JP4929674B2 - Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles - Google Patents

Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles Download PDF

Info

Publication number
JP4929674B2
JP4929674B2 JP2005306725A JP2005306725A JP4929674B2 JP 4929674 B2 JP4929674 B2 JP 4929674B2 JP 2005306725 A JP2005306725 A JP 2005306725A JP 2005306725 A JP2005306725 A JP 2005306725A JP 4929674 B2 JP4929674 B2 JP 4929674B2
Authority
JP
Japan
Prior art keywords
dispersed phase
nickel hydroxide
particles
salt
emulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005306725A
Other languages
Japanese (ja)
Other versions
JP2006151795A (en
Inventor
辻  清治
孫  仁徳
義男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2005306725A priority Critical patent/JP4929674B2/en
Publication of JP2006151795A publication Critical patent/JP2006151795A/en
Application granted granted Critical
Publication of JP4929674B2 publication Critical patent/JP4929674B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、球状粒子からなる水酸化ニッケル粉末およびその製造方法に関する。   The present invention relates to nickel hydroxide powder comprising spherical particles and a method for producing the same.

水酸化ニッケル粉末は、Ni−Cd電池、Ni水素電池の正極活物質およびリチウムイオン二次電池の正極用活物質であるニッケル酸リチウムの原料に用いられている。前記いずれの二次電池においても、電池の小型化および高容量化が求められており、そのために正極活物質あるいはその原料となる水酸化ニッケル粉末としては、密に充填することができるタップ密度が高いものが求められている。   Nickel hydroxide powder is used as a raw material for lithium nickelate, which is a positive electrode active material for Ni-Cd batteries, Ni hydrogen batteries, and a positive electrode active material for lithium ion secondary batteries. In any of the secondary batteries described above, there is a demand for downsizing and increasing the capacity of the battery. For this reason, the positive electrode active material or the nickel hydroxide powder used as the raw material has a tap density that can be closely packed. What is expensive is required.

そこで、粒子形状が球状の粒子からなり、平均粒径が7μm(平均粒径の0.7〜1.3倍に75重量%の粒子が存在する粒度分布を有する。)の水酸化ニッケル粉末が提案されており、そのタップ密度は2.1g/cm3であった(例えば、特許文献1参照。)。 Therefore, a nickel hydroxide powder having a spherical particle shape and an average particle size of 7 μm (having a particle size distribution in which 75% by weight of particles are present 0.7 to 1.3 times the average particle size). The tap density was 2.1 g / cm 3 (for example, refer to Patent Document 1).

また、そのような球状の水酸化ニッケル粒子の製造方法として、濃度2モル/Lの硫酸ニッケル水溶液とアンモニア水と水酸化ナトリウム水溶液とを反応槽にpHが一定となるように流量を制御しながら供給し、生成した水酸化ニッケルをポンプで汲み上げてシックナーで沈澱させ、上澄みを除去して沈殿が濃縮されたスラリーを前記反応槽に戻す操作を繰り返し、10時間かけて反応させる製造方法が提案されている(例えば、特許文献1参照。)。   In addition, as a method for producing such spherical nickel hydroxide particles, while controlling the flow rate of a nickel sulfate aqueous solution having a concentration of 2 mol / L, aqueous ammonia, and aqueous sodium hydroxide while keeping the pH constant in the reaction vessel. Supplying and pumping the produced nickel hydroxide with a pump and precipitating with a thickener, repeating the operation of removing the supernatant and returning the concentrated slurry to the reaction vessel, and reacting for 10 hours is proposed. (For example, refer to Patent Document 1).

特開平10−25117号公報Japanese Patent Laid-Open No. 10-25117

本発明の目的は、タップ密度の高い水酸化ニッケル粉末およびその製造方法を提供することにある。   An object of the present invention is to provide a nickel hydroxide powder having a high tap density and a method for producing the same.

本発明者は、タップ密度の高い水酸化ニッケル粉末について鋭意検討した結果、球状の粒子からなり粒度分布が一定以上に狭い水酸化ニッケル粉末が高いタップ密度を示すことを見出し、さらに、そのような水酸化ニッケル粉末が、ニッケル化合物を溶解させた分散相液を、該分散相液との相溶性がない連続相液に、細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン溶液にゲル化剤を添加した後、得られるエマルジョン粒子を分離してケーキとし、得られたケーキを、乾燥することにより得られることを見出し、本発明を完成するに至った。   As a result of intensive studies on nickel hydroxide powder having a high tap density, the present inventor has found that nickel hydroxide powder composed of spherical particles and having a narrow particle size distribution more than a certain value exhibits a high tap density. An emulsion is prepared by injecting a dispersed phase liquid in which nickel hydroxide powder is dissolved in a nickel hydroxide powder into a continuous phase liquid that is not compatible with the dispersed phase liquid through pores, and the emulsion solution After adding the gelling agent, the emulsion particles obtained were separated to make a cake, and the obtained cake was found to be obtained by drying, and the present invention was completed.

すなわち本発明は、球状の粒子からなり、平均粒径が0.1μm以上30μm以下であり、平均粒径の0.7倍以上1.3倍以下に80重量%以上の粒子が存在する粒度分布を有することを特徴とする水酸化ニッケル粉末を提供する。また本発明は、ニッケル塩を含有する分散相液を、該分散相液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを乾燥することを特徴とする水酸化ニッケル粉末の製造方法を提供する。また本発明は、ニッケル塩を含有する分散相液を、該分散相液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン中の分散相をゲル化した後、分離し得られたケーキを乾燥することを特徴とする前記の水酸化ニッケル粉末の製造方法を提供する。また本発明は、ニッケル塩を含有する分散相水溶液を、該分散相水溶液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン中の分散相に水溶性ゲル化剤を存在させることにより、水酸化ニッケルを含有する分散相をゲル化させ、次いで分散相を分離してケーキとし、分離することにより得られたケーキを乾燥することを特徴とする前記の水酸化ニッケル粉末の製造方法を提供する。また本発明は、平均粒径が異なる2種以上の前記記載の水酸化ニッケル粉末を水酸化ニッケル元粉末とし、平均粒径の大きな順に並べたときに隣の水酸化ニッケル元粉末との平均粒径比が1:0.1〜0.3の範囲であり、重量比が0.1〜1.0である複数の水酸化ニッケル元粉末を混合してなることを特徴とする水酸化ニッケル粉末を提供する。また本発明は、平均粒径が異なる2種以上の請求項1記載の水酸化ニッケル粉末を水酸化ニッケル元粉末とし、平均粒径の大きな順に並べたときに隣の水酸化ニッケル元粉末との平均粒径比が1:0.1〜0.3の範囲であり、重量比が0.1〜1.0である複数の水酸化ニッケル元粉末を混合することを特徴とする水酸化ニッケル粉末の製造方法を提供する。また本発明は、ニッケル塩を含有する分散相水溶液を、該分散相水溶液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン中の分散相に水溶性ゲル化剤を存在させることにより、水酸化ニッケルを含有する分散相をゲル化させ、次いで分散相を分離して得られるケーキを提供する。また本発明は、リチウム塩を前記のケーキに含有させ、焼成することを特徴とする球状ニッケル酸リチウム粒子の製造方法を提供する。さらに本発明は、リチウム塩とマンガン塩および/またはコバルト塩とを前記のケーキに含有させ、焼成することを特徴とする球状の複合酸化物粒子の製造方法を提供する。   That is, the present invention is a particle size distribution comprising spherical particles, having an average particle size of 0.1 μm or more and 30 μm or less, and having 80% by weight or more of particles present 0.7 to 1.3 times the average particle size. A nickel hydroxide powder is provided. The present invention also injects a dispersed phase liquid containing a nickel salt through a pore having an average pore diameter of 0.1 μm or more and 40 μm or less into a continuous phase liquid that is not compatible with the dispersed phase liquid. Thus, an emulsion is prepared, a dispersed phase is separated from the emulsion, and a cake obtained is dried, and a method for producing nickel hydroxide powder is provided. The present invention also injects a dispersed phase liquid containing a nickel salt through a pore having an average pore diameter of 0.1 μm or more and 40 μm or less into a continuous phase liquid that is not compatible with the dispersed phase liquid. The method for producing nickel hydroxide powder is characterized in that an emulsion is prepared, the dispersed phase in the emulsion is gelled, and the separated cake is dried. The present invention also injects a dispersed phase aqueous solution containing a nickel salt through a pore having an average pore size of 0.1 μm or more and 40 μm or less into a continuous phase solution that is not compatible with the dispersed phase aqueous solution. The emulsion is prepared, and the dispersed phase in the emulsion is made to have a water-soluble gelling agent so that the dispersed phase containing nickel hydroxide is gelled, and then the dispersed phase is separated into a cake and separated. The cake obtained as described above is dried, and the method for producing the nickel hydroxide powder is provided. Further, the present invention provides two or more kinds of the above described nickel hydroxide powders having different average particle diameters as nickel hydroxide base powders, and the average grains with the adjacent nickel hydroxide base powders when arranged in descending order of the average particle diameters. Nickel hydroxide powder comprising a mixture of a plurality of nickel hydroxide base powders having a diameter ratio of 1: 0.1 to 0.3 and a weight ratio of 0.1 to 1.0 I will provide a. Further, the present invention provides two or more kinds of nickel hydroxide powders according to claim 1 having different average particle diameters as nickel hydroxide base powders, and when arranged in descending order of average particle diameters, A nickel hydroxide powder characterized by mixing a plurality of nickel hydroxide base powders having an average particle size ratio in the range of 1: 0.1 to 0.3 and a weight ratio of 0.1 to 1.0. A manufacturing method is provided. The present invention also injects a dispersed phase aqueous solution containing a nickel salt through a pore having an average pore size of 0.1 μm or more and 40 μm or less into a continuous phase solution that is not compatible with the dispersed phase aqueous solution. By providing a water-soluble gelling agent in the dispersed phase in the emulsion, the dispersed phase containing nickel hydroxide is gelled, and then the dispersed phase is separated to provide a cake obtained To do. The present invention also provides a method for producing spherical lithium nickelate particles, wherein a lithium salt is contained in the cake and calcined. Furthermore, the present invention provides a method for producing spherical composite oxide particles characterized in that a lithium salt and a manganese salt and / or a cobalt salt are contained in the cake and calcined.

本発明の水酸化ニッケル粉末は、正極材として用いた場合、従来より高密度で充填できるので、高容量の2次電池用として、本発明は工業的に極めて有用である。   When the nickel hydroxide powder of the present invention is used as a positive electrode material, it can be filled with a higher density than before, so that the present invention is extremely useful industrially for high-capacity secondary batteries.

本第1発明の水酸化ニッケル粉末は、球状粒子からなり、その粒度分布は非常に狭く、平均粒径の0.7倍〜1.3倍に80重量%の粒子が存在する。このように粒度分布が狭い場合に、タップ密度が高くなるのである。   The nickel hydroxide powder of the first invention comprises spherical particles, the particle size distribution is very narrow, and 80% by weight of particles are present at 0.7 to 1.3 times the average particle size. In this way, when the particle size distribution is narrow, the tap density becomes high.

本第1発明の水酸化ニッケル粉末の平均粒径は0.1μm以上30μm以下である。平均粒径が0.1μm未満または30μmを超えると、タップ密度が低下する傾向がある。   The average particle diameter of the nickel hydroxide powder of the first invention is not less than 0.1 μm and not more than 30 μm. When the average particle size is less than 0.1 μm or more than 30 μm, the tap density tends to decrease.

ここで、平均粒径および粒度分布は、水酸化ニッケル粉末の粒子の走査型電子顕微鏡写真を撮影し、粒子の画像を数百個を任意に選び、画像化解析により求めた値である。この評価方法の場合、2個以上の球状粒子が弱く凝集した場合も別の粒子とする。   Here, the average particle diameter and the particle size distribution are values obtained by taking a scanning electron micrograph of nickel hydroxide powder particles, arbitrarily selecting several hundred images of the particles, and performing imaging analysis. In the case of this evaluation method, when two or more spherical particles are weakly aggregated, another particle is used.

