JPH026340A - Production of nickel hydroxide - Google Patents

Production of nickel hydroxide

Info

Publication number
JPH026340A
JPH026340A JP63091120A JP9112088A JPH026340A JP H026340 A JPH026340 A JP H026340A JP 63091120 A JP63091120 A JP 63091120A JP 9112088 A JP9112088 A JP 9112088A JP H026340 A JPH026340 A JP H026340A
Authority
JP
Japan
Prior art keywords
nickel hydroxide
nickel
reaction system
hydroxide
continuously
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63091120A
Other languages
Japanese (ja)
Other versions
JPH0468249B2 (en
Inventor
Toshio Minoura
箕浦 敏雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANSAI SHOKUBAI KAGAKU KK
Original Assignee
KANSAI SHOKUBAI KAGAKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANSAI SHOKUBAI KAGAKU KK filed Critical KANSAI SHOKUBAI KAGAKU KK
Priority to JP63091120A priority Critical patent/JPH026340A/en
Publication of JPH026340A publication Critical patent/JPH026340A/en
Publication of JPH0468249B2 publication Critical patent/JPH0468249B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To continuously produce desired spherical nickel hydroxide in high efficiency by continuously and simultaneously supplying an aqueous solution of a nickel salt, an alkali metal hydroxide and an ammonium ion donor to the reaction system and proceeding the reaction while keeping the temperature and pH of the reaction system at respective specific levels. CONSTITUTION:Nickel hydroxide is produced by reacting (A) an aqueous solution of a nickel salt, (B) an alkali metal hydroxide and (C) an ammonium ion donor according to the following process. The above components (A)-(C) are continuously and simultaneously supplied to the reaction system and the reaction is proceeded while keeping the temperature of the reaction system at a definite level between 20 deg.C and 80 deg.C and keeping the pH at a definite level between 9 and 12. Spherical nickel hydroxide particles having an average particle diameter of 2-50mum are produced by the above process and are continuously taken out of the reaction system.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、水酸化ニッケルの新規な製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a novel method for producing nickel hydroxide.

従来の技術及びその課題 水酸化ニッケルは、種々の用途に使用される工業製品で
あるが、特にアルカリ電池用の非焼結式ニッケル正極に
使用されるものとしては、粒子形状が球状で且つその粒
度分布が狭いことが要望されている。これは、かかる水
酸化ニッケル粉末を用いることにより、上記ニッケル正
極の活物質として金属性ポケット等に充填する場合に該
ポケットの微孔から粒子が脱落せずしかも密に充填する
ことが可能になり、又活物質として導電剤と混合してペ
ースト状で用いる場合はその流動性等のペースト性状が
安定するので充填性、充填率が良好になり、従って何れ
の場合にも活物質の利用率及び放電率が向上し、性能の
優れた電極とすることができるからである。
Conventional technology and its problems Nickel hydroxide is an industrial product used for various purposes, but it is particularly suitable for use in non-sintered nickel positive electrodes for alkaline batteries because its particle shape is spherical and A narrow particle size distribution is desired. This is because, by using such nickel hydroxide powder, when filling a metal pocket etc. as the active material of the nickel positive electrode, particles do not fall out from the pores of the pocket and can be packed densely. In addition, when the active material is mixed with a conductive agent and used in the form of a paste, the paste properties such as fluidity are stabilized, resulting in good filling performance and filling rate. This is because the discharge rate is improved and an electrode with excellent performance can be obtained.

しかしながら、従来の水酸化ニッケルの製造法では、上
記要望に充分に応えた製品を1qることは、困難であっ
た。
However, with conventional nickel hydroxide manufacturing methods, it has been difficult to produce 1 q of products that fully meet the above requirements.

即ち、従来電極用の水酸化ニッケルの製造方法としでは
、ニッケル塩水溶液に予めアンモニア供給体を添加して
おぎ又は添加してニッケルーアンモニウム錯塩とし、次
いで苛性アルカリを添加して水酸化ニッケルを生成させ
る方法(特公昭536119号、特開昭56−1436
71号、特開昭61−181074号)が公知であるが
、之等の方法では1qられる乾燥侵の水酸化ニッケルは
固形状又は粉末状であってもその粒度が大きいため、通
常粉砕することが必要であり、そのため粒子は破断面を
有づる不規則な形状の粉末となり又その粒度分布が極め
て広く、従って充填密度も低いという欠点がある。
That is, in the conventional method for producing nickel hydroxide for electrodes, an ammonia supplier is added in advance to an aqueous nickel salt solution, and then a nickel-ammonium complex salt is obtained by adding or adding an ammonia supplier, and then a caustic alkali is added to produce nickel hydroxide. Method of causing
No. 71, JP-A No. 61-181074) is well known, but in these methods, 1q of dry nickel hydroxide is large in particle size even if it is in solid or powdered form, so it is usually ground. Therefore, the particles become irregularly shaped powders with fractured surfaces, and the particle size distribution is extremely wide, resulting in a disadvantage that the packing density is low.

また、最近ニッケル塩水溶液と苛性アルカリとを同−水
槽内に導入して一定条件下に連続的に水酸化ニッケルを
取出す方法(特開昭6316555号、特開昭63−1
6556号)がBy案されているが、この方法には反応
系を安定化するのに1ケ月もの長期間を要するという大
きな欠点がある上に、この方法により(qられる水酸化
ニッケルもその粒子形状は球状とはならず又その粒度分
イ[iが広く、従って充填密度も必ずしも高くないとい
う欠点がある。
Recently, a method has been developed in which nickel salt aqueous solution and caustic alkali are introduced into the same water tank and nickel hydroxide is continuously extracted under certain conditions (Japanese Patent Application Laid-Open No. 6316555, Japanese Patent Application Laid-open No. 63-1
No. 6556) has been proposed, but this method has the major drawback of requiring a long period of one month to stabilize the reaction system. The shape is not spherical, and the particle size i is wide, so the packing density is not necessarily high.

課題を解決するための手段 本発明者は、上記現状に鑑み、粒子形状が球状でnつそ
の粒度分布が狭く従って充填密度が充分に^い水酸化ニ
ッケルを、高い効率で製造する方法を開発するべく鋭意
研究した。その結果、ニッケル塩水溶液、アルカリ金属
水酸化物及びアンモシムイオン供給体の三苫を連続して
同時的に反応系に供給し、反応系の温度及びpHを特定
の一定値に保持しつつ反応を進f′:rt! L/める
ときには、極めて類11間で反応系が安定化できしかも
何らの粉砕工程も不要にして、所望の球状水酸化ニッケ
ルを連続的に極めて効率良く収1qできることを見い出
し、遂に本発明を完成するに至った。
Means for Solving the Problems In view of the above-mentioned current situation, the present inventor has developed a method for producing nickel hydroxide with high efficiency, which has a spherical particle shape, a narrow particle size distribution, and a sufficient packing density. I did a lot of research to find out. As a result, a nickel salt aqueous solution, an alkali metal hydroxide, and an ammosimium ion donor, Mitoma, were continuously and simultaneously supplied to the reaction system, and the reaction was carried out while maintaining the temperature and pH of the reaction system at specific constant values. Shin f': rt! It has been discovered that the reaction system can be stabilized within the range of 11 to 100 liters, and that the desired spherical nickel hydroxide can be continuously and extremely efficiently harvested 1 q without any pulverization process, and the present invention has finally been completed. It was completed.

即ら本発明は、(イ)ニッケル塩水溶液、(ロ)アルカ
リ金属水酸化物及び(ハ)アンモニウムイオン供給体を
反応させて水酸化ニッケルを製造するに当り、上記(イ
)、(ロ)及び(ハ)の三者を連続して同時的に反応系
に供給し、反応系の温度を20〜80℃の範囲の一定値
に且つpHを9〜12の範囲の一定値に保持しつつ反応
を進行Vしめて平均粒径2〜50μmの球状水酸化ニッ
ケル粒子を生成せしめ、これを連続的に取出すことを特
徴とする水酸化ニッケルの製造法に係る。
That is, the present invention provides a method for producing nickel hydroxide by reacting (a) a nickel salt aqueous solution, (b) an alkali metal hydroxide, and (c) an ammonium ion donor. and (c) are continuously and simultaneously supplied to the reaction system, while maintaining the temperature of the reaction system at a constant value in the range of 20 to 80 ° C. and the pH at a constant value in the range of 9 to 12. The present invention relates to a method for producing nickel hydroxide, which is characterized in that the reaction is allowed to progress to produce spherical nickel hydroxide particles having an average particle size of 2 to 50 μm, and the particles are continuously taken out.

本発明において使用する(イ)ニッケル塩水溶液として
は、硝酸ニッケル、硫酸ニッケル、塩化ニッケル等の各
種水溶性ニッケル塩の水溶液を挙げることができる。ニ
ッケル塩水溶液の濃度としては、通常0.5〜3.5m
o I/Q程度とするのが適当である。
Examples of the nickel salt aqueous solution (a) used in the present invention include aqueous solutions of various water-soluble nickel salts such as nickel nitrate, nickel sulfate, and nickel chloride. The concentration of the nickel salt aqueous solution is usually 0.5 to 3.5 m
o It is appropriate to set it to about I/Q.

また、(ロ)アルカリ金属水酸化物としては、水酸化ナ
トリウム、水酸化カリウム等を挙げることができる。ア
ルカリ金属水酸化物は、通常1.25〜10mol/Q
程度の水溶液として使用するのが良い。
Further, (b) examples of the alkali metal hydroxide include sodium hydroxide, potassium hydroxide, and the like. Alkali metal hydroxide is usually 1.25 to 10 mol/Q
It is best to use it as an aqueous solution.

また、(ハ)アンモニウムイオン供給体としては、アン
[ニア水、アンモニアガス、硝酸アンモニウム等のアン
モニウム塩の水溶液等を用いることができる。アンモニ
ア水の場合は、通常10〜28重量%程度の濃度のもの
を使用するのが適当である。また、7ン七ニウム塩の水
溶液の場合は、通常3〜7.5mo l/Q程度の濃度
のものを使用するのが適当である。
(iii) As the ammonium ion donor, aqueous solutions of ammonium salts such as aqueous ammonia, ammonia gas, and ammonium nitrate can be used. In the case of ammonia water, it is usually appropriate to use one with a concentration of about 10 to 28% by weight. In addition, in the case of an aqueous solution of heptane-7nium salt, it is usually appropriate to use one with a concentration of about 3 to 7.5 mol/Q.

本発明においては、上記(イ)、(ロ)及び(ハ)の三
名を連続して同時的に反応系に供給することが必要であ
る。この場合、(イ)ニッケル塩水溶液に対する(口)
アルカリ金属水酸化物の使用間は、ニッケル塩1mol
に対して1.8〜2.2mo1程度の間となるように比
例添加するのカ良り、同じく(ハ)アンモニウムイオン
供給体の使用Mは、ニッケル塩1molに対して0.1
・〜1,5mol稈度のflとなるように比例添加りる
のが良い。これらの反応系への供給添加は、充分な撹拌
下に行なわれ、その添加速度(311、反応槽の容M、
形状等により変faJするが、反応系での8il留時間
が通常0.5〜5時間程度となるように適宜調節するの
が良い。また、同時的にとは、生成物の粒度、p(−1
の調wJ等のため、各反応物の添加速度、割合を適宜調
整できることを意味する。
In the present invention, it is necessary to continuously and simultaneously supply the above three components (a), (b), and (c) to the reaction system. In this case, (a) (mouth) for the nickel salt aqueous solution
During use of alkali metal hydroxide, 1 mol of nickel salt
It is better to add the ammonium ion donor proportionately so that the amount is between 1.8 and 2.2 mol.
- It is best to add proportionately so that fl has a culm degree of ~1.5 mol. These feed additions to the reaction system are carried out with sufficient stirring, and the addition rate (311, volume of the reaction tank M,
FaJ may vary depending on the shape, etc., but it is best to adjust it appropriately so that the 8il residence time in the reaction system is usually about 0.5 to 5 hours. In addition, "simultaneously" means the particle size of the product, p(-1
This means that the addition rate and ratio of each reactant can be adjusted as appropriate because of the adjustment of wJ, etc.

また、この際の反応系の温度は、20〜80℃の範囲の
一定値に保持される。通常、所定1向〕−2℃程麻に維
持するのが良い。同じく、反応系のpHは、9〜12の
範囲の一定11nに保持される。通常、所定値±0.1
程度に維持するのが良い。
Moreover, the temperature of the reaction system at this time is maintained at a constant value in the range of 20 to 80°C. Normally, it is best to maintain the temperature at about -2°C in one predetermined direction. Similarly, the pH of the reaction system is maintained at a constant 11n in the range of 9-12. Normally, predetermined value ±0.1
It is best to maintain it at a moderate level.

本発明においては、上述の如く、ニッケル塩水溶液、ア
ルカリ金属水酸化物及びアンモニウムイオン供給体の三
古を連続して同時的に反応系に供給し、反応系の温度及
びDHを特定の一定(自に保持しつつ反応を進行せしめ
ることにより、通常10〜3011.′i間程度という
極めて短時間で反応系が安定化でき、通常IF均粒径2
〜50μm程度の球状水酸化ニッケル粒子をオーバーフ
ロー等により連続的に効率よく取出ずことができる。取
出された水酸化ニッケルは、適宜濾過、水洗、乾燥して
、製品とする。この際、本発明においては、乾燥前の水
酸化ニッケルの含水率が通常10〜15申m%程度と低
く且つ球状であるため、?濾過速度が大きく、水洗■稈
での不純物除去効率が高く、Hつ乾燥のためのエネルギ
ー=1ストも小さいという利点が(9られる。勿論、何
らの粉砕も不要である。
In the present invention, as described above, three components, nickel salt aqueous solution, alkali metal hydroxide, and ammonium ion donor, are continuously and simultaneously supplied to the reaction system, and the temperature and DH of the reaction system are maintained at a specific constant ( By allowing the reaction to proceed while maintaining the internal temperature, the reaction system can be stabilized in a very short period of time, usually between 10 and 3011.
Spherical nickel hydroxide particles of about 50 μm can be continuously and efficiently taken out due to overflow or the like. The extracted nickel hydroxide is appropriately filtered, washed with water, and dried to produce a product. At this time, in the present invention, since the moisture content of nickel hydroxide before drying is usually as low as about 10 to 15 m% and is spherical, ? The advantages are that the filtration rate is high, the impurity removal efficiency in the water-washed culm is high, and the energy for drying = 1 stroke is small (9).Of course, no pulverization is required.

本発明により1qられる水酸化ニッケルは、上記のよう
に平均粒径が2〜50μm程度の範囲にあり、粒度分布
測定及び走査電子顕微鏡vQ察により、粒度分布幅が狭
く、均質な球状乃至楕円球状を早している。粒径や粒度
分布は、アンモニウムイオン供給体の添加割合、反応系
での滞留時間、撹拌程度等を調節することにより、種々
フン1〜ロールすることができる。例えば、アンモニウ
ムイオン供給体の添加割合を、前記範囲内で多くすれば
粒径を大きくすることができ、少なくすれば粒径を小さ
くすることができる。また、滞留時間を上記範囲内で良
くすれば粒径を大きく且つ粒度分布を狭くでき、短くす
れば粒径を小さく 11つ粒度分布を比較的広くできる
。また、撹拌効果を高くすれば粒度を小さくでき、低く
すれば粒度を大きくできる。
As mentioned above, the nickel hydroxide produced by 1q according to the present invention has an average particle size in the range of about 2 to 50 μm, and particle size distribution measurement and scanning electron microscopy (VQ) observation revealed that the particle size distribution width is narrow and the shape is homogeneous spherical to ellipsoidal. is early. The particle size and particle size distribution can be varied in various ways by adjusting the addition ratio of the ammonium ion donor, the residence time in the reaction system, the degree of stirring, etc. For example, by increasing the addition ratio of ammonium ion donor within the above range, the particle size can be increased, and by decreasing it, the particle size can be decreased. Further, if the residence time is kept within the above range, the particle size can be increased and the particle size distribution can be narrowed, and if the residence time is shortened, the particle size can be decreased and the particle size distribution can be relatively widened. Furthermore, by increasing the stirring effect, the particle size can be reduced, and by decreasing the stirring effect, the particle size can be increased.

また、本発明により得られる球状水酸化ニッケルは、比
表面積が10〜30m27g程度と小さく、見掛密度が
バルク密度LIIS  K5101(18)かさ測定法
)で1.3〜1.70/ml程度、タッピング密度で1
.8〜2.1g/l程度と高いので、アルカリ電池用正
極の原料として極めて好適である。また、かき低いので
、取板作業性が良い。
In addition, the spherical nickel hydroxide obtained by the present invention has a small specific surface area of about 10 to 30 m27 g, and an apparent density of about 1.3 to 1.70/ml according to the bulk density LIIS K5101 (18) bulk measurement method). 1 in tapping density
.. Since it has a high content of about 8 to 2.1 g/l, it is extremely suitable as a raw material for positive electrodes for alkaline batteries. Also, since the surface is low, it is easy to work with the plate.

次に、本発明法の右利な実施態様の例を、図面により説
明する。第1図は、本発明法に使用できる反応装置の一
例を示すものである。第1図において、(1)は撹拌器
を備えた反応槽、(2)はニッケル塩水溶液の投入口、
(3)はアンモニウムイオン供給体の投入口、(4)は
アルカリ金属水酸化物水溶液の投入口、(5)は定量ポ
ンプ、(6)はpHコントローラー (7)は温度コン
トローラー、(8)は水酸化ニッケルの取出口を夫々承
り。
Next, an example of an advantageous embodiment of the method of the present invention will be explained with reference to the drawings. FIG. 1 shows an example of a reaction apparatus that can be used in the method of the present invention. In Figure 1, (1) is a reaction tank equipped with a stirrer, (2) is an inlet for the nickel salt aqueous solution,
(3) is the input port for the ammonium ion supplier, (4) is the input port for the aqueous alkali metal hydroxide solution, (5) is the metering pump, (6) is the pH controller, (7) is the temperature controller, and (8) is the We accept orders for each outlet for nickel hydroxide.

最初、適量の水を反応槽(1)に入れ、撹拌下温度コン
トローラー(7)により、液温を予め設定した一定値に
維持しておき、これにニッケル塩水溶液、アンモニウム
イオン供給体及びアルカリ金属水酸化物水溶液を、各投
入口(2)、(3)及び(4)より定量ポンプにより連
続的に導入添加する。これらの内、アルカリ金属水酸化
物水溶液は、pHコントローラー(6)と連動さけてp
Hが予め設定した一定値になるように定量ポンプ(5)
により導入するのが好ましい。各反応物の添加速度は、
反応系での滞留時間が所定時間となるように調節する。
First, an appropriate amount of water is put into the reaction tank (1), and the liquid temperature is maintained at a preset constant value by the temperature controller (7) while stirring. The hydroxide aqueous solution is continuously introduced and added through each inlet (2), (3), and (4) using a metering pump. Among these, the alkali metal hydroxide aqueous solution is
Metering pump (5) so that H is a preset constant value.
It is preferable to introduce it by. The rate of addition of each reactant is
The residence time in the reaction system is adjusted to a predetermined time.

また、所定の滞留時間が達成される様に、各投入口と水
酸化ニッケルの取出口(8)とは反応槽中でできるだけ
離しておくのが好ましい。例えば、第1図の如く、各投
入口を反応槽の一方の壁側底部に位置させ、取出口をそ
の反対側の壁側上部に位置させ、生成した水酸化ニッケ
ルをオーバーフローにより、取出すのが好ましい。上記
の如き操作を行ない、反応系が安定した摂、生成する所
望の球状水酸化ニッケルを連続的に取出し、これを適宜
濾過、水洗、乾燥して、製品とする。
Further, in order to achieve a predetermined residence time, it is preferable to keep each input port and the nickel hydroxide outlet (8) as far apart from each other as possible in the reaction tank. For example, as shown in Fig. 1, each inlet is located at the bottom of one wall of the reaction tank, and the outlet is located at the top of the opposite wall, so that the generated nickel hydroxide can be taken out by overflow. preferable. After the above-mentioned operations are carried out and the reaction system is stabilized, the desired spherical nickel hydroxide produced is continuously taken out, which is appropriately filtered, washed with water, and dried to obtain a product.

&J1し泳里 本発明によれば、次の様な格別な効果が奏される。& J1 Shi Eri According to the present invention, the following special effects are achieved.

(1)極めて短時聞で反応系が安定化できしかも何らの
粉砕工程も不要にして、所望の球状水酸化ニッケルを連
続的に極めて効率良く収得できる。
(1) The reaction system can be stabilized in an extremely short period of time, and the desired spherical nickel hydroxide can be obtained continuously and extremely efficiently without any pulverization step.

(2> 147られる球状水酸化ニッケルは、平均粒径
2〜50μmの範囲内の粒度を右し、この範囲内で種々
コントロールすることもでき、しかも粒度分布が狭いも
のを収得できる。従って、見掛密度を充分に高くするこ
とができる。
(2>147) Spherical nickel hydroxide has an average particle size within the range of 2 to 50 μm, and can be controlled in various ways within this range, and a narrow particle size distribution can be obtained. The hanging density can be made sufficiently high.

(3)また、反応槽から取出された水酸化ニッケルの含
水率が低く且つ球状であるため、濾過速度が大ぎく、水
洗工程での不純物除去効率が高く、Hつ乾燥のためのエ
ネルギー]ス1へも小さいという利点が得られる。
(3) In addition, since the water content of the nickel hydroxide taken out from the reaction tank is low and it is spherical, the filtration rate is high, the impurity removal efficiency in the water washing process is high, and the energy required for drying is high. The advantage is that it is even smaller than 1.

実  施  例 以下、実施例及び比較例を挙げて、本発明を更に具体的
に説明する。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1 第1図に示すものと同様の10Qの反応槽にて、各溶液
濃度としては、夫々、硝酸ニッケル水溶液2.2m01
/Q、水酸化ナトリウム水溶液6.0mo l/+!及
び25重量%アンモニア水を用いて、硝酸ニッケル水溶
液4.512/hr、アンモニア水0.37Q/hrの
一定の速度で定mポンプでI)Hll、O±0.1、反
応811!温50±2℃の一定値に維持した撹拌下の槽
内へ添加し、同時にl)Hコントローラーと連動した定
mポンプにて水酸化ナトリウム水溶液を設定pHを維持
する様に添加して(平均流速3.IQ/hr)、連続的
に水酸化ニッケルを生成さUた。
Example 1 In a 10Q reaction tank similar to that shown in Fig. 1, each solution concentration was 2.2 m01 of nickel nitrate aqueous solution.
/Q, sodium hydroxide aqueous solution 6.0 mol/+! I) Hll, O ± 0.1, reaction 811! using a nickel nitrate aqueous solution 4.512/hr and ammonia water 0.37 Q/hr with a constant m pump at a constant rate using 25% by weight ammonia water and 25% by weight ammonia water. The temperature was maintained at a constant value of 50 ± 2°C into the tank under stirring, and at the same time, an aqueous sodium hydroxide solution was added using a constant meter pump linked to the H controller to maintain the set pH (average At a flow rate of 3.IQ/hr), nickel hydroxide was continuously produced.

この時の添加比率は、硝酸ニッケル1molに対して、
アンモニアは0.5molであり、水酸化ナトリウムは
l、9molであった。また、反応槽での滞留時間は、
約1時間であった。
The addition ratio at this time is, per 1 mol of nickel nitrate.
Ammonia was 0.5 mol, and sodium hydroxide was 1,9 mol. In addition, the residence time in the reaction tank is
It was about 1 hour.

生成した球状水酸化ニッケルを連続的に取出し、これを
適宜か過、水洗、乾燥して、粉末状の製品とした。
The produced spherical nickel hydroxide was continuously taken out, filtered, washed with water, and dried to obtain a powdered product.

乾燥性の水酸化ニッケルの含水率は、12.3小間%で
あり、濾過が容易であった。また、乾燥後の含水率は、
0.3重量%であった。
The moisture content of dry nickel hydroxide was 12.3% by booth, making it easy to filter. In addition, the moisture content after drying is
It was 0.3% by weight.

1!′Iられた製品の平均粒径は、6,3μmであり、
その粒度分布は第2図に示した通り極めて狭いもので・
あった。また、その比表面積は23.6m2/gであり
、バルク密度は1.56g、IIであり、タッピング密
度は1.95G/+111であった。(qられた製品の
走査電子顕微鏡写真(750倍)を第3図に示した。
1! The average particle size of the produced product is 6.3 μm,
The particle size distribution is extremely narrow as shown in Figure 2.
there were. Further, its specific surface area was 23.6 m2/g, bulk density was 1.56 g, II, and tapping density was 1.95 G/+111. (A scanning electron micrograph (750x magnification) of the prepared product is shown in Figure 3.

実施例2 第1図に示すものと同様の1ORの反応槽にて、各溶液
濃度としては、夫々、fi!酸ニッケル水溶液1.6m
ol/l水酸化ナトリウム水溶液4.5mo l/(!
及び25重量%アンモニア水を用いて、硫酸ニッケル水
溶液1.5Q/r1r、アンモニア水0.2112/h
rの一定速度で定量ポンプでpH10,0±0.1、反
応液温50±2℃の一定値に維持した撹拌下の槽内へ添
加し、同時にDHコントローラーと連動した定mポンプ
にて水酸化ナトリウム水溶液を設定pHを維持する様に
添加して(平均流速0.979/hr)、連続的に水酸
化ニッケルを生成させた。
Example 2 In a 1OR reaction tank similar to that shown in FIG. 1, each solution concentration was set to fi! Acid nickel aqueous solution 1.6m
ol/l sodium hydroxide aqueous solution 4.5 mol/(!
and 25% by weight ammonia water, nickel sulfate aqueous solution 1.5Q/r1r, ammonia water 0.2112/h
The water was added at a constant rate of r to the stirred tank maintained at a constant pH of 10.0 ± 0.1 and reaction temperature of 50 ± 2°C using a metering pump, and at the same time water was added using a constant m pump linked to a DH controller. An aqueous sodium oxide solution was added to maintain the set pH (average flow rate 0.979/hr) to continuously generate nickel hydroxide.

この時の添加比率は、硫酸ニッケル1molに対して、
アンモニアは1.2mo+であり、水酸化ナトリウムは
1.82molであった。また、反応槽での滞留時間は
、約3時間であった。
The addition ratio at this time is, per 1 mol of nickel sulfate,
Ammonia was 1.2 mol+ and sodium hydroxide was 1.82 mol. Further, the residence time in the reaction tank was about 3 hours.

生成した球状水酸化ニッケルを連続的に取出し、これを
適宜濾過、水洗、乾燥して、粉末状の製品とした。
The produced spherical nickel hydroxide was continuously taken out, and was appropriately filtered, washed with water, and dried to obtain a powdered product.

乾燥前の水酸化ニッケルの含水率は、11.5車量%で
あり、濾過が容易であった。また、乾燥後の含水率は、
0.48重邑%であった。
The moisture content of the nickel hydroxide before drying was 11.5% by volume, making it easy to filter. In addition, the moisture content after drying is
It was 0.48%.

得られた製品の平均粒径は、13.8μmで、その粒度
分布は第2図に示した通り権めで狭いものであった。ま
た、その比表面積は22.1m2/qであり、バルク密
度は1.68q/mlであり、タッピング密度は2.0
20/+111であった。得られた製品の走査電子顕微
鏡写真(750倍)を第4図に示した。
The average particle size of the obtained product was 13.8 μm, and the particle size distribution was fairly narrow as shown in FIG. In addition, its specific surface area is 22.1 m2/q, bulk density is 1.68 q/ml, and tapping density is 2.0
It was 20/+111. A scanning electron micrograph (750x magnification) of the obtained product is shown in FIG.

比較例1 バッチ式の59の反応槽にて、2.2rTIOI/Q1
4Mニッケル水溶液19及び25重涜%アンモニア水0
.55Qを撹拌上混合した俊、6.0mol/Q水酸化
ナトリウム水溶液1.45Qを撹拌下に添加して更に1
時間撹拌して水酸化ニッケルを生成させた。
Comparative Example 1 2.2rTIOI/Q1 in 59 batch-type reaction vessels
4M nickel aqueous solution 19 and 25% ammonia water 0
.. 55Q was mixed with stirring, 1.45Q of 6.0 mol/Q sodium hydroxide aqueous solution was added with stirring, and 1.
Stir for an hour to form nickel hydroxide.

生成した水酸化ニッケルを、濾過、水洗、乾燥したが、
固形状となったので、これを粉砕して、粉末状水酸化ニ
ッケルを得た。得られた水酸化ニッケルは、破断面を有
する不規則な形状で、粒度分布が広かった。
The generated nickel hydroxide was filtered, washed with water, and dried.
Since it became solid, it was crushed to obtain powdered nickel hydroxide. The obtained nickel hydroxide had an irregular shape with a fractured surface and a wide particle size distribution.

得られた比較量の比表面積は83m”/gであり、バル
ク密度は1.06q/mlであり、タッピング密度は1
.25G/+111であった。得られた比較量の走査電
子顕微鏡写真(750倍〉を第5図に示した。
The specific surface area of the comparative amount obtained was 83 m"/g, the bulk density was 1.06 q/ml, and the tapping density was 1
.. It was 25G/+111. A scanning electron micrograph (750x>) of the comparative amount obtained is shown in FIG.

比較例2 実施例1においてアンモニア水を使用しない他は、実施
例1と同様にして、水酸化ニッケルを生成させた。但し
、この時の添加比率は、硝酸ニッケル1molに対して
水酸化ナトリウム2.05molであった。
Comparative Example 2 Nickel hydroxide was produced in the same manner as in Example 1, except that aqueous ammonia was not used in Example 1. However, the addition ratio at this time was 2.05 mol of sodium hydroxide to 1 mol of nickel nitrate.

生成した水酸化ニッケルを、濾過、水洗、乾燥したが、
固形状となったので、これを粉砕して、粉末状水酸化ニ
ッケルを得た。得られた水酸化ニッケルは、破断面を有
する不規則な形状で、粒度分布が広かった。
The generated nickel hydroxide was filtered, washed with water, and dried.
Since it became solid, it was crushed to obtain powdered nickel hydroxide. The obtained nickel hydroxide had an irregular shape with a fractured surface and a wide particle size distribution.

1qられた比較量の比表面積は78m2/gであり、バ
ルク密度は1.140/In+であり、タッピング密度
は1.380/1111であった。得られた比較量の走
査電子類1!鏡写真(750倍)を第6図に示した。
The specific surface area of the comparative amount of 1q was 78 m2/g, the bulk density was 1.140/In+, and the tapping density was 1.380/1111. The obtained comparative amount of scanning electronics 1! A mirror photograph (750x) is shown in Figure 6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明法に使用できる反応装置の一例を示す
ものである。第1図において、〈1)は撹拌器を備えた
反応槽、(2ンはニッケル塩水溶液の投入口、(3)は
アンモニウムイオン供給体の役人口、(4)はアルカリ
金属水酸化物水溶液の投入口、(5)は定量ポンプ、(
6)はDHコン1〜ローラー (7)は温度コントロー
ラー(8)は水酸化ニッケルの取出口を人々示す。第2
図は、実施例1及び2で得られた球状水酸化ニッケルの
粒度分布を示すグラフである。第3図は、実施例1で得
られた球状水酸化ニッケルの走査電子顕微鏡写真(75
0倍)である。第4図は、実施例2で得られた球状水酸
化ニッケルの走査電子顕微鏡写真(750倍)である。 第5図は、比較例1で1りられた水酸化ニッケルの走査
電子顕微鏡写真(750倍)である。第6図は、比較例
2で得られた水酸化ニッケルの走査電子顕微鏡写真75
0倍) である。 (以 上) 第 図 第 図 孝立 省ト (pm) ;°p゛ j シー 第 14 図 手続補正言動式) %式%
FIG. 1 shows an example of a reaction apparatus that can be used in the method of the present invention. In Figure 1, (1) is a reaction tank equipped with a stirrer, (2) is an inlet for an aqueous nickel salt solution, (3) is an ammonium ion donor, and (4) is an aqueous alkali metal hydroxide solution. (5) is the metering pump, (
6) DH controller 1~roller (7) Temperature controller (8) indicates the nickel hydroxide outlet. Second
The figure is a graph showing the particle size distribution of spherical nickel hydroxide obtained in Examples 1 and 2. Figure 3 shows a scanning electron micrograph (75cm) of the spherical nickel hydroxide obtained in Example 1.
0 times). FIG. 4 is a scanning electron micrograph (750x magnification) of the spherical nickel hydroxide obtained in Example 2. FIG. 5 is a scanning electron micrograph (750 times magnification) of the nickel hydroxide obtained in Comparative Example 1. FIG. 6 is a scanning electron micrograph 75 of nickel hydroxide obtained in Comparative Example 2.
0 times). (above) Diagram Diagram Diagram 14 Procedural Correction Words and Behaviors (pm)

Claims (1)

【特許請求の範囲】[Claims] (1)(イ)ニッケル塩水溶液、 (ロ)アルカリ金属水酸化物及び (ハ)アンモニウムイオン供給体を反応させて水酸化ニ
ッケルを製造するに当り、 上記(イ)、(ロ)及び(ハ)の三者を連続して同時的
に反応系に供給し、反応系の温度を20〜80℃の範囲
の一定値に且つpHを9〜12の範囲の一定値に保持し
つつ反応を進行せしめて平均粒径2〜50μmの球状水
酸化ニッケル粒子を生成せしめ、これを連続的に取出す
ことを特徴とする水酸化ニッケルの製造法。
(1) In producing nickel hydroxide by reacting (a) nickel salt aqueous solution, (b) alkali metal hydroxide and (c) ammonium ion donor, the above (a), (b) and (c) ) are continuously and simultaneously supplied to the reaction system, and the reaction proceeds while maintaining the temperature of the reaction system at a constant value in the range of 20 to 80°C and the pH at a constant value in the range of 9 to 12. A method for producing nickel hydroxide, which comprises producing spherical nickel hydroxide particles having an average particle size of at least 2 to 50 μm, and continuously taking out the particles.
JP63091120A 1988-04-13 1988-04-13 Production of nickel hydroxide Granted JPH026340A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63091120A JPH026340A (en) 1988-04-13 1988-04-13 Production of nickel hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63091120A JPH026340A (en) 1988-04-13 1988-04-13 Production of nickel hydroxide

Publications (2)

Publication Number Publication Date
JPH026340A true JPH026340A (en) 1990-01-10
JPH0468249B2 JPH0468249B2 (en) 1992-10-30

Family

ID=14017665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63091120A Granted JPH026340A (en) 1988-04-13 1988-04-13 Production of nickel hydroxide

Country Status (1)

Country Link
JP (1) JPH026340A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346758A (en) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd Nickel-hydrogen battery
WO1991020101A1 (en) * 1990-06-18 1991-12-26 Saft Method for preparing a metal hydroxide powder and powder thereby obtained
JPH06127947A (en) * 1992-06-15 1994-05-10 Inco Ltd Preparation of nickel hydroxide
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles
EP0730315A1 (en) * 1995-03-03 1996-09-04 Saft Nickelelectrode for alcaline accumulator
US5569444A (en) * 1990-06-18 1996-10-29 Blanchard; Philippe Process of obtaining a metal hydroxide powder and powder obtained by the process
GB2327943A (en) * 1997-08-04 1999-02-10 Samsung Display Devices Co Ltd Preparing nickel hydroxide
EP0845437A3 (en) * 1996-09-12 2000-11-15 Dowa Mining Co., Ltd. Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
US7563431B2 (en) * 2001-07-06 2009-07-21 H. C. Starck Gmbh Nickel hydroxide and method for producing same
JP2010024083A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide
EP2386339A1 (en) 2006-03-31 2011-11-16 H.C. Starck GmbH Method for producing powder Ni, Co alloy hydroxides and use of same
JP2013539169A (en) * 2010-08-17 2013-10-17 ユミコア Cathode material precursor with dry coating of alumina
AT510358B1 (en) * 2010-09-10 2015-07-15 Traktionssysteme Austria Gmbh PERMANENT MAGNETIC RUDDER ELECTRIC MACHINE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS6316556A (en) * 1986-07-07 1988-01-23 Matsushita Electric Ind Co Ltd Manufacture of non-sintered type electrode
JPH01187765A (en) * 1988-01-20 1989-07-27 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for alkaline battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143671A (en) * 1980-04-09 1981-11-09 Sanyo Electric Co Ltd Manufacture of positive active material for alkaline storage battery
JPS60131765A (en) * 1983-12-20 1985-07-13 Matsushita Electric Ind Co Ltd Nickel positive electrode for battery
JPS6316556A (en) * 1986-07-07 1988-01-23 Matsushita Electric Ind Co Ltd Manufacture of non-sintered type electrode
JPH01187765A (en) * 1988-01-20 1989-07-27 Matsushita Electric Ind Co Ltd Manufacture of nickel electrode for alkaline battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346758A (en) * 1989-07-14 1991-02-28 Yuasa Battery Co Ltd Nickel-hydrogen battery
WO1991020101A1 (en) * 1990-06-18 1991-12-26 Saft Method for preparing a metal hydroxide powder and powder thereby obtained
US5569444A (en) * 1990-06-18 1996-10-29 Blanchard; Philippe Process of obtaining a metal hydroxide powder and powder obtained by the process
JPH06127947A (en) * 1992-06-15 1994-05-10 Inco Ltd Preparation of nickel hydroxide
EP0649818A1 (en) 1993-10-20 1995-04-26 Nikko Rica Co., Ltd. Method for the preparation of nickel hydroxide particles
WO1996027909A1 (en) * 1995-03-03 1996-09-12 Saft Nickel electrode for an alkaline storage battery
FR2731297A1 (en) * 1995-03-03 1996-09-06 Accumulateurs Fixes NICKEL ELECTRODE FOR ALKALINE ACCUMULATOR
EP0730315A1 (en) * 1995-03-03 1996-09-04 Saft Nickelelectrode for alcaline accumulator
EP0845437A3 (en) * 1996-09-12 2000-11-15 Dowa Mining Co., Ltd. Positive electrode active material for nonaqueous secondary cells and a process for producing said active material
GB2327943A (en) * 1997-08-04 1999-02-10 Samsung Display Devices Co Ltd Preparing nickel hydroxide
US7563431B2 (en) * 2001-07-06 2009-07-21 H. C. Starck Gmbh Nickel hydroxide and method for producing same
EP2386339A1 (en) 2006-03-31 2011-11-16 H.C. Starck GmbH Method for producing powder Ni, Co alloy hydroxides and use of same
JP2010024083A (en) * 2008-07-18 2010-02-04 Sumitomo Metal Mining Co Ltd Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide
JP2013539169A (en) * 2010-08-17 2013-10-17 ユミコア Cathode material precursor with dry coating of alumina
AT510358B1 (en) * 2010-09-10 2015-07-15 Traktionssysteme Austria Gmbh PERMANENT MAGNETIC RUDDER ELECTRIC MACHINE

Also Published As

Publication number Publication date
JPH0468249B2 (en) 1992-10-30

Similar Documents

Publication Publication Date Title
JPH026340A (en) Production of nickel hydroxide
JP7376862B2 (en) Wet synthesis method of NCMA high nickel quaternary precursor
CN108117055A (en) The preparation method and process units of a kind of battery-grade iron phosphate
CN104418388B (en) The technique of a kind of ultra-fine powder of cobalt carbonate of continuous production and device thereof
CN107640792A (en) A kind of high compact small particle nickel cobalt manganese hydroxide and preparation method thereof
JPH10265225A (en) Manufacturing device of metallic hydroxide for battery component
CN104743613A (en) Method for continuously preparing large-particle-size spherical cobalt carbonate
CN107055609A (en) A kind of preparation method of ultra-pure 3Y yttrium stable zirconium oxides
US4979985A (en) Process for making finely divided particles of silver metal
JPH1025117A (en) Production of nickel hydroxide
CN101224902B (en) Method for duplex deposition of high-purity magnesium hydroxide by liquid ammonia-ammonia
JP2805098B2 (en) Method for producing nickel hydroxide
CN108658117A (en) The method that hypergravity produces nano-cerium oxide
JP2000077070A (en) Nickel hydroxide powder and its manufacture
CN218459476U (en) Device for continuously producing aluminum-doped cobalt carbonate
JPH06340427A (en) Production of nickel hydroxide for non-sintered alkaline battery
CN114210965A (en) Metallic silver and preparation method and application thereof
JP3192374B2 (en) Method for producing nickel hydroxide
JPH05155616A (en) Transparent yttria sol and its production
JPH02294416A (en) Production of platinum powder
CN106517264A (en) Preparation method of pedal-like magnesium hydroxide
JPH05286724A (en) Production of nickel hydroxide powder
JP2002211930A (en) Method for producing cobalt oxide particles by neutralization method
JP3353600B2 (en) Apparatus and method for producing nickel hydroxide powder
JPH08119636A (en) Production of nickel hydroxide particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081030

Year of fee payment: 16