JP4552324B2 - Method for producing cobalt oxide particles by neutralization method - Google Patents

Method for producing cobalt oxide particles by neutralization method Download PDF

Info

Publication number
JP4552324B2
JP4552324B2 JP2001004782A JP2001004782A JP4552324B2 JP 4552324 B2 JP4552324 B2 JP 4552324B2 JP 2001004782 A JP2001004782 A JP 2001004782A JP 2001004782 A JP2001004782 A JP 2001004782A JP 4552324 B2 JP4552324 B2 JP 4552324B2
Authority
JP
Japan
Prior art keywords
cobalt oxide
oxide particles
cobalt
reaction
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001004782A
Other languages
Japanese (ja)
Other versions
JP2002211930A (en
Inventor
宙 小林
正樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001004782A priority Critical patent/JP4552324B2/en
Publication of JP2002211930A publication Critical patent/JP2002211930A/en
Application granted granted Critical
Publication of JP4552324B2 publication Critical patent/JP4552324B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、硫酸コバルト溶液から、中和法により直接に、酸化コバルトを生成析出させる方法に関するものである。
【0002】
【従来の技術】
酸化コバルト(Co)は、窯業における着色剤のほか、セラミックコンデンサ等の電子部品、ニッケル−カドミウム電池やリチウム電池のような二次電池の正極材料として使用されている。
【0003】
かかる酸化コバルトの製造方法としては、例えば特開昭55−62814号公報等に記載されるように、コバルトの炭酸塩、水酸化物、硝酸化物等の塩をロータリーキルン等を用いて500〜800℃で焙焼する方法が一般的に行われている。また、特開昭54−38297号公報に記載のごとく、コバルトを含む溶液(硫酸性、塩酸性、硝酸性等)を直接熱分解することにより、酸化コバルトを得る方法も知られている。
【0004】
しかし、焙焼による方法は、液調整からコバルト塩の生成、更に焙焼と多くの工程を経るものであり、個々の工程を通る際にメタルロスが多く生じていた。また、焙焼工程には多くのエレルギー消費を伴ううえ、焙焼で得られる酸化コバルト粒子は1次粒子が凝集した不定形状のものが多く、粒度分布が揃ったものを得るためには分級操作を必要としていた。
【0005】
また、コバルトを含む溶液を直接熱分解する方法は、コバルト塩の溶液を形成する際に陰イオンが十分除去できなかったり、廃ガス中に除去困難な酸性ガスが生成したりするため、一般的な製造方法とはなっていない。
【0006】
【発明が解決しようとする課題】
酸化コバルトの用途のうち、近年特に需要が高まっている二次電池の正極材料などの用途では、粒子形状及び粒径が均一であって、反応性に富むと共に嵩密度の高い酸化コバルト粒子が要求されている。特に、粒子が球状で、1μm以下の揃った粒径を有する酸化コバルトが要望されている。
【0007】
しかしながら、従来一般的な焙焼方法では、工程が複雑でエネルギー消費が多いうえ、粒子形状及び粒径が均一な酸化コバルトを得ることは困難であった。また、水熱合成反応により酸化コバルトを形成する方法もあるが、得られる酸化コバルト粒子は平均粒径が約25nm程度と非常に細かく、濾過が極めて難しいという問題があった。
【0008】
本発明は、このような従来の問題点を解決し、焙焼工程を経ることなく、簡単な工程の中和法により、粒子形状及び粒度分布の均一な酸化コバルト粒子を溶液から直接生成させる方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するため、本発明が提供する酸化コバルト粒子の製造方法は、硫酸コバルト水溶液を苛性ソーダで中和する際に、反応溶液中のアンモニア濃度が0.5〜1.5g/lとなるようにアンモニア水を添加することにより、球状で粒子径の揃った酸化コバルト粒子を生成析出させることを特徴とする。また、上記本発明方法においては、生成析出する酸化コバルト粒子は平均粒径が0.5〜1.0μm、嵩密度が1.9以上であることを特徴とする。
【0010】
上記本発明の酸化コバルト粒子の製造方法においては、反応溶液の温度を50〜55℃、及びpHを11以上とすることが好ましい。また、反応溶液の酸化還元電位を−20〜+50mV(対Ag/AgCl)に維持することが好ましい。
【0011】
【発明の実施の形態】
本発明による酸化コバルト粒子の製造方法では、硫酸コバルト水溶液と苛性ソーダの中和反応の際に、アンモニアを存在させることにより、粒子形状及び粒径の揃った酸化コバルト粒子を生成析出させることができる。反応溶液中にアンモニアが存在することで、コバルトの水溶液への溶解度が増し、生成する酸化コバルトの造粒が容易となるため、粒子形状及び粒径の揃った酸化コバルト粒子がえられるものと考えられる。
【0012】
反応溶液中のアンモニア濃度は0.5〜1.5g/lの範囲が好ましい。0.5g/l未満の濃度では、酸化コバルト粒子の造粒が進まず、極めて微細で濾過困難な粒子しか得られない。また、アンモニア濃度が1.5g/lを超えると、コバルトの溶解度が大きくなり過ぎ、酸化が不完全になるため、生成粒子に水酸化コバルトが含まれる形態となり、嵩密度が低下すると共に、粒径も均一なものとならない。尚、水溶液へのアンモニアの供給は、通常はアンモニア水の添加により行なう。
【0013】
反応始液となる硫酸コバルト水溶液中のコバルト濃度は、60〜100g/l程度が望ましい。これよりコバルト濃度が薄い場合には、造粒が進行せず、酸化物の実収率が低下するからである。また、反応温度を50〜55℃程度、水溶液のpHを11以上とすることが好ましい。反応温度及びpHがこれより低い場合にも、やはり造粒が進行し難くなる。
【0014】
反応の際には、反応容器内の雰囲気制御及び各種試薬の添加によって、反応溶液の酸化還元電位(ORP)を−20mV〜+50mV(対Ag/AgCl)の範囲に保つことが好ましい。この範囲よりもORPが高くなると3価のコバルト水酸化物の生成が優勢に、逆に低くなると2価のコバルト水酸化物の生成が優勢となり、共に酸化コバルトの生成を妨げることになるからである。
【0015】
尚、反応の際は水溶液を撹拌することが好ましく、滞留時間はできるだけ長い方が好ましい。また、連続的なシステムにおいては、混合する硫酸コバルト水溶液と苛性ソーダ水溶液を同じ比率で連続的に添加する必要がある。
【0016】
本発明方法によって得られる酸化コバルト粒子は、ほぼ球状をなすと共に、大部分の粒径が0.3〜2μmの範囲内で、平均粒径が0.5〜1.0μmと非常に均一である。従って、簡単に濾過でき濾過に特別な設備を必要としないうえ、二次電池の正極材料であるLiCoOの合成など固相反応を行う場合、反応性が高く、均一な反応が得られるという利点がある。
【0017】
更に、得られる酸化コバルト粒子は、嵩密度が1.9以上と高いため、二次電池用途に使用される場合、高容量の電池の作成を可能とする。尚、嵩密度の高い粒子の製造は攪拌力を上げることにより達成でき、反応始液のショートパスがない程度で出来るだけ大きい程よい。
【0018】
上記本発明方法によれば、析出した酸化コバルト粒子を濾過した後、乾燥工程のみの非常に容易な一連の湿式工程によって、焙焼工程を経ることなく、最終製品としての酸化コバルト粒子が得られる。従って、簡素な設備を用いて簡単に実施できるうえ、工程間で生じるメタルロスを低く抑えることが可能である。
【0019】
【実施例】
実施例1
2リットル(実効容量1.6リットル)で、邪魔板及びショートパス防止板付きオーバーフロー型セパラブルフラスコに、反応始液として硫酸コバルト水溶液(Co量80g/l)と、中和剤として25重量%苛性ソーダと、及び25重量%アンモニア水とを、流量比で8:3:1の割合で供給し、酸化コバルト粒子の合成を行なった。その際、反応溶液の反応温度は50℃、pHは12とし、直径の60mmのフラットタービン型ぺラを用いて1000rpmで撹拌しながら、12時間反応させた。
【0020】
得られた酸化コバルト粒子を濾過して分離回収した。濾液のアンモニア濃度は1.2g/l及び濾液中のコバルト濃度は1mg/lであった。アンモニアの添加は少量であるため、濾液中へのコバルトのロスを非常に小さく抑えられることが分る。その後、回収したコバルト粒子を純水にてスラリー濃度100g/lで3回レパルプ水洗し、200℃にて一昼夜乾燥を行った。
【0021】
得られた酸化コバルト粒子の粒度分布を図1に示した。図1から分るように、粒度分布は非常にシャープな形状を示し、均一である。また、得られた酸化コバルト粒子は、Co純度が72.3%であって、平均粒径が0.87μm、タップ密度が1.91、比表面積が54.5m/gであった。
【0022】
このように、硫酸コバルト水溶液にアンモニアを添加して中和することによって、水溶液中で酸化コバルト粒子を直接合成することが可能であった。また、得られた酸化コバルト粒子は、平均粒径0.87μmとアンモニアを添加しない水熱反応による場合と比較して造粒されており、タップ密度も1.91と高くすることが可能であった。
【0023】
実施例2
反応溶液中のアンモニア濃度を下記表1に示すように変化させた以外は、上記実施例1と同一の条件にて、酸化コバルト粒子を合成した。即ち、反応温度は50℃、反応pHは12、滞留時間は12時間、攪拌数は1000rpmとした。各アンモニア濃度ごとに、得られた酸化コバルト粒子の物性を下記表1に併せて示した。
【0024】
【表1】

Figure 0004552324
【0025】
この結果から分るように、反応溶液中のアンモニア濃度の上昇に伴って、次第に水酸化コバルト等が生成し、形状も球状からリン片状に変化すると共に、タップ密度の低下が認められる。
【0026】
【発明の効果】
本発明によれば、硫酸コバルト溶液の中和反応において適量のアンモニアを添加することにより、粒子形状及び粒度分布が均一な酸化コバルト粒子を、焙焼工程を経ることなく、溶液から直接生成析出させることができる。従って、一貫した湿式反応による簡素化された方法により、特に二次電池の正極活性物質原料として好適な粒度と嵩密度を有する酸化コバルト粒子を、安価に製造することができる。
【図面の簡単な説明】
【図1】本発明方法により得られる酸化コバルト粒子の粒度分布を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing and depositing cobalt oxide directly from a cobalt sulfate solution by a neutralization method.
[0002]
[Prior art]
Cobalt oxide (Co 3 O 4 ) is used as a positive electrode material for secondary parts such as electronic components such as ceramic capacitors, nickel-cadmium batteries and lithium batteries, in addition to colorants in the ceramic industry.
[0003]
As a method for producing such cobalt oxide, as described in, for example, JP-A No. 55-62814, a salt of cobalt carbonate, hydroxide, nitrate or the like is converted to 500 to 800 ° C. using a rotary kiln or the like. The method of roasting is generally performed. Further, as described in JP-A-54-38297, a method for obtaining cobalt oxide by directly pyrolyzing a solution containing cobalt (sulfuric acid, hydrochloric acid, nitric acid, etc.) is also known.
[0004]
However, the method by roasting involves many steps including the preparation of cobalt salt from the liquid adjustment and further roasting, and a lot of metal loss has occurred during the individual steps. In addition, a lot of energy consumption is involved in the roasting process, and cobalt oxide particles obtained by roasting are often indefinite shapes in which primary particles are aggregated. Needed.
[0005]
In addition, a method of directly pyrolyzing a solution containing cobalt is generally used because an anion cannot be sufficiently removed when forming a cobalt salt solution, or an acidic gas that is difficult to remove is generated in waste gas. It is not a simple manufacturing method.
[0006]
[Problems to be solved by the invention]
Among the applications of cobalt oxide, for applications such as positive electrode materials for secondary batteries, the demand for which has been increasing in recent years, cobalt oxide particles having a uniform particle shape and particle size, high reactivity and high bulk density are required. Has been. In particular, there is a demand for cobalt oxide having spherical particles and a uniform particle size of 1 μm or less.
[0007]
However, in the conventional general roasting method, it is difficult to obtain cobalt oxide having a complicated process, a large energy consumption, and a uniform particle shape and particle size. There is also a method of forming cobalt oxide by a hydrothermal synthesis reaction. However, the obtained cobalt oxide particles have a problem that the average particle size is very fine, about 25 nm, and it is very difficult to filter.
[0008]
The present invention solves such conventional problems and directly produces cobalt oxide particles having a uniform particle shape and particle size distribution from a solution by a simple neutralization method without going through a roasting step. The purpose is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing cobalt oxide particles provided by the present invention is such that when the aqueous cobalt sulfate solution is neutralized with caustic soda, the ammonia concentration in the reaction solution becomes 0.5 to 1.5 g / l. Thus, by adding ammonia water, cobalt oxide particles having a spherical shape and a uniform particle size are produced and precipitated. In the method of the present invention, the cobalt oxide particles produced and precipitated have an average particle diameter of 0.5 to 1.0 μm and a bulk density of 1.9 or more.
[0010]
In the manufacturing method of the cobalt oxide particle of the said invention, it is preferable that the temperature of reaction solution shall be 50-55 degreeC, and pH shall be 11 or more. Moreover , it is preferable to maintain the oxidation-reduction potential of the reaction solution at -20 to +50 mV (vs. Ag / AgCl).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing cobalt oxide particles according to the present invention, cobalt oxide particles having a uniform particle shape and particle size can be produced and precipitated by the presence of ammonia in the neutralization reaction between the cobalt sulfate aqueous solution and caustic soda. The presence of ammonia in the reaction solution increases the solubility of cobalt in an aqueous solution and facilitates the granulation of the resulting cobalt oxide, so it is considered that cobalt oxide particles having a uniform particle shape and particle size can be obtained. It is done.
[0012]
The ammonia concentration in the reaction solution is preferably in the range of 0.5 to 1.5 g / l. When the concentration is less than 0.5 g / l, the granulation of cobalt oxide particles does not proceed, and only extremely fine and difficult-to-filter particles are obtained. On the other hand, if the ammonia concentration exceeds 1.5 g / l, the solubility of cobalt becomes too high and the oxidation becomes incomplete, resulting in a form in which the produced particles contain cobalt hydroxide, and the bulk density is reduced. The diameter is not uniform. The supply of ammonia to the aqueous solution is usually performed by adding aqueous ammonia.
[0013]
The cobalt concentration in the aqueous solution of cobalt sulfate used as the reaction starting solution is preferably about 60 to 100 g / l. This is because when the cobalt concentration is lower than this, granulation does not proceed and the actual yield of the oxide decreases. Moreover, it is preferable that reaction temperature shall be about 50-55 degreeC and pH of aqueous solution shall be 11 or more. Even when the reaction temperature and pH are lower than this, the granulation also hardly proceeds.
[0014]
During the reaction, it is preferable to keep the oxidation-reduction potential (ORP) of the reaction solution in the range of −20 mV to +50 mV (vs. Ag / AgCl) by controlling the atmosphere in the reaction vessel and adding various reagents. If the ORP is higher than this range, the production of trivalent cobalt hydroxide is dominant, and if it is lower, the production of divalent cobalt hydroxide is dominant, both of which hinder the production of cobalt oxide. is there.
[0015]
In the reaction, the aqueous solution is preferably stirred, and the residence time is preferably as long as possible. Moreover, in a continuous system, it is necessary to add the cobalt sulfate aqueous solution and the caustic soda aqueous solution to be mixed continuously at the same ratio.
[0016]
The cobalt oxide particles obtained by the method of the present invention are almost spherical, and most of the particle diameters are within a range of 0.3 to 2 μm, and the average particle diameter is very uniform at 0.5 to 1.0 μm. . Therefore, it is easy to filter and does not require special equipment for filtration. In addition, when performing a solid phase reaction such as synthesis of LiCoO 2 which is a positive electrode material of a secondary battery, there is an advantage that high reactivity and uniform reaction can be obtained. There is.
[0017]
Furthermore, since the resulting cobalt oxide particles have a high bulk density of 1.9 or more, when used for secondary battery applications, it is possible to produce a high-capacity battery. Incidentally, the production of particles having a high bulk density can be achieved by increasing the stirring force, and it is better that the particles are as large as possible without causing a short path of the reaction starting solution.
[0018]
According to the method of the present invention, after the precipitated cobalt oxide particles are filtered, cobalt oxide particles as a final product can be obtained without going through a roasting step by a series of very easy wet processes including only a drying process. . Therefore, it is possible to easily carry out using a simple facility, and it is possible to suppress a metal loss generated between processes.
[0019]
【Example】
Example 1
2 liters (effective volume 1.6 liters), overflow type separable flask with baffle plate and short path prevention plate, cobalt sulfate aqueous solution (Co amount 80 g / l) as reaction starting solution, and 25 wt% as neutralizing agent Caustic soda and 25 wt% aqueous ammonia were supplied at a flow rate ratio of 8: 3: 1 to synthesize cobalt oxide particles. At that time, the reaction temperature of the reaction solution was 50 ° C., the pH was 12, and the reaction was carried out for 12 hours while stirring at 1000 rpm using a flat turbine type blade having a diameter of 60 mm.
[0020]
The obtained cobalt oxide particles were separated and recovered by filtration. The ammonia concentration in the filtrate was 1.2 g / l and the cobalt concentration in the filtrate was 1 mg / l. It can be seen that since the addition of ammonia is small, the loss of cobalt into the filtrate can be kept very small. Thereafter, the recovered cobalt particles were washed with pure water three times with pure water at a slurry concentration of 100 g / l, and dried at 200 ° C. for a whole day and night.
[0021]
The particle size distribution of the obtained cobalt oxide particles is shown in FIG. As can be seen from FIG. 1, the particle size distribution is very sharp and uniform. The obtained cobalt oxide particles had a Co purity of 72.3%, an average particle size of 0.87 μm, a tap density of 1.91, and a specific surface area of 54.5 m 2 / g.
[0022]
Thus, it was possible to directly synthesize cobalt oxide particles in an aqueous solution by adding ammonia to the aqueous solution of cobalt sulfate and neutralizing it. Further, the obtained cobalt oxide particles were granulated in comparison with the case where the average particle size was 0.87 μm and the hydrothermal reaction without adding ammonia, and the tap density could be increased to 1.91. It was.
[0023]
Example 2
Cobalt oxide particles were synthesized under the same conditions as in Example 1 except that the ammonia concentration in the reaction solution was changed as shown in Table 1 below. That is, the reaction temperature was 50 ° C., the reaction pH was 12, the residence time was 12 hours, and the number of stirrings was 1000 rpm. The physical properties of the obtained cobalt oxide particles are shown in Table 1 below for each ammonia concentration.
[0024]
[Table 1]
Figure 0004552324
[0025]
As can be seen from this result, as the ammonia concentration in the reaction solution increases, cobalt hydroxide and the like are gradually formed, the shape changes from spherical to flakes, and a decrease in tap density is observed.
[0026]
【The invention's effect】
According to the present invention, by adding an appropriate amount of ammonia in the neutralization reaction of a cobalt sulfate solution, cobalt oxide particles having a uniform particle shape and particle size distribution are directly generated and precipitated from the solution without going through a roasting step. be able to. Therefore, cobalt oxide particles having a particle size and bulk density suitable particularly as a positive electrode active material raw material for secondary batteries can be produced at low cost by a simplified method using a consistent wet reaction.
[Brief description of the drawings]
FIG. 1 is a graph showing the particle size distribution of cobalt oxide particles obtained by the method of the present invention.

Claims (4)

硫酸コバルト水溶液を苛性ソーダで中和する際に、反応溶液中のアンモニア濃度が0.5〜1.5g/lとなるようにアンモニア水を添加することにより、球状であって、粒径が0.3〜2μmの範囲内で、平均粒径が0.5〜1.0μmである酸化コバルト粒子を生成析出させることを特徴とする酸化コバルト粒子の製造方法。When neutralizing the aqueous cobalt sulfate solution with caustic soda, by adding ammonia water so that the ammonia concentration in the reaction solution is 0.5 to 1.5 g / l, the aqueous solution is spherical and has a particle size of 0.5 . A method for producing cobalt oxide particles, comprising producing and depositing cobalt oxide particles having an average particle diameter of 0.5 to 1.0 µm within a range of 3 to 2 µm . 反応溶液の温度を50〜55℃、及びpHを11以上とすることを特徴とする、請求項に記載の酸化コバルト粒子の製造方法。Temperature 50-55 ° C. of the reaction solution, and characterized by a 11 or more pH, manufacturing method of the cobalt oxide particles according to claim 1. 反応溶液の酸化還元電位を−20〜+50mV(対Ag/AgCl)に維持する、請求項1又は2に記載の酸化コバルト粒子の製造方法。The method for producing cobalt oxide particles according to claim 1 or 2 , wherein the oxidation-reduction potential of the reaction solution is maintained at -20 to +50 mV (vs. Ag / AgCl). 析出する酸化コバルト粒子は嵩密度が1.9以上であることを特徴とする、請求項1〜3のいずれかに記載の酸化コバルト粒子の製造方法。The method for producing cobalt oxide particles according to any one of claims 1 to 3, wherein the precipitated cobalt oxide particles have a bulk density of 1.9 or more.
JP2001004782A 2001-01-12 2001-01-12 Method for producing cobalt oxide particles by neutralization method Expired - Fee Related JP4552324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001004782A JP4552324B2 (en) 2001-01-12 2001-01-12 Method for producing cobalt oxide particles by neutralization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001004782A JP4552324B2 (en) 2001-01-12 2001-01-12 Method for producing cobalt oxide particles by neutralization method

Publications (2)

Publication Number Publication Date
JP2002211930A JP2002211930A (en) 2002-07-31
JP4552324B2 true JP4552324B2 (en) 2010-09-29

Family

ID=18872922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001004782A Expired - Fee Related JP4552324B2 (en) 2001-01-12 2001-01-12 Method for producing cobalt oxide particles by neutralization method

Country Status (1)

Country Link
JP (1) JP4552324B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4846280B2 (en) * 2005-06-23 2011-12-28 株式会社田中化学研究所 Cobalt oxyhydroxide particles and method for producing the same
KR100918845B1 (en) * 2007-10-31 2009-09-28 인하대학교 산학협력단 Method for preparation of CO3O4 thin films having mesoporous structure by electrochemical deposition and CO3O4 thin films prepared by the method
CN105399148B (en) * 2015-12-07 2017-01-25 衢州华友钴新材料有限公司 Preparation method of large-particle-size and high-density spherical cobalt oxide
CN109987643A (en) * 2017-12-29 2019-07-09 荆门市格林美新材料有限公司 A kind of preparation method of stratiform hydroxy cobalt oxide presoma
CN114380338B (en) * 2022-01-25 2023-11-03 重庆邮电大学 Preparation method of magnetic cobalt oxide mesoporous nanospheres, product and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227309A (en) * 1985-07-26 1987-02-05 Tokuyama Soda Co Ltd Production of fine metallic oxide particle
JPH10182164A (en) * 1996-12-25 1998-07-07 Nikko Rika Kk Production of metal hydroxide particle
JPH10265225A (en) * 1997-03-24 1998-10-06 Matsushita Electric Ind Co Ltd Manufacturing device of metallic hydroxide for battery component
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JP2001354428A (en) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk Cobalt oxide powder, method for manufacturing the same and lithium cobaltate
JP2002068750A (en) * 2000-08-24 2002-03-08 Ishihara Sangyo Kaisha Ltd Method of producing tricobalt tetraoxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227309A (en) * 1985-07-26 1987-02-05 Tokuyama Soda Co Ltd Production of fine metallic oxide particle
JPH10182164A (en) * 1996-12-25 1998-07-07 Nikko Rika Kk Production of metal hydroxide particle
JPH10265225A (en) * 1997-03-24 1998-10-06 Matsushita Electric Ind Co Ltd Manufacturing device of metallic hydroxide for battery component
JPH10324523A (en) * 1997-03-25 1998-12-08 Toda Kogyo Corp Production of cobalt oxide fine particulate powder
JP2001354428A (en) * 2000-06-09 2001-12-25 Nikko Metal Plating Kk Cobalt oxide powder, method for manufacturing the same and lithium cobaltate
JP2002068750A (en) * 2000-08-24 2002-03-08 Ishihara Sangyo Kaisha Ltd Method of producing tricobalt tetraoxide

Also Published As

Publication number Publication date
JP2002211930A (en) 2002-07-31

Similar Documents

Publication Publication Date Title
JP7376862B2 (en) Wet synthesis method of NCMA high nickel quaternary precursor
CN106797016B (en) Carbonate precursor of lithium nickel manganese cobalt oxide cathode material and preparation method thereof
JP5927460B2 (en) Alloy oxide hydroxide and method for producing the same
CN107188149B (en) A kind of technique of LITHIUM BATTERY high-purity nm ferric phosphate
EP1210295B1 (en) Process for making high density and large particle size cobalt hydroxide or cobalt mixed hydroxides and a product made by this process
JP6493082B2 (en) Process for producing transition metal hydroxide
JP2011057518A (en) High-density nickel-cobalt-manganese coprecipitation hydroxide and method for producing the same
JP4018138B2 (en) Long spherically agglomerated basic cobalt carbonate (II) and long spherically agglomerated cobalt hydroxide (II), their production and use
JP6985406B2 (en) Methods for Preparing Precursors and Precursors for Cathodic Materials with Improved Rechargeable Battery Performance
JP2012243572A (en) Positive electrode active material for lithium ion battery, and method for manufacturing the same
KR20110082618A (en) Process of preparing alkali metal titanates
WO2016117138A1 (en) Method for producing nickel powder
JP2011116608A (en) Method for producing nickel cobalt aluminum multiple oxide
JP2010024083A (en) Method for producing aluminum hydroxide coated nickel cobalt composite hydroxide
JP4552324B2 (en) Method for producing cobalt oxide particles by neutralization method
JP3816305B2 (en) Method for producing cobalt oxide powder
JPH06127947A (en) Preparation of nickel hydroxide
WO2017073392A1 (en) Method for producing seed crystal of cobalt powder
JPH02145422A (en) Production of fine copper oxide powder
CN113526531A (en) Method for recovering high-purity submicron lithium carbonate from lithium battery ternary material washing liquid
KR20110111055A (en) Process for preparing mn3o4
WO2017150105A1 (en) Nickel powder production method
JP7007650B2 (en) Nickel powder manufacturing method
JP2017155265A5 (en)
JP2024501508A (en) How to remove water from particulate matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees