JP2005263528A - Method for producing spherical yttria particulate - Google Patents

Method for producing spherical yttria particulate Download PDF

Info

Publication number
JP2005263528A
JP2005263528A JP2004075807A JP2004075807A JP2005263528A JP 2005263528 A JP2005263528 A JP 2005263528A JP 2004075807 A JP2004075807 A JP 2004075807A JP 2004075807 A JP2004075807 A JP 2004075807A JP 2005263528 A JP2005263528 A JP 2005263528A
Authority
JP
Japan
Prior art keywords
emulsion
phase liquid
dispersed phase
yttria
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004075807A
Other languages
Japanese (ja)
Other versions
JP4517691B2 (en
Inventor
Seiji Tsuji
辻  清治
Hitonori Son
孫  仁徳
Yoshio Uchida
義男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004075807A priority Critical patent/JP4517691B2/en
Publication of JP2005263528A publication Critical patent/JP2005263528A/en
Application granted granted Critical
Publication of JP4517691B2 publication Critical patent/JP4517691B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing spherical yttria particulates, in which the volume efficiency is higher than that in a conventional production method. <P>SOLUTION: The method for producing the spherical yttria particulates comprises preparing an emulsion by injecting a liquid of a dispersion phase containing yttrium into a liquid of a continuous phase incompatible with the liquid of the dispersion phase through fine pores, separating the dispersion phase from the emulsion and firing an obtained cake. In this method, an emulsion containing a gellant is used as the emulsion, and fine pores of a porous body having an average pore diameter within a range of 0.1-30 μm are used as the fine pores. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、球状イットリア(Y23)微粒子の製造方法に関する。 The present invention relates to a method for producing spherical yttria (Y 2 O 3 ) fine particles.

イットリア微粒子は、ブラウン管やプラズマディスプレイの赤色蛍光体として用いられている。   Yttria fine particles are used as red phosphors in cathode ray tubes and plasma displays.

このようなイットリア微粒子は、従来はY含有水溶液に析出剤を加えてY含有析出物を析出させ、析出させたY含有析出物を乾燥し、焼成し、得られた塊状のイットリアを粉砕することにより製造されていた。こうして製造されたイットリア粒子の形状は、粉砕工程により不定形となるため、イットリア以外の他の原料との混合が均一に行えないという難点があり、イットリア粒子の形状としては球状が望まれていた。   Conventionally, such yttria fine particles are obtained by adding a precipitating agent to a Y-containing aqueous solution to precipitate a Y-containing precipitate, drying the precipitated Y-containing precipitate, firing, and pulverizing the obtained massive yttria. It was manufactured by. Since the shape of the yttria particles produced in this way becomes indefinite by the pulverization step, there is a problem that the mixing with other raw materials other than yttria cannot be performed uniformly, and the shape of the yttria particles is desired to be spherical. .

そこで、濃度0.04モル/L(リットル)の硝酸イットリウム水溶液1000Lに尿素を加え、加熱して生じた球状で微粒のY含有析出物粒子を水溶液から濾別し、800℃で焼成することにより、球状で平均粒径が0.35μmのイットリア微粒子が4.5kg得られる(容積効率は4.5g/Lである。)製造方法が提案されている(例えば、特許文献1参照。)。   Therefore, urea is added to 1000 L of an aqueous yttrium nitrate solution having a concentration of 0.04 mol / L (liter), and the spherical and fine Y-containing precipitate particles generated by heating are separated from the aqueous solution and calcined at 800 ° C. A production method has been proposed in which 4.5 kg of spherical yttria fine particles having an average particle diameter of 0.35 μm are obtained (volume efficiency is 4.5 g / L) (for example, see Patent Document 1).

しかし、工業的には容積効率が十分ではなく、球状イットリア微粒子の容積効率の高い製造方法が求められていた。   However, industrially, the volumetric efficiency is not sufficient, and a production method with high volumetric efficiency of spherical yttria fine particles has been demanded.

特開平10−139426号公報Japanese Patent Laid-Open No. 10-139426

本発明の目的は、球状イットリア微粒子の製造方法において、従来の製造方法より容積効率が高い製造方法を提供することにある。   An object of the present invention is to provide a method for producing spherical yttria fine particles having a volumetric efficiency higher than that of a conventional production method.

本発明者らは、かかる課題を解決するために、イットリウム含有液から球状イットリア微粒子を製造する方法について鋭意検討した結果、イットリウム含有液を分散相液とし、該分散相液とは相溶性のない連続相液の中に、細孔を通過させて該分散相液を注入することにより、エマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを焼成することにより、分散相液のイットリウム濃度が高濃度であっても球状イットリア微粒子を製造することができ、容積効率の高い製造方法となることを見出し、本発明を完成させるに至った。   In order to solve such problems, the present inventors have intensively studied a method for producing spherical yttria fine particles from an yttrium-containing liquid. As a result, the yttrium-containing liquid is used as a dispersed phase liquid, and is not compatible with the dispersed phase liquid. By injecting the dispersed phase liquid through the pores into the continuous phase liquid, an emulsion is prepared, the dispersed phase is separated from the emulsion, and the obtained cake is baked to obtain the dispersed phase liquid. The inventors have found that spherical yttria fine particles can be produced even when the yttrium concentration is high, resulting in a production method with high volumetric efficiency, and the present invention has been completed.

すなわち本発明は、イットリウムを含有する分散相液を、該分散相液とは相溶性のない連続相液の中に、細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを焼成することを特徴とする球状イットリア微粒子の製造方法を提供する。   That is, the present invention produces an emulsion by injecting a dispersed phase liquid containing yttrium through a pore into a continuous phase liquid that is not compatible with the dispersed phase liquid, and then disperses the emulsion from the emulsion. There is provided a method for producing spherical yttria fine particles characterized by separating phases and baking the obtained cake.

本発明の製造方法によれば、形状が球状であり、平均粒径が0.1〜10μmの範囲の微粒であり、しかも粒度分布がシャープで、充填性に優れ、蛍光体用に好適なイットリア微粒子が、高い容積効率で製造することができるので、本発明は工業的に極めて重要である。   According to the production method of the present invention, the shape is spherical, the average particle size is a fine particle in the range of 0.1 to 10 μm, the particle size distribution is sharp, the filling property is excellent, and yttria suitable for phosphors. Since fine particles can be produced with high volumetric efficiency, the present invention is extremely important industrially.

本発明の製造方法は、イットリウムを含有する分散相液とし、該分散相液とは相溶性のない連続相液の中に、分散相液を細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを焼成することを特徴とする。   The production method of the present invention produces an emulsion by making a dispersed phase liquid containing yttrium and injecting the dispersed phase liquid through pores into a continuous phase liquid that is incompatible with the dispersed phase liquid. The dispersed phase is separated from the emulsion, and the obtained cake is baked.

出発原料の分散相液としては、イットリウム塩の溶液かまたは粒径100nm以下の微細なイットリア粒子が分散したゾルを用いることができる。例えば分散相液が水系液であれば、硝酸イットリウム水溶液やイットリウムアルコキサイドを加水分解したゾル溶液が挙げられる。   As the dispersed phase liquid of the starting material, a solution of yttrium salt or a sol in which fine yttria particles having a particle diameter of 100 nm or less are dispersed can be used. For example, when the dispersed phase liquid is an aqueous liquid, examples thereof include an yttrium nitrate aqueous solution and a sol solution obtained by hydrolyzing yttrium alkoxide.

ゾルを用いる場合、ゾルに分散剤を含有させてもよい。分散剤としては、例えば、ポリカルボン酸またはそのアンモニウム塩、ポリアクリル酸またはそのアンモニム塩等を挙げることができる。ゾルの粒子の平均粒径は、細孔の平均細孔径より小さい必要があり、平均細孔径の1/5以下が好ましく、より好ましくは1/10以下である。   When a sol is used, a dispersant may be included in the sol. Examples of the dispersant include polycarboxylic acid or its ammonium salt, polyacrylic acid or its ammonium salt, and the like. The average particle diameter of the sol particles needs to be smaller than the average pore diameter of the pores, and is preferably 1/5 or less, more preferably 1/10 or less of the average pore diameter.

一方、連続相液は分散相液と実質的に相溶性のない液を用いる。分散相液が水系液の場合、連続相液としては非水溶性の有機溶媒を用いることができ、具体的にはトルエン、シクロヘキサン、ケロシン、ヘキサン、ベンゼン等を挙げることができる。   On the other hand, the continuous phase liquid is a liquid that is substantially incompatible with the dispersed phase liquid. When the dispersed phase liquid is an aqueous liquid, a water-insoluble organic solvent can be used as the continuous phase liquid, and specific examples include toluene, cyclohexane, kerosene, hexane, benzene and the like.

また、分散相液が非水系液の場合、分散相は非水溶性の有機溶媒にイットリウム塩を溶解したものかまたは有機溶媒に粒径100nm以下の微細なイットリア粒子が分散したゾルを用いることができる。ここで、非水溶性の有機溶媒としては、具体的にはトルエン、シクロヘキサン等を挙げることができる。そしてこの場合、連続相液としては、連続相液と相溶性がなく水溶性の有機溶媒かまたは水かまたはそれらの混合物を用いることができ、水が好ましい。   When the dispersed phase liquid is a non-aqueous liquid, the dispersed phase should be prepared by dissolving a yttrium salt in a water-insoluble organic solvent or using a sol in which fine yttria particles having a particle size of 100 nm or less are dispersed in an organic solvent. it can. Here, specific examples of the water-insoluble organic solvent include toluene, cyclohexane and the like. In this case, as the continuous phase liquid, a water-soluble organic solvent which is not compatible with the continuous phase liquid, water, or a mixture thereof can be used, and water is preferable.

次にエマルジョンを作製する。エマルジョンはイットリウムを含有する分散相液を細孔を通して連続相液に注入する方法により作製することができる。エマルジョンは水/油(W/O)、油/水(O/W)のいずれも用いることができる。   Next, an emulsion is prepared. An emulsion can be prepared by a method of injecting a dispersed phase liquid containing yttrium into a continuous phase liquid through pores. As the emulsion, either water / oil (W / O) or oil / water (O / W) can be used.

エマルジョンを安定化するために、界面活性剤を用いることが好ましい。界面活性剤としては、分散相液が水系液の場合は、水系液に通常用いられるカルボン酸、エステル塩等を挙げることができ、非水溶性の溶媒の場合、ソルビタンエステル、グリセリンエステル等を挙げることができる。界面活性剤は、分散相液、連続相液のいずれか、または両方に含有させることができる。   In order to stabilize the emulsion, it is preferable to use a surfactant. As the surfactant, when the dispersed phase liquid is an aqueous liquid, carboxylic acid, ester salt and the like which are usually used in the aqueous liquid can be mentioned. When the water-insoluble solvent is used, sorbitan ester, glycerin ester and the like can be mentioned. be able to. The surfactant can be contained in either the dispersed phase liquid, the continuous phase liquid, or both.

本発明の製造方法において用いる細孔は、細孔を有するノズル、多孔膜、多孔体の細孔を用いることができ、効率と強度の点から多孔体が好ましく用いることができる。細孔の平均細孔径は0.1μm以上30μm以下の範囲が好ましく、0.5μm以上10μm以下の範囲がさらに好ましい。得られる球状イットリア微粒子の粒径は、平均細孔径を変えることにより制御することができ、球状イットリア微粒子の平均粒径は蛍光体の出発原料用としては0.1〜10μmの範囲とすることが好ましい。   As the pores used in the production method of the present invention, a nozzle having a pore, a porous film, or a porous body pore can be used, and a porous body can be preferably used from the viewpoint of efficiency and strength. The average pore diameter of the pores is preferably in the range of 0.1 μm to 30 μm, and more preferably in the range of 0.5 μm to 10 μm. The particle diameter of the obtained spherical yttria fine particles can be controlled by changing the average pore diameter, and the average particle diameter of the spherical yttria fine particles should be in the range of 0.1 to 10 μm for the phosphor starting material. preferable.

多孔体としては、均一な細孔径を有しているものであればよく、例えば、シラスポーラスガラス(以下、「SPG」という。)多孔体、セラミック多孔体等を用いることができ、細孔径を精密に調整することができるので、SPGが好ましい。多孔体の表面は、W/Oエマルジョンの場合は親油化、O/Wエマルジョンの場合は親水化することが好ましい。例えば、SPGの場合は多孔体表面は親水性であるが、親油化が必要な場合、次のようにして表面処理を行うことができる。表面処理は、例えば、多孔体をシリコン樹脂水溶液に浸し乾燥する、シランカップリング剤を塗布する、トリメチルクロロシランに接触させる等の方法により行うことができる。   The porous body only needs to have a uniform pore diameter. For example, a porous glass (hereinafter referred to as “SPG”) porous body, a ceramic porous body, or the like can be used. SPG is preferred because it can be adjusted precisely. The surface of the porous body is preferably made oleophilic in the case of a W / O emulsion and hydrophilized in the case of an O / W emulsion. For example, in the case of SPG, the surface of the porous body is hydrophilic, but when lipophilicity is required, the surface treatment can be performed as follows. The surface treatment can be performed by, for example, a method of immersing the porous body in a silicon resin aqueous solution and drying, applying a silane coupling agent, or contacting with trimethylchlorosilane.

分散相液が細孔から出るとき、細孔から速やかに離脱させる操作を加えることが好ましく、具体的には、多孔体を振動させる、分散媒を循環させるなどの操作を加えることが好ましい。   When the dispersed phase liquid exits from the pores, it is preferable to add an operation of quickly releasing from the pores. Specifically, it is preferable to add an operation such as vibrating the porous body or circulating the dispersion medium.

こうして得られるエマルジョンの濃度は、通常はイットリア換算で10g/L以上100g/L以下の範囲である。10g/L未満では容積効率が低く工業的には望ましくなく、100g/Lを超えると、微細な粒子として連続相中に分散している分散相同士の凝集が生じる傾向があるので好ましくない。   The concentration of the emulsion thus obtained is usually in the range of 10 g / L or more and 100 g / L or less in terms of yttria. If it is less than 10 g / L, the volumetric efficiency is low and industrially undesirable, and if it exceeds 100 g / L, there is a tendency that the dispersed phases dispersed in the continuous phase as fine particles tend to agglomerate.

エマルジョンをゲル化させるため、ゲル化剤をエマルジョンに含有させることができる。ゲル化剤としては、塩化アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム等を用いることができる。Na等の金属イオンの混入が問題となる場合、塩化アンモニウムや、炭酸水素アンモニウムが好ましい。このゲル化剤をエマルジョンに含有させるには、エマルジョンにゲル化剤を添加してもよいし、分散相液に予めゲル化剤を添加してもよいし、連続相液に予めゲル化剤を添加してもよい。このゲル化剤をエマルジョンに含有させることにより、安定したゲル(沈澱)が得られ、分散相の分離が容易となる。ゲル化剤の量は、イットリウム含有液のイットリウムのモル数に依存し、イットリウム1モルに対して0.1モル以上10モル以下の範囲が好ましい。   In order to gel the emulsion, a gelling agent can be included in the emulsion. As the gelling agent, ammonium chloride, ammonium hydrogen carbonate, sodium hydroxide or the like can be used. When mixing of metal ions such as Na becomes a problem, ammonium chloride and ammonium hydrogen carbonate are preferable. In order to contain this gelling agent in the emulsion, the gelling agent may be added to the emulsion, the gelling agent may be added in advance to the dispersed phase liquid, or the gelling agent is added to the continuous phase liquid in advance. It may be added. By containing this gelling agent in the emulsion, a stable gel (precipitation) can be obtained, and the dispersed phase can be easily separated. The amount of the gelling agent depends on the number of moles of yttrium in the yttrium-containing liquid, and is preferably in the range of 0.1 to 10 moles with respect to 1 mole of yttrium.

ここで、本発明の球状イットリア微粒子には、蛍光体の付活剤を含有させて蛍光体とすることもできる。この場合、蛍光体の付活剤となる元素は、イットリウム含有液に該元素の化合物を溶解させるかまたは該元素の化合物の粒子を分散させることにより含有させることができる。付活剤となる元素としては、Eu、Gd、Ce、Pr、Sm、Tb、Ho、Dy、Er、Tm等の希土類元素が挙げられ、それらの元素の化合物としては、硝酸塩、塩化物、酸化物、水酸化物を用いることができる。酸化物および水酸化物は、その微粒子が分散したゾルとしてイットリア含有液に加えることができる。付活剤となる元素のイットリウムに対する割合は、0.1〜20モル%、好ましくは3〜7モル%である。   Here, the spherical yttria fine particles of the present invention may contain a phosphor activator to form a phosphor. In this case, the element serving as the phosphor activator can be contained by dissolving the compound of the element in the yttrium-containing liquid or by dispersing particles of the compound of the element. Examples of activators include rare earth elements such as Eu, Gd, Ce, Pr, Sm, Tb, Ho, Dy, Er, and Tm, and compounds of these elements include nitrates, chlorides, and oxides. And hydroxides can be used. The oxide and hydroxide can be added to the yttria-containing liquid as a sol in which the fine particles are dispersed. The ratio of the element serving as the activator to yttrium is 0.1 to 20 mol%, preferably 3 to 7 mol%.

こうして得られたエマルジョン中にはイットリウム含有液が分散相として存在しており、この分散相を連続相液から分離してケーキを得る。分離は、濾過またはデカンテーションにより行うことが好ましい。遠心分離によると、分散相の粒子が相互に結合したり変形することがある。   In the emulsion thus obtained, an yttrium-containing liquid is present as a dispersed phase, and this dispersed phase is separated from the continuous phase liquid to obtain a cake. Separation is preferably performed by filtration or decantation. Centrifugation can cause the particles in the dispersed phase to bind or deform.

得られたケーキを洗浄することができる。ゲル化剤を用いた場合は、分散相粒子に付着したゲル化剤を除去するために、ケーキを洗浄することが好ましい。洗浄は、ケーキに連続相液を加え、連続相液を再度分離して行うことができる。濾過により分離した場合は、連続相液を分散相のケーキに連続相液を注いで洗浄を行うことができる。   The resulting cake can be washed. When a gelling agent is used, it is preferable to wash the cake in order to remove the gelling agent adhering to the dispersed phase particles. Washing can be performed by adding the continuous phase liquid to the cake and separating the continuous phase liquid again. When separated by filtration, the continuous phase liquid can be washed by pouring the continuous phase liquid onto the cake of the dispersed phase.

分離後に得られたケーキは乾燥することが好ましい。ケーキを焼成することによりイットリアは緻密な粒子となるとともに結晶化する。焼成温度は、700℃以上1300℃以下の温度範囲が好ましく、800℃以上1100℃以下の温度範囲がより好ましい。焼成に用いる雰囲気は特に限定されないが、イットリア微粒子に付活剤を含有させる場合で還元雰囲気が必要な場合は、水素を1〜10体積%程度含有した不活性ガスを用いることができる。不活性ガスとしては、窒素、アルゴンおよびヘリウムが挙げられる。   The cake obtained after separation is preferably dried. By baking the cake, yttria becomes dense particles and crystallizes. The firing temperature is preferably in the temperature range of 700 ° C. or higher and 1300 ° C. or lower, and more preferably in the temperature range of 800 ° C. or higher and 1100 ° C. or lower. The atmosphere used for firing is not particularly limited, but when a yttria fine particle contains an activator and a reducing atmosphere is required, an inert gas containing about 1 to 10% by volume of hydrogen can be used. Inert gases include nitrogen, argon and helium.

得られる粒子は、エマルジョン中の分散相液の形状を殆ど保持しており球状であり、95%以上の粒子が球状を保持している。球状なので、分散媒への分散性、他の材料と混合した場合の混合物の均一性に優れる。さらに分散性を向上させるため、例えばジェットミル、ナイロンボールを用いたボールミル等により、弱い粉砕を加え、もよい。本発明の球状イットリア微粒子は、特定の細孔径を有する細孔を用いてエマルジョンを作製するため、平均粒径を、蛍光体の出発原料として好適な0.1〜10μmとすることができ、さらに粗大粒がなく画像解析から求めた粒度分布(検出最大粒径と最小粒径の差)は1μm以下と(狭い)シャープなものにすることができる。   The obtained particles have almost the shape of the dispersed phase liquid in the emulsion and are spherical, and 95% or more of the particles have a spherical shape. Since it is spherical, it has excellent dispersibility in the dispersion medium and uniformity of the mixture when mixed with other materials. In order to further improve dispersibility, weak pulverization may be added by, for example, a jet mill or a ball mill using nylon balls. Since the spherical yttria fine particles of the present invention produce an emulsion using pores having a specific pore size, the average particle size can be set to 0.1 to 10 μm suitable as a starting material of the phosphor, There is no coarse particle, and the particle size distribution (difference between the detected maximum particle size and the minimum particle size) obtained from image analysis can be as narrow as 1 μm or less (narrow).

さらに、本発明により得られる球状イットリア微粒子は、付活剤を含有させて蛍光体とすることもできる。そして、本発明により得られる球状イットリア微粒子は、高い充填密度で充填することができ(例えば、重装密度は40%〜60%である。)、重装密度が高いことは、蛍光体として用いた場合、より多くの蛍光体を充填できるため、輝度向上に有利である。   Furthermore, the spherical yttria fine particles obtained by the present invention can be made into a phosphor by containing an activator. The spherical yttria fine particles obtained by the present invention can be filled with a high packing density (for example, the packing density is 40% to 60%), and the high packing density is used as a phosphor. In this case, more phosphors can be filled, which is advantageous for improving the luminance.

以下、本発明を実施例により説明するが、本発明はこれらによって限定されるものではない。
1. 粒子形状の観察
粒子の写真をSEM(走査型電子顕微鏡、日本電子株式会社製T−300型)を用いて撮影し、観察した。
2. 平均粒径の測定
前記SEMで撮影した写真から30〜50個の粒子を抽出し、画像解析により粒度分布を求めて平均粒径を測定した。
3.重装密度の測定
JIS R1600に従い粒子の重装密度を測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
1. Observation of Particle Shape A photograph of the particle was taken and observed using a SEM (scanning electron microscope, T-300 type manufactured by JEOL Ltd.).
2. Measurement of average particle size 30 to 50 particles were extracted from the photograph taken with the SEM, and the particle size distribution was determined by image analysis to measure the average particle size.
3. Measurement of heavy density The heavy density of particles was measured according to JIS R1600.

実施例1
出発原料としてイットリア換算で15重量%の硝酸イットリウム溶液に、硝酸ユーロピウムをイットリウムに対しユーロピウムが5モル%となるように添加した分散相液800mLを用いた。連続相液としては、界面活性剤のソルビタンモノラウレート8gを溶解したトルエン800mLを用いた。分散相液を平均細孔径が3μmのSPG多孔体を通して連続相液に注入し、エマルジョン化した。SPG多孔体は直径1cm、長さ10cm、厚さ1mmのチューブ形状であり、両端をOリングで密閉したものであり、その内部に分散相液を通し、多孔体を通してチューブの外側に押し出し、エマルジョン化した。スラリー押し出しは、約3kg/cm2の圧力の空気を供給することにより行なった。なお、SPG多孔体はトリメチルクロロシランの無水トルエン溶液に浸漬することにより表面を親油化処理した。該エマルジョンにゾル化剤として4mLの炭酸水素アンモニウム溶液と2.5mLの濃アンモニア水を添加した。1時間攪拌後、ろ過し、得られたケーキに水を注いで洗浄し、ケーキを110℃で3時間乾燥した。該乾燥物を空気中において1000℃で2時間保持して焼成した。得られた粒子は均一な球状の形状を有し、その平均粒径は1μmであり、その分布(検出最大粒径と最小粒径の差)は1μm以下であった。重装密度は理論密度の35%であった。得られた球状イットリア微粒子は約100gであり、容積効率は100g/(0.8L+0.8L)=63g/Lであった。
Example 1
As a starting material, 800 mL of a dispersed phase solution in which europium nitrate was added to a 15 wt% yttrium nitrate solution in terms of yttria so that europium was 5 mol% with respect to yttrium was used. As the continuous phase liquid, 800 mL of toluene in which 8 g of the surfactant sorbitan monolaurate was dissolved was used. The dispersed phase liquid was injected into the continuous phase liquid through an SPG porous material having an average pore diameter of 3 μm to form an emulsion. The SPG porous body has a tube shape with a diameter of 1 cm, a length of 10 cm, and a thickness of 1 mm, and is sealed at both ends with O-rings. Turned into. Slurry extrusion was performed by supplying air at a pressure of about 3 kg / cm 2 . The SPG porous body was subjected to a lipophilic treatment by immersing it in an anhydrous toluene solution of trimethylchlorosilane. To the emulsion, 4 mL of ammonium bicarbonate solution and 2.5 mL of concentrated aqueous ammonia were added as a solubilizing agent. After stirring for 1 hour, filtration was performed, and water was poured into the obtained cake for washing, and the cake was dried at 110 ° C. for 3 hours. The dried product was fired in air at 1000 ° C. for 2 hours. The obtained particles had a uniform spherical shape, the average particle size was 1 μm, and the distribution (difference between the detected maximum particle size and the minimum particle size) was 1 μm or less. The weight density was 35% of the theoretical density. The obtained spherical yttria fine particles were about 100 g, and the volumetric efficiency was 100 g / (0.8 L + 0.8 L) = 63 g / L.

実施例2
平均細孔径が1μmのSPG多孔体を用い、焼成温度を800℃とした以外は、実施例1と同様の方法で実施した。得られたイットリア粒子は均一な球状の形状を有し、平均粒径は1μmでありその分布(最大検出粒径と最小粒径の差)は0.5μmであった。重装密度は理論密度の31%であった。容積効率は実施例1と同じであった。
実施例3
出発原料としてイットリアゾル溶液(多木化学製、濃度はY23として15重量%)を用い、平均細孔径が5μmのSPG多孔体を用いた以外は実施例1と同様の方法で実施した。得られた粒子は球状の形状を有し、その平均粒径は3μmであり、その分布は1μm以下であった。重装密度は理論密度の40%であった。容積効率は実施例1と同じであった。
Example 2
This was carried out in the same manner as in Example 1 except that an SPG porous material having an average pore diameter of 1 μm was used and the firing temperature was 800 ° C. The obtained yttria particles had a uniform spherical shape, the average particle size was 1 μm, and the distribution (difference between the maximum detected particle size and the minimum particle size) was 0.5 μm. The heavy density was 31% of the theoretical density. The volumetric efficiency was the same as in Example 1.
Example 3
The same procedure as in Example 1 was performed except that an yttria sol solution (manufactured by Taki Chemical Co., Ltd., concentration: 15% by weight as Y 2 O 3 ) was used as a starting material, and an SPG porous material having an average pore diameter of 5 μm was used. . The obtained particles had a spherical shape, the average particle diameter was 3 μm, and the distribution was 1 μm or less. The heavy density was 40% of the theoretical density. The volumetric efficiency was the same as in Example 1.

比較例1
実施例1と同様の分散相液、連続相液を調製し、両者を混合し、攪拌しながら超音波ホモジナイザーにより分散させてエマルジョンを作製した。実施例1と同様の方法で乾燥、焼成した。焼成後に粒子同士が強く凝集して塊となり、粉末が得られなかった。
Comparative Example 1
The same dispersed phase liquid and continuous phase liquid as in Example 1 were prepared, both were mixed, and dispersed with an ultrasonic homogenizer while stirring to prepare an emulsion. It dried and baked by the same method as Example 1. After firing, the particles strongly aggregated into a lump, and no powder was obtained.

Claims (3)

イットリウムを含有する分散相液を、該分散相液とは相溶性のない連続相液に、細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを焼成することを特徴とする球状イットリア微粒子の製造方法。   An emulsion is prepared by injecting a dispersed phase liquid containing yttrium into a continuous phase liquid that is incompatible with the dispersed phase liquid through pores, and the dispersed phase liquid is obtained by separating the dispersed phase from the emulsion. A method for producing spherical yttria fine particles, comprising baking a cake. エマルジョンとしてゲル化剤を含有させたエマルジョンを用いる請求項1記載の製造方法。   The production method according to claim 1, wherein an emulsion containing a gelling agent is used as the emulsion. 細孔として、平均細孔径が0.1μm以上30μm以下の範囲の多孔体の細孔を用いる請求項1または2に記載の製造方法。
The method according to claim 1 or 2, wherein the pores are porous bodies having an average pore diameter in the range of 0.1 µm to 30 µm.
JP2004075807A 2004-03-17 2004-03-17 Method for producing spherical yttria fine particles Expired - Fee Related JP4517691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075807A JP4517691B2 (en) 2004-03-17 2004-03-17 Method for producing spherical yttria fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075807A JP4517691B2 (en) 2004-03-17 2004-03-17 Method for producing spherical yttria fine particles

Publications (2)

Publication Number Publication Date
JP2005263528A true JP2005263528A (en) 2005-09-29
JP4517691B2 JP4517691B2 (en) 2010-08-04

Family

ID=35088461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075807A Expired - Fee Related JP4517691B2 (en) 2004-03-17 2004-03-17 Method for producing spherical yttria fine particles

Country Status (1)

Country Link
JP (1) JP4517691B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011087A (en) * 2012-09-22 2013-04-03 包头市京瑞新材料有限公司 Method for preparing spherical yttrium carbonate peroxide
JP2014218384A (en) * 2013-05-01 2014-11-20 信越化学工業株式会社 Method for producing rare earth oxide powder
JP2021053592A (en) * 2019-09-30 2021-04-08 日本ゼオン株式会社 Manufacturing method of o/w emulsion and manufacturing method of fine particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116938A (en) * 1991-10-24 1993-05-14 Shin Etsu Chem Co Ltd Production of oxide of rare earth element
JPH05261274A (en) * 1992-03-23 1993-10-12 Lion Corp Production of globular grain of metallic compound
JP2000203810A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Hollow oxide powder particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05116938A (en) * 1991-10-24 1993-05-14 Shin Etsu Chem Co Ltd Production of oxide of rare earth element
JPH05261274A (en) * 1992-03-23 1993-10-12 Lion Corp Production of globular grain of metallic compound
JP2000203810A (en) * 1999-01-14 2000-07-25 Toyota Central Res & Dev Lab Inc Hollow oxide powder particle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011087A (en) * 2012-09-22 2013-04-03 包头市京瑞新材料有限公司 Method for preparing spherical yttrium carbonate peroxide
CN103011087B (en) * 2012-09-22 2014-10-08 包头市京瑞新材料有限公司 Method for preparing spherical yttrium carbonate peroxide
JP2014218384A (en) * 2013-05-01 2014-11-20 信越化学工業株式会社 Method for producing rare earth oxide powder
JP2021053592A (en) * 2019-09-30 2021-04-08 日本ゼオン株式会社 Manufacturing method of o/w emulsion and manufacturing method of fine particle
JP7271385B2 (en) 2019-09-30 2023-05-11 日本ゼオン株式会社 Method for producing O/W emulsion and method for producing fine particles

Also Published As

Publication number Publication date
JP4517691B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
JP4929674B2 (en) Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles
JP3738454B2 (en) Composite metal oxide powder and method for producing the same
Hirai et al. Preparation of Gd2O3: Eu3+ and Gd2O2S: Eu3+ phosphor fine particles using an emulsion liquid membrane system
US20080145306A1 (en) Method For Producing Spherical Mixed Oxide Powders In A Hot Wall Reactor
JP2001152214A (en) Method for producing fine spherical metal powder
JP3027299B2 (en) Rare earth element phosphate particles and method for producing the same
KR20000074761A (en) A preparing method for green fluorescent body based orthosilicate
CN108083316A (en) A kind of preparation method of nano rareearth oxidate powder body
Roh et al. Morphology and luminescence of (GdY) 2O3: Eu particles prepared by colloidal seed-assisted spray pyrolysis
JP3280688B2 (en) Production method of rare earth oxide
JP2005054046A (en) Method for producing fluorophor
JP4517691B2 (en) Method for producing spherical yttria fine particles
JP6388153B2 (en) Thermal spray material
TW201034962A (en) Method for producing alumina
EP1176119B1 (en) Method of producing barium-containing composite metal oxide
JP2005231973A (en) Silica particle and method of manufacturing the same
JP2008520523A (en) Alkaline earth metal aluminate precursor compound and crystallizing compound, method for producing the crystallizing compound, and method for using the compound as a phosphor
JP2003055654A (en) Spherical phosphor
JP2008174690A (en) Europium-activated yttrium oxide fluorophor material and production method thereof
JP2004277543A (en) Method for producing phosphor particle
Zhang et al. Core/shell Y (OH) CO3: Eu3+/YBO3: Eu3+ phosphors with sphericity, submicrometre size and non-aggregation characteristics
JPH0529606B2 (en)
Lee et al. Y3Al5O12: Tb phosphor particles prepared by spray pyrolysis from spray solution with polymeric precursors and ammonium fluoride flux
CN109734121A (en) A kind of preparation method of the nano-cerium oxide for silicon wafer polishing
JP3891252B2 (en) Process for producing rare earth oxides and basic carbonates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees