JP4846115B2 - Method for producing nickel oxyhydroxide - Google Patents

Method for producing nickel oxyhydroxide Download PDF

Info

Publication number
JP4846115B2
JP4846115B2 JP2001091938A JP2001091938A JP4846115B2 JP 4846115 B2 JP4846115 B2 JP 4846115B2 JP 2001091938 A JP2001091938 A JP 2001091938A JP 2001091938 A JP2001091938 A JP 2001091938A JP 4846115 B2 JP4846115 B2 JP 4846115B2
Authority
JP
Japan
Prior art keywords
nickel
nickel oxyhydroxide
reaction
oxidation
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001091938A
Other languages
Japanese (ja)
Other versions
JP2002179427A (en
Inventor
猛 臼井
純一 今泉
守 嶋川
得代志 飯田
幹也 島田
信幸 高木
義一 源田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Chemical Corp
Nippon Soda Co Ltd
Original Assignee
Tanaka Chemical Corp
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Chemical Corp, Nippon Soda Co Ltd filed Critical Tanaka Chemical Corp
Priority to JP2001091938A priority Critical patent/JP4846115B2/en
Publication of JP2002179427A publication Critical patent/JP2002179427A/en
Application granted granted Critical
Publication of JP4846115B2 publication Critical patent/JP4846115B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、高密度、特にタッピング密度が2.1g/cm 以上、バルク密度が1.3g/cm 以上であるオキシ水酸化ニッケル及びその製造方法に関する。これらはリチウム二次電池の正極用材料であるリチウムニッケル複合酸化物の原料としての利用に好適である。
【0002】
【従来の技術】
オキシ水酸化ニッケルがリチウム二次電池の正極用材料であるリチウムニッケル複合酸化物の原料として知られており、その製造法もいくつか知られている(特開平10−81522)。
しかしながら、これら従来の製造方法で得られるオキシ水酸化ニッケルの密度は、現在必要とされる高性能のリチウム二次電池の正極用材料であるリチウムニッケル複合酸化物の原料としてはいまだ十分ではない。
【0003】
【発明が解決しようとする課題】
本発明は、ニッケル酸リチウムの原料に好適な高密度のオキシ水酸化ニッケル及びその製造方法を提供することを目的とするものである。
【0004】
【課題を解決するための手段】
本発明者は、高密度のオキシ水酸化ニッケルの新規な製造方法について鋭意研究し、原料として高密度を有する水酸化ニッケル粒子を水系分散媒体に分散し、適当な酸化剤を添加して酸化することにより、十分な高密度を有するオキシ水酸化ニッケル粒子が得られることを見出し本発明を完成した。
【0005】
すなわち、本発明は、高密度のオキシ水酸化ニッケルに関するものであり、本発明のオキシ水酸化ニッケルには他の金属例えばZn、Co等が適当量含有されているものも含まれる。また、本発明のオキシ水酸化ニッケルには、100%完全に酸化されたオキシ水酸化ニッケルのみならず、部分的にオキシ水酸化ニッケルに酸化された水酸化ニッケルをも含むものである。
さらには、本発明のオキシ水酸化ニッケルはその密度がタッピング密度として2.1g/cm 以上、バルク密度として1.3g/cm 以上であることを特徴とする。
【0006】
また、本発明の方法は、タッピング密度が1.8g/cm 以上の水酸化ニッケルを水系分散媒に分散し、これに酸化剤を添加して酸化することにより高密度オキシ水酸化ニッケルを製造することを特徴とする。
また、本発明の方法は、水酸化ニッケルを水系分散媒体に分散し、pH12〜13の範囲で、次亜塩素酸塩(又は次亜臭素酸塩)を用いて酸化することによりオキシ水酸化ニッケルを製造することを特徴とする。
さらには、前記の製造方法において、酸化した後得られたオキシ水酸化ニッケルをpH11〜13の範囲でろ過する工程を含むことを特徴とする。
以下、実施の形態に即して本発明を詳細に説明する。
【0007】
【発明の実施の形態】
高密度オキシ水酸化ニッケル
本発明にかかる高密度オキシ水酸化ニッケルは、そのバルク密度が1.3g/cm 以上である、またタッピング密度が2.1g/cm 以上である。また、平均粒子径は5〜40μmであり、図1で示すようにほぼ球状の形状を有し、比表面積は3〜30m2/gの範囲である。さらに、X線結晶回折における(001)面ピークの半値幅が0.1〜1.0゜/2θの範囲である。本発明にかかる高密度オキシ水酸化ニッケル粒子は、微細な一次粒子が集合してなる二次粒子であるものをも含む。
【0008】
また、本発明にかかる高密度オキシ水酸化ニッケルは必要ならば、種々の他の金属を適当量含むものである。例えば、B、Ca、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta、W及びPbが挙げられる。上記元素のうち、一つを含有してもよいし、二以上を含有していてもよい。これらの元素を含有することにより、上記した本発明の目的を良好に達成することができる。
【0009】
さらに、本発明にかかる高密度オキシ水酸化ニッケルは、部分的に酸化されたものも含む。すなわちオキシ水酸化ニッケルが水酸化ニッケルに部分的に混合したものをも含む。
【0010】
製造方法
(水酸化ニッケル)
本発明の高密度オキシ水酸化ニッケルは、十分な高密度の水酸化ニッケルを原料とし、これを水溶液中に分散して酸化剤で酸化することを特徴とするものである。
ここで、原料である高密度の水酸化ニッケルはタッピング密度が1.8g/cm 以上の使用が好ましい。さらには比表面積が3〜30m/g、平均粒径が5〜30μmの範囲のものの使用が好ましい。特にX線回折における(101)面ピ−クの半値幅が0.7〜1.2゜/2θのものの使用が好ましい。
また本発明の目的から、他の金属としてZnが3〜8重量%、コバルトが0.5〜5重量%を固溶したものが好ましい。
【0011】
かかる高密度水酸化ニッケル粒子は具体的には例えば特開平10−97856に開示されている方法が好ましく使用できる。すなわち、反応槽に、コバルト、亜鉛イオンを含むニッケル塩水溶液、アンモニウムイオン供給体、アルカリ金属水酸化物を連続供給し、連続結晶成長させ、得られた沈殿物を連続に取り出すことにより、高密度水酸化ニッケルを製造するものである。この時、反応槽内の塩濃度、アンモニウムイオン濃度、pH、温度を一定範囲内に維持することにより、結晶度、タッピング密度、比表面積、粒子径等の粉体物性が良く制御された水酸化ニッケルを得ることができる。即ち、Znが3〜8重量%、コバルトが0.5〜5重量%を固溶し、X線回折における(101)面ピ−クの半値幅が0.7〜1.2゜/2θ、タッピング密度が1.8g/cm 以上、比表面積が3〜30m2 /g、平均粒径が5〜30μmである高密度水酸化ニッケルが得られる。また、前記水酸化ニッケルは、槽内の塩濃度を50〜200mS/cmの範囲で±5mS/cm内に保持し、アンモニウムイオン濃度を1〜10g/Lの範囲で±0.5g/L内に保持することにより得られる。又、前記水酸化ニッケルは、反応pHを11.0〜13.0の範囲で±0.05内に保持し、反応温度を30〜70℃の範囲で±0.5℃内に保持することにより得られる。塩濃度の調節剤としては、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、塩酸アンモニウム、硫酸アンモニウム等が挙げられる。
【0012】
(酸化反応)
本発明にかかる高密度オキシ水酸化ニッケルは、高密度水酸化ニッケル粒子を水溶液に分散し、酸化剤で酸化して得られる。
ここで酸化剤としては特に限定されず、例えば、オゾン;過マンガン酸(HMnO4)、MMnO4(Mは、アルカリ金属を表す。)等で表される過マンガン酸塩;クロム酸(CrO3)、M2Cr27、MCrO3Cl(Mは、アルカリ金属を表す。)、CrO2Cl2等で表されるクロム酸関連化合物;F2、Cl2、Br2、I2のハロゲン;ペルオクソ酸、M228、M225(Mは、アルカリ金属を表す。)、CH3CO3H等で表されるその塩;酸素酸、MClO、MBrO、MIO、MCIO3、MBrO3、MIO3、MCIO4、MIO4(Mは、アルカリ金属を表す。)、Na32IO6、KIO4等で表されるその塩等を挙げることができる。これらは、1種のみを用いてもよいし、2種以上を併用してもよい。
【0013】
また、水酸化ニッケルを含む水系分散媒に上記酸化剤を含む水溶液又は酸化剤を加えることにより酸化を行うことができる。また、上記酸化剤を含む水溶液に水酸化ニッケル又は水酸化ニッケルを含む水系分散媒を加えることより酸化を行うこともできる。
【0014】
水酸化ニッケルの分散量は特に限定されないが、通常、水1Lに対し水酸化ニッケルを0.1〜30モルの範囲である。製造工程における操作性や経済性の点から、より好ましくは1〜20モルの範囲である。
【0015】
酸化剤の溶液中の濃度は特に限定されないが、通常、酸化剤の濃度に換算して0.05〜4モル/Lが好ましい。製造工程における操作性や経済性の点から、より好ましくは0.1〜4モル/Lである。
【0016】
具体的には、水酸化ニッケルと酸化剤との仕込み比は、酸化当量比で (酸化剤)/(ニッケル)>1であればよい。製造工程における操作性や経済性の点から、酸化当量比は、好ましくは (酸化剤)/(ニッケル)=1/1〜4/1である。1/1未満であると、得られるオキシ水酸化ニッケルの酸化率が低くなり、4/1を超えると、経済性の点で不利である。より好ましくは、(酸化剤)/(ニッケル)=1/1〜2/1である。
【0017】
酸化度の理論値は、水酸化ニッケル1モルに対し、酸化剤0.5モルであり、例えば酸化度70%のオキシ水酸化ニッケルを製造する場合、オキシ水酸化ニッケル1モルに対し酸化剤0.35モルが理論値である。また、酸化度の微調整も可能であり、更に酸化したい場合は、一度製造したオキシ水酸化ニッケルを水に分散させ、同様の条件で反応させればよい。酸化がいきすぎた場合、亜硫酸ソーダ(Na2SO3)等を用い容易に還元し、目的の酸化度のオキシ水酸化ニッケルを製造することができる。
【0018】
酸化反応における反応系のpHは、用いる酸化剤による。通常5〜13が好ましく、酸化剤として次亜塩素酸塩もしくは次亜臭素酸塩を使用する場合は、12〜13が特に好ましい。5未満であると、ニッケルその他の陽イオンが溶出し、収率が悪くなり、13を超えると、アルカリ性物質の使用量が多くなり、経済性が悪くなる。
【0019】
実際に工業的に製造されているNaOCl溶液は有効塩素濃度10〜14wt%で安定化させるためpHが12以上に保持されている。この場合にはそのままpH調整する事なく、反応原料として使用できる。また反応終了後のpHが7〜9と低い場合、反応後のオキシ水酸化ニッケルを分離するろ過操作において、ろ液側にオキシ水酸化ニッケルが溶解析出し得量が低下する。
【0020】
酸化反応における反応系の温度は、通常0〜80℃、好ましくは0〜60℃、次亜塩素酸塩等を使用する場合は10〜30℃が特に好ましい。酸化反応における酸化時間は、酸化剤の種類及び反応温度により異なるが、数分〜数日、次亜塩素酸塩等を用いる場合は1.5〜5時間、好ましくは2〜3時間が最も有効に反応に作用し、経済性からも有利である。
【0021】
酸化剤の滴下速度は特に制限されないが、通常0.5〜5時間、好ましくは1〜3時間で滴下すれば良い。余り滴下速度が早くても、又、遅くても、反応に有効に作用しないため、適当な滴下時間を決定する。
【0022】
また、B、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta、W及びPbからなる群から選択される少なくとも1種の元素を含有する場合には、このようなオキシ水酸化ニッケル粒子を製造するにあたっては、上記製造方法において、原料である水酸化ニッケルのNiが当該元素に置換されたものを原料として使用することにより、同様に製造することができる。
【0023】
本発明にかかる製造方法において、次亜塩素酸塩又は次亜臭素酸塩を用いて酸化する場合には、前述したとおり、pHを高く設定することが好ましい。またこの場合反応は室温(常温)下で進行する。さらに、酸化剤の量を容易に調節することができ、任意の酸化度のオキシ水酸化ニッケルが製造できる。
【0024】
かかる酸化剤を用いる反応で使用できる水分散媒としては、特に限定されず、例えばイオン交換水、軟水、精製された工業用水等を挙げることができる。通常の水質を持つ水で良いが、余り、不純物、例えばFe、Ca、Mgなどのイオンを多く含むものは好ましくない。
【0025】
反応条件としては、最初に分散溶媒として水を反応容器に仕込み、次に、水酸化ニッケルを攪拌下に仕込み、室温(常温)下で次亜塩素酸ナトリウム(又は次亜臭素酸ナトリウムの溶液と反応させる。
【0026】
次亜塩素酸塩を用い、酸化度100%のオキシ水酸化ニッケルを製造する場合、水酸化ニッケルと酸化剤の仕込みはNaOX(X=Cl、B)/{1/2Ni(OH)2}=1.00〜1.2モル比、好ましくは1.01〜1.10モル比がよい。モル比が1.00以下では、オキシ水酸化ニッケルの実質的な酸化度が低くなり、逆にモル比が多い場合は経済性の点から不利であるばかりか、過剰分は分解に寄与するのみで、しかも副生NaClやNaBrなどの副生塩がオキシ水酸化ニッケルの粉末に混在する度合が高くなり品質上好ましくない。
【0027】
反応の攪拌回転数は特に限定されるものでないが、酸化反応は固体との接触反応のため、攪拌が余り遅く、水酸化ニッケルの粉末が均一に分散しない状態では実質的に反応は完結しない。又、余り攪拌が早いと、滴下する次亜ハロゲン酸塩の分解が進行し反応効率が悪化する。従って最も有効に攪拌が働く様、攪拌回転数を選定する。例えば5Lフラスコのかい型攪拌では250〜350r.p.m.程度が最も有効である。
【0028】
反応終了後、そのままのpH、即ち、pH11〜13でろ過し、水洗後、乾燥する。製品の乾燥は、特に限定されるものではないが乾燥温度が余り高いと得られた製品が分解し、酸化度が低下するなどの問題が生じる。従って、製品の乾燥は温度を上げず、減圧乾燥としても良いが、通常、20〜120℃、好ましくは40〜80℃で乾燥するのが艮い。
【0029】
この条件下で反応して得られるオキシ水酸化ニッケルは通常のろ過、水洗処理して得られるケーキを乾燥する事により目的の酸化度の製品として得る事ができる。
【0030】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。
【0031】
(参考例)
攪拌機付きの反応槽に、2mol/Lの硫酸ニッケル水溶液、0.13mol/Lの硫酸亜鉛水溶液、0.035mol/Lの硫酸コバルト水溶液、5mol/Lの硫酸アンモニウム水溶液を連続投入しながら、10mol/Lの水酸化ナトリウム水溶液を反応槽内のpHが自動的に12.0に維持されるように投入した。また、硫酸ナトリウムを添加し、塩濃度を100mS/cmに調節し、反応槽内の温度は40℃に維持し、攪拌機により常に攪拌した。生成した水酸化物はオーバーフロー管よりオーバーフローさせて取り出し、水洗、脱水、乾燥処理した。このようにして、高密度水酸化ニッケルを得た。以下の実施例は、本参考例に準じて製造した高密度水酸化ニッケルを用いて行った。
【0032】
(実施例1)
撹拌機を備えた15Lの円筒型反応槽に水を6L加え、タップ密度が2.09g/cm 、平均粒子径が17.5μmでコバルトを0.7wt%固溶している球状を帯びた水酸化ニッケルを1.2kg加え液相と固相が均一に混ざるように一定速度にて攪拌した。次に有効塩素量が14%である次亜塩素酸ナトリウム溶液4Lを加え50℃に保持し2時間攪拌を続けた。攪拌停止後、反応槽内の粒状物を水洗、ろ過し80℃にて15時間乾燥し、オキシ水酸化ニッケルの黒色乾燥粉末を得た。
得られたオキシ水酸化ニッケルのタップ密度は2.28g/cm 、平均粒子径は16.8μmであった。またX線回折を行ったところβ型オキシ水酸化ニッケルのピークと一致した。
なおタップ密度はセイシン企業製タップデンサー「KYT−3000」にて、4cmスペーサーを用い200回のタッピング後のタップ密度を測定した。また平均粒子径はセイシン企業製レーザーマイクロサイザー「PRO7000S」を用い、累積50%の粒子径を平均粒子径とした。
【0033】
(比較例1)
撹拌機を備えた15Lの円筒型反応槽に水を6L加え、タップ密度が1.38g/cm 、平均粒子径が4.1μmでコバルトを0.7wt%固溶している球状を帯びた水酸化ニッケルを1.2kg加え液相と固相が均一に混ざるように一定速度にて攪拌した。次に有効塩素量が14%である次亜塩素酸ナトリウム溶液4Lを加え50℃に保持し2時間攪拌を続けた。攪拌停止後、反応槽内の粒状物を水洗、ろ過し80℃にて15時間乾燥し、オキシ水酸化ニッケルの黒色乾燥粉末を得た。
得られたオキシ水酸化ニッケルのタップ密度は1.75g/cm 、平均粒子径は4.2μmであった。またX線回折を行ったところβ型オキシ水酸化ニッケルのピークと一致した。この様な粉末をリチウムニッケル複合酸化物の原料として用いた場合、正極板への充填密度が低下し、放電容量低下の原因となる。
【0034】
(実施例2)
淡緑色の水酸化ニッケル(平均粒形20μm)450g(4.85モル)をイオン交換水400gが仕込まれた攪拌下の3Lの4口フラスコに粉だちしない様、ゆっくり添加し、水分散させた。フラスコはウオーターバスで、17〜20℃に保持する様、温度調節した。攪拌回転数は320r.p.m.(かい型攪拌)で通常分散させた。次いで、NaOCl溶液1380g(NaOClとして13.74wt%、pH12.7)を1L滴下ロートより1.0時間を要して滴下した。(NaOCl/1/2Ni(OH)2のモル比=1.05であった)反応温度は滴下開始時、17.2℃が終了時、19.5℃まで上昇した。NaOC1溶液滴下後19〜20℃で3時間、同じ攪拌回転数で保持した。反応後の反応液pHは11.8で、反応液中の有効残存塩素量は3.8ppmであった。
反応終了後、ヌッチェタイプのろ過器でろ過し、イオン交換水1Lで洗浄後、60℃の温風乾燥器で1昼夜(18時間)乾燥して、オキシ水酸化ニッケルの黒色粉末440.7gを得た。得られた粉末のX線回折パターンから、オキシ水酸化ニッケルであることが確認された。また酸化度は0.2gのオキシ水酸化ニッケルを採取、精秤し、これを硫酸−ヨウ化カリウム(1:1)溶液中で完全に溶解させ、ニッケル元素の3価から2価への還元を行った後、遊離したヨウ素をチオ硫酸ナトリウム溶液で逆滴定し、滴定量から酸化度を算出した。酸化度は100%であった。
【0035】
(実施例3)
淡緑色の水酸化ニッケル(平均粒径14μm)45Og(4.85モル)を、あらかじめNaCl電解用イオン交換精製水600gが仕込まれた攪拌下の3Lの4口フラスコに粉だちしない様にゆっくりと添加した。水浴を用いて、15〜20℃の温度になる様、保持した。攪拌回転数は320r.p.m.(かい型攪拌)で均一な水分散媒溶液とした。
次いで、NaOCl溶液1412g(NaOClとして13.7wt%、pH12.5)を1Lの滴下ロートから1時間20分を要して添加した。淡緑色のNi(OH)2分散液は次第に黒色に変わった。反応温度は滴下開始時、18℃の温度が滴下終了時、21.7℃になった。その後20±2℃の温度で2時間、同攪拌下で保持した。2時間後の反応液中の有効塩素量は5.1ppmで、反応液のpHは12.0であった。反応終了後フラスコ中の黒色スラリー液をろ過し、1Lのイオン交換水で洗浄後、55℃で一昼夜、温風乾燥し、オキシ水酸化ニッケル442.1gを得た。得られた粉末のX線回析パターン結果からオキシ水酸化ニッケルである事が確認された。滴定から求めた酸化度は100%であった。
【0036】
(実施例4)
水酸化ニッケル(平均粒径25μm) 450g(4.85モル)を、あらかじめ、工業用水が400g仕込まれた攪拌下の3Lの4口フラスコに加え、水分散液とした。水浴を用いて22〜25℃の温度に保持した。この時の攪拌回転数は276r.p.m.(かい型攪拌)であった。
次いでNaOCl溶液1412g(NaOClとして13.74wt%、pH12.5)を1Lの滴下ロートから1時間30分を要して滴下した、フラスコの淡緑色水酸化ニッケル水分散液は次第に黒色に変わった。反応温度は滴下開始温度と変わらなかった。その後、24±2℃で3時間、攪拌保持した。反応終了後の液中の有効塩素量は0.8ppmで、pHは12.2であった。黒色固形物をろ過し、800mlのイオン交換水でケーキを洗浄後、80℃で温風乾燥を12時間して、オキシ水酸化ニッケル440gを得た。得られた粉末のX線回析パターンからオキシ水酸化ニッケルであることが確認された。また滴定から求めた酸化度は100%であった。
【0037】
(実施例5)
水酸化ニッケル(平均粒径20μm)92.7g(1モル)を、あらかじめイオン交換水150gが仕込まれ、攪拌されている500mlの4口フラスコに添加し、水分散液とした。内温を18〜21℃にして保持する様にしてから、NaOBr471g(NaOBrとして13.0wt%、pH12.7)を300mlの滴下ロートから、1時間を要して滴下した。
フラスコ中の淡緑色水酸化ニッケル水分散液は次第に黒色に変わった。滴下終了後20〜22℃で3時間、攪拌保持した。反応終了後の残存臭素は、3.8ppmでpHは12.0であった。反応終了後、黒色スラリ−液をろ過し、250mlのイオン交換水で洗浄後、55℃で温風乾燥して、オキシ水酸化ニッケル90.8gを得た。得られた粉末のX線回折パターンを測定したところ、オキシ水酸化ニッケルである事が確認された。また、滴定から求めた酸化度は100%であった。
【0038】
(比較例2)
3Lの4口ラスコにpH電極をセットしてから水酸化ニッケル92.7g(1モル)を1Lのイオン交換水に分散させ、18〜20℃に保持、攪拌(300r.p.m.)した。
次いで、1mol/LのNaOCl溶液のpHを7.5にpH調整した後、2Lを、反応温度18〜21℃に保持しつつ、1時間40分を要して滴下ロートで滴下した。その後2時間、18〜20℃で攪拌、保持した。スラリー液をろ過し、1000mlのイオン交換水でケーキをよく洗浄した。その後、ろ液から淡緑色のコロイド状沈殿物が析出した。これをろ過し、分析したら原料水酸化ニッケルとオキシ水酸化ニッケルの混合物であった。得られた黒色ケーキを乾燥して、黒色粉末90.6gを得た。得られた粉末を実施例2と同様に分析したらオキシ水酸化ニッケルである事が確認された。ろ液の水層に沈殿物が多量に析出した。又、酸化度は97.9%であった。
【0039】
(比較例3)
pH電極を使用しない以外は比較例2と同様にセットし、水酸化ニッケル92.7g(1モル)を1Lの工業用水に分散させ、−2〜0℃に保持、攪拌(280r.p.m.)した。次いで、1モル/LのNaOC1溶液をpH9に調整した後、1.2Lを0℃に氷冷して保持し、反応滴下時、内温の0±2℃に保持出来る様、滴下速度を調節しながら、1時間25分を要して滴下ロートから滴下した。
その後、3時間、−1〜1℃で攪拌保持した。黒色スラリー液は実施例3と同様にろ過し800mlの工業用水でケーキを洗浄した。ケーキを洗浄している時、ケーキ中から多量の酸素ガスが泡となって出た。得られたケーキは55℃の温度で19時間、温風乾燥して、黒色粉末90.0gを得た。酸化度測定のため実施例2と同様な方法に従って、分析したところ、96.6%の値を得た。
【0040】
(実施例6)
淡緑色の水酸化ニッケル(平均粒形20μm)200g(2.157モル)をイオン交換水180gが仕込まれた攪拌下の2Lの4口フラスコに粉だちしない様、ゆっくり添加し、水分散させた。フラスコはウオーターバスで、17〜20℃に保持する様、温度調節した。攪拌回転数は320r.p.m.(かい型攪拌)で通常分散させた。次いで、NaOCl溶液420g(NaOClとして13.5wt%、pH12.7)を1L滴下ロートより1.0時間を要して滴下した。(NaOCl/1/2Ni(OH)のモル比=0.7であった)反応温度は滴下開始時、17.2℃が終了時、18.0℃まで上昇した。NaOC1溶液滴下後19〜20℃で3時間、同じ攪拌回転数で保持した。
反応終了後、ヌッチェタイプのろ過器でろ過し、イオン交換水500mLで洗浄後、60℃の温風乾燥器で1昼夜(18時間)乾燥して、オキシ水酸化ニッケルの黒色粉末195.6gを得た。実施例2と同様の方法で酸化度を算出した。酸化度は70%であった。
【0041】
(実施例7)酸化度の調整(70%酸化度にする)
酸化度74.9%のオキシ水酸化ニッケル180g(1.94モル)とNaC1電解用イオン交換精製水280gを1Lの4頭フラスコに仕込み、かい型攪拌翼で320r.p.m.に回転し、水浴を用いて18〜21℃に保持した。
次いで、20%NaSO水溶液23.2g(0.037モル)を滴下ロートより、30分間を要して滴下した。その間の反応温度は18〜22℃でほとんど発熱はなかった。滴下終了後、3時間、同温度で保持し、ヌッチェタイプの瀘過器で濃過し、0.8Lの水で良く水洗したのち、60℃の温風乾燥器で、一昼夜乾燥した。得られた黒色粉末量は179gであった。黒色粉末0.2gを精秤し、これを硫酸水(1:1)−沃化カリウム溶液中で完全に溶解させ、Niの3価から2価への還元を行ったのち、遊離したヨウ素をNa溶液で逆滴定し、滴定量から酸化度を算出した。酸化度は70.2%であった。
【0042】
(実施例8)酸化度の調整(20%酸化度にする)
酸化度18.2%のオキシ水酸化ニッケル180g(1.94モル)とNaC1電解用イオン交換精水280gを1L頭フラスコに仕込み、かい型攪拌翼で300r.p.m.に回転し、20〜22℃に保持した。
次いで、NaClO水溶液(NaClOとして13.63wt%)8.4g(0.0154mol)を滴下ロートより30分間を要して滴下した。反応温度は変わらず発熱はなかった。滴下終了後、2時間同温度で保持しヌッチェタイプのろ過器でろ過し0.8Lの水で良く水洗したのち、60℃の温風乾燥器で一昼夜乾燥した。得られた黒色粉末は179gであった。実施例と同様な方法によって滴定し、酸化度を算出した。酸化度は20.3%であった。
【0043】
【発明の効果】
本発明にかかる方法すなわち、高密度水酸化ニッケルを水系分散媒に分散し、これに酸化剤を添加することにより高密度のオキシ水酸化ニッケルを製造することができる。また、所望する酸化度のオキシ水酸化ニッケルを穏和な反応条件でしかもほぼ定量的に得ることができる。
【図面の簡単な説明】
【図1】本発明で製造された高密度オキシ水酸化ニッケル粒子の電子顕微鏡写真である。
[0001]
BACKGROUND OF THE INVENTION
  The present invention has a high density, particularly a tapping density of 2.1 g /cm 3 The bulk density is 1.3 g /cm 3 It is related with the nickel oxyhydroxide which is the above, and its manufacturing method. These are suitable for use as a raw material for a lithium nickel composite oxide, which is a material for a positive electrode of a lithium secondary battery.
[0002]
[Prior art]
Nickel oxyhydroxide is known as a raw material for a lithium nickel composite oxide which is a material for a positive electrode of a lithium secondary battery, and several production methods thereof are also known (Japanese Patent Laid-Open No. 10-81522).
However, the density of nickel oxyhydroxide obtained by these conventional production methods is still not sufficient as a raw material for lithium nickel composite oxide, which is a positive electrode material for high performance lithium secondary batteries that is currently required.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a high-density nickel oxyhydroxide suitable for a raw material of lithium nickelate and a method for producing the same.
[0004]
[Means for Solving the Problems]
The present inventor has intensively studied a novel method for producing high-density nickel oxyhydroxide, disperses nickel hydroxide particles having high density as a raw material in an aqueous dispersion medium, and oxidizes by adding an appropriate oxidizing agent. As a result, it was found that nickel oxyhydroxide particles having a sufficiently high density were obtained, and the present invention was completed.
[0005]
  That is, the present invention relates to high-density nickel oxyhydroxide, and the nickel oxyhydroxide of the present invention includes those containing an appropriate amount of other metals such as Zn and Co. The nickel oxyhydroxide of the present invention includes not only nickel oxyhydroxide that is 100% completely oxidized but also nickel hydroxide that is partially oxidized to nickel oxyhydroxide.
  Furthermore, the nickel oxyhydroxide of the present invention has a density of 2.1 g / tapping density.cm 3 The bulk density is 1.3 g /cm 3 It is the above.
[0006]
  The method of the present invention has a tapping density of 1.8 g /cm 3 It is characterized in that high density nickel oxyhydroxide is produced by dispersing the above nickel hydroxide in an aqueous dispersion medium and adding an oxidizing agent thereto to oxidize.
  The method of the present invention also comprises nickel oxyhydroxide by dispersing nickel hydroxide in an aqueous dispersion medium and oxidizing with hypochlorite (or hypobromite) in the pH range of 12-13. It is characterized by manufacturing.
  Furthermore, in the said manufacturing method, the process which filters the nickel oxyhydroxide obtained after oxidizing in the range of pH 11-13 is characterized by the above-mentioned.
  Hereinafter, the present invention will be described in detail according to embodiments.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
  High density nickel oxyhydroxide
  The high density nickel oxyhydroxide according to the present invention has a bulk density of 1.3 g /cm 3 The tapping density is 2.1 g /cm 3 That's it. Further, the average particle diameter is 5 to 40 μm, it has a substantially spherical shape as shown in FIG. 1, and the specific surface area is 3 to 30 m.2/ G. Furthermore, the half width of the (001) plane peak in the X-ray crystal diffraction is in the range of 0.1 to 1.0 ° / 2θ. The high-density nickel oxyhydroxide particles according to the present invention include those that are secondary particles formed by aggregation of fine primary particles.
[0008]
Further, the high density nickel oxyhydroxide according to the present invention contains an appropriate amount of various other metals if necessary. For example, B, Ca, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La, Ce, Examples include Pr, Nd, Hf, Ta, W, and Pb. Among the above elements, one may be contained, or two or more may be contained. By containing these elements, the object of the present invention described above can be satisfactorily achieved.
[0009]
Furthermore, the high-density nickel oxyhydroxide according to the present invention includes partially oxidized nickel oxyhydroxide. That is, it includes those in which nickel oxyhydroxide is partially mixed with nickel hydroxide.
[0010]
  Production method
(Nickel hydroxide)
  The high-density nickel oxyhydroxide of the present invention is characterized in that a sufficiently high-density nickel hydroxide is used as a raw material, which is dispersed in an aqueous solution and oxidized with an oxidizing agent.
  Here, the raw material high density nickel hydroxide has a tapping density of 1.8 g /cm 3 The above use is preferable. Furthermore, the specific surface area is 3-30m2/ G and those having an average particle diameter in the range of 5 to 30 μm are preferred. In particular, it is preferable to use a (101) plane peak in X-ray diffraction having a half width of 0.7 to 1.2 ° / 2θ.
  In addition, for the purpose of the present invention, the other metal is preferably a solid solution of 3 to 8% by weight of Zn and 0.5 to 5% by weight of cobalt.
[0011]
  Specifically, such high density nickel hydroxide particles can be preferably used, for example, the method disclosed in JP-A-10-97856. That is, by continuously supplying an aqueous solution of nickel salt containing cobalt and zinc ions, an ammonium ion supplier, and an alkali metal hydroxide to the reaction vessel, continuously growing crystals, and continuously taking out the resulting precipitate, Nickel hydroxide is produced. At this time, by maintaining the salt concentration, ammonium ion concentration, pH and temperature in the reaction tank within a certain range, the powder physical properties such as crystallinity, tapping density, specific surface area, and particle diameter are well controlled. Nickel can be obtained. That is, 3 to 8% by weight of Zn and 0.5 to 5% by weight of cobalt were dissolved, and the half width of the (101) plane peak in X-ray diffraction was 0.7 to 1.2 ° / 2θ, Tapping density is 1.8g /cm 3 As described above, high density nickel hydroxide having a specific surface area of 3 to 30 m @ 2 / g and an average particle diameter of 5 to 30 .mu.m is obtained. The nickel hydroxide keeps the salt concentration in the tank within ± 5 mS / cm in the range of 50 to 200 mS / cm, and the ammonium ion concentration within ± 0.5 g / L in the range of 1 to 10 g / L. It is obtained by holding. The nickel hydroxide should maintain the reaction pH within ± 0.05 in the range of 11.0 to 13.0, and the reaction temperature within ± 0.5 ° C within the range of 30 to 70 ° C. Is obtained. Examples of the salt concentration regulator include sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, ammonium hydrochloride, and ammonium sulfate.
[0012]
(Oxidation reaction)
The high-density nickel oxyhydroxide according to the present invention is obtained by dispersing high-density nickel hydroxide particles in an aqueous solution and oxidizing with an oxidizing agent.
Here, the oxidizing agent is not particularly limited. For example, ozone; permanganic acid (HMnOFour), MMnOFour(M represents an alkali metal) or the like; chromic acid (CrOThree), M2Cr2O7, MCrOThreeCl (M represents an alkali metal), CrO2Cl2Chromic acid-related compounds represented by2, Cl2, Br2, I2Of halogen; peroxoacid, M2S2O8, M2S2OFive(M represents an alkali metal), CHThreeCOThreeSalts thereof represented by H, etc .; oxygen acids, MClO, MBrO, MIO, MCIOThree, MBrOThree, MIOThreeMCIOFour, MIOFour(M represents an alkali metal), NaThreeH2IO6, KIOFourThe salt etc. which are represented by etc. can be mentioned. These may use only 1 type and may use 2 or more types together.
[0013]
Moreover, it can oxidize by adding the aqueous solution or oxidizing agent containing the said oxidizing agent to the aqueous dispersion medium containing nickel hydroxide. Moreover, it can also oxidize by adding the aqueous dispersion medium containing nickel hydroxide or nickel hydroxide to the aqueous solution containing the said oxidizing agent.
[0014]
The amount of nickel hydroxide dispersed is not particularly limited, but is usually in the range of 0.1 to 30 moles of nickel hydroxide per 1 liter of water. From the viewpoint of operability and economical efficiency in the production process, it is more preferably in the range of 1 to 20 mol.
[0015]
The concentration of the oxidizing agent in the solution is not particularly limited, but is usually preferably 0.05 to 4 mol / L in terms of the oxidizing agent concentration. From the viewpoint of operability and economical efficiency in the production process, it is more preferably 0.1 to 4 mol / L.
[0016]
Specifically, the charging ratio of nickel hydroxide and oxidizing agent may be (oxidizing agent) / (nickel)> 1 in terms of oxidizing equivalent ratio. From the viewpoint of operability and economical efficiency in the production process, the oxidation equivalent ratio is preferably (oxidant) / (nickel) = 1/1 to 4/1. If it is less than 1/1, the oxidation rate of the resulting nickel oxyhydroxide is low, and if it exceeds 4/1, it is disadvantageous in terms of economy. More preferably, (oxidizing agent) / (nickel) = 1/1 to 2/1.
[0017]
The theoretical value of the degree of oxidation is 0.5 mole of oxidizer per mole of nickel hydroxide. For example, when producing nickel oxyhydroxide having a degree of oxidation of 70%, the oxidizer is 0 mole per mole of nickel oxyhydroxide. .35 mol is the theoretical value. Further, the degree of oxidation can be finely adjusted. When further oxidation is desired, nickel oxyhydroxide once produced may be dispersed in water and reacted under the same conditions. If oxidation is excessive, sodium sulfite (Na2SOThree) And the like can be easily reduced to produce nickel oxyhydroxide having the desired degree of oxidation.
[0018]
The pH of the reaction system in the oxidation reaction depends on the oxidizing agent used. Usually, 5 to 13 is preferable, and 12 to 13 is particularly preferable when hypochlorite or hypobromite is used as the oxidizing agent. If it is less than 5, nickel and other cations are eluted, resulting in poor yields. If it exceeds 13, the amount of alkaline substance used is increased, resulting in poor economic efficiency.
[0019]
The pH of the NaOCl solution actually produced industrially is maintained at 12 or more in order to stabilize at an effective chlorine concentration of 10 to 14 wt%. In this case, it can be used as a reaction raw material without adjusting the pH as it is. Moreover, when the pH after completion | finish of reaction is as low as 7-9, in the filtration operation which isolate | separates the nickel oxyhydroxide after reaction, nickel oxyhydroxide melt | dissolves and precipitates on the filtrate side, and the yield will fall.
[0020]
The temperature of the reaction system in the oxidation reaction is usually 0 to 80 ° C., preferably 0 to 60 ° C., and 10 to 30 ° C. is particularly preferable when hypochlorite or the like is used. The oxidation time in the oxidation reaction varies depending on the type of oxidizing agent and the reaction temperature, but it is several minutes to several days. When hypochlorite is used, it is 1.5 to 5 hours, preferably 2-3 hours. It is advantageous from the viewpoint of economy.
[0021]
The dropping rate of the oxidizing agent is not particularly limited, but is usually 0.5 to 5 hours, preferably 1 to 3 hours. Even if the dropping speed is too fast or slow, it does not act effectively on the reaction, so an appropriate dropping time is determined.
[0022]
Also, B, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La, Ce, Pr, When at least one element selected from the group consisting of Nd, Hf, Ta, W and Pb is contained, in the production of such nickel oxyhydroxide particles, it is a raw material in the production method. It can manufacture similarly by using as a raw material what Ni of nickel hydroxide substituted by the said element.
[0023]
In the production method according to the present invention, when oxidation is performed using hypochlorite or hypobromite, it is preferable to set the pH high as described above. In this case, the reaction proceeds at room temperature (room temperature). Furthermore, the amount of the oxidizing agent can be easily adjusted, and nickel oxyhydroxide having an arbitrary degree of oxidation can be produced.
[0024]
The aqueous dispersion medium that can be used in the reaction using such an oxidizing agent is not particularly limited, and examples thereof include ion exchange water, soft water, and purified industrial water. Water having normal water quality may be used, but it is not preferable to contain a lot of impurities, for example, ions such as Fe, Ca and Mg.
[0025]
The reaction conditions are as follows. First, water as a dispersion solvent is charged into a reaction vessel, then nickel hydroxide is charged with stirring, and sodium hypochlorite (or sodium hypobromite solution) is added at room temperature (room temperature). React.
[0026]
In the case of producing 100% oxidation nickel oxyhydroxide using hypochlorite, the preparation of nickel hydroxide and oxidizing agent is NaOX (X = Cl, B) / {1 / 2Ni (OH)2} = 1.00 to 1.2 molar ratio, preferably 1.01 to 1.10 molar ratio. When the molar ratio is 1.00 or less, the substantial oxidation degree of nickel oxyhydroxide is low. Conversely, when the molar ratio is large, not only is it disadvantageous from the economical point of view, but the excess contributes only to decomposition. In addition, the degree to which by-product salts such as by-product NaCl and NaBr are mixed in the powder of nickel oxyhydroxide is increased, which is not preferable in terms of quality.
[0027]
The stirring rotation speed of the reaction is not particularly limited. However, since the oxidation reaction is a contact reaction with a solid, the stirring is too slow, and the reaction is not substantially completed in a state where the nickel hydroxide powder is not uniformly dispersed. On the other hand, if the stirring is too fast, decomposition of the dropped hypohalite proceeds and the reaction efficiency deteriorates. Therefore, the rotation speed of stirring is selected so that stirring works most effectively. For example, about 5 to 350 rpm is most effective for 5 L flasks.
[0028]
After completion of the reaction, the solution is filtered at the same pH, that is, pH 11 to 13, washed with water and dried. The drying of the product is not particularly limited. However, if the drying temperature is too high, there arises a problem that the obtained product is decomposed and the degree of oxidation is lowered. Therefore, drying of the product may be performed under reduced pressure without increasing the temperature, but it is usually preferable to dry at 20 to 120 ° C., preferably 40 to 80 ° C.
[0029]
Nickel oxyhydroxide obtained by reaction under these conditions can be obtained as a product having a desired degree of oxidation by drying a cake obtained by ordinary filtration and washing treatment.
[0030]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[0031]
(Reference example)
While continuously adding 2 mol / L nickel sulfate aqueous solution, 0.13 mol / L zinc sulfate aqueous solution, 0.035 mol / L cobalt sulfate aqueous solution and 5 mol / L ammonium sulfate aqueous solution to a reactor equipped with a stirrer, 10 mol / L Was added so that the pH in the reaction vessel was automatically maintained at 12.0. Further, sodium sulfate was added, the salt concentration was adjusted to 100 mS / cm, the temperature in the reaction vessel was maintained at 40 ° C., and the mixture was constantly stirred with a stirrer. The produced hydroxide was taken out by overflowing from the overflow tube, washed with water, dehydrated and dried. In this way, high density nickel hydroxide was obtained. The following examples were carried out using high-density nickel hydroxide produced according to this reference example.
[0032]
  Example 1
  6 L of water was added to a 15 L cylindrical reaction tank equipped with a stirrer, and the tap density was 2.09 g /cm 3 Then, 1.2 kg of spherical nickel hydroxide having an average particle diameter of 17.5 μm and 0.7% by weight of cobalt dissolved therein was added and stirred at a constant speed so that the liquid phase and the solid phase were uniformly mixed. Next, 4 L of a sodium hypochlorite solution having an effective chlorine content of 14% was added, and the mixture was kept at 50 ° C. and stirred for 2 hours. After the stirring was stopped, the granular material in the reaction vessel was washed with water, filtered, and dried at 80 ° C. for 15 hours to obtain a black dry powder of nickel oxyhydroxide.
  The tap density of the obtained nickel oxyhydroxide was 2.28 g /cm 3 The average particle size was 16.8 μm. Further, when X-ray diffraction was performed, it coincided with the peak of β-type nickel oxyhydroxide.
  The tap density was measured with a tap denser “KYT-3000” manufactured by Seishin Corporation using a 4 cm spacer and the tap density after tapping 200 times. The average particle size was determined by using a laser microsizer “PRO7000S” manufactured by Seishin Co., Ltd., and the cumulative particle size of 50% was defined as the average particle size.
[0033]
  (Comparative Example 1)
  6 L of water was added to a 15 L cylindrical reactor equipped with a stirrer, and the tap density was 1.38 g /cm 3 Then, 1.2 kg of spherical nickel hydroxide having an average particle size of 4.1 μm and 0.7% by weight of cobalt dissolved therein was added and stirred at a constant speed so that the liquid phase and the solid phase were uniformly mixed. Next, sodium hypochlorite solution with an effective chlorine content of 14%4LWas maintained at 50 ° C. and stirring was continued for 2 hours. After the stirring was stopped, the granular material in the reaction vessel was washed with water, filtered, and dried at 80 ° C. for 15 hours to obtain a black dry powder of nickel oxyhydroxide.
  The tap density of the obtained nickel oxyhydroxide was 1.75 g /cm 3 The average particle size was 4.2 μm. Further, when X-ray diffraction was performed, it coincided with the peak of β-type nickel oxyhydroxide. When such a powder is used as a raw material for the lithium nickel composite oxide, the packing density of the positive electrode plate is lowered, which causes a reduction in discharge capacity.
[0034]
(Example 2)
Slowly add 450 g (4.85 mol) of light green nickel hydroxide (average particle size 20 μm) to a stirred 3 L 4-necked flask charged with 400 g of ion-exchanged water, and disperse in water. It was. The temperature of the flask was adjusted so as to be maintained at 17 to 20 ° C. in a water bath. The dispersion was normally dispersed at a stirring rotational speed of 320 r.p.m. Next, 1380 g of NaOCl solution (13.74 wt% as NaOCl, pH 12.7) was dropped from the 1 L dropping funnel over 1.0 hour. (NaOCl / 1 / 2Ni (OH)2The reaction temperature rose to 19.5 ° C. at the start of the dropping and at the end of 17.2 ° C. After dropping of the NaOC1 solution, the mixture was held at 19 to 20 ° C. for 3 hours with the same stirring speed. The pH of the reaction solution after the reaction was 11.8, and the amount of effective residual chlorine in the reaction solution was 3.8 ppm.
After completion of the reaction, it is filtered with a Nutsche type filter, washed with 1 L of ion-exchanged water, and then dried for one day and night (18 hours) with a 60 ° C. hot air dryer to obtain 440.7 g of nickel oxyhydroxide black powder. Obtained. From the X-ray diffraction pattern of the obtained powder, it was confirmed to be nickel oxyhydroxide. Further, 0.2 g of nickel oxyhydroxide was collected and precisely weighed and completely dissolved in a sulfuric acid-potassium iodide (1: 1) solution to reduce the nickel element from trivalent to divalent. Then, the released iodine was back titrated with a sodium thiosulfate solution, and the degree of oxidation was calculated from the titration amount. The degree of oxidation was 100%.
[0035]
(Example 3)
Pale green nickel hydroxide (average particle size 14 μm) 45 Og (4.85 mol) was slowly added so as not to dust into a stirred 3 L 4-neck flask charged with 600 g of ion exchange purified water for NaCl electrolysis in advance. And added. Using a water bath, the temperature was maintained at 15 to 20 ° C. The stirring speed was 320 r.p.m. (paddle type stirring) to obtain a uniform aqueous dispersion medium solution.
Next, 1412 g of NaOCl solution (13.7 wt% as NaOCl, pH 12.5) was added from a 1 L dropping funnel over 1 hour and 20 minutes. Pale green Ni (OH)2The dispersion gradually turned black. The reaction temperature was 21.7 ° C. at the start of the dropping and 18 ° C. at the end of the dropping. Thereafter, the mixture was kept at the temperature of 20 ± 2 ° C. for 2 hours under the same stirring. The effective chlorine amount in the reaction solution after 2 hours was 5.1 ppm, and the pH of the reaction solution was 12.0. After completion of the reaction, the black slurry liquid in the flask was filtered, washed with 1 L of ion exchange water, and then dried with warm air at 55 ° C. for a whole day and night to obtain 442.1 g of nickel oxyhydroxide. From the X-ray diffraction pattern result of the obtained powder, it was confirmed that it was nickel oxyhydroxide. The degree of oxidation determined from titration was 100%.
[0036]
Example 4
450 g (4.85 mol) of nickel hydroxide (average particle size 25 μm) was added in advance to a stirred 3 L 4-necked flask charged with 400 g of industrial water to prepare an aqueous dispersion. The temperature was maintained at 22-25 ° C. using a water bath. At this time, the rotational speed of stirring was 276 r.p.m.
Next, 1412 g of NaOCl solution (13.74 wt% as NaOCl, pH 12.5) was added dropwise over 1 hour and 30 minutes from a 1 L dropping funnel, and the light green nickel hydroxide aqueous dispersion in the flask gradually turned black. The reaction temperature was not different from the dropping start temperature. Thereafter, stirring was maintained at 24 ± 2 ° C. for 3 hours. After the reaction, the effective chlorine content in the liquid was 0.8 ppm, and the pH was 12.2. The black solid was filtered, and the cake was washed with 800 ml of ion exchange water, followed by drying with hot air at 80 ° C. for 12 hours to obtain 440 g of nickel oxyhydroxide. It was confirmed from the X-ray diffraction pattern of the obtained powder that it was nickel oxyhydroxide. The degree of oxidation determined from titration was 100%.
[0037]
(Example 5)
Nickel hydroxide (average particle size 20 μm) 92.7 g (1 mol) was added to a 500 ml four-necked flask charged with 150 g of ion-exchanged water in advance and stirred to obtain an aqueous dispersion. After maintaining the internal temperature at 18 to 21 ° C., 471 g of NaOBr (13.0 wt% as NaOBr, pH 12.7) was added dropwise from a 300 ml dropping funnel over 1 hour.
The light green nickel hydroxide aqueous dispersion in the flask gradually turned black. After completion of dropping, the mixture was stirred and maintained at 20 to 22 ° C. for 3 hours. The residual bromine after the reaction was 3.8 ppm and the pH was 12.0. After completion of the reaction, the black slurry was filtered, washed with 250 ml of ion-exchanged water, and dried with warm air at 55 ° C. to obtain 90.8 g of nickel oxyhydroxide. When the X-ray diffraction pattern of the obtained powder was measured, it was confirmed to be nickel oxyhydroxide. Moreover, the oxidation degree calculated | required from titration was 100%.
[0038]
  (Comparative Example 2)
  A pH electrode was set on a 3 L 4-necked Lasco, and then 92.7 g (1 mol) of nickel hydroxide was dispersed in 1 L of ion-exchanged water, maintained at 18 to 20 ° C., and stirred (300 r.p.m.).
  Next, after adjusting the pH of the 1 mol / L NaOCl solution to 7.5, 2 L was added dropwise with a dropping funnel in 1 hour and 40 minutes while maintaining the reaction temperature at 18 to 21 ° C. Thereafter, the mixture was stirred and maintained at 18 to 20 ° C. for 2 hours. The slurry was filtered, and the cake was thoroughly washed with 1000 ml of ion exchange water. Thereafter, a light green colloidal precipitate was deposited from the filtrate. When this was filtered and analyzed, it was a mixture of raw material nickel hydroxide and nickel oxyhydroxide. The obtained black cake was dried to obtain 90.6 g of a black powder. When the obtained powder was analyzed in the same manner as in Example 2, it was confirmed to be nickel oxyhydroxide. A large amount of precipitate was deposited in the aqueous layer of the filtrate. The degree of oxidation was 97.9%.
[0039]
  (Comparative Example 3)
  Except not using pH electrodeComparative Example 2Then, 92.7 g (1 mol) of nickel hydroxide was dispersed in 1 L of industrial water, maintained at −2 to 0 ° C., and stirred (280 r.p.m.). Next, after adjusting the 1 mol / L NaOC1 solution to pH 9, hold the 1.2 L ice-cooled to 0 ° C., and adjust the dropping rate so that the internal temperature can be kept at 0 ± 2 ° C. However, it took 1 hour and 25 minutes to drop from the dropping funnel.
  Thereafter, the mixture was stirred and held at -1 to 1 ° C for 3 hours. The black slurry was filtered in the same manner as in Example 3 and the cake was washed with 800 ml of industrial water. When the cake was being washed, a large amount of oxygen gas was bubbled out of the cake. The obtained cake was dried with warm air at a temperature of 55 ° C. for 19 hours to obtain 90.0 g of a black powder. When the analysis was performed according to the same method as in Example 2 for measuring the degree of oxidation, a value of 96.6% was obtained.
[0040]
  (Example 6)
  Slowly add 200 g (2.157 mol) of light green nickel hydroxide (average particle size 20 μm) to a stirred 2 L 4-necked flask charged with 180 g of ion-exchanged water, and disperse in water. It was. The temperature of the flask was adjusted so as to be maintained at 17 to 20 ° C. in a water bath. The dispersion was normally dispersed at a stirring rotational speed of 320 r.p.m. Next, 420 g of NaOCl solution (13.5 wt% as NaOCl, pH 12.7) was added dropwise from a 1 L dropping funnel over 1.0 hour. (NaOCl / 1 / 2Ni (OH)2The reaction temperature rose to 17.0 ° C. at the start of dropping and to 18.0 ° C. at the end. After dropping of the NaOC1 solution, the mixture was held at 19 to 20 ° C. for 3 hours with the same stirring speed.
  After completion of the reaction, the mixture is filtered with a Nutsche type filter, washed with 500 mL of ion-exchanged water, and then dried for one day and night (18 hours) in a hot air dryer at 60 ° C. to obtain 195.6 g of black nickel oxyhydroxide powder. Obtained. The degree of oxidation was calculated in the same manner as in Example 2. The degree of oxidation was 70%.
[0041]
  (Example 7)Adjustment of oxidation degree (70% oxidation degree)
  180 g (1.94 mol) of nickel oxyhydroxide with a degree of oxidation of 74.9% and 280 g of ion-exchange purified water for electrolysis of NaC1 were charged into a 1 L four-headed flask and rotated to 320 rpm with a paddle type stirring blade. And kept at 18-21 ° C.
  Then 20% Na2SO323.2 g (0.037 mol) of the aqueous solution was dropped from the dropping funnel over 30 minutes. During that time, the reaction temperature was 18-22 ° C. and there was almost no exotherm. After completion of dropping, the solution was kept at the same temperature for 3 hours, concentrated with a Nutsche type filter, washed well with 0.8 L of water, and then dried in a hot air dryer at 60 ° C. for a whole day and night. The amount of black powder obtained was 179 g. 0.2 g of black powder is precisely weighed and dissolved completely in a sulfuric acid aqueous solution (1: 1) -potassium iodide solution. After reducing Ni from trivalent to divalent, free iodine is removed. Na2S2O3Back titration was performed with the solution, and the degree of oxidation was calculated from the titer. The degree of oxidation was 70.2%.
[0042]
  (Example 8)Adjustment of oxidation degree (20% oxidation degree)
  180 g (1.94 mol) of nickel oxyhydroxide having an oxidation degree of 18.2% and 280 g of ion-exchanged purified water for electrolysis of NaC1 were charged into a 1 L head flask and rotated to 300 rpm with a paddle type stirring blade. Held on.
  Next, 8.4 g (0.0154 mol) of an aqueous NaClO solution (13.63 wt% as NaClO) was added dropwise over 30 minutes from the dropping funnel. The reaction temperature did not change and there was no exotherm. After completion of dropping, the mixture was kept at the same temperature for 2 hours, filtered with a Nutsche type filter, washed well with 0.8 L of water, and then dried in a hot air dryer at 60 ° C. for a whole day and night. The obtained black powder was 179 g. Example6Titration was performed in the same manner as described above, and the degree of oxidation was calculated. The degree of oxidation was 20.3%.
[0043]
【The invention's effect】
The method according to the present invention, that is, high-density nickel hydroxide can be produced by dispersing high-density nickel hydroxide in an aqueous dispersion medium and adding an oxidizing agent thereto. Further, nickel oxyhydroxide having a desired degree of oxidation can be obtained almost quantitatively under mild reaction conditions.
[Brief description of the drawings]
FIG. 1 is an electron micrograph of high-density nickel oxyhydroxide particles produced according to the present invention.

Claims (2)

タッピング密度が1.8g/cm以上の水酸化ニッケルを水系分散媒に分散し、pH12〜13の範囲で次亜塩素酸塩又は次亜臭素酸塩を用いて酸化し、酸化した後にpH11〜13の範囲でろ過することを特徴とするオキシ水酸化ニッケルを製造する方法。Nickel hydroxide having a tapping density of 1.8 g / cm 3 or more is dispersed in an aqueous dispersion medium, oxidized using hypochlorite or hypobromite in the range of pH 12 to 13, and then oxidized to pH 11 to 11 A method for producing nickel oxyhydroxide, which comprises filtering within a range of 13. オキシ水酸化ニッケルがB、Ca、Mg、Al、Si、Sc、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Ga、Y、Zr、Nb、Mo、Ru、Sn、Sb、La、Ce、Pr、Nd、Hf、Ta、W及びPbのうち、いずれか1つ以上の元素を含有することを特徴とする請求項1に記載のオキシ水酸化ニッケルを製造する方法。  Nickel oxyhydroxide is B, Ca, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Ga, Y, Zr, Nb, Mo, Ru, Sn, Sb, La 2. The method for producing nickel oxyhydroxide according to claim 1, comprising at least one element selected from the group consisting of Ce, Pr, Nd, Hf, Ta, W, and Pb.
JP2001091938A 2000-10-04 2001-03-28 Method for producing nickel oxyhydroxide Expired - Lifetime JP4846115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001091938A JP4846115B2 (en) 2000-10-04 2001-03-28 Method for producing nickel oxyhydroxide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000304925 2000-10-04
JP2000304925 2000-10-04
JP2000-304925 2000-10-04
JP2001091938A JP4846115B2 (en) 2000-10-04 2001-03-28 Method for producing nickel oxyhydroxide

Publications (2)

Publication Number Publication Date
JP2002179427A JP2002179427A (en) 2002-06-26
JP4846115B2 true JP4846115B2 (en) 2011-12-28

Family

ID=26601529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001091938A Expired - Lifetime JP4846115B2 (en) 2000-10-04 2001-03-28 Method for producing nickel oxyhydroxide

Country Status (1)

Country Link
JP (1) JP4846115B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002069420A1 (en) 2001-02-26 2002-09-06 Fdk Corporation Alkaline primary battery
US7081319B2 (en) * 2002-03-04 2006-07-25 The Gillette Company Preparation of nickel oxyhydroxide
JP2003346795A (en) 2002-03-19 2003-12-05 Tanaka Chemical Corp Manufacturing method of nickel oxyhydroxide by electrolytic oxidation
US6991875B2 (en) 2002-08-28 2006-01-31 The Gillette Company Alkaline battery including nickel oxyhydroxide cathode and zinc anode
JP2006085953A (en) * 2004-09-15 2006-03-30 Sumitomo Metal Mining Co Ltd Manufacturing method of oxy nickel hydroxide
CN100355126C (en) * 2004-12-06 2007-12-12 厦门大学 Micron and nano grade multi phase hydroxy nickel oxide and preparation process thereof
CN100355127C (en) * 2004-12-06 2007-12-12 厦门大学 Superfine multi phase hydroxy nickel oxide and its application and preparation process thereof
CN114835175A (en) * 2022-06-20 2022-08-02 清远先导材料有限公司 Preparation method of low-density nickel hydroxide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1025117A (en) * 1996-07-09 1998-01-27 Japan Metals & Chem Co Ltd Production of nickel hydroxide
JPH10125319A (en) * 1996-09-02 1998-05-15 Sumitomo Metal Mining Co Ltd Nickel hydroxide for positive electrode material and manufacture thereof
JP4096367B2 (en) * 1996-09-04 2008-06-04 堺化学工業株式会社 Method for producing particulate composition
JP3239076B2 (en) * 1997-01-30 2001-12-17 三洋電機株式会社 Sealed alkaline storage battery
JPH10270017A (en) * 1997-03-26 1998-10-09 Japan Storage Battery Co Ltd Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JP2002008650A (en) * 2000-04-21 2002-01-11 Sony Corp Positive active material and nickel zinc cell
JP4599659B2 (en) * 2000-05-17 2010-12-15 ソニー株式会社 Nickel zinc battery
JP4040829B2 (en) * 2000-09-04 2008-01-30 松下電器産業株式会社 Alkaline battery and method for producing positive electrode active material thereof

Also Published As

Publication number Publication date
JP2002179427A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP7376862B2 (en) Wet synthesis method of NCMA high nickel quaternary precursor
JP4848384B2 (en) High density cobalt manganese coprecipitated nickel hydroxide and process for producing the same
JP4846309B2 (en) Method for producing nickel manganese cobalt composite oxide
US7585435B2 (en) High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
KR101566595B1 (en) Manganese oxide and method for producing same, and method for producing lithium manganese composite oxide using same
JP2008105921A (en) Method of producing iron-arsenic compound excellent in crystallinity
KR20130097779A (en) Mixed metal oxidized hydroxide and method for prodction
JP3842348B2 (en) Method for producing Ni-Mn composite hydroxide
JP4846115B2 (en) Method for producing nickel oxyhydroxide
JP4096367B2 (en) Method for producing particulate composition
CN113149091A (en) Battery-grade nickel salt and preparation method thereof
US6054110A (en) Process for producing lithium-cobalt composite oxide
JP2003292322A (en) Method for manufacturing active substance for positive electrode of lithium ion secondary battery
JPH06127947A (en) Preparation of nickel hydroxide
KR100347284B1 (en) Manufacturing method of metal hydroxide
JP2001322817A (en) Manganese solid solution nickel hydroxide particle and its manufacturing method
JP4271407B2 (en) Method for producing positive electrode active material for alkaline storage battery
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
CN110891902A (en) Purification and use of ferrocyanide solutions
JP6186814B2 (en) Metal-substituted manganese trioxide, method for producing the same, and method for producing lithium manganese composite oxide using the same
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
CN111233036B (en) Is composed of Sb 2 O 3 Direct preparation of Sb with aqueous hydrochloric acid 4 O 5 Cl 2 Method (2)
KR102005600B1 (en) Manganomanganic oxide and process for producing same
JP4082892B2 (en) Method for producing nickel oxyhydroxide
JPH02175604A (en) Production of copper phosphite compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4846115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term