliptical shape, donut shape having a void portion in the center, a flat sphere, a disk shape, etc. It need not be strictly spherical. It is also desirable to use a mixture of the above shapes,
In particular, the elliptical shape desirably has a ratio of the major axis to the minor axis of preferably 2.0, particularly preferably more than 1.5.

【0011】前記丸形希土類酸化物は、イットリウム、
又は原子番号57〜71のランタノイドの酸化物であれ
ば特に限定されるものではない。
The round rare earth oxide is yttrium,
The oxide is not particularly limited as long as it is an oxide of a lanthanoid having an atomic number of 57 to 71.

【0012】前記丸形希土類酸化物の平均粒径は、体積
基準(D50)で0.1〜10μmであり、特に好まし
くは0.5〜5μmである。前記平均粒径が0.1μm
未満では取扱いが困難となり、流動性に劣る。また10
μmを超えると工業的製造が困難となる。
The average particle size of the round rare earth oxide is 0.1 to 10 μm, particularly preferably 0.5 to 5 μm on a volume basis (D50). The average particle size is 0.1 μm
If it is less than 10, the handling becomes difficult and the fluidity is poor. Also 10
If it exceeds μm, industrial production becomes difficult.

【0013】本発明の製造方法は、希土類イオンとシュ
ウ酸イオンとを反応させて得たシュウ酸希土類化合物
と、希土類イオンと炭酸イオンとを反応させて得た炭酸
希土類化合物とを混合し、反応・熟成、焼成することを
特徴とする。
[0013] In the production method of the present invention , a rare earth oxalate compound obtained by reacting a rare earth ion with an oxalate ion is mixed with a rare earth carbonate compound obtained by reacting a rare earth ion with a carbonate ion. -It is characterized by aging and firing.

【0014】本発明の製造方法において、前記シュウ酸
希土類化合物及び炭酸希土類化合物を調製する際に用い
る前記希土類イオンは、通常の希土類元素の塩化物、硝
酸塩、硫酸塩等の可水溶性の希土類塩水溶液として用い
ることができ、具体的には硝酸イットリウム、硝酸ユー
ロピウム、硝酸セリウム、硝酸ランタン、塩化イットリ
ウム、塩化ユーロピウム、塩化セリウム、塩化ランタン
等を好ましく挙げることができ、使用に際しては単独で
も2種以上混合して用いてもよい。シュウ酸イオン及び
炭酸イオンと反応させる際の前記希土類イオンの濃度は
特に限定されないが、該濃度が低すぎると処理液量が増
加し工業的製造に適さないので、好ましくは0.05mo
l/l以上、特に好ましくは0.1〜1.0mol/lの濃度
範囲で使用するのが望ましい。
In the production method of the present invention, the rare earth ions used in preparing the rare earth oxalate compound and the rare earth carbonate compound are usually water-soluble rare earth salts such as chlorides, nitrates and sulfates of rare earth elements. It can be used as an aqueous solution, and specific examples thereof include preferably yttrium nitrate, europium nitrate, cerium nitrate, lanthanum nitrate, yttrium chloride, europium chloride, cerium chloride, and lanthanum chloride. You may mix and use. The concentration of the rare earth ion when reacting with oxalate ion and carbonate ion is not particularly limited. However, if the concentration is too low, the amount of the processing solution increases and the concentration is not suitable for industrial production.
It is desirable to use at a concentration of l / l or more, particularly preferably 0.1 to 1.0 mol / l.

【0015】また前記シュウ酸イオンは、シュウ酸水溶
液、シュウ酸アンモニウム、シュウ酸ナトリウム、シュ
ウ酸カリウム等のシュウ酸塩水溶液等として反応させる
ことができ、特に好ましくはシュウ酸水溶液、シュウ酸
アンモニウム水溶液等を用いることができる。前記シュ
ウ酸イオンを希土類イオンに反応させる際の濃度は、前
記希土類イオンに対して、モル比で好ましくは1.5〜
3.0倍とするのがよい。
The oxalate ion can be reacted as an aqueous oxalic acid solution, or an aqueous oxalate solution such as ammonium oxalate, sodium oxalate or potassium oxalate, and particularly preferably an aqueous oxalic acid solution or an aqueous ammonium oxalate solution. Etc. can be used. The concentration when reacting the oxalate ion with the rare earth ion is preferably 1.5 to
It is good to make it 3.0 times.

【0016】更に前記炭酸イオンは、炭酸アンモニウ
ム、炭酸水素アンモニウム、炭酸水素ナトリウム、炭酸
水素カリウム等の炭酸塩水溶液等として用いることがで
きる。前記炭酸イオンを希土類イオンに反応させる際の
濃度は、前記希土類イオンに対して、モル比で好ましく
は3.0〜6.0倍とするのがよい。
Further, the carbonate ion can be used as an aqueous solution of a carbonate such as ammonium carbonate, ammonium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and the like. The concentration at which the carbonate ions are reacted with the rare earth ions is preferably 3.0 to 6.0 times the molar ratio of the rare earth ions.

【0017】本発明の製造方法において前記シュウ酸希
土類化合物と炭酸希土類化合物とを混合し、反応・熟成
させるには、例えば、前記希土類イオンとしての希土類
塩水溶液を調製し、該水溶液を2分割した後、一方に前
記シュウ酸イオンとしてのシュウ酸(塩)水溶液を加
え、シュウ酸希土類化合物を生成させ、好ましくは該化
合物を濾過し、ケーキ状とする。また他方に前記炭酸イ
オンとしての炭酸塩水溶液を加え、希土類炭酸塩化合物
をスラリー状で生成させた後、該スラリー中に前記得ら
れたシュウ酸希土類化合物ケーキを加え、混合し反応・
熟成させる方法等により行うことができる。この際前記
希土類塩水溶液にシュウ酸イオン及び炭酸イオンを添加
する各々の時間は、得られる希土類酸化物の粒度を均一
にするために、1〜120分、特に2〜60分とするの
が好ましい。添加時間が120分を超える場合には、熟
成が困難となるので好ましくない。また前記調製した希
土類塩水溶液に、前記炭酸イオンとしての炭酸塩水溶
液、シュウ酸イオンとしてのシュウ酸塩水溶液とを混合
物として若しくは別々に添加し、シュウ酸希土類化合物
と炭酸希土類化合物とを同時に同じ系で生成させ、次い
で混合し、反応・熟成させる方法等により行うこともで
きる。この際、シュウ酸イオンとしてのシュウ酸塩水溶
液及び炭酸イオンとしての炭酸塩水溶液を混合させる順
序はいずれが先でも良いが、炭酸イオンとしての炭酸塩
水溶液にシュウ酸イオンとしてのシュウ酸塩水溶液を添
加する場合には、シュウ酸塩生成の際に放出される酸を
予め中和もしくは洗浄により取り除く必要がある。
In the production method of the present invention, the rare earth oxalate compound and the rare earth carbonate compound are mixed and reacted and matured, for example, by preparing a rare earth salt aqueous solution as the rare earth ion and dividing the aqueous solution into two. Thereafter, an oxalic acid (salt) aqueous solution as the oxalate ion is added to one side to generate a rare earth oxalate compound, and preferably, the compound is filtered to form a cake. On the other hand, a carbonate aqueous solution as the carbonate ion is added to generate a rare earth carbonate compound in a slurry state, and then the obtained rare earth oxalate compound cake is added to the slurry, mixed and reacted.
It can be performed by a method of aging or the like. At this time, each time of adding oxalate ion and carbonate ion to the rare earth salt aqueous solution is preferably 1 to 120 minutes, particularly 2 to 60 minutes in order to make the particle size of the obtained rare earth oxide uniform. . If the addition time exceeds 120 minutes, ripening becomes difficult, which is not preferable. Further, to the prepared rare earth salt aqueous solution, a carbonate aqueous solution as a carbonate ion and an oxalate aqueous solution as an oxalate ion are added as a mixture or separately, and the rare earth oxalate compound and the rare earth carbonate compound are simultaneously added to the same system. , Followed by mixing, reaction and aging. At this time, the order of mixing the aqueous solution of oxalate as oxalate ion and the aqueous solution of carbonate as carbonate ion may be any order, but the aqueous solution of oxalate as oxalate ion is added to the aqueous solution of carbonate as carbonate ion. If added, the acid released during the formation of oxalate must be removed beforehand by neutralization or washing.

【0018】前記炭酸希土類化合物と前記シュウ酸希土
類化合物との混合割合は、各希土類イオンのモル比を基
準として、好ましくは1:0.1〜1:2、特に好まし
くは1:0.2〜1:1とするのが望ましい。前記混合
割合の範囲以外では、混合割合の多い方の塩が未反応の
まま、すなわち炭酸希土類化合物が多い場合には未反応
の炭酸希土類化合物が、またシュウ酸希土類化合物が多
い場合には未反応のシュウ酸希土類化合物が、それぞれ
得られる希土類酸化物中に残存するので好ましくない。
The mixing ratio of the rare earth carbonate compound and the rare earth oxalate compound is preferably from 1: 0.1 to 1: 2, more preferably from 1: 0.2 to 1, based on the molar ratio of each rare earth ion. It is desirable that the ratio be 1: 1. Outside the range of the mixing ratio, the salt with the higher mixing ratio remains unreacted, that is, unreacted rare earth carbonate compound when there are many rare earth carbonate compounds, and unreacted when there are many rare earth oxalate compounds. Is not preferable because the rare earth oxalate compound remains in each of the obtained rare earth oxides.

【0019】前記シュウ酸希土類化合物と、炭酸希土類
化合物とを混合させるには、撹拌機等により、好ましく
は30分〜24時間、特に好ましくは1〜10時間撹拌
させるのが望ましい。前記撹拌時間は得られる希土類酸
化物の粒径に影響し、長時間になるほど小さい粒子が得
られる。
In order to mix the rare earth oxalate compound with the rare earth carbonate compound, it is desirable to stir by a stirrer or the like for preferably 30 minutes to 24 hours, particularly preferably 1 to 10 hours. The stirring time affects the particle size of the obtained rare earth oxide, and the longer the time, the smaller the particles are obtained.

【0020】前記反応・熟成は、撹拌終了後、好ましく
は2〜24時間、特に好ましくは5〜15時間、粒子が
沈降し均一になるまで静置することにより行うことがで
きる。この際、前記シュウ酸希土類化合物と炭酸希土類
化合物は、スラリー状等であるが、該スラリー中の該混
合化合物の濃度は、好ましくは0.05〜1mol/l、特
に好ましくは0.1〜0.8mol/lとするのが望まし
い。前記濃度が0.05mol/l未満では反応に長時間を
要し、1mol/lを超えると均一な粒子が得られなくなる
ので好ましくない。
The reaction and ripening can be carried out after completion of the stirring, preferably for 2 to 24 hours, particularly preferably for 5 to 15 hours, by allowing the particles to stand until they settle and become uniform. At this time, the rare earth oxalate compound and the rare earth carbonate compound are in a slurry state or the like, and the concentration of the mixed compound in the slurry is preferably 0.05 to 1 mol / l, particularly preferably 0.1 to 0 mol / l. 0.8 mol / l is desirable. If the concentration is less than 0.05 mol / l, a long time is required for the reaction, and if it exceeds 1 mol / l, uniform particles cannot be obtained.

【0021】本発明の製造方法では、前記反応・熟成
後、沈降した粒子を母液から分離し、焼成することによ
り、小さい平均粒径を有する高純度でかさ密度が大きく
非凝集性の希土類酸化物を得ることができる。該分離に
は公知の濾過、デカンテーション、遠心分離等の方法を
用いることができ、更に洗浄、脱水することもできる。
また前記焼成は、焼成温度を前記分離した希土類塩粉末
の分解温度以上に加熱すればよく、好ましくは650〜
1200℃、特に好ましくは700〜1100℃、また
昇温速度が速過ぎると昇温中に希土類粒子が割れること
があるので、好ましくは300℃/時間以下、特に好ま
しくは100〜200℃/時間、更に焼成時間は30分
〜2時間とするのが望ましい。この際、焼成条件を変え
ることにより得られる希土類酸化物の平均粒径及び粒度
分布を制御することができる。
In the production method of the present invention, after the reaction and aging, the sedimented particles are separated from the mother liquor and calcined to produce a high-purity, large-bulk-density, non-agglomerated rare earth oxide having a small average particle diameter. Obtainable. For the separation, known methods such as filtration, decantation, and centrifugation can be used, and further, washing and dehydration can be performed.
The calcination may be performed by heating the calcination temperature to a temperature equal to or higher than the decomposition temperature of the separated rare earth salt powder,
1200 ° C., particularly preferably 700 to 1100 ° C., and if the rate of temperature rise is too fast, rare earth particles may crack during the temperature rise, so it is preferably 300 ° C./hour or less, particularly preferably 100 to 200 ° C./hour; Further, the firing time is desirably 30 minutes to 2 hours. At this time, the average particle size and the particle size distribution of the obtained rare earth oxide can be controlled by changing the firing conditions.

【0022】[0022]

【実施例】以下、実施例に基づき本発明を更に詳細に説
明するが、本発明はこれらに限定されるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto.

【0023】[0023]

【実施例1】濃度0.3mol/l、pH2の硝酸イットリ
ウム水溶液300mlを、容量1リットルのトールビーカ
ーに入れ、室温にて撹拌機を用いて撹拌して、均一な硝
酸イットリウム水溶液を得た。次いで、濃度0.8mol
/lのシュウ酸水溶液350mlを定量ポンプを用いて、
30分かけて前記硝酸イットリウム水溶液中に添加し
た。該混合液を、添加終了後20分間撹拌してシュウ酸
イットリウムスラリーを得、該スラリーをヌッチェを用
いて減圧濾過した後、イオン交換水を用いて酸洗浄を行
い、シュウ酸イットリウムケーキを得た。
Example 1 300 ml of an aqueous solution of yttrium nitrate having a concentration of 0.3 mol / l and a pH of 2 was placed in a 1-liter tall beaker and stirred at room temperature with a stirrer to obtain a uniform aqueous solution of yttrium nitrate. Then, the concentration 0.8 mol
/ L oxalic acid aqueous solution (350 ml) using a metering pump,
It was added to the above yttrium nitrate aqueous solution over 30 minutes. The mixture was stirred for 20 minutes after completion of the addition to obtain an yttrium oxalate slurry. The slurry was filtered under reduced pressure using a Nutsche, and then acid-washed with ion-exchanged water to obtain an yttrium oxalate cake. .

【0024】一方、濃度0.3mol/l、pH2の硝酸イ
ットリウム水溶液500mlを容量2リットルのガラスビ
ーカーに入れ、室温にて撹拌機を用いて撹拌して、均一
な硝酸イットリウム水溶液を得た後、濃度1.25mol
/lの炭酸水素アンモニウム水溶液540mlを定量ポン
プを用いて、20分かけて前記硝酸イットリウム水溶液
中に添加し、炭酸イットリウムスラリーを得た。
On the other hand, 500 ml of an aqueous solution of yttrium nitrate having a concentration of 0.3 mol / l and a pH of 2 was placed in a glass beaker having a capacity of 2 liters and stirred at room temperature with a stirrer to obtain a uniform aqueous solution of yttrium nitrate. Concentration 1.25mol
540 ml of an aqueous solution of ammonium bicarbonate / l was added to the aqueous solution of yttrium nitrate over 20 minutes using a metering pump to obtain a yttrium carbonate slurry.

【0025】次いで、該炭酸イットリウムスラリー中に
前記シュウ酸イットリウムケーキを添加し、2時間撹拌
した。撹拌後、15時間熟成させ、均一な粒子が沈降し
たのを確認した後、ヌッチェを用いて減圧濾過し、イオ
ン交換水を用いて洗浄し、粉末を得た。次いで、得られ
た粉末を磁性ルツボに入れ、昇温速度200℃/時間で
900℃まで昇温し、1時間保持することにより焼成し
たところ、平均粒径2.4μmの非凝集性酸化イットリ
ウム粉末27gを得た。得られた酸化イットリウム粉末
は、非凝集性の単一粒子であり、丸形の楕円形状若しく
は円盤状の粒径の揃った粒子であり、また該粉末の粒度
分布をマイクロトラック法により測定した結果を図1に
示す。
Next, the yttrium oxalate cake was added to the yttrium carbonate slurry and stirred for 2 hours. After stirring, the mixture was aged for 15 hours. After confirming that uniform particles had settled, the mixture was filtered under reduced pressure using a Nutsche and washed with ion-exchanged water to obtain a powder. Next, the obtained powder was placed in a magnetic crucible, heated to 900 ° C. at a heating rate of 200 ° C./hour, and calcined by holding for 1 hour to obtain a non-agglomerated yttrium oxide powder having an average particle size of 2.4 μm. 27 g were obtained. The obtained yttrium oxide powder is a non-agglomerated single particle, a round elliptical or disk-shaped particle having a uniform particle size, and the particle size distribution of the powder was measured by a microtrack method. Is shown in FIG.

【0026】[0026]

【実施例2】濃度0.2mol/l、pH2の硝酸イットリ
ウムと硝酸ユーロピウムとの混合液(Eu/Yモル比:
0.02)500mlを1リットルのトールビーカーに入
れた。一方、シュウ酸アンモニウム一水和物9.5gと
炭酸水素アンモニウム32gとをイオン交換水に溶解さ
せ400mlの混合溶液を得、該混合溶液を、前記硝酸イ
ットリウムと硝酸ユーロピウムとの混合液に20分かけ
て添加し、スラリーを得た。
Example 2 A mixture of yttrium nitrate and europium nitrate having a concentration of 0.2 mol / l and a pH of 2 (Eu / Y molar ratio:
0.02) 500 ml was placed in a 1 liter tall beaker. On the other hand, 9.5 g of ammonium oxalate monohydrate and 32 g of ammonium bicarbonate were dissolved in ion-exchanged water to obtain a mixed solution of 400 ml. The mixed solution was added to the mixed solution of yttrium nitrate and europium nitrate for 20 minutes. To obtain a slurry.

【0027】得られたスラリーを実施例1と同様に処理
して、平均粒径1.2μmのユーロピウム含有酸化イッ
トリウム粉末10gを得た。該粉末は、円盤状の丸形粒
子であり、凝集性もなく、単一の丸形希土類酸化物であ
り、また粒度分布をマイクロトラック法により測定した
結果を図2に示す。
The obtained slurry was treated in the same manner as in Example 1 to obtain 10 g of europium-containing yttrium oxide powder having an average particle size of 1.2 μm. The powder is a disk-shaped round particle, has no cohesion, is a single round rare earth oxide, and the particle size distribution measured by the microtrack method is shown in FIG.

【0028】[0028]

【発明の効果】本発明の製造方法で得られる非凝集性丸
形希土類酸化物は、高純度で均一な粒径を有し、流動性
に優れているので、蛍光体材料、電子材料、機能性セラ
ミックス用材料として有用である。
The non-agglomerated round rare earth oxide obtained by the production method of the present invention has a high purity and a uniform particle size, and has excellent fluidity. It is useful as a material for conductive ceramics.

【0029】また本発明の製造方法により、高純度で均
一な粒径及び粒度分布を有し、適度なかさ密度を有する
非凝集性希土類酸化物を容易に得ることができる。
Further, according to the production method of the present invention, a non-agglomerated rare earth oxide having a high purity, a uniform particle size and a particle size distribution, and an appropriate bulk density can be easily obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1で得た酸化イットリウムの粒度分布を
示すグラフである。
FIG. 1 is a graph showing the particle size distribution of yttrium oxide obtained in Example 1.

【図2】実施例2で得たユーロピウム含有酸化イットリ
ウムの粒度分布を示すグラフである。
FIG. 2 is a graph showing the particle size distribution of europium-containing yttrium oxide obtained in Example 2.

フロントページの続き (56)参考文献 特開 平3−1271118(JP,A) 特開 昭59−207839(JP,A) 特開 昭63−310706(JP,A) 特開 昭60−239323(JP,A) 特開 昭62−132708(JP,A) 特開 昭62−70204(JP,A) 特開 昭61−122121(JP,A) 欧州特許出願公開462388(EP,A 1) (58)調査した分野(Int.Cl.7,DB名) C01F 17/00 C09K 11/77 CPB Continuation of the front page (56) References JP-A-3-1271118 (JP, A) JP-A-59-207839 (JP, A) JP-A-63-310706 (JP, A) JP-A-60-239323 (JP) JP-A-62-132708 (JP, A) JP-A-62-70204 (JP, A) JP-A-61-122121 (JP, A) European Patent Application Publication No. 462388 (EP, A1) (58) Field surveyed (Int. Cl. 7 , DB name) C01F 17/00 C09K 11/77 CPB

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類イオンとシュウ酸イオンとを反応
させて得たシュウ酸希土類化合物と、希土類イオンと炭
酸イオンとを反応させて得た炭酸希土類化合物とを混合
し、該混合物を反応・熟成させて得られる希土類粒子を
焼成させることを特徴とする非凝集性結晶質希土類酸化
物の製造方法。
1. A rare earth oxalate compound obtained by reacting a rare earth ion with an oxalate ion and a rare earth carbonate compound obtained by reacting a rare earth ion with a carbonate ion are mixed, and the mixture is reacted and matured. A method for producing a non-aggregated crystalline rare earth oxide, characterized in that the resulting rare earth particles are calcined.
JP06504492A 1992-03-23 1992-03-23 Method for producing round rare earth oxide Expired - Lifetime JP3280689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06504492A JP3280689B2 (en) 1992-03-23 1992-03-23 Method for producing round rare earth oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06504492A JP3280689B2 (en) 1992-03-23 1992-03-23 Method for producing round rare earth oxide

Publications (2)

Publication Number Publication Date
JPH05270822A JPH05270822A (en) 1993-10-19
JP3280689B2 true JP3280689B2 (en) 2002-05-13

Family

ID=13275570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06504492A Expired - Lifetime JP3280689B2 (en) 1992-03-23 1992-03-23 Method for producing round rare earth oxide

Country Status (1)

Country Link
JP (1) JP3280689B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879217B2 (en) * 1996-12-25 2007-02-07 コニカミノルタホールディングス株式会社 Method for producing rare earth activated alkaline earth metal fluoride halide photostimulable phosphor
WO2024004411A1 (en) * 2022-06-27 2024-01-04 日本イットリウム株式会社 Rare earth oxide powder

Also Published As

Publication number Publication date
JPH05270822A (en) 1993-10-19

Similar Documents

Publication Publication Date Title
KR950003421B1 (en) Method for the production of mixed ammonium rare earth oxalates and their application to the production of rare earth oxides
JP2914602B2 (en) Process for producing rare earth phosphate and product obtained thereby
KR100293330B1 (en) A preparing method for green fluorescent body based orthosilicate
US5545386A (en) Method for the preparation of globular particles of a rare earth oxide
EP0685549A1 (en) Particles of rare earth phosphate and method for the preparation thereof
JP2980504B2 (en) Cerium carbonate and cerium carbonate having novel morphology and method for producing cerium oxide
JP5213869B2 (en) Method for producing rare earth-containing phosphate
JP3280688B2 (en) Production method of rare earth oxide
JP2868176B2 (en) Method for producing rare earth element oxide powder
JP3280689B2 (en) Method for producing round rare earth oxide
US5415851A (en) Method for the preparation of spherical particles of a rare earth phosphate
JP2001270775A (en) Method of producing yag transparent sintered body
JPH0238527B2 (en)
JP3891252B2 (en) Process for producing rare earth oxides and basic carbonates
JPH0529606B2 (en)
JP3300576B2 (en) Method for producing spherical rare earth oxide
CN115340126B (en) Rare earth zirconate particles and preparation method thereof
JP3551428B2 (en) Method for producing rare earth element-containing BaFI prismatic crystal
JPS6126513A (en) Preparation of compound oxide of rare earth metal
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP2786052B2 (en) Method for producing rare earth element oxide particles
JP3394071B2 (en) Method for producing rare earth oxide fine powder
JP3681550B2 (en) Rare earth oxide and method for producing the same
JP2878898B2 (en) Rare earth element oxide particles
JP3007472B2 (en) Method for producing rare earth element oxide particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110222

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120222

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130222

Year of fee payment: 11