JP3353600B2 - Apparatus and method for producing nickel hydroxide powder - Google Patents

Apparatus and method for producing nickel hydroxide powder

Info

Publication number
JP3353600B2
JP3353600B2 JP09649396A JP9649396A JP3353600B2 JP 3353600 B2 JP3353600 B2 JP 3353600B2 JP 09649396 A JP09649396 A JP 09649396A JP 9649396 A JP9649396 A JP 9649396A JP 3353600 B2 JP3353600 B2 JP 3353600B2
Authority
JP
Japan
Prior art keywords
nickel
solution
tank
salt solution
nickel hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09649396A
Other languages
Japanese (ja)
Other versions
JPH09283135A (en
Inventor
英樹 笠原
慶孝 暖水
太志 谷川
英男 海谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP09649396A priority Critical patent/JP3353600B2/en
Publication of JPH09283135A publication Critical patent/JPH09283135A/en
Application granted granted Critical
Publication of JP3353600B2 publication Critical patent/JP3353600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、アルカリ二次電
用いられる水酸化ニッケル粉末の製造装置および製造
方法に関するものである。
BACKGROUND OF THE INVENTION The present invention is an alkali secondary batteries
The present invention relates to a production apparatus and a production method for a nickel hydroxide powder used in the present invention.

【0002】[0002]

【従来の技術】従来の水酸化ニッケルの製造方法として
は、水酸化ナトリウム水溶液とニッケル塩の水溶液とを
混合して中和反応させる方法、あるいはニッケル塩の水
溶液にアンモニウムイオンを供給しpHを調整した後、
水酸化アルカリを添加して水酸化物を沈殿させる方法
(特公昭53−6119号公報)等が提案され、実用化
されている。また、水酸化ニッケル粉末へコバルト等を
内部添加させる方法としては、上記のニッケル塩の溶液
にコバルト塩およびカドミニウム塩を添加するか、ある
いはニッケル塩溶液と反応させる水酸化アルカリへ定量
的にコバルト塩およびカドミニウム塩を添加する方法が
一般的である。
2. Description of the Related Art Conventional methods for producing nickel hydroxide include a method in which an aqueous solution of sodium hydroxide and an aqueous solution of nickel salt are mixed to carry out a neutralization reaction, or a method in which ammonium ions are supplied to an aqueous solution of nickel salt to adjust the pH. After doing
A method of adding an alkali hydroxide to precipitate a hydroxide (Japanese Patent Publication No. 53-6119) has been proposed and put to practical use. As a method of internally adding cobalt or the like to the nickel hydroxide powder, a cobalt salt and a cadmium salt are added to the above nickel salt solution, or a cobalt salt is quantitatively added to an alkali hydroxide to be reacted with the nickel salt solution. And a method of adding a cadmium salt.

【0003】以上の合成方法に用いられるこれまでの合
成装置の一例について、図2により説明する。図2にお
いて、22は攪拌機を備えた反応槽でありパイプライン
23からニッケル塩水溶液、同じくパイプライン24か
らアンモニア水、パイプライン25からアルカリ水溶液
が、それぞれ定量ポンプを経て連続的に槽内へ供給され
る。26は槽内の溶液のpH値を検出するpHセンサで
あり、27は温度センサである。生成された水酸化ニッ
ケル粒子を含む懸濁液は、排出パイプライン28から連
続的に外部へ取り出される。中和反応により得られた懸
濁液は、水洗、乾燥等の処理が施され水酸化ニッケル粉
末が得られる。また、図2に示すような条件下で反応を
行うに際して、反応系のニッケル塩溶液およびアンモニ
ア水の供給量を一定にし、反応時の温度は20〜80
℃、pH値をアルカリ溶液の調整により9〜13の範囲
内で維持する。かくして、一定の粒度分布を有し、かつ
平均粒径2〜50μm程度の球状あるいは球状に近似す
る水酸化ニッケル粉末が得られる。
An example of a conventional synthesizing apparatus used in the above synthesizing method will be described with reference to FIG. In FIG. 2, reference numeral 22 denotes a reaction tank equipped with a stirrer. A nickel salt aqueous solution is supplied from a pipeline 23, an ammonia water is supplied from a pipeline 24, and an alkaline aqueous solution is supplied from a pipeline 25 to the tank via a quantitative pump. Is done. 26 is a pH sensor for detecting the pH value of the solution in the tank, and 27 is a temperature sensor. The suspension containing the generated nickel hydroxide particles is continuously withdrawn from the discharge pipeline 28 to the outside. The suspension obtained by the neutralization reaction is subjected to treatments such as washing with water and drying to obtain nickel hydroxide powder. When the reaction is carried out under the conditions shown in FIG. 2, the supply amounts of the nickel salt solution and aqueous ammonia in the reaction system are kept constant, and the temperature during the reaction is 20 to 80.
The pH and the pH are maintained in the range of 9 to 13 by adjusting the alkaline solution. Thus, a nickel hydroxide powder having a certain particle size distribution and an average particle diameter of about 2 to 50 μm is obtained.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上記のよ
うな製造方法および装置では、同一粒径の粉末を得るた
めには、反応槽内の条件を一定にしなければならない。
また、内部添加物の量を変化させようと金属塩溶液の供
給量を変化させると反応槽内の塩濃度が変化して、粒
径、粉末の物性値等が急激に変化し、均質な球状もしく
は球状に近い水酸化ニッケル粉末を得ることができな
い。
However, in the above-described production method and apparatus, in order to obtain powder having the same particle size, the conditions in the reaction tank must be kept constant.
Also, changing the supply amount of the metal salt solution to change the amount of the internal additive changes the salt concentration in the reaction tank, the particle size, the physical properties of the powder, etc. change rapidly, and the uniform spherical shape Alternatively, a nickel hydroxide powder having a nearly spherical shape cannot be obtained.

【0005】また、内部添加物組成の異なる水酸化ニッ
ケル粉末を連続的に合成するためには、水酸化ニッケル
合成用の反応槽が2槽以上必要となり、混合工程槽も必
要となると共に、混合工程槽では粒子単位の均一な混合
を行うことが困難である。
In order to continuously synthesize nickel hydroxide powders having different internal additive compositions, two or more reaction tanks for synthesizing nickel hydroxide are required, and a mixing step tank is also required. In the process tank, it is difficult to perform uniform mixing in units of particles.

【0006】本発明は上記問題点に鑑み、粒子単位で均
質に混合された内部添加物組成の異なる水酸化ニッケル
粉末を低コストで、生産性よく得られる水酸化ニッケル
粉末の製造方法および装置を提供するものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a method and apparatus for producing a nickel hydroxide powder that can be obtained at low cost and with high productivity by uniformly mixing nickel hydroxide powders having different internal additive compositions in particle units. To provide.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に本発明の水酸化ニッケル粉末の製造装置は、連続的に
水酸化ニッケルを晶析反応させるための反応槽とニッケ
ルアンモニウム錯体を合成する合成槽を主体とし、この
ニッケルアンモニウム錯体合成槽には、ニッケル塩溶液
と添加物の金属塩溶液の濃度調整を行う純水供給装置を
備え、ニッケル塩溶液合成槽と金属塩溶液合成槽とから
一定量の溶液が供給されるものである。
Means for Solving the Problems In order to solve the above problems, the apparatus for producing nickel hydroxide powder of the present invention synthesizes a nickel ammonium complex with a reaction tank for continuously crystallizing nickel hydroxide. The nickel ammonium complex synthesis tank is mainly provided with a pure water supply device for adjusting the concentration of the nickel salt solution and the metal salt solution of the additive, and the nickel ammonium complex synthesis tank includes a nickel salt solution synthesis tank and a metal salt solution synthesis tank. A certain amount of solution is supplied.

【0008】上記した構成によって、連続的に晶析反応
をするための反応槽に供給される原料のイオン濃度が常
に一定となるので、晶析反応が急激に変化することはな
く、組成等を変化させても均一な生成物が得られること
となる。
[0008] With the above structure, the ion concentration of the raw material supplied to the reaction tank for continuously performing the crystallization reaction is always constant, so that the crystallization reaction does not change rapidly and the composition and the like are not changed. Even if it changes, a uniform product will be obtained.

【0009】[0009]

【発明の実施の形態】本発明の請求項1に記載の発明
は、製造装置を規定したもので、連続的に晶析反応をす
るための反応槽とニッケルアンモニウム錯体合成槽と、
ニッケル塩溶液と添加物の金属塩溶液の濃度調整を行う
純水供給装置を備えているので、均一な組成で添加物の
量のみが異なる水酸化ニッケル粉末が得られ、金属塩溶
液とニッケル塩溶液に供給される濃度調整用の純水供給
ポンプと、その供給量調整装置を備えることにより金属
塩溶液とニッケル塩溶液のイオン濃度を一定に保つこと
ができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention defines a production apparatus, and comprises a reaction tank for continuously performing a crystallization reaction, a nickel ammonium complex synthesis tank,
Since it is equipped with a pure water supply device that adjusts the concentration of the nickel salt solution and the metal salt solution of the additive, it is possible to obtain nickel hydroxide powder having a uniform composition and differing only in the amount of the additive. By providing a pure water supply pump for adjusting the concentration supplied to the solution and a supply amount adjusting device, the ion concentration of the metal salt solution and the nickel salt solution can be kept constant.

【0010】本発明の請求項2に記載の発明は、金属塩
溶液を純水で濃度調整する工程と、ニッケル塩溶液を純
水により濃度調整する工程と、得られた溶液を出発原料
とし、この出発原料とアンモニア水とからニッケルアン
モニウム錯体を合成する工程と、このアンモニウム錯体
をアルカリと反応させる工程により、粒子単位で均質に
混合され金属塩溶液の濃度に応じて内部添加物の組成の
みが異なる水酸化ニッケル粉末が得られる。
According to a second aspect of the present invention, a step of adjusting the concentration of a metal salt solution with pure water, a step of adjusting the concentration of a nickel salt solution with pure water, and using the resulting solution as a starting material, By the step of synthesizing a nickel ammonium complex from this starting material and aqueous ammonia and the step of reacting the ammonium complex with an alkali, only the composition of the internal additive is homogeneously mixed in units of particles and according to the concentration of the metal salt solution. Different nickel hydroxide powders are obtained.

【0011】本発明の請求項3に記載の発明は、添加物
組成の異なる水酸化ニッケル粉末の混合粉末を連続的に
得ることができ生産性の向上を図ることができる。以
下、本発明の実施の形態について、図を用いて説明す
る。
According to the third aspect of the present invention, a mixed powder of nickel hydroxide powders having different additive compositions can be continuously obtained, and the productivity can be improved. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0012】図1は、本発明における水酸化ニッケル粉
末の製造装置の模式図である。図1において、1は連続
的に晶析反応をさせるための反応槽、2は反応槽内での
晶析反応を均一に行なわせるための攪拌機であり、反応
槽上部中央付近から槽内に入り込むよう設置されてい
る。3は反応槽内の温度を操作するためのヒータであ
り、そのヒータは温度コントローラにより制御されてい
る。4は反応槽内のpH値を調整するアルカリ水溶液の
供給口、5は反応槽内のpH値を測定するpHセンサ、
6はニッケルアンモニウム錯体溶液の供給パイプライン
である。7はアンモニアガスの揮発を防ぐ蓋であり、8
は合成された水酸化ニッケル粉末を含んだ懸濁液の排出
口である。また、ライン6から供給されるアンモニウム
錯体は、10の定量ポンプからのアンモニア水と11の
定量ポンプからの添加物である金属塩を含むニッケル塩
溶液とから9の合成槽にて合成される。添加物である金
属塩を含むニッケル塩溶液は、14の定量ポンプからの
ニッケル塩溶液と、13の定量ポンプからの添加物であ
る金属塩溶液とを混合槽12で混ぜることで調整され
る。17は添加物である金属塩溶液の合成槽であり、1
5は一定濃度の金属塩溶液の定量ポンプからの供給口で
ある。18はニッケル塩溶液の合成槽であり、16は一
定濃度のニッケル塩溶液の定量ポンプからの供給口であ
る。また、21は17の金属塩溶液合成槽と18のニッ
ケル塩溶液合成槽とに加える純水の量が常に一定になる
ように制御する供給量制御装置であり、19,20は金
属塩溶液合成槽およびニッケル塩溶液合成槽と供給量制
御装置をつなぐ配管である。ここで、合成槽9でのニッ
ケルアンモニウム錯体は、pH値およびそれぞれの供給
量をニッケル塩溶液1モル/lに対してアンモニア水を
0〜6モル/lと一定に維持することにより合成され
る。その際に用いられるニッケル塩溶液への添加物量の
制御方法としては、21の純水供給装置の供給量を変化
させることにより行う。以下に上記のように構成された
水酸化ニッケル粉末の製造装置で合成された水酸化ニッ
ケル粉末について、更に詳しく説明する。
FIG. 1 is a schematic view of an apparatus for producing nickel hydroxide powder according to the present invention. In FIG. 1, reference numeral 1 denotes a reaction tank for continuously performing a crystallization reaction, and 2 denotes a stirrer for uniformly performing a crystallization reaction in the reaction tank. It is installed as follows. Reference numeral 3 denotes a heater for controlling the temperature in the reaction tank, and the heater is controlled by a temperature controller. 4 is a supply port of an alkaline aqueous solution for adjusting the pH value in the reaction tank, 5 is a pH sensor for measuring the pH value in the reaction tank,
6 is a supply pipeline of the nickel ammonium complex solution. 7 is a lid for preventing the volatilization of ammonia gas;
Is an outlet of the suspension containing the synthesized nickel hydroxide powder. Further, the ammonium complex supplied from the line 6 is synthesized in the synthesis tank 9 from ammonia water from the metering pump 10 and a nickel salt solution containing a metal salt as an additive from the metering pump 11. The nickel salt solution containing the metal salt as an additive is adjusted by mixing the nickel salt solution from the 14 metering pump and the metal salt solution as the additive from the 13 metering pump in the mixing tank 12. Reference numeral 17 denotes a synthesis tank for a metal salt solution as an additive.
Reference numeral 5 denotes a supply port of a constant concentration metal salt solution from a metering pump. 18 is a synthetic tank nickel salt solution, 16 is a supply port from the metering pump of nickel salt solution having a constant concentration. Reference numeral 21 denotes a supply control device for controlling the amount of pure water to be added to the metal salt solution synthesizing tank 17 and the nickel salt solution synthesizing tank 18 so as to be always constant. This is a pipe connecting the tank and the nickel salt solution synthesis tank with the supply amount control device. Here, the nickel ammonium complex in the synthesis tank 9 is synthesized by maintaining the pH value and the respective supply amounts of ammonia water at 0 to 6 mol / l with respect to 1 mol / l of the nickel salt solution. . The amount of the additive to the nickel salt solution used at that time is controlled by changing the supply amount of the 21 pure water supply device. Hereinafter, the nickel hydroxide powder synthesized by the nickel hydroxide powder manufacturing apparatus configured as described above will be described in more detail.

【0013】[0013]

【実施例】図1に示す水酸化ニッケル粉末の製造装置を
用いて、連続的に水酸化ニッケル粉末の合成を行った。
使用した各水溶液、反応条件などは、次の通りである。
なお使用した水酸化ニッケル合成槽およびニッケルアン
モニウム錯体合成槽の容積は7lであり、添加物である
金属塩を含むニッケル塩溶液の混合槽の容積は20lで
ある。
EXAMPLE A nickel hydroxide powder was continuously synthesized using the apparatus for producing nickel hydroxide powder shown in FIG.
The used aqueous solutions and reaction conditions are as follows.
The volumes of the used nickel hydroxide synthesizing tank and the nickel ammonium complex synthesizing tank were 7 l, and the mixing tank of the nickel salt solution containing the metal salt as an additive was 20 l.

【0014】水酸化ニッケル合成開始時のニッケル塩に
は硫酸ニッケルを用い、その溶液の濃度は1.0モル/
lであり、固溶させる金属塩、たとえば硫酸コバルトは
その量が1.4重量%になるように純水量により調整し
た。
Nickel sulfate is used as a nickel salt at the start of nickel hydroxide synthesis, and the concentration of the solution is 1.0 mol / mol.
The metal salt to be dissolved, for example, cobalt sulfate, was adjusted by the amount of pure water so that the amount was 1.4% by weight.

【0015】また、アンモニア水の濃度は2.0モル/
l、ニッケルアンモニウム錯体合成槽への供給速度はニ
ッケル塩溶液が210ml/hr、アンモニア水が10
5ml/hrになるように調整した。以上の条件下でニ
ッケルアンモニウム錯体を合成し、水酸化ニッケル合成
槽に供給した。ニッケルアンモニウム錯体合成槽での平
均滞留時間は約22時間であり、またニッケル塩溶液に
対するアンモニア水の割合はニッケルアンモニウム錯体
合成槽内のpH値によって制御した。水酸化ニッケル合
成槽へ供給されるアルカリ水溶液の濃度は2.0モル/
lであり、その供給量は210ml/hrとした。定常
状態での水酸化ニッケル合成槽内の条件は、pH値1
2.7、温度35℃で合成を行った。
The concentration of the aqueous ammonia is 2.0 mol / mol.
1. The feed rate to the nickel ammonium complex synthesis tank was 210 ml / hr for the nickel salt solution and 10
It was adjusted to 5 ml / hr. A nickel ammonium complex was synthesized under the above conditions and supplied to a nickel hydroxide synthesis tank. The average residence time in the nickel ammonium complex synthesis tank was about 22 hours, and the ratio of aqueous ammonia to the nickel salt solution was controlled by the pH value in the nickel ammonium complex synthesis tank. The concentration of the aqueous alkali solution supplied to the nickel hydroxide synthesis tank was 2.0 mol / mol.
1 and the supply rate was 210 ml / hr. The condition in the nickel hydroxide synthesis tank in a steady state is a pH value of 1
Synthesis was performed at 2.7 at a temperature of 35 ° C.

【0016】以上の条件下で水酸化ニッケル粉末を合成
し、水酸化ニッケル合成槽内の滞留時間は約13時間で
ある。また、晶析反応を始めて6日目にニッケル塩溶液
に固溶させる硫酸コバルトを4.0重量%になるように
純水量を調整した。その結果、得られたコバルト含有水
酸化ニッケル粉末は、平均粒径10μm、タッピング密
度2.0g/cc以上の球状水酸化ニッケルであった。
ここで、内部添加物であるコバルト量は図3に示したよ
うにニッケル塩溶液に固溶させるコバルト濃度を変えて
から徐々に増加していくのが分かる。その後1日ごとに
上記のニッケル塩溶液の内部添加量を純水量に変化させ
ることにより調整すると、得られた水酸化ニッケル粉末
の内添物組成は周期的に変化し、最終的な水酸化ニッケ
ル粉末は内部添加物組成が入り混じった状態の粉末が得
られた。
The nickel hydroxide powder is synthesized under the above conditions, and the residence time in the nickel hydroxide synthesis tank is about 13 hours. On the sixth day after the crystallization reaction was started, the amount of pure water was adjusted so that the amount of cobalt sulfate dissolved in the nickel salt solution was 4.0% by weight. As a result, the obtained cobalt-containing nickel hydroxide powder was spherical nickel hydroxide having an average particle diameter of 10 μm and a tapping density of 2.0 g / cc or more.
Here, it can be seen that the amount of cobalt as an internal additive gradually increases after changing the concentration of cobalt dissolved in the nickel salt solution as shown in FIG. After that, when the internal addition amount of the above nickel salt solution is adjusted to pure water amount every day, the internal additive composition of the obtained nickel hydroxide powder changes periodically, and the final nickel hydroxide As the powder, a powder in which the internal additive composition was mixed was obtained.

【0017】ここで内部添加物として硫酸コバルトを用
いたが、金属塩たとえば硫酸亜鉛、硝酸コバルト、硫酸
カドミウム、硝酸マンガン、硝酸リチウム等であればな
んでもよく、さらに2種類以上の添加物を用いることも
できる。また、内部添加物量についてはニッケル100
%に対して0〜50重量%の範囲で添加することができ
る。
Here, cobalt sulfate is used as an internal additive, but any metal salt such as zinc sulfate, cobalt nitrate, cadmium sulfate, manganese nitrate, lithium nitrate, etc. may be used, and two or more types of additives may be used. Can also. The amount of the internal additive is nickel 100
% In the range of 0 to 50% by weight.

【0018】[0018]

【発明の効果】このように連続的に晶析反応をするため
の反応槽と、ニッケルアンモニウム錯体を合成する合成
槽と、このニッケルアンモニウム錯体合成槽にアンモニ
ア水溶液を供給するための供給手段と、添加物を含むニ
ッケル塩溶液を合成槽に供給するための供給手段を備
え、添加物の金属を含むニッケル塩溶液混合槽は、混合
槽と添加物の金属塩溶液を合成槽に供給するための供給
手段と、ニッケル塩溶液を合成槽に供給するための供給
手段と、ニッケル塩溶液と添加物の金属塩溶液の濃度調
整を行う純水供給装置を備えることにより、粒子単位で
均質に混合された内部添加物組成の異なる水酸化ニッケ
ル粉末を低コストで、生産性を向上させて製造すること
ができる。
As described above, a reaction tank for continuously performing a crystallization reaction, a synthesis tank for synthesizing a nickel ammonium complex, a supply means for supplying an aqueous ammonia solution to the nickel ammonium complex synthesis tank, A supply means for supplying a nickel salt solution containing the additive to the synthesis tank is provided, and the nickel salt solution mixing tank containing the additive metal is used for supplying the mixing tank and the additive metal salt solution to the synthesis tank. By providing a supply means, a supply means for supplying the nickel salt solution to the synthesis tank, and a pure water supply device for adjusting the concentration of the nickel salt solution and the metal salt solution of the additive, the particles are homogeneously mixed in units of particles. Further, nickel hydroxide powders having different internal additive compositions can be produced at low cost with improved productivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための水酸化ニッケル粉末の
合成装置の模式図
FIG. 1 is a schematic view of an apparatus for synthesizing nickel hydroxide powder for carrying out the present invention.

【図2】従来の水酸化ニッケル粉末合成装置の模式図FIG. 2 is a schematic view of a conventional nickel hydroxide powder synthesizing apparatus.

【図3】本発明の実施例で得られた水酸化ニッケル粉末
中のコバルト添加量の経時変化を示す図
FIG. 3 is a graph showing the change over time in the amount of cobalt added to the nickel hydroxide powder obtained in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 反応槽 2 攪拌機 3 ヒータ 5 pHセンサ 9 混合槽 10 アンモニア水 12 混合槽 13 金属塩溶液 14 ニッケル塩溶液 17 金属塩溶液合成槽 18 ニッケル塩溶液合成槽 21 純水供給装置 DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Stirrer 3 Heater 5 pH sensor 9 Mixing tank 10 Ammonia water 12 Mixing tank 13 Metal salt solution 14 Nickel salt solution 17 Metal salt solution synthesizing tank 18 Nickel salt solution synthesizing tank 21 Pure water supply device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海谷 英男 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 平5−254847(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/52 C01G 53/04 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideo Kamiya 1006 Kazuma Kadoma, Kadoma City, Osaka Inside Matsushita Electric Industrial Co., Ltd. Field (Int.Cl. 7 , DB name) H01M 4/52 C01G 53/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】供給される反応液から連続的に水酸化ニッ
ケルを結晶析出させ、かつ生成した水酸化ニッケルを含
む懸濁液を外部に排出する排出口を備えた反応槽と、反
応槽内部に設けられた反応液撹拌のための撹拌機および
反応液のpH測定用センサと、外部からこの反応槽を加
熱する加熱装置と、アルカリ水溶液を反応槽に供給する
アルカリ水溶液供給手段と、調整されたニッケルアンモ
ニウム錯体溶液を反応槽に供給する手段と、ニッケル塩
溶液と添加物である金属塩溶液を混合する混合槽と、こ
の混合槽からの添加物を混合したニッケル塩溶液とアン
モニア水とを投入してニッケルアンモニウム錯体を合成
する合成槽とからなる水酸化ニッケル粉末の製造装置。
1. A reaction tank having a discharge port for continuously crystallizing nickel hydroxide from a supplied reaction solution and discharging a suspension containing the generated nickel hydroxide to the outside, A stirrer for stirring the reaction liquid and a sensor for measuring the pH of the reaction liquid, a heating device for externally heating the reaction tank, and an alkali aqueous solution supply means for supplying an alkaline aqueous solution to the reaction tank are provided. means for supplying to the reaction vessel of nickel ammonium complex solution, a mixing tank for mixed-metal salt solution is additive nickel salt solution, a nickel salt solution and aqueous ammonia added was mixed from the mixing tank And a synthesizing tank for synthesizing a nickel ammonium complex.
【請求項2】金属塩溶液を純水で濃度調節する工程と、
ニッケル塩溶液を純水により濃度を調整する工程と、得
られた溶液を出発原料として、この出発原料とアンモニ
ア水からニッケルアンモニウム錯体を合成する工程と、
得られたニッケルアンモニウム錯体溶液にアルカリ溶液
を加えて反応させる工程とからなる水酸化ニッケルの製
造方法。
2. A step of adjusting the concentration of the metal salt solution with pure water.
A step of adjusting the concentration of the nickel salt solution with pure water, and a step of synthesizing a nickel ammonium complex from this starting material and aqueous ammonia using the obtained solution as a starting material,
Adding an alkaline solution to the obtained nickel ammonium complex solution and reacting the solution.
【請求項3】前記反応させる工程において、添加物組成
の異なる水酸化ニッケル粉末の混合粉末を連続的に得る
ことを特徴とする請求項2記載の水酸化ニッケル粉末の
製造方法。
3. The method for producing nickel hydroxide powder according to claim 2, wherein in the step of reacting , a mixed powder of nickel hydroxide powders having different additive compositions is continuously obtained.
JP09649396A 1996-04-18 1996-04-18 Apparatus and method for producing nickel hydroxide powder Expired - Fee Related JP3353600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09649396A JP3353600B2 (en) 1996-04-18 1996-04-18 Apparatus and method for producing nickel hydroxide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09649396A JP3353600B2 (en) 1996-04-18 1996-04-18 Apparatus and method for producing nickel hydroxide powder

Publications (2)

Publication Number Publication Date
JPH09283135A JPH09283135A (en) 1997-10-31
JP3353600B2 true JP3353600B2 (en) 2002-12-03

Family

ID=14166617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09649396A Expired - Fee Related JP3353600B2 (en) 1996-04-18 1996-04-18 Apparatus and method for producing nickel hydroxide powder

Country Status (1)

Country Link
JP (1) JP3353600B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020054535A (en) * 2000-12-28 2002-07-08 안복현 Method for preparing nickel composite hydroxide
CN1328173C (en) * 2002-05-09 2007-07-25 辽宁浩普科技发展有限公司 Nanometer geode-type nickelous hydroxide producing method and apparatus thereof for MH-Ni cells as power
JP2006265086A (en) * 2005-02-24 2006-10-05 Toyota Motor Corp Method and apparatus for manufacturing nickel hydroxide particles

Also Published As

Publication number Publication date
JPH09283135A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
CN104418388B (en) The technique of a kind of ultra-fine powder of cobalt carbonate of continuous production and device thereof
CN107720716A (en) The technique for preparing battery-level lithium carbonate and ferric phosphate from crude product lithium phosphate recovery lithium phosphorus
EP0214494B1 (en) Magnesium hydroxide and process for its production
CN108840317A (en) A kind of preparation method of high-purity high-pressure solid battery-grade iron phosphate
JP3353600B2 (en) Apparatus and method for producing nickel hydroxide powder
JP2004533397A5 (en)
JP2703487B2 (en) Method for producing nickel hydroxide
JP2006515950A (en) Active nickel mixed hydroxide-cathode material for alkaline storage battery and method for producing the same
JPH026340A (en) Production of nickel hydroxide
JP2805098B2 (en) Method for producing nickel hydroxide
WO2002079091A1 (en) Method for producing basic metal nitrate
JP4094548B2 (en) Method for reducing the crystallinity of nickel hydroxide powder
JP4846115B2 (en) Method for producing nickel oxyhydroxide
JPH07278619A (en) Production of nickel powder
US9278867B2 (en) Transition metal compound particles and methods of production
GB2327943A (en) Preparing nickel hydroxide
JP2758574B2 (en) Method for producing nickel hydroxide
JP2002322466A (en) Method for continuously preparing salt mixture
JP3192374B2 (en) Method for producing nickel hydroxide
US2981596A (en) Preparation of alkaline earth metal carbonates
JPS5835242B2 (en) Method for producing fine particulate metal nickel powder
JPH07133115A (en) Production of nickel hydroxide powder coated with cobalt hydroxide
RU2193014C1 (en) Process of spherical nickel hydroxide production
CN116925132B (en) Preparation method of fine-particle-size dialkyl phosphinate
JPH0848506A (en) Production of metal hydroxide powder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees