JPH1025117A - Production of nickel hydroxide - Google Patents

Production of nickel hydroxide

Info

Publication number
JPH1025117A
JPH1025117A JP8179247A JP17924796A JPH1025117A JP H1025117 A JPH1025117 A JP H1025117A JP 8179247 A JP8179247 A JP 8179247A JP 17924796 A JP17924796 A JP 17924796A JP H1025117 A JPH1025117 A JP H1025117A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
reaction
reaction tank
slurry
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8179247A
Other languages
Japanese (ja)
Inventor
Keiji Sato
恵二 佐藤
Kazuo Hosoya
一雄 細谷
Koichi Kanbe
功一 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP8179247A priority Critical patent/JPH1025117A/en
Publication of JPH1025117A publication Critical patent/JPH1025117A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing nickel hydroxide, capable of facili tating its spheroidization and particle size distribution control for the purpose of raising its packing density. SOLUTION: A reaction vessel is continuously fed with an aqueous solution of nickel salt, ammonia water and an aqueous solution of alkali hydroxide at constant rates, respectively, to carry out a reaction under agitation to produce nickel hydroxide; in parallel with the above process, after the liquid volume in the reaction vessel comes to a specified level, part of the reaction solution is pumped and fed to a solid-liquid separator, the medium liquid thereof is then removed continuously, and only the resultant concentrated slurry is returned to the reaction vessel again, thus keeping the liquid level in the reaction vessel constant. After the slurry concentration in the vessel comes to a specified level, part of the nickel hydroxide slurry to be fed to and concentrated in the solid- liquid separator is either continuously or intermittently drawn out of the reaction system so as to control the slurry concentration in the reaction vessel within a specified range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Ni−Cd電池やNi−
MH電池等の二次電池に用いられる正極活物質である水酸
化ニッケルの製造方法に関し、特に充填密度を高めるた
めの粒度分布制御が容易な水酸化ニッケルの製造方法に
ついて提案する。
The present invention relates to a Ni-Cd battery and a Ni-Cd battery.
A method for producing nickel hydroxide, which is a positive electrode active material used in a secondary battery such as an MH battery, is proposed. In particular, a method for producing nickel hydroxide that can easily control the particle size distribution to increase the packing density is proposed.

【0002】[0002]

【従来の技術】水酸化ニッケルは、導電材や結着剤など
とともに混合され、水酸化ニッケル含有ペーストとし
て、金属多孔体の孔中に充填することによりアルカリ二
次電池の非焼結式ニッケル正極の活物質として用いられ
る。
2. Description of the Related Art Nickel hydroxide is mixed with a conductive material and a binder, and filled as a nickel hydroxide-containing paste into the pores of a porous metal body to form a non-sintered nickel positive electrode of an alkaline secondary battery. Used as an active material.

【0003】このような水酸化ニッケルは、ニッケル正
極のエネルギー密度を高めるために充填密度の高い粉末
とすることが必要であり、そのためには、その形状が球
形でかつ粒度分布制御によって粒径の異なる粒子が混合
された粉末を用いることが有利である。かかる充填密度
の高い水酸化ニッケル粒子を用いれば、活物質としての
高い利用率と放電率を得ることができるからである。
[0003] In order to increase the energy density of the nickel positive electrode, such nickel hydroxide needs to be made into a powder having a high packing density. It is advantageous to use a powder in which different particles are mixed. If nickel hydroxide particles having such a high packing density are used, a high utilization rate and a discharge rate as an active material can be obtained.

【0004】従来、上述の如き充填密度の高い水酸化ニ
ッケル粒子を製造する方法として、種々の提案がなされ
ている。例えば、 .ニッケル塩水溶液、アンモニア水およびアルカリ水
溶液を連続的に反応槽へ供給すると共に、反応混合液を
反応槽からオーバーフローさせて反応系を一定容量に保
ちながら水酸化ニッケルを製造する方法が提案されてい
る(特開昭4−68249 号公報参照)。しかしながら、こ
の方法では、生成する水酸化ニッケルに対して反応溶液
量が多いので、反応に必要な滞留時間を確保するために
反応槽を大きく設計しなければならず、装置が大がかり
になるという欠点があった。
Hitherto, various proposals have been made as methods for producing nickel hydroxide particles having a high packing density as described above. For example,. A method has been proposed in which a nickel salt aqueous solution, an aqueous ammonia solution and an alkaline aqueous solution are continuously supplied to a reaction tank, and a reaction mixture is overflowed from the reaction tank to produce nickel hydroxide while maintaining a constant volume of the reaction system. (See JP-A-4-68249). However, in this method, since the amount of the reaction solution is large with respect to the generated nickel hydroxide, the reaction tank must be designed large in order to secure the residence time required for the reaction, and the apparatus becomes large. was there.

【0005】これに対し最近では、 .反応容器に、ニッケル塩水溶液、アンモニア水およ
び水酸化アルカリ水溶液をそれぞれ一定の割合で連続的
に供給し、反応系が反応容器からオーバーフローする前
に、充分な攪拌が行える程度まで媒体液を除去し、この
反応用供給液による反応系の容量増加と媒体液の除去に
よる容量減少を繰返して水酸化ニッケルを生成させ、上
記各反応液の所定量を加えた後、すべての反応液の供給
を停止し、形成された粒子を反応系から取り出して分離
することを特徴とする水酸化ニッケル粒子の製造方法が
提案されている(特開平8−119636号公報参照)。
On the other hand, recently,. A nickel salt aqueous solution, ammonia water and an alkali hydroxide aqueous solution are continuously supplied to the reaction vessel at a constant rate, respectively, and before the reaction system overflows from the reaction vessel, the medium liquid is removed until sufficient stirring can be performed. By repeatedly increasing the capacity of the reaction system by the supply solution for the reaction and decreasing the volume by removing the medium solution, nickel hydroxide is generated, and after adding a predetermined amount of each of the above reaction solutions, the supply of all the reaction solutions is stopped. A method for producing nickel hydroxide particles has been proposed in which the formed particles are taken out of the reaction system and separated (see Japanese Patent Application Laid-Open No. 8-119636).

【0006】具体的には、この方法では、反応容器から
オーバーフローする前に媒体液を除去する方法として、
反応液の供給を停止し、攪拌を非常に緩やかにするか
あるいは停止して、形成した水酸化ニッケル粒子を沈降
させ、それの上澄み液を反応容器外へ取り出すか、反
応液の供給および攪拌を続けながら、媒体液を濾材を通
して自然濾過または吸引濾過などによって反応容器外へ
取り出す方法が採られている。
[0006] Specifically, in this method, as a method for removing the medium liquid before overflowing from the reaction vessel,
The supply of the reaction solution was stopped, and the stirring was made very gentle or stopped, and the formed nickel hydroxide particles were allowed to settle, and the supernatant was taken out of the reaction vessel, or the reaction solution was supplied and stirred. While continuing, a method is employed in which the medium liquid is taken out of the reaction vessel by natural filtration or suction filtration through a filter medium.

【0007】しかしながら、上記提案において、の方
法を採用した水酸化ニッケルの製造方法は、水酸化ニッ
ケル粒子の沈降に要する時間が必要なために、効率的な
方法ではない。また、の方法を採用した水酸化ニッケ
ルの製造方法は、濾材を用いるために、微粒子(3〜5
μm以下)を混在させた水酸化ニッケルの製造が困難で
あり、粒度分布制御が容易に行えない。しかも、濾材の
再生や交換を比較的短期間で行う必要があり装置の保守
が容易でないという欠点があった。
However, in the above proposal, the method for producing nickel hydroxide employing the method described above is not an efficient method because it requires time for sedimentation of nickel hydroxide particles. In addition, the method for producing nickel hydroxide adopting the method of (1) uses fine particles (3 to 5) because a filter medium is used.
(μm or less) is difficult to produce, and the particle size distribution cannot be easily controlled. In addition, there is a disadvantage that the filter medium needs to be regenerated or replaced in a relatively short period of time, and maintenance of the apparatus is not easy.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上述した従
来技術が抱える欠点を解消するためになされたものであ
り、その主たる目的は、ペースト状で用いられる水酸化
ニッケルの工業的な製造方法において、充填密度を高め
るための球状化および粒度分布制御が容易に行える製造
方法を提供することにある。本発明の他の目的は、制御
された粒度分布を有する充填密度の高い水酸化ニッケル
を効率的に製造する方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned drawbacks of the prior art, and a main object of the present invention is to provide an industrial method for producing nickel hydroxide used in paste form. The object of the present invention is to provide a production method capable of easily performing spheroidization and particle size distribution control for increasing the packing density. Another object of the present invention is to provide a method for efficiently producing nickel hydroxide having a high packing density and a controlled particle size distribution.

【0009】[0009]

【課題を解決するための手段】発明者らは、上記目的の
実現に向け鋭意研究した結果、以下に示す内容を要旨構
成とする発明を完成するに至った。即ち、本発明は、 (1) 反応槽に、ニッケル塩水溶液、アンモニア水および
水酸化アルカリ水溶液を一定速度で連続的に供給し、攪
拌条件の下で水酸化ニッケルを反応生成させる一方で、
反応槽内の液量が所定量に達した後は、反応溶液の一部
をポンプで汲み上げて固液分離装置に供給し、それの媒
体液を連続的に除去して濃縮したスラリーのみを再び反
応槽へと戻すことにより、反応槽内の液面を一定に保つ
ことを特徴とする水酸化ニッケルの製造方法である。
Means for Solving the Problems The inventors of the present invention have intensively studied for realizing the above-mentioned object, and as a result, have completed the invention having the following contents as the main structure. That is, the present invention provides (1) a nickel salt aqueous solution, an aqueous ammonia solution and an aqueous alkali hydroxide solution which are continuously supplied to a reaction tank at a constant rate, and while the nickel hydroxide is reacted and generated under stirring conditions,
After the liquid volume in the reaction tank reaches a predetermined amount, a part of the reaction solution is pumped up by a pump and supplied to a solid-liquid separation device, and the medium liquid is continuously removed to concentrate only the concentrated slurry again. This is a method for producing nickel hydroxide, wherein the liquid level in the reaction tank is kept constant by returning the liquid to the reaction tank.

【0010】(2) 反応槽に、ニッケル塩水溶液、アンモ
ニア水および水酸化アルカリ水溶液を一定速度で連続的
に供給し、攪拌条件の下で水酸化ニッケルを反応生成さ
せる一方で、反応槽内の液量が所定量に達した後は、反
応溶液の一部をポンプで汲み上げて固液分離装置に供給
し、それの媒体液を連続的に除去して濃縮したスラリー
のみを再び反応槽へと戻すことにより、反応槽内の液面
を一定に保ち、反応槽内のスラリー濃度が所定濃度に達
した後は、固液分離装置へ供給して濃縮する水酸化ニッ
ケルスラリーの一部を連続的または間欠的に反応系外に
取り出すことにより、反応槽内のスラリー濃度を所定の
範囲に制御することを特徴とする水酸化ニッケルの製造
方法である。なお、この方法においては、反応槽内のス
ラリー濃度を 200〜 800 g/lの範囲で制御することが望
ましい。
(2) An aqueous solution of nickel salt, aqueous ammonia and an aqueous solution of alkali hydroxide are continuously supplied to the reaction tank at a constant rate to generate nickel hydroxide under stirring conditions. After the liquid volume reaches a predetermined amount, a part of the reaction solution is pumped up by a pump and supplied to a solid-liquid separation device, and the medium liquid is continuously removed, and only the concentrated slurry is returned to the reaction tank again. By returning, the liquid level in the reaction tank is kept constant, and after the slurry concentration in the reaction tank reaches a predetermined concentration, a part of the nickel hydroxide slurry to be supplied to the solid-liquid separation device and concentrated is continuously removed. Alternatively, there is provided a method for producing nickel hydroxide, wherein the slurry concentration in the reaction tank is controlled within a predetermined range by taking it out of the reaction system intermittently. In this method, it is desirable to control the slurry concentration in the reaction tank within the range of 200 to 800 g / l.

【0011】(3) 上記(2) に記載の本発明方法におい
て、水酸化ニッケルの製造が完了する前に、反応槽内の
スラリー濃度制御のために反応系外に取り出した水酸化
ニッケルスラリーを再び反応槽に戻して混合することに
より、水酸化ニッケルの粒度分布を制御することを特徴
とする水酸化ニッケルの製造方法である。
(3) In the method of the present invention described in (2) above, before the production of nickel hydroxide is completed, the nickel hydroxide slurry taken out of the reaction system for controlling the slurry concentration in the reaction tank is removed. This is a method for producing nickel hydroxide, wherein the particle size distribution of nickel hydroxide is controlled by returning the mixture to the reaction tank again and mixing.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(1) 本発明にかかる水酸化ニッケルの製造方法は、反応
槽内の液量が所定量に達した後は、反応溶液の一部をポ
ンプで汲み上げて系外に設けた固液分離装置に供給し、
それの媒体液を連続的に除去して濃縮したスラリーのみ
を再び反応槽へと戻すことにより、反応槽内の液面を一
定に保ちながら、水酸化ニッケルを製造する点に特徴が
ある。これにより、反応液の供給や攪拌の停止をするこ
となく、短時間に高濃度の水酸化ニッケルスラリーを生
成することができるので、比較的狭い粒度分布を有する
充填密度の高い球状水酸化ニッケルを効率良く製造する
ことができる。
(1) In the method for producing nickel hydroxide according to the present invention, after the liquid volume in the reaction tank reaches a predetermined amount, a part of the reaction solution is pumped up by a pump to a solid-liquid separation device provided outside the system. Supply,
It is characterized in that nickel hydroxide is produced by continuously removing the medium liquid and returning only the concentrated slurry to the reaction tank again, while keeping the liquid level in the reaction tank constant. This makes it possible to generate a high-concentration nickel hydroxide slurry in a short time without stopping the supply of the reaction solution and stopping the stirring, so that a spherical nickel hydroxide having a relatively narrow particle size distribution and a high packing density can be obtained. It can be manufactured efficiently.

【0013】このような本発明の方法において、反応溶
液の一部をポンプで汲み上げて固液分離装置に供給する
速度は、反応液の供給速度の2倍以上の速度とすること
が望ましい。
In such a method of the present invention, it is desirable that the speed at which a part of the reaction solution is pumped up by a pump and supplied to the solid-liquid separation device is at least twice the speed at which the reaction solution is supplied.

【0014】この固液分離装置に供給された反応溶液
は、例えばシックナー装置を用いる場合には、水酸化ニ
ッケル粒子が沈降し、上澄み液だけが系外へ除去されて
濃縮される。そして、濃縮された水酸化ニッケルのスラ
リーは再びポンプによって反応槽へと戻される。このと
き、反応槽に供給される反応液と反応系外へ除去される
上澄み液(媒体液)がバランスするように各ポンプ流量
が設定される。これによって、反応槽内の液面を一定に
保ちながら水酸化ニッケルを製造することができるので
ある。
In the case of using a thickener, for example, in the case of using a thickener, the reaction solution supplied to the solid-liquid separator is settled down, and only the supernatant is removed from the system and concentrated. Then, the concentrated slurry of nickel hydroxide is returned to the reaction tank by the pump again. At this time, the pump flow rates are set so that the reaction liquid supplied to the reaction tank and the supernatant liquid (medium liquid) removed outside the reaction system are balanced. Thus, nickel hydroxide can be produced while keeping the liquid level in the reaction tank constant.

【0015】このような固液分離装置としては、シック
ナー装置の他に、スクリューデカンタや液体サイクロン
などを用いることができる。
As such a solid-liquid separation device, a screw decanter or a liquid cyclone can be used in addition to a thickener device.

【0016】(2) 本発明にかかる水酸化ニッケルの製造
方法は、反応槽内のスラリー濃度が所定濃度に達した後
は、固液分離装置へ供給して濃縮する水酸化ニッケルス
ラリーの一部を連続的または間欠的に反応系外に取り出
すことにより、反応槽内のスラリー濃度を所定の範囲に
制御しながら、水酸化ニッケルを製造する点に他の特徴
がある。これにより、反応槽内の水酸化ニッケル粒子
は、反応時間の経過に伴って成長し、大きい平均粒径で
かつ比較的狭い粒度分布を有する球状水酸化ニッケルを
効率良く製造することができる。
(2) In the method for producing nickel hydroxide according to the present invention, after the slurry concentration in the reaction tank reaches a predetermined concentration, the nickel hydroxide slurry is supplied to a solid-liquid separation device and concentrated. There is another feature in that nickel hydroxide is produced while continuously or intermittently taking out of the reaction system to control the slurry concentration in the reaction tank within a predetermined range. As a result, the nickel hydroxide particles in the reaction tank grow with the lapse of the reaction time, and spherical nickel hydroxide having a large average particle size and a relatively narrow particle size distribution can be efficiently produced.

【0017】このような本発明の方法において、反応槽
内のスラリー濃度が 600 g/l程度に達した時点からは、
固液分離装置へ供給して濃縮する水酸化ニッケルスラリ
ーの一部を連続的にあるいは一定時間毎に反応系外に取
り出し、反応槽内の液濃度を400 g/l〜 800 g/lの範囲
に保つことが望ましい。この理由は、反応槽内のスラリ
ー濃度が低すぎると、低密度の水酸化ニッケルが生成し
やすくなり、粒子の緻密化が不十分となる。一方、反応
槽内のスラリー濃度が高すぎると、微細な粒子が生成し
易くなり、粒径が不揃いになりやすいからである。
In the method of the present invention, when the slurry concentration in the reaction tank reaches about 600 g / l,
Part of the nickel hydroxide slurry to be supplied to the solid-liquid separator and concentrated is taken out of the reaction system continuously or at regular intervals, and the liquid concentration in the reaction tank is in the range of 400 g / l to 800 g / l. It is desirable to keep. The reason is that if the slurry concentration in the reaction tank is too low, low-density nickel hydroxide is likely to be generated, and the densification of the particles becomes insufficient. On the other hand, if the slurry concentration in the reaction tank is too high, fine particles are likely to be generated, and the particle diameter tends to be uneven.

【0018】さらに、本発明の方法によれば、早い時間
に反応槽から取り出した微細な水酸化ニッケル粒子のス
ラリーは、より遅い時間に反応槽から取り出した粒径の
大きい水酸化ニッケル粒子のスラリーと任意の割合で混
合し、濾過、洗浄、乾燥することにより、所望の粒度分
布を持つ水酸化ニッケルとすることができる。特に、本
発明では、上述の如き水酸化ニッケルの製造が完了する
前に、反応槽内のスラリー濃度制御のために反応系外に
取り出した平均粒径の小さい水酸化ニッケルのスラリー
を再び反応槽に戻して混合すれば、充填密度を高めるた
めの水酸化ニッケルの粒度分布制御がより一層容易に行
える。
Further, according to the method of the present invention, the slurry of fine nickel hydroxide particles taken out of the reaction tank at an early time is replaced with the slurry of nickel hydroxide particles of large particle size taken out of the reaction tank at a later time. And an arbitrary ratio, followed by filtration, washing and drying to obtain nickel hydroxide having a desired particle size distribution. In particular, in the present invention, before the production of nickel hydroxide as described above is completed, the nickel hydroxide slurry having a small average particle diameter taken out of the reaction system for controlling the slurry concentration in the reaction tank is again added to the reaction tank. If it is mixed back, the particle size distribution of nickel hydroxide for increasing the packing density can be controlled more easily.

【0019】以上説明したような本発明の方法におい
て、反応液として用いられるニッケル塩は、水に溶解す
る塩であれば特に制限されないが、通常、硫酸ニッケ
ル、硝酸ニッケル等の水易溶性の鉱酸塩類が好ましく用
いられる。一般に、これらのニッケル塩は、 0.5〜 3.5
モル/l程度の水溶液濃度に調整されて反応に供され
る。また、ニッケル塩の反応槽への供給速度は、反応槽
内の溶液1l当たり、 300cc/hr〜 800cc/hrとするこ
とが望ましい。この理由は、供給速度が遅いと生産性が
低下し、一方、供給速度が速すぎると、微粒子が生成し
て粒子が成長しにくくなるからである。
In the method of the present invention as described above, the nickel salt used as the reaction solution is not particularly limited as long as it is a salt soluble in water. Acid salts are preferably used. Generally, these nickel salts are 0.5-3.5
The solution is adjusted to an aqueous solution concentration of about mol / l and supplied to the reaction. Further, the supply rate of the nickel salt to the reaction tank is desirably 300 cc / hr to 800 cc / hr per liter of the solution in the reaction tank. The reason for this is that if the supply rate is low, the productivity decreases, while if the supply rate is too high, fine particles are generated and the particles are difficult to grow.

【0020】本発明の方法において、上記ニッケル塩と
共に反応液として反応槽に供給されるアンモニア水は、
その供給量を、ニッケル塩1モル当たり 0.2〜3モルの
範囲とすることが望ましい。この理由は、アンモニア水
の供給量が少ないと、粒子が高密度になりにくく、一
方、供給量が多すぎると、ニッケルがアンミン錯体とし
て多量に溶液に溶解してしまうからである。なお、アン
モニア源としては、アンモニア水以外に硫酸アンモンや
硝酸アンモンを用いることができる。
In the method of the present invention, the ammonia water supplied to the reaction vessel as a reaction solution together with the nickel salt is:
It is desirable that the supply amount is in the range of 0.2 to 3 mol per mol of the nickel salt. The reason for this is that if the supply amount of the aqueous ammonia is small, it is difficult for the particles to have a high density, while if the supply amount is too large, a large amount of nickel is dissolved in the solution as an ammine complex. As the ammonia source, ammonium sulfate or ammonium nitrate can be used in addition to the ammonia water.

【0021】本発明の方法において、反応液として反応
槽に供給される水酸化アルカリは、NaOHや KOHを用いる
ことが好ましい。特に、この水酸化アルカリの添加量
は、pH計による測定値で、反応槽内の反応溶液のpH
が10.5〜12.5の範囲内の所定値で目標値±0.1pH で一定
となるように、制御することが望ましい。
In the method of the present invention, it is preferable to use NaOH or KOH as the alkali hydroxide supplied to the reaction vessel as a reaction solution. In particular, the amount of the alkali hydroxide to be added is a value measured by a pH meter, and indicates the pH of the reaction solution in the reaction tank.
Is desirably controlled to be constant at a target value ± 0.1 pH at a predetermined value within a range of 10.5-12.5.

【0022】なお、本発明において、ZnやCo, Cd等の塩
類を同時に添加することにより、一層の電池性能の向上
が期待できる。
In the present invention, further improvement in battery performance can be expected by adding salts such as Zn, Co, and Cd at the same time.

【実施例】以下に、図1に従って水酸化ニッケルを製造
した実施例について説明する。 (実施例1) (1) 2l容量の反応槽に、2モル/lの硫酸ニッケル水
溶液および28重量%のアンモニア水をそれぞれ 500ml/
hrおよび60ml/hrの供給速度で供給し、6モル/lの水
酸化ナトリウム水溶液でpHを一定に制御しつつ、攪拌
条件の下で水酸化ニッケルの生成反応を開始した。 (2) 次に、反応槽内の全液量が 1.5lに達した後、この
反応槽内の反応溶液を240ml/hrの一定速度でポンプに
より汲み上げて 400ml容量のシックナー装置へ供給し、
その反応溶液の上澄み液を連続的にオーバーフローさせ
て除去し、濃縮したスラリーのみを 120ml/hrの速度で
再び反応槽内へ戻しながら、水酸化ニッケルの製造を続
けた。 (3) そして、反応開始から10時間が経過した後、反応槽
内のスラリー濃度が600 g/lなった時点で反応を止め
てそのスラリーを取り出し、濾過、洗浄、乾燥して球状
水酸化ニッケル粒子を得た。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which nickel hydroxide is manufactured according to FIG. 1 will be described below. Example 1 (1) A 2 liter reaction vessel was charged with a 2 mol / l aqueous solution of nickel sulfate and 28% by weight of aqueous ammonia at 500 ml /
The reaction was carried out at a supply rate of hr and 60 ml / hr, and the production reaction of nickel hydroxide was started under stirring conditions while controlling the pH constantly with a 6 mol / l aqueous solution of sodium hydroxide. (2) Next, after the total liquid volume in the reaction tank reaches 1.5 liters, the reaction solution in the reaction tank is pumped at a constant speed of 240 ml / hr by a pump and supplied to a 400 ml capacity thickener.
The supernatant of the reaction solution was continuously overflowed and removed, and the production of nickel hydroxide was continued while returning only the concentrated slurry to the reaction tank at a rate of 120 ml / hr. (3) After 10 hours from the start of the reaction, when the slurry concentration in the reaction tank reached 600 g / l, the reaction was stopped, the slurry was taken out, filtered, washed and dried to obtain spherical nickel hydroxide. Particles were obtained.

【0023】このようにして得られた水酸化ニッケル粒
子の粒度分布とタップ密度を測定した。その結果、水酸
化ニッケル粒子の粒度分布は、図2に示すように平均粒
径が7μmのかなりシャープな分布を呈し、一方、水酸
化ニッケル粒子のタップ密度は 2.12 g/mlであった。
The particle size distribution and tap density of the nickel hydroxide particles thus obtained were measured. As a result, the particle size distribution of the nickel hydroxide particles showed a fairly sharp distribution with an average particle size of 7 μm as shown in FIG. 2, while the tap density of the nickel hydroxide particles was 2.12 g / ml.

【0024】(実施例2) (1) 実施例1と同様の条件にて水酸化ニッケルの生成反
応を開始し、反応槽内のスラリー濃度が 600g/lにな
った時点から、固液分離装置へ供給して濃縮する水酸化
ニッケルスラリーの一部( 500mlずつ)を3時間毎に取
り出すことにより、反応槽内のスラリー濃度が 400g/
l〜 600g/lとなるようにして水酸化ニッケルの製造
を続けた。 (2) そして、反応開始から21時間が経過した後、反応を
止めて途中で採取した水酸化ニッケルスラリーを混合し
てからそのスラリーを取り出し、濾過、洗浄、乾燥して
球状水酸化ニッケル粒子を得た。
(Example 2) (1) The reaction for forming nickel hydroxide was started under the same conditions as in Example 1, and when the slurry concentration in the reaction tank reached 600 g / l, the solid-liquid separation device was started. A part (500 ml each) of the nickel hydroxide slurry to be supplied and concentrated is taken out every three hours, so that the slurry concentration in the reaction tank is 400 g / g.
The production of nickel hydroxide was continued at 1 to 600 g / l. (2) After 21 hours from the start of the reaction, the reaction was stopped, and the nickel hydroxide slurry sampled on the way was mixed.Then, the slurry was taken out, filtered, washed and dried to remove spherical nickel hydroxide particles. Obtained.

【0025】このようにして得られた水酸化ニッケル粒
子の粒度分布とタップ密度を測定した。その結果、水酸
化ニッケル粒子の粒度分布は、図3に示すように平均粒
径が12μmのややブロードな分布を呈し、一方、水酸化
ニッケル粒子のタップ密度は2.33 g/mlであった。
The particle size distribution and tap density of the nickel hydroxide particles thus obtained were measured. As a result, the particle size distribution of the nickel hydroxide particles showed a slightly broad distribution with an average particle size of 12 μm as shown in FIG. 3, while the tap density of the nickel hydroxide particles was 2.33 g / ml.

【0026】[0026]

【発明の効果】以上説明したように本発明によれば、反
応液の供給や攪拌の停止をすることなく、短時間に高濃
度の水酸化ニッケルスラリーを生成することができ、比
較的狭い粒度分布を有する充填密度の高い球状水酸化ニ
ッケルを効率良く製造することができる。しかも、反応
槽内のスラリー濃度制御のために反応系外に取り出した
水酸化ニッケルスラリーを適宜に混合することにより、
充填密度を高めるための水酸化ニッケルの粒度分布制御
を容易に行うことができる。
As described above, according to the present invention, it is possible to produce a high-concentration nickel hydroxide slurry in a short time without stopping the supply of the reaction solution or stopping the stirring, and the relatively narrow particle size can be obtained. It is possible to efficiently produce spherical nickel hydroxide having a distribution and a high packing density. Moreover, by appropriately mixing the nickel hydroxide slurry taken out of the reaction system for controlling the slurry concentration in the reaction tank,
The particle size distribution of nickel hydroxide for increasing the packing density can be easily controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる水酸化ニッケルの製造方法を説
明する図である。
FIG. 1 is a diagram illustrating a method for producing nickel hydroxide according to the present invention.

【図2】実施例1にかかる水酸化ニッケルの粒度分布を
示す図である。
FIG. 2 is a diagram showing a particle size distribution of nickel hydroxide according to Example 1.

【図3】実施例2にかかる水酸化ニッケルの粒度分布を
示す図である。
FIG. 3 is a diagram showing a particle size distribution of nickel hydroxide according to Example 2.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応槽に、ニッケル塩水溶液、アンモニ
ア水および水酸化アルカリ水溶液を一定速度で連続的に
供給し、攪拌条件の下で水酸化ニッケルを反応生成させ
る一方で、反応槽内の液量が所定量に達した後は、反応
溶液の一部をポンプで汲み上げて固液分離装置に供給
し、それの媒体液を連続的に除去して濃縮したスラリー
のみを再び反応槽へと戻すことにより、反応槽内の液面
を一定に保つことを特徴とする水酸化ニッケルの製造方
法。
1. A nickel salt aqueous solution, an aqueous ammonia solution and an aqueous alkali hydroxide solution are continuously supplied to a reaction tank at a constant rate to generate nickel hydroxide under agitation conditions. After the amount reaches a predetermined amount, a part of the reaction solution is pumped by a pump and supplied to a solid-liquid separator, and the medium liquid is continuously removed, and only the concentrated slurry is returned to the reaction tank again. A method for producing nickel hydroxide, wherein the liquid level in the reaction tank is kept constant.
【請求項2】 反応槽に、ニッケル塩水溶液、アンモニ
ア水および水酸化アルカリ水溶液を一定速度で連続的に
供給し、攪拌条件の下で水酸化ニッケルを反応生成させ
る一方で、 反応槽内の液量が所定量に達した後は、反応溶液の一部
をポンプで汲み上げて固液分離装置に供給し、それの媒
体液を連続的に除去して濃縮したスラリーのみを再び反
応槽へと戻すことにより、反応槽内の液面を一定に保
ち、 反応槽内のスラリー濃度が所定濃度に達した後は、固液
分離装置へ供給して濃縮する水酸化ニッケルスラリーの
一部を連続的または間欠的に反応系外に取り出すことに
より、反応槽内のスラリー濃度を所定の範囲に制御する
ことを特徴とする水酸化ニッケルの製造方法。
2. A nickel salt aqueous solution, an aqueous ammonia solution and an aqueous alkali hydroxide solution are continuously supplied to the reaction tank at a constant rate so as to react and generate nickel hydroxide under stirring conditions. After the amount reaches a predetermined amount, a part of the reaction solution is pumped by a pump and supplied to a solid-liquid separator, and the medium liquid is continuously removed, and only the concentrated slurry is returned to the reaction tank again. By keeping the liquid level in the reaction tank constant, after the slurry concentration in the reaction tank reaches a predetermined concentration, a part of the nickel hydroxide slurry to be supplied to the solid-liquid separation device and concentrated is continuously or A method for producing nickel hydroxide, comprising intermittently taking out of a reaction system to control a slurry concentration in a reaction tank within a predetermined range.
【請求項3】 反応槽内のスラリー濃度を 200〜 800 g
/lの範囲で制御する請求項2に記載の製造方法。
3. The slurry concentration in the reaction tank is 200 to 800 g.
3. The method according to claim 2, wherein the control is performed in the range of / l.
【請求項4】 水酸化ニッケルの製造が完了する前に、
反応槽内のスラリー濃度制御のために反応系外に取り出
した水酸化ニッケルスラリーを再び反応槽に戻して混合
することにより、水酸化ニッケルの粒度分布を制御する
ことを特徴とする請求項2に記載の製造方法。
4. Before the production of nickel hydroxide is completed,
The method according to claim 2, wherein the nickel hydroxide slurry taken out of the reaction system for controlling the slurry concentration in the reaction vessel is returned to the reaction vessel and mixed to control the particle size distribution of nickel hydroxide. The manufacturing method as described.
JP8179247A 1996-07-09 1996-07-09 Production of nickel hydroxide Pending JPH1025117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8179247A JPH1025117A (en) 1996-07-09 1996-07-09 Production of nickel hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8179247A JPH1025117A (en) 1996-07-09 1996-07-09 Production of nickel hydroxide

Publications (1)

Publication Number Publication Date
JPH1025117A true JPH1025117A (en) 1998-01-27

Family

ID=16062516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8179247A Pending JPH1025117A (en) 1996-07-09 1996-07-09 Production of nickel hydroxide

Country Status (1)

Country Link
JP (1) JPH1025117A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064355A1 (en) * 1998-06-10 1999-12-16 Sakai Chemical Industries, Ltd. Nickel hydroxide particles and production and use thereof
JP2002179427A (en) * 2000-10-04 2002-06-26 Tanaka Chemical Corp Nickel oxyhydroxide and manufacturing method thereof
WO2004032260A2 (en) * 2002-09-28 2004-04-15 Varta Automotive Systems Gmbh Cathode active material based on mixed nickel hydroxide for alkaline batteries and a process for the production thereof
WO2006046752A1 (en) * 2004-10-27 2006-05-04 Sumitomo Chemical Company, Limited Nickel hydroxide powder and method for producing same
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
WO2013125703A1 (en) 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
JP2013539176A (en) * 2011-07-20 2013-10-17 ラミナー カンパニー,リミテッド ALL-IN-ONE TYPE CONTINUOUS REACTOR FOR PRODUCTION OF POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND CRYSTAL SEPARATION DEVICE EQUIPPED WITH THE SAME
JP2014004496A (en) * 2012-06-21 2014-01-16 Tsukishima Kikai Co Ltd Production method of reactive agglomerated particle, production method of cathode active substance for lithium-ion battery, production method of lithium-ion battery, and production apparatus of reactive agglomerated particle
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
KR20150028804A (en) 2012-06-06 2015-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
JP2018016519A (en) * 2016-07-28 2018-02-01 ユミコア Production method for composite metal hydroxide particles with high tap density
CN108786708A (en) * 2018-08-08 2018-11-13 华友新能源科技(衢州)有限公司 A kind of dense bucket control system and the method using the system synthesis ternary precursor
WO2021192877A1 (en) * 2020-03-27 2021-09-30 株式会社田中化学研究所 Production method for nickel-containing hydroxide
CN114171727A (en) * 2021-10-27 2022-03-11 深圳市豪鹏科技股份有限公司 Positive electrode material, positive electrode slurry, positive plate and nickel-metal hydride battery

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999064355A1 (en) * 1998-06-10 1999-12-16 Sakai Chemical Industries, Ltd. Nickel hydroxide particles and production and use thereof
US6306787B1 (en) 1998-06-10 2001-10-23 Sakai Chemical Industry Co., Ltd. Nickel hydroxide particles and production and use thereof
JP2002179427A (en) * 2000-10-04 2002-06-26 Tanaka Chemical Corp Nickel oxyhydroxide and manufacturing method thereof
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
WO2004032260A2 (en) * 2002-09-28 2004-04-15 Varta Automotive Systems Gmbh Cathode active material based on mixed nickel hydroxide for alkaline batteries and a process for the production thereof
WO2004032260A3 (en) * 2002-09-28 2005-02-03 Varta Automotive Systems Gmbh Cathode active material based on mixed nickel hydroxide for alkaline batteries and a process for the production thereof
JP2006515950A (en) * 2002-09-28 2006-06-08 ヴァルタ オートモーティヴ システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
CN100438152C (en) * 2002-09-28 2008-11-26 瓦尔塔汽车系统有限责任公司 Active mixed nickel hydroxide cathode material for alkaline storage batteries and process for its production
WO2006046752A1 (en) * 2004-10-27 2006-05-04 Sumitomo Chemical Company, Limited Nickel hydroxide powder and method for producing same
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
US8147783B2 (en) 2004-10-27 2012-04-03 Sumitomo Chemical Company, Limited Nickel hydroxide powder and method for producing same
US8790831B2 (en) 2008-02-04 2014-07-29 Sumitomo Chemical Company, Limited Powder for positive electrode active material, positive active electrode active material, and sodium secondary battery
US9142860B2 (en) 2008-02-04 2015-09-22 Sumitomo Chemical Company, Limited Mixed metal oxide and sodium secondary battery
JP2013539176A (en) * 2011-07-20 2013-10-17 ラミナー カンパニー,リミテッド ALL-IN-ONE TYPE CONTINUOUS REACTOR FOR PRODUCTION OF POSITIVE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY AND CRYSTAL SEPARATION DEVICE EQUIPPED WITH THE SAME
US9583764B2 (en) 2012-02-23 2017-02-28 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
US9685656B2 (en) 2012-02-23 2017-06-20 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
WO2013125703A1 (en) 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
KR20140129244A (en) 2012-02-23 2014-11-06 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
US9553312B2 (en) 2012-02-23 2017-01-24 Sumitomo Metal Mining Co., Ltd Nickel composite hydroxide and production method thereof, cathode active material for a non-aqueous electrolyte secondary battery and production method thereof, and a nonaqueous electrolyte secondary battery
KR20150028804A (en) 2012-06-06 2015-03-16 스미토모 긴조쿠 고잔 가부시키가이샤 Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and methods for producing these
US9882204B2 (en) 2012-06-06 2018-01-30 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
US10109849B2 (en) 2012-06-06 2018-10-23 Sumitomo Metal Mining Co., Ltd. Nickel composite hydroxide, cathode active material for non-aqueous electrolyte secondary battery, and methods for producing these
JP2014004496A (en) * 2012-06-21 2014-01-16 Tsukishima Kikai Co Ltd Production method of reactive agglomerated particle, production method of cathode active substance for lithium-ion battery, production method of lithium-ion battery, and production apparatus of reactive agglomerated particle
JP2018016519A (en) * 2016-07-28 2018-02-01 ユミコア Production method for composite metal hydroxide particles with high tap density
CN108786708A (en) * 2018-08-08 2018-11-13 华友新能源科技(衢州)有限公司 A kind of dense bucket control system and the method using the system synthesis ternary precursor
WO2021192877A1 (en) * 2020-03-27 2021-09-30 株式会社田中化学研究所 Production method for nickel-containing hydroxide
CN115210187A (en) * 2020-03-27 2022-10-18 株式会社田中化学研究所 Method for producing nickel-containing hydroxide
CN115210187B (en) * 2020-03-27 2024-02-13 株式会社田中化学研究所 Method for producing nickel hydroxide
CN114171727A (en) * 2021-10-27 2022-03-11 深圳市豪鹏科技股份有限公司 Positive electrode material, positive electrode slurry, positive plate and nickel-metal hydride battery

Similar Documents

Publication Publication Date Title
JPH1025117A (en) Production of nickel hydroxide
CN102239584B (en) A method of fabricating structured particles composed of silicon or a silicon-based material
JP3644186B2 (en) Metal hydroxide production equipment for battery components
CN109422297B (en) Method for regulating and controlling nucleation in crystallization process of nickel-cobalt-manganese precursor
CN110600683A (en) Preparation method of semi-continuous ternary precursor
CN111943278B (en) Preparation method of ternary precursor with narrow particle size distribution
CN110817976B (en) Positive electrode material precursor and preparation method and application thereof
CN109354077A (en) A kind of ternary precursor and preparation method thereof of polycrystalline form
JP2004533397A5 (en)
KR100347284B1 (en) Manufacturing method of metal hydroxide
JPH026340A (en) Production of nickel hydroxide
CN108658117A (en) The method that hypergravity produces nano-cerium oxide
JP2006515950A (en) Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
KR102587999B1 (en) Apparatus for Manufacturing Multi-component Metal Hydroxide
CN111052458A (en) Method for preparing lithium ion cathode particles and cathode active material formed thereby
JP2000077070A (en) Nickel hydroxide powder and its manufacture
JPH03252318A (en) Production of nickel hydroxide
EP0649818A1 (en) Method for the preparation of nickel hydroxide particles
JPH07165428A (en) Production of nickel hydroxide particle
CN116812991A (en) Ternary precursor preparation method and device and precursor
JP3656353B2 (en) Method for producing positive electrode active material for alkaline storage battery
JP2001291515A (en) Nickel hydroxide powder for alkaline secondary battery and its manufacturing method and evaluation method
JPH08119636A (en) Production of nickel hydroxide particles
JP3463337B2 (en) Method for producing nickel hydroxide for positive electrode material
CN111908518B (en) Ternary precursor with narrow particle size distribution