本第1発明の水酸化ニッケル粉末の粒度分布が狭いことから、平均粒径の異なる2種以上の本第1発明の水酸化ニッケル粉末を水酸化ニッケル元粉末とし、それらを混合することにより、大きな粒子の間に小さい粒子を充填させることができ、タップ密度が本第1発明の水酸化ニッケル粉末よりさらに高くなる本第2発明の水酸化ニッケル粉末とすることができる。   Since the particle size distribution of the nickel hydroxide powder of the first invention is narrow, the two or more kinds of nickel hydroxide powders of the first invention having different average particle diameters are used as the nickel hydroxide base powder, and they are mixed, Small particles can be filled between large particles, and the nickel hydroxide powder of the second invention can be obtained in which the tap density is higher than that of the nickel hydroxide powder of the first invention.

すなわち、本第2発明の水酸化ニッケル粉末は、平均粒径が異なる2種以上の本第1発明の水酸化ニッケル粉末を水酸化ニッケル元粉末とし、平均粒径の大きな順に並べたときに隣の水酸化ニッケル元粉末との平均粒径比が1:0.1〜0.3の範囲であり、重量比が0.1〜1.0である複数の水酸化ニッケル元粉末を混合してなる水酸化ニッケル粉末であり、本第1発明の水酸化ニッケル粉末よりさらに高いタップ密度を示す傾向がある。なお、混合はV型混合機、振とう混合機、プラスチックボールを用いたボールミル等の通常工業的に用いられる混合機のうちで粉砕を伴わずに混合できる混合機を用いて行うことができる。   That is, the nickel hydroxide powder of the second invention is adjacent to two or more kinds of the nickel hydroxide powders of the first invention having different average particle diameters as the nickel hydroxide base powder and arranged in descending order of the average particle diameter. A plurality of nickel hydroxide base powders having an average particle diameter ratio with the nickel hydroxide base powder of 1: 0.1 to 0.3 and a weight ratio of 0.1 to 1.0 are mixed. This nickel hydroxide powder tends to exhibit a higher tap density than the nickel hydroxide powder of the first invention. In addition, mixing can be performed using the mixer which can be mixed without grind | pulverizing among mixers used normally industrially, such as a V-type mixer, a shake mixer, and a ball mill using a plastic ball.

例えば、粒径が20μmの大粒子を充填した隙間に粒径が2.8〜4μmの小粒子を詰めることができるので、粒径が20μmの大粒子からなる本第1発明の水酸化ニッケル粉末を水酸化ニッケル元粉末とし、粒径が2.8〜4μmの小粒子からなる水酸化ニッケル粉末を別の本第1発明の水酸化ニッケル元粉末とし、前記小粒子からなる水酸化ニッケル元粉末を、前記大粒子からなる水酸化ニッケル元粉末100重量%に対して重量比で30重量%となる量を加えて混合すれば、高いタップ密度を示す水酸化ニッケル粉末となる。さらに、その小粒子の間に生じる隙間に充填できる0.5〜0.8μmの微小粒子からなる本第1発明の水酸化ニッケル粉末をさらに別の水酸化ニッケル元粉末とし、前記大粒子からなる水酸化ニッケル元粉末100重量%に対して重量比で10重量%となる量をさらに加えて混合することにより、より高いタップ密度を示す水酸化ニッケル粉末となり、粒径と水酸化ニッケル元粉末の混合比率を選ぶことにより、最大90体積%程度まで充填することが可能である。   For example, since a small particle having a particle size of 2.8 to 4 μm can be packed in a gap filled with a large particle having a particle size of 20 μm, the nickel hydroxide powder of the first invention of the present invention consisting of a large particle having a particle size of 20 μm Is a nickel hydroxide base powder, and a nickel hydroxide powder consisting of small particles having a particle size of 2.8 to 4 μm is used as another nickel hydroxide base powder of the first invention, and the nickel hydroxide base powder comprising the small particles Is added to an amount of 30% by weight with respect to 100% by weight of the nickel hydroxide base powder composed of the large particles and mixed to obtain a nickel hydroxide powder exhibiting a high tap density. Furthermore, the nickel hydroxide powder according to the first aspect of the present invention consisting of 0.5 to 0.8 μm fine particles that can be filled in the gaps formed between the small particles is used as another nickel hydroxide base powder, and consists of the large particles. By further adding and mixing an amount of 10% by weight with respect to 100% by weight of the nickel hydroxide base powder, a nickel hydroxide powder having a higher tap density is obtained. By selecting the mixing ratio, it is possible to fill up to about 90% by volume.

次に、本発明の製造方法について説明する。
本第1発明の水酸化ニッケル粉末は、ニッケル塩を溶解させた分散相液を、該分散相液との相溶性がない連続相液に、細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョンから分散相を分離し、得られたケーキを乾燥することにより製造することができる。
Next, the manufacturing method of this invention is demonstrated.
The nickel hydroxide powder according to the first aspect of the present invention produces an emulsion by injecting a dispersed phase liquid in which a nickel salt is dissolved into a continuous phase liquid that is not compatible with the dispersed phase liquid through pores. The dispersed phase is separated from the emulsion, and the resulting cake can be dried.

本発明の製造方法における出発原料としては、ニッケル塩が溶解した分散相液を用いる。このような分散相液としては、有機溶媒または水に溶解したニッケル化合物であればよく、ニッケル化合物としては、例えば、蓚酸ニッケル、酢酸ニッケル、蟻酸ニッケル、塩化ニッケル、硝酸ニッケル等が挙げられる。分散相液としては水系液、すなわちニッケル化合物の水溶液が好ましい。   As a starting material in the production method of the present invention, a dispersed phase liquid in which a nickel salt is dissolved is used. Such a dispersed phase liquid may be a nickel compound dissolved in an organic solvent or water, and examples of the nickel compound include nickel oxalate, nickel acetate, nickel formate, nickel chloride, nickel nitrate and the like. As the dispersed phase liquid, an aqueous liquid, that is, an aqueous solution of a nickel compound is preferable.

この分散相液が水系液の場合、連続相液は実質的に分散相液との相溶性を有していなければよく、連続相液としては非水溶性の有機溶媒を用いることができる。具体的には、トルエン、シクロヘキサン、ケロシン、ヘキサン、ベンゼン等を挙げることができる。
一方、分散相液が非水溶性の場合、連続相液は実質的に分散相液との相溶性を有していなければよく、連続相液としては水を用いることができる。
In the case where the dispersed phase liquid is an aqueous liquid, the continuous phase liquid is not required to have substantially compatibility with the dispersed phase liquid, and a water-insoluble organic solvent can be used as the continuous phase liquid. Specific examples include toluene, cyclohexane, kerosene, hexane, benzene and the like.
On the other hand, when the dispersed phase liquid is water-insoluble, it is sufficient that the continuous phase liquid does not substantially have compatibility with the dispersed phase liquid, and water can be used as the continuous phase liquid.

ここで、分散相液には界面活性剤を含有させることができる。分散相液が水系液の場合は、分散剤としては、具体的には、ポリカルボン酸またはそのアンモニウム塩、ポリアクリル酸またはそのアンモニウム塩等を挙げることができる。さらに、界面活性剤は、連続相液に含有させることもでき、分散剤としては、具体的には、ソルビタンエステル、グリセリンエステル等を挙げることができる。   Here, the dispersed phase liquid may contain a surfactant. When the dispersed phase liquid is an aqueous liquid, specific examples of the dispersant include polycarboxylic acid or its ammonium salt, polyacrylic acid or its ammonium salt, and the like. Furthermore, surfactant can also be contained in a continuous phase liquid, and specifically, a sorbitan ester, glycerol ester, etc. can be mentioned as a dispersing agent.

次にエマルジョンを作製する。エマルジョンは分散相液を細孔を通して連続相液に注入する方法により作製する。エマルジョンは、分散相液が水系液であれば、水/油(W/O)となる。   Next, an emulsion is prepared. An emulsion is prepared by a method in which a dispersed phase liquid is injected into a continuous phase liquid through pores. If the dispersed phase liquid is an aqueous liquid, the emulsion becomes water / oil (W / O).

このエマルジョンの作製において用いる細孔としては、細孔を有するノズル、多孔膜、多孔体の細孔を用いることができ、効率と強度の点から多孔体の細孔が好ましい。得られる水酸化ニッケル粒子の粒径は、用いる細孔の平均細孔径を変えることにより変えることができ、正極材として用いるには0.1〜30μmの範囲とすることが好ましいので、細孔の平均細孔径は0.1μm以上40μm以下の範囲が好ましい。   As the pores used in the preparation of the emulsion, a nozzle having a pore, a porous membrane, and a pore of a porous body can be used. From the viewpoint of efficiency and strength, the pore of the porous body is preferable. The particle diameter of the nickel hydroxide particles obtained can be changed by changing the average pore diameter of the pores used, and is preferably in the range of 0.1 to 30 μm for use as the positive electrode material. The average pore diameter is preferably in the range of 0.1 μm to 40 μm.

細孔として多孔体の細孔を用いる場合、その多孔体としては、比較的均一な細孔径を有しているものであればよく、具体的には、シラスポーラスガラス(以下、「SPG」という。)、ガラス多孔体、セラミック多孔体等を挙げることができ、細孔径を精密に調節することができるので、SPGが好ましい。そして、その細孔径分布は80%以上の細孔が平均細孔径の0.7倍以上1.3倍以下であるものがさらに好ましい。多孔体の表面は、W/Oエマルジョンの場合は親油化することが好ましい。例えば、SPGの場合は多孔体表面は親水性であるが、親油化が必要な場合、次のようにして表面処理を行うことができる。表面処理は、例えば、多孔体をシリコン樹脂溶液に浸し乾燥する、シランカップリング剤を塗布する、トリメチルクロロシランに接触させる等の方法により行うことができる。   In the case of using the pores of a porous body as the pores, the porous body only needs to have a relatively uniform pore diameter, and specifically, it is referred to as a “laser porous glass” (hereinafter referred to as “SPG”). S) is preferable since the pore diameter can be precisely adjusted. The pore size distribution is more preferably that 80% or more of the pores are 0.7 to 1.3 times the average pore size. In the case of a W / O emulsion, the surface of the porous body is preferably oleophilic. For example, in the case of SPG, the surface of the porous body is hydrophilic, but when lipophilicity is required, the surface treatment can be performed as follows. The surface treatment can be performed by, for example, a method of immersing the porous body in a silicon resin solution and drying, applying a silane coupling agent, or contacting with trimethylchlorosilane.

分散相液が細孔から出るとき、細孔から速やかに離脱させる操作を加えることが好ましく、具体的には、多孔体を振動させる、分散媒を循環させるなどの操作を加えることが好ましい。   When the dispersed phase liquid exits from the pores, it is preferable to add an operation of quickly releasing from the pores. Specifically, it is preferable to add an operation such as vibrating the porous body or circulating the dispersion medium.

こうして得られたエマルジョン中にはニッケルイオン溶液が分散相として存在しており、この分散相をゲル化した後、分離してケーキとする。分離は、濾過またはデカンテーションにより行うことが好ましい。遠心分離によると、分散相の粒子が相互に結合したり変形することがある。   In the emulsion thus obtained, a nickel ion solution is present as a dispersed phase. After the dispersed phase is gelled, it is separated into a cake. Separation is preferably performed by filtration or decantation. Centrifugation can cause the particles in the dispersed phase to bind or deform.

ゲル化に用いるゲル化剤としては、塩化アンモニウム、炭酸水素アンモニウム、水酸化ナトリウム、炭酸ナトリウム等を用いることができる。Naが不純物として問題となる可能性があるので、ゲル化剤としては、塩化アンモニウムおよび炭酸水素アンモニウムが好ましい。ゲル化剤の量は、ニッケルイオンに対して通常は0.1モル%以上10モル%以下となる量であり、1モル%以上7モル%以下となる量が好ましい。このようにゲル化剤を用いることにより、水酸化ニッケルを生成させることができる。   As a gelling agent used for gelation, ammonium chloride, ammonium hydrogen carbonate, sodium hydroxide, sodium carbonate, or the like can be used. As Na may cause a problem as an impurity, the gelling agent is preferably ammonium chloride or ammonium bicarbonate. The amount of the gelling agent is usually 0.1 mol% or more and 10 mol% or less with respect to nickel ions, and preferably 1 mol% or more and 7 mol% or less. Thus, nickel hydroxide can be produced | generated by using a gelatinizer.

ゲル化剤はエマルジョンを作製後、水溶液として添加する方法やあらかじめ連続相中に溶解させる方法、エマルジョンとして分散させる等の方法を用いることができる。ニッケルを含むエマルジョンとゲル化剤を均一に接触させるためには、好ましくはゲル化剤もエマルジョンとして分散させる方法が好ましい。ゲル化剤のエマルジョン化は膜乳化法や超音波ホモジナイザー、攪拌型ホモジナイザー等を用いて行うことができる。   As the gelling agent, a method of adding an aqueous solution after preparing an emulsion, a method of dissolving in a continuous phase in advance, a method of dispersing as an emulsion, or the like can be used. In order to bring the nickel-containing emulsion and the gelling agent into uniform contact, it is preferable to disperse the gelling agent as an emulsion. The gelling agent can be emulsified using a membrane emulsification method, an ultrasonic homogenizer, a stirring type homogenizer, or the like.

分離したケ−キを乾燥することにより、水酸化ニッケル粒子が得られる。ゲル化剤にNaが含まれ、Naを除去する場合、水酸化ニッケル粒子はゲル化剤により形状を保持できる状態になっているので、分離後水洗して除去することができる。
乾燥方法としては工業的に通常用いられる熱風乾燥、粒子が崩壊しない程度の流動層乾燥等の方法を用いることができる。
Nickel hydroxide particles are obtained by drying the separated cake. When Na is contained in the gelling agent and the Na is removed, the nickel hydroxide particles are in a state in which the shape can be maintained by the gelling agent, and thus can be removed by washing with water after separation.
As a drying method, there can be used a method such as hot air drying which is usually used industrially, or fluidized bed drying which does not cause the particles to collapse.

また、本発明の製造方法においては、水酸化ニッケルとリチウム塩とを混合し、焼成することによりリチウム2次電池用の球状ニッケル酸リチウム粒子を製造することができる。水酸化ニッケルとリチウム塩を混合するには、リチウム塩を水酸化ニッケルの前記ケーキに含有させる。リチウム塩を水酸化ニッケルの前記ケーキに含有させるには、リチウム塩溶液をケーキに含浸させてケーキに含有させてもよく、分散相液にリチウム塩を含有させることによりケーキに含有させてもよく、連続相液にリチウム塩を含有させて分散相に移行させることによりケーキに含有させてもよく、前記いずれかの方法を組み合わせてもよい。リチウム塩としては、例えば、硝酸塩、塩化物、硫酸塩、炭酸水素塩、蓚酸塩などが挙げられる。   Moreover, in the manufacturing method of this invention, the spherical lithium nickelate particle | grains for lithium secondary batteries can be manufactured by mixing nickel hydroxide and lithium salt and baking. To mix nickel hydroxide and lithium salt, lithium salt is included in the nickel hydroxide cake. In order to contain lithium salt in the nickel hydroxide cake, the cake may be impregnated with a lithium salt solution and may be contained in the cake, or may be contained in the cake by containing lithium salt in the dispersed phase liquid. In addition, the lithium salt may be contained in the continuous phase liquid and transferred to the dispersed phase to be contained in the cake, or any one of the above methods may be combined. Examples of lithium salts include nitrates, chlorides, sulfates, hydrogen carbonates, oxalates, and the like.

次いで、こうして得られたケーキを焼成する。焼成は、例えば600〜800℃で2〜10時間の保持して行う。焼成中の雰囲気は酸素、酸素含有窒素(空気を含む)、酸素含有アルゴンを用いることができる。ニッケル酸リチウムを製造するときは酸素が好ましい。また、該ケーキについて焼成前に上記と同様の乾燥を行っても良い。   The cake thus obtained is then baked. Firing is performed, for example, by holding at 600 to 800 ° C. for 2 to 10 hours. As the atmosphere during firing, oxygen, oxygen-containing nitrogen (including air), or oxygen-containing argon can be used. Oxygen is preferred when producing lithium nickelate. Further, the cake may be dried in the same manner as described above before baking.

さらに、本発明の製造方法においては、水酸化ニッケルとリチウム塩とマンガン塩および/またはコバルト塩とを混合し、焼成することによりリチウム2次電池用の球状の複合酸化物粒子を製造することができる。この場合、複合酸化物としては、リチウムニッケルマンガン複合酸化物が挙げられ、その構成元素の一部を構成元素以外の遷移金属元素、アルミニウム、ガリウム、亜鉛、錫、マグネシウム、カルシウムで置換していてもよい。水酸化ニッケルとリチウム塩とマンガン塩および/またはコバルト塩とを混合するには、リチウム塩とマンガン塩および/またはコバルト塩とを水酸化ニッケルの前記ケーキに含有させる。リチウム塩とマンガン塩および/またはコバルト塩とを水酸化ニッケルの前記ケーキに含有させるには、リチウム塩とマンガン塩および/またはコバルト塩とを含有する溶液をケーキに含浸させてケーキに含有させてもよく、分散相液にリチウム塩とマンガン塩および/またはコバルト塩とを含有させることによりケーキに含有させてもよく、連続相液にリチウム塩とマンガン塩および/またはコバルト塩とを含有させて分散相に移行させることによりケーキに含有させてもよく、前記いずれかの方法を組み合わせてもよい。リチウム塩、マンガン塩、コバルト塩としては、例えば、硝酸塩、塩化物、硫酸塩、炭酸水素塩、蓚酸塩などが挙げられる。
次いで、こうして得られたケーキを焼成する。焼成は、例えば700〜1100℃で2〜10時間の保持して行う。焼成中の雰囲気は酸素、酸素含有窒素(空気を含む)、酸素含有アルゴンを用いることができる。焼成中の雰囲気は空気が好ましい。また、該ケーキについて焼成前に上記と同様の乾燥を行っても良い。
Furthermore, in the production method of the present invention, it is possible to produce spherical composite oxide particles for a lithium secondary battery by mixing nickel hydroxide, lithium salt, manganese salt and / or cobalt salt and firing. it can. In this case, examples of the composite oxide include lithium nickel manganese composite oxide, and some of the constituent elements are substituted with transition metal elements other than the constituent elements, aluminum, gallium, zinc, tin, magnesium, calcium. Also good. In order to mix nickel hydroxide, lithium salt and manganese salt and / or cobalt salt, the lithium salt, manganese salt and / or cobalt salt are contained in the nickel hydroxide cake. In order to contain lithium salt and manganese salt and / or cobalt salt in the cake of nickel hydroxide, the cake is impregnated with a solution containing lithium salt and manganese salt and / or cobalt salt. Alternatively, the dispersion phase liquid may contain a lithium salt and a manganese salt and / or a cobalt salt, and the continuous phase liquid may contain a lithium salt, a manganese salt and / or a cobalt salt. You may make it contain in a cake by making it transfer to a dispersed phase, and may combine any of the said methods. Examples of the lithium salt, manganese salt, and cobalt salt include nitrates, chlorides, sulfates, hydrogen carbonates, and oxalates.
The cake thus obtained is then baked. Firing is performed, for example, by holding at 700 to 1100 ° C. for 2 to 10 hours. As the atmosphere during firing, oxygen, oxygen-containing nitrogen (including air), or oxygen-containing argon can be used. The atmosphere during firing is preferably air. Further, the cake may be dried in the same manner as described above before baking.

本発明の製造方法による水酸化ニッケル粉末は球状の粒子からなり、該粉末を構成する粒子の粒径は、細孔を通してエマルジョンを作製して得られたエマルジョン中の分散相の粒径が反映されることから、本発明の製造方法による水酸化ニッケル粉末には粗大粒がなく、また、用いる細孔を細孔径の分布が狭いものとすることにより、水酸化ニッケル粉末の粒度分布を狭いものにすることができる。さらに、上記のように水酸化ニッケルにリチウム塩、マンガン塩、コバルト塩を混合した場合は、球状のニッケル酸リチウム粒子、球状の複合酸化物粒子を得ることができる。これらの粒子は形状が球状で均一であることから乾燥や焼成で起きる凝集が弱い。このためジェットミルや軽量のプラスチックボールを用いたボールミル等の弱い粉砕後に得られる水酸化ニッケル粒子、ニッケル酸リチウム粒子、複合酸化物粒子の粒度分布はさらに狭くなり、水酸化ニッケル粉末、ニッケル酸リチウム粉末および複合酸化物粉末の粒径分布は、平均粒径の0.7倍〜1.3倍に粒子の90重量%が存在する狭い分布にすることもできる。   The nickel hydroxide powder produced by the production method of the present invention is composed of spherical particles, and the particle size of the particles constituting the powder reflects the particle size of the dispersed phase in the emulsion obtained by producing the emulsion through the pores. Therefore, the nickel hydroxide powder produced by the production method of the present invention has no coarse particles, and the pore size used is narrow in the pore size distribution, thereby narrowing the particle size distribution of the nickel hydroxide powder. can do. Furthermore, when lithium salt, manganese salt, and cobalt salt are mixed with nickel hydroxide as described above, spherical lithium nickelate particles and spherical composite oxide particles can be obtained. Since these particles have a spherical shape and are uniform, aggregation caused by drying or baking is weak. For this reason, the particle size distribution of nickel hydroxide particles, lithium nickelate particles, and composite oxide particles obtained after weak grinding such as jet mills and ball mills using lightweight plastic balls is further narrowed. The particle size distribution of the powder and composite oxide powder may be a narrow distribution in which 90% by weight of the particles are present at 0.7 to 1.3 times the average particle size.

そして、本発明における水酸化ニッケル粉末、ニッケル酸リチウム粉末および複合酸化物粉末は、粒子形状が球状で粒度分布が狭く中心粒径を制御できることから、異なる平均粒径を有する粒子を製造して混合することにより粒度分布を精密に設計することができるので、正極材として高充填が可能であり、電池の容量を従来より高くすることができる。   The nickel hydroxide powder, lithium nickelate powder and composite oxide powder according to the present invention have a spherical particle shape and a narrow particle size distribution, so that the center particle size can be controlled. By doing so, the particle size distribution can be designed precisely, so that it can be highly charged as a positive electrode material, and the capacity of the battery can be made higher than before.

以下、本発明を実施例により説明するが、本発明はこれらによって限定されるものではない。
1. 粒子形状の観察
1次粒子の形状は粉末をSEM(走査型電子顕微鏡、日本電子株式会社製T−300型)およびTEM(透過型電子顕微鏡、日本電子製JEM40000FX型)により観察した。なお、写真のうえで、1個の粒子の最大径と最小径の比が1.0〜1.1の粒子を球形と判断した。
2. 平均粒径、粒度分布の評価
平均粒径は、SEMで撮影した写真から任意に数百個の粒子を選び、画像解析により測定した。
3. 充填密度の評価
JIS R1600によりタップ密度(重装密度ともいう。)を測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited by these.
1. Observation of particle shape The shape of the primary particles was observed by SEM (scanning electron microscope, J-KK T-300 type) and TEM (transmission electron microscope, JEOL JEM 40000 FX type). In addition, on the photograph, particles having a ratio of the maximum diameter to the minimum diameter of one particle of 1.0 to 1.1 were determined to be spherical.
2. Evaluation of average particle size and particle size distribution The average particle size was measured by selecting several hundred particles arbitrarily from a photograph taken with an SEM and analyzing the image.
3. Evaluation of packing density The tap density (also referred to as heavy density) was measured according to JIS R1600.

参考例1
酢酸ニッケル(和光純薬)を15重量%で溶解させた水溶液11mlを分散相液として用い、連続相液としてトルエン400mlを用い、平均細孔径0.7μmのSPG多孔体を用い、エマルジョンを作製した。SPG多孔体は直径1cm、長さ10cm、厚さ1mmのチューブ形状であり、両端をOリングで密閉し、その内部に分散相液を通し、SPGを通してチューブの外側に押し出し、エマルジョンを作製した。分散相液の押し出しは、約3kg/cm2の圧力の空気を供給することにより行なった。なお、SPGはトリメチルクロロシラン無水トルエン溶液に浸漬することにより表面を親油化処理した。界面活性剤はtween80(商品名、ソルビタンモノラウレート)を1重量%となる量を添加した。ゲル化剤としては炭酸ナトリウム水溶液をトルエン800ml中にホモジナイザーを用いて分散させてゲル化剤のエマルジョンを作製した後、連続相液に水酸化ニッケルに対して4.6倍モル当量となる量を添加して使用した。得られたゲル化後のエマルジョンをろ過により分離してケーキとした。得られたケーキを110℃で乾燥後、プラスチックボールにより2時間粉砕し粒度分布を測定した。形状は球状で平均粒径は0.8μm、平均粒径の0.7倍〜1.3倍に84重量%の粒子が存在した。
Reference example 1
An emulsion was prepared using 11 ml of an aqueous solution in which nickel acetate (Wako Pure Chemical Industries) was dissolved at 15% by weight as a dispersed phase liquid, 400 ml of toluene as a continuous phase liquid, and an SPG porous material having an average pore diameter of 0.7 μm. . The SPG porous body was a tube shape having a diameter of 1 cm, a length of 10 cm, and a thickness of 1 mm. Both ends were sealed with O-rings, a dispersed phase liquid was passed through the inside, and the emulsion was extruded through the SPG to the outside of the tube. The dispersed phase liquid was extruded by supplying air having a pressure of about 3 kg / cm 2 . The surface of SPG was made oleophilic by immersing it in an anhydrous toluene solution of trimethylchlorosilane. As the surfactant, tween 80 (trade name, sorbitan monolaurate) was added in an amount of 1% by weight. As a gelling agent, an aqueous solution of sodium carbonate was dispersed in 800 ml of toluene using a homogenizer to prepare an emulsion of the gelling agent, and then the amount of 4.6 times molar equivalent to nickel hydroxide was added to the continuous phase liquid. Added and used. The obtained emulsion after gelation was separated by filtration to obtain a cake. The obtained cake was dried at 110 ° C. and then pulverized with a plastic ball for 2 hours, and the particle size distribution was measured. The shape was spherical, the average particle size was 0.8 μm, and 84% by weight of particles existed 0.7 to 1.3 times the average particle size.

参考例2
平均細孔径が25μmのSPGを用いた以外は参考例1と同様の方法で実施した。粒径が大きいため粉砕は不用であった。形状は均一な球状で、平均粒径が23μm、平均粒径の0.7倍〜1.3倍に93重量%が存在した。タップ密度は2.2g/cm3と単一粒径の粒子としては非常に高い値であった。
Reference example 2
The same procedure as in Reference Example 1 was performed except that SPG having an average pore size of 25 μm was used. Grinding was unnecessary because of the large particle size. The shape was a uniform sphere, and the average particle size was 23 μm, and 93 wt% was present at 0.7 to 1.3 times the average particle size. The tap density was 2.2 g / cm 3 , which was a very high value for particles having a single particle size.

参考例3
SPGが5μmであること以外は参考例1と同様の方法で実施した。粉砕はプラスチックボールで一時間ボールミルを行った。形状は均一な球状で、平均粒径は5.1μm、平均粒径の0.7倍〜1.3倍に89重量%が存在した。
Reference example 3
It implemented by the method similar to the reference example 1 except that SPG was 5 micrometers. The grinding was performed with a plastic ball for 1 hour. The shape was a uniform sphere, the average particle size was 5.1 μm, and 89% by weight was present at 0.7 to 1.3 times the average particle size.

参考例4
参考例2の25μmの粒子を72%、参考例3の5.1μmの粒子を15%、参考例1の0.8μmの粒子を13%混合した粉末の重装密度は2.5g/cm3と非常に高かった。
Reference example 4
The weight density of the powder obtained by mixing 72% of the 25 μm particles of Reference Example 2, 15% of the 5.1 μm particles of Reference Example 3 and 13% of the 0.8 μm particles of Reference Example 1 is 2.5 g / cm 3. It was very high.

比較例1
実施例1の酢酸ニッケル分散相水溶液とトルエン連続相液を直接混合し、ゲル化させ水酸化ニッケル粒子を合成した。球状の粒子は得られず,平均粒径が3.2μm、平均粒径の0.7倍〜1.3倍には46重量%しか存在しなかった。タップ密度は1.8g/cm3であった。
Comparative Example 1
The nickel acetate dispersed phase aqueous solution of Example 1 and the toluene continuous phase solution were directly mixed and gelled to synthesize nickel hydroxide particles. No spherical particles were obtained, and the average particle size was 3.2 μm, and only 46% by weight was present at 0.7 to 1.3 times the average particle size. The tap density was 1.8 g / cm 3 .

本発明の実施例1により得られた球状水酸化ニッケル粒子の写真である。2 is a photograph of spherical nickel hydroxide particles obtained in Example 1 of the present invention.

Claims (2)

ニッケル塩を含有する分散相水溶液を、該分散相水溶液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン中の分散相に水溶性ゲル化剤を存在させることにより、水酸化ニッケルを含有する分散相をゲル化させ、次いで分散相を分離して得られるケーキにリチウム塩を含有させ、焼成することを特徴とする球状ニッケル酸リチウム粒子の製造方法。   An emulsion is prepared by injecting a dispersed phase aqueous solution containing a nickel salt through a pore having an average pore size of 0.1 μm or more and 40 μm or less into a continuous phase solution that is not compatible with the dispersed phase aqueous solution. Then, by allowing a water-soluble gelling agent to exist in the dispersed phase in the emulsion, the dispersed phase containing nickel hydroxide is gelled, and then the lithium salt is contained in the cake obtained by separating the dispersed phase, A method for producing spherical lithium nickelate particles, characterized by firing. ニッケル塩を含有する分散相水溶液を、該分散相水溶液との相溶性がない連続相液に、平均細孔径が0.1μm以上40μm以下である細孔を通過させて注入することによりエマルジョンを作製し、該エマルジョン中の分散相に水溶性ゲル化剤を存在させることにより、水酸化ニッケルを含有する分散相をゲル化させ、次いで分散相を分離して得られるケーキにリチウム塩とマンガン塩および/またはコバルト塩とを含有させ、焼成することを特徴とする球状の複合酸化物粒子の製造方法。   An emulsion is prepared by injecting a dispersed phase aqueous solution containing a nickel salt through a pore having an average pore size of 0.1 μm or more and 40 μm or less into a continuous phase solution that is not compatible with the dispersed phase aqueous solution. Then, the presence of a water-soluble gelling agent in the dispersed phase in the emulsion causes the dispersed phase containing nickel hydroxide to gel, and then the dispersed phase is separated into a lithium salt and a manganese salt and A method for producing spherical composite oxide particles, comprising containing a cobalt salt and firing.
JP2005306725A 2004-10-27 2005-10-21 Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles Expired - Fee Related JP4929674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306725A JP4929674B2 (en) 2004-10-27 2005-10-21 Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004311932 2004-10-27
JP2004311932 2004-10-27
JP2005306725A JP4929674B2 (en) 2004-10-27 2005-10-21 Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles

Publications (2)

Publication Number Publication Date
JP2006151795A JP2006151795A (en) 2006-06-15
JP4929674B2 true JP4929674B2 (en) 2012-05-09

Family

ID=36630525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306725A Expired - Fee Related JP4929674B2 (en) 2004-10-27 2005-10-21 Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles

Country Status (1)

Country Link
JP (1) JP4929674B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006049107A1 (en) * 2006-10-13 2008-04-17 H.C. Starck Gmbh Powdery compounds, processes for their preparation and their use in electrochemical applications
JP5521266B2 (en) * 2006-11-21 2014-06-11 住友化学株式会社 Positive electrode active material powder and positive electrode active material
JP4782091B2 (en) * 2007-09-28 2011-09-28 ヴァーレ・ジャパン株式会社 Method for coating nickel oxide particles
KR20100120138A (en) 2008-02-04 2010-11-12 스미또모 가가꾸 가부시키가이샤 Composite metal oxide and sodium rechargeable battery
CN101933180B (en) 2008-02-04 2013-11-20 住友化学株式会社 Composite metal oxide and sodium rechargeable battery
JP5309581B2 (en) 2008-02-04 2013-10-09 住友化学株式会社 Powder for positive electrode active material, positive electrode active material and sodium secondary battery
JP5590283B2 (en) * 2008-09-22 2014-09-17 住友金属鉱山株式会社 Lithium composite nickel oxide and method for producing the same
JP2011070994A (en) * 2009-09-28 2011-04-07 Sumitomo Chemical Co Ltd Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
WO2012077763A1 (en) * 2010-12-09 2012-06-14 住友化学株式会社 Method for producing transition metal hydroxide
KR101903362B1 (en) * 2011-01-10 2018-10-02 바스프 에스이 Method for producing transition metal hydroxides
WO2013183711A1 (en) 2012-06-06 2013-12-12 住友金属鉱山株式会社 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
CN103288145B (en) * 2013-05-30 2015-02-25 先进储能材料国家工程研究中心有限责任公司 Method for preparing spherical alpha-nickel hydroxide
JP6464510B2 (en) * 2013-12-10 2019-02-06 パナソニックIpマネジメント株式会社 Positive electrode for alkaline storage battery and alkaline storage battery
JP5874939B2 (en) * 2014-05-30 2016-03-02 住友金属鉱山株式会社 Nickel-containing hydroxide, nickel-containing oxide, and production method thereof
CN113451548B (en) * 2020-03-25 2022-09-09 比亚迪股份有限公司 Lithium iron phosphate positive plate, preparation method thereof and lithium iron phosphate lithium ion battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2555475B2 (en) * 1990-10-16 1996-11-20 工業技術院長 Method for producing inorganic microspheres
JP3077473B2 (en) * 1993-11-05 2000-08-14 松下電器産業株式会社 Alkaline storage battery
JPH1025117A (en) * 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd Production of nickel hydroxide
JPH11213999A (en) * 1996-12-20 1999-08-06 Japan Storage Battery Co Ltd Positive electrode active material for lithium battery lithium battery using it, and manufacture of positive electrode active material for lithium battery
JPH11307092A (en) * 1998-04-17 1999-11-05 Sakai Chem Ind Co Ltd Nickel hydroxide powder for alkaline storage battery positive electrode active material and its manufacture
JP4174887B2 (en) * 1998-05-21 2008-11-05 堺化学工業株式会社 Method for producing fine spherical particles of nickel, cobalt or copper carbonate or hydroxide
JP2000149940A (en) * 1998-11-16 2000-05-30 Sumitomo Metal Mining Co Ltd Process for nickel hydroxide powder
JP2001019435A (en) * 1999-07-01 2001-01-23 Sakai Chem Ind Co Ltd High density nickel hydroxide powder for active positive electrode material of alkali storage battery

Also Published As

Publication number Publication date
JP2006151795A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP4929674B2 (en) Method for producing spherical lithium nickelate particles and method for producing spherical composite oxide particles
US8147783B2 (en) Nickel hydroxide powder and method for producing same
JP5493859B2 (en) Compound powder, process for its production and its use in electrochemical applications
TWI517487B (en) Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders of layered lithium mixed metal oxides for battery applications
JP7041620B2 (en) Lithium metal composite oxide powder
TW200925115A (en) Pulverulent compounds, process for preparing them and their use in secondary lithium batteries
JPWO2014061399A1 (en) Positive electrode active material for lithium secondary battery and positive electrode using the same
JP2010505732A (en) Compound powder, its production method and its use in lithium secondary battery
TW201125194A (en) ery and lithium-ion battery using the same.
TWI596062B (en) Trimanganese tetroxide and its manufacturing method
JP2012102016A (en) Silica particle and method of manufacturing the same
WO2019117027A1 (en) Nickel-containing hydroxide and production method therefor
CN102770370B (en) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
JP5158064B2 (en) Method for producing silica particles
JP2005231973A (en) Silica particle and method of manufacturing the same
CN111153420A (en) Magnesium-aluminum hydrotalcite nanotube and preparation method thereof
TW201822392A (en) Phosphate stabilized lithium ion battery cathode
JP4517691B2 (en) Method for producing spherical yttria fine particles
US20230072041A1 (en) Positive electrode active substance for lithium ion secondary battery and lithium ion secondary battery
JP2772483B2 (en) Method for producing spherical calcium carbonate
JP2010064910A (en) Plate-like nickel-containing hydroxide and method for producing the same, and plate-like nickel-containing oxyhydroxide using the hydroxide and method for producing the same
JP2009215124A (en) Method for producing transition metal compound
KR101475513B1 (en) Manufacturing method of high strength spinel structure lithium manganese complex oxide, high strength spinel structure lithium manganese complex oxide made by the same, and lithium rechargeable batteries comprising the same
JP2005122931A (en) Lithium-manganese compound oxide grain, manufacturing method of the same, and nonaqueous lithium secondary battery
JP2001019435A (en) High density nickel hydroxide powder for active positive electrode material of alkali storage battery

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R151 Written notification of patent or utility model registration

Ref document number: 4929674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees