JPH0346758A - Nickel-hydrogen battery - Google Patents

Nickel-hydrogen battery

Info

Publication number
JPH0346758A
JPH0346758A JP1183249A JP18324989A JPH0346758A JP H0346758 A JPH0346758 A JP H0346758A JP 1183249 A JP1183249 A JP 1183249A JP 18324989 A JP18324989 A JP 18324989A JP H0346758 A JPH0346758 A JP H0346758A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
powder
active material
hydrogen battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1183249A
Other languages
Japanese (ja)
Other versions
JP2679274B2 (en
Inventor
Keiichi Hasegawa
圭一 長谷川
Masahiko Oshitani
政彦 押谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16132380&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0346758(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1183249A priority Critical patent/JP2679274B2/en
Publication of JPH0346758A publication Critical patent/JPH0346758A/en
Application granted granted Critical
Publication of JP2679274B2 publication Critical patent/JP2679274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To extend the service life and to improve the utilization rate of the active substance by using a nickel hydroxide powder in which the development of internal transition pores whose pore radius is more than a specific value is prevented, and the whole pore capacity is controlled less than a specific value, as a positive electrode active substance. CONSTITUTION:A nickel hydroxide active substance in which the development of internal transition pores whose pore radius is more than 30Angstrom is prevented, and the whole pore capacity is controlled less than 0.05ml/g, in a pore distribution calculated by the removal and absorption isothermal line of nitrogen, is used for a positive electrode. In case of a high density nickel hydroxide powder in which the internal pore capacity is minimized, a high order oxide gamma-NiOOH is produced plentifully, but by disposing different sort of metal ions such as zink ions in the crystals of nickel hydroxide, deformations are generated in the crystals, and thereby the freedom of proton movement is increased to improve the utilization rate, and the production of the gamma-NiOOH is reduced. Consequently, the service life is extended and the utilization rate of the active substance is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ペーヌト式ニッケμ電極を用いたニッケル−
水素電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a nickel electrode using a Peint type nickel μ electrode.
It concerns hydrogen batteries.

従来技術とその問題点 ニッケμm水素電池の正極は、従来、焼結式電極と呼ば
れる、ニッケ!粉末な芽孔鋼板等に焼結した微孔基板に
水酸化ニッケ〃を充填させたものが用いられてきた。こ
の方式の電極は、活物質充填工程を何度も繰り返さなけ
ればならず、非常に煩雑であり、コストも高い。しかも
、用いる基板の多孔度が制限されるため、活物質の充填
密度が低く、エネルギー密度400 繍/cc程度の電
極しか製造できない。このため、ニッケル−水素電池の
特徴である高エネルギー密度をより高めるには不利な面
があった。
Conventional technology and its problems The positive electrode of the Nikke μm hydrogen battery is conventionally known as a sintered electrode. A microporous substrate made by sintering a powdered perforated steel plate or the like and filled with nickel hydroxide has been used. In this type of electrode, the process of filling the active material must be repeated many times, making it very complicated and expensive. Moreover, since the porosity of the substrate used is limited, the packing density of the active material is low, and only electrodes with an energy density of about 400 mm/cc can be manufactured. For this reason, there was a disadvantage in further increasing the high energy density that is a characteristic of nickel-metal hydride batteries.

そこで、ニッケル−水素電池の正極としては、非焼結式
電極が有望視されている◎例えは約95%の高多孔度の
金mt&維基板を用いたペースト式ニッケ/L/l@が
ニフケ!−力ドミクム電池用正極として、すて#c突用
化されつつある。この電極は、焼結式′vL極に比べ安
価であり、エネルギー密度も500mムh/CCと高い
Therefore, non-sintered electrodes are considered to be promising as positive electrodes for nickel-metal hydride batteries. For example, paste-type nickel/L/l@ is a paste-type nickel/L/l using a gold mt & fiber substrate with a high porosity of approximately 95%. ! - It is becoming commonly used as a positive electrode for power domic batteries. This electrode is cheaper than the sintered 'vL electrode and has a high energy density of 500mmh/CC.

しかし、電池に対する市場ニーズとしては、近年のボー
タブ〜工Vクトロニクス機器の軽量化に伴う高エネルギ
ー密度化の要求、さらに、環境汚染防止という視点から
、カドミウムの様な有害物質を含まないクリーンな電池
の要求、の二面が求められている。カドミウム負極を用
いないニッケル−水素電池はこの様な市場ニーズに最も
適した電池と期待されている。しかし、これまでのニッ
ケル−水素電池においては、従来の水酸化ニッケル電極
を用いているため、電極寿命を延ばす目的で必ず少量の
カドミウムを含有させなければならず、カドミウムを全
く含まないクリーンな電池とはなり得ていなかったのが
現状である。
However, the market needs for batteries include the recent demand for higher energy density due to the weight reduction of V-Tronics equipment, and the need for clean batteries that do not contain harmful substances such as cadmium from the perspective of preventing environmental pollution. Two aspects are required: Nickel-hydrogen batteries that do not use cadmium negative electrodes are expected to be the most suitable batteries to meet these market needs. However, since conventional nickel-metal hydride batteries use conventional nickel hydroxide electrodes, they must always contain a small amount of cadmium in order to extend the life of the electrode. The current situation is that this was not possible.

上記二つの要求を満たすために、まず、電池のエネルギ
ー密度を高める手段として、正極のエネルギー密度をさ
らに高めることが挙げられる。このためには、基板の多
孔度に限界があることから、水酸化二フケ〜活物質粉末
そのものを高密度化する必要がある。高密度水酸化ニッ
ケμ粉末は、鉄板のバーカフイジング処理の原料の一部
として用いられている。その製造法は硝酸二フケ〃ある
いは硫酸ニッケルを弱塩基性のアンモニア水溶液中に溶
解させ、ニフケ〃アンミン錯イオンとして安定化させ、
水酸化ナトリウム水溶液を加えながら、粒子内部に空孔
が発達しないように徐々に水酸化ニッケルを析出させる
ものである。
In order to satisfy the above two demands, first, as a means of increasing the energy density of the battery, it is possible to further increase the energy density of the positive electrode. For this purpose, since there is a limit to the porosity of the substrate, it is necessary to increase the density of the active material powder itself. High-density nickel hydroxide μ powder is used as part of the raw material for barkaising treatment of iron plates. The manufacturing method involves dissolving didium nitrate or nickel sulfate in a weakly basic ammonia aqueous solution and stabilizing it as a didium ammine complex ion.
While adding an aqueous sodium hydroxide solution, nickel hydroxide is gradually precipitated to prevent the development of pores inside the particles.

この方式では、従来の中和法の如き、無秩序な析出を行
なわないために、析出する粒子は粒界が少なく、結晶性
の高い(細孔容積が少ない)高密度な水酸化ニッケルと
なる。
In this method, since disordered precipitation is not performed as in the conventional neutralization method, the precipitated particles have few grain boundaries and are highly crystalline (small pore volume) high-density nickel hydroxide.

しかしこの特異な物性故に、この粉末をそのまま電池用
活物質材料として用いるには、いくつかの問題点を有し
ている。例えは、水酸化ニッケ/L’電極の充放電反応
は、水酸化工フケ〃の結晶内をプロトンが自由に移動す
ることによって起こる。ところが、水酸化工フケρの高
密度化にともなって結晶が緻密になるため、結晶内のプ
ロトン移動の自由さが限定される。しかも比表面積の減
少により電流密度が増大し、高次酸化物1− Ni0O
■が多量に生成するようになり、2段放電及び電極のB
;洞といつた放電並びに寿命特性の悪化あるいは利用率
低下といった現象をひきおこす。電極の致命的因子であ
るニッケ/I/電極のγ−NiOOH生成に伴う膨潤機
構は、高密度β−NiOOHから低密度1− Ni0O
Hへの密度変化に起因するものである。このγ−NiO
OHの生成防止には、カドミウムを水酸化ニッケルへ固
溶体添加することが有効であることが、すでに見い出さ
れているが、クリーンなエネルギーとしてのエフケル−
水素電池においては、このカドミウムに替わる無公害な
添加剤が望まれている@ 発明の目的 本発明は、水酸化ニッケμ粉末をより高密度化し1更に
高密度化にともなうγ−NiOOHの生成を公害性のな
い添加剤によって防止し、長寿命化をはかると共に、活
物質の利用率を向上させたことにより、高エネルギー密
度とクリーンな電池としての両面を持たせた、ニッケル
−水素電池を提供することを目的とする。
However, due to its unique physical properties, there are several problems in using this powder as it is as an active material for batteries. For example, the charge/discharge reaction of the nickel hydroxide/L' electrode occurs due to the free movement of protons within the crystals of the nickel hydroxide. However, as the density of the hydroxylated dandruff ρ increases, the crystal becomes denser, which limits the freedom of proton movement within the crystal. Moreover, the current density increases due to the decrease in specific surface area, and the higher order oxide 1-NiO
■ begins to generate a large amount, resulting in two-stage discharge and electrode B.
;Causes phenomena such as deep discharge, deterioration of life characteristics, and reduction in utilization rate. The swelling mechanism associated with the formation of γ-NiOOH in nickel/I/electrodes, which is a fatal factor for electrodes, is caused by the formation of γ-NiOOH from high-density β-NiOOH to low-density 1-Ni0O.
This is due to the density change to H. This γ-NiO
It has already been found that adding cadmium to nickel hydroxide as a solid solution is effective in preventing the formation of OH.
In hydrogen batteries, a pollution-free additive that can replace cadmium is desired. We provide nickel-metal hydride batteries that have both high energy density and clean battery properties by preventing pollution with non-polluting additives, extending their lifespan, and improving the utilization rate of active materials. The purpose is to

発明の構成 本発明は、水酸化ニッケμ粉末活物質に亜鉛を添加し、
該亜鉛が水酸化ニッケルの結晶中で固溶状態にあり、且
つ窒素の脱離吸着等温線より算出される細孔径分布にお
いて、細孔半径が50Å以上の粒子内部遷移細孔の発達
を阻止し、更に全細孔容積を0.05gt/り以下に制
御した水酸化エフケル活物質粉末を正極に用いたことな
特徴とするニッケル−水素電池である。
Structure of the invention The present invention adds zinc to a nickel hydroxide μ powder active material,
The zinc is in a solid solution state in the crystal of nickel hydroxide, and in the pore size distribution calculated from the nitrogen desorption/adsorption isotherm, the development of internal transition pores with a pore radius of 50 Å or more is prevented. Furthermore, the present invention is a nickel-hydrogen battery characterized in that a hydroxide Efkel active material powder whose total pore volume is controlled to be 0.05 gt/liter or less is used as a positive electrode.

作用 内部細孔容積を最小限にした高密度水酸化工フケμ粉末
の場合、高次酸化物γ−NiOOHが多iに生成する。
In the case of a high-density hydroxide dandruff powder with a minimum working internal pore volume, a large amount of higher order oxide γ-NiOOH is produced.

しかしながら異種金属イオン特に亜鉛イオンを水酸化ニ
ッケ〃の結晶中に配置すると結晶に歪を生じるため、プ
ロトンの動きに自由さが増し利用率の向上及びγ−Ni
OOHの生成を減少する作用があることを見いだした。
However, when dissimilar metal ions, especially zinc ions, are placed in the crystal of nickel hydroxide, the crystal becomes distorted, which increases the freedom of movement of protons, improves the utilization rate, and improves the utilization rate of γ-Ni.
It has been found that it has the effect of reducing the production of OOH.

一方、水酸化ニッケ〃の結晶外においては、コバルト化
合物添加剤を溶解させ、集電体と水酸化二フケ〃粒子間
をHOOO2−→β−Go(OH)2反応によって接続
させる。Ho2O3−の一部は、水酸化二フケ/%/粒
子の表面に存在するニッケ〜と固溶体を形成し得るが、
はとんどはβ−co(OH)2として遊離した状態にあ
る。しかる後に、充電というw、気化学的酸化によるβ
−Go(OH)2→Co0OH反応によって、導電率の
高いオキV水酸化コバμトに変化し集電体ニフケtvt
&維と水酸化ニッケル粒子間の電子の流れをスムーズに
し、利用率を増大させる作用がある。
On the other hand, outside the crystals of nickel hydroxide, a cobalt compound additive is dissolved, and the current collector and the nickel hydroxide particles are connected by the HOOO2-→β-Go(OH)2 reaction. A part of Ho2O3- may form a solid solution with nickel present on the surface of the hydroxide/%/particles, but
Most of it is in a free state as β-co(OH)2. After that, charging w, β due to gas chemical oxidation
-Go(OH)2 → Co0OH reaction changes to oxyV hydroxide with high conductivity, and the current collector Nifke tvt
& It has the effect of smoothing the flow of electrons between fibers and nickel hydroxide particles and increasing the utilization rate.

このように、カドミウムを添加せずとも高性能なニッケ
A/[極を用いることにより、無公害なニッケル−水素
電池を得ることができる。
In this way, a pollution-free nickel-hydrogen battery can be obtained by using a high-performance nickel A/[electrode] without adding cadmium.

実施例 以下、本発明における詳細について実施例により説明す
る◎ 硫酸二フケ〃を出発物質として作製したパーカフィジン
グ用水酸化ニッケル粉末をム、硫酸ニッケ1vIc少量
の硫酸亜鉛を混合した水溶液を出発物質として、同様に
作製した水酸化ニッケ〜粉末なり、公知の方法で作製さ
れたポケット式ニッケル正極用水酸化二フケμ粉末な0
とする。第1図に、従来法による0粉末及び本発明によ
るム粉末の内部細孔径分布の比較を示した。
EXAMPLES The details of the present invention will be explained by examples below. ◎ Nickel hydroxide powder for parkafizing prepared using didandruff sulfate as a starting material, and an aqueous solution containing 1vIc of nickel sulfate mixed with a small amount of zinc sulfate as a starting material. , nickel hydroxide μ powder prepared in the same manner, and nickel hydroxide μ powder for pocket type nickel positive electrode prepared by a known method.
shall be. FIG. 1 shows a comparison of the internal pore size distributions of the 0 powder produced by the conventional method and the MU powder produced by the present invention.

C粉末は、約66 trl/9の比表面積、細孔半径1
5〜100人の幅広い範囲にわたり多量に存在する。、
その細孔容積は、0.136 d!/fiと粒子容積(
0,41dlg ”)の30〜40%にも達し、かなり
空隙の大ぎい粒子である。一方、本発明の亜鉛添加高密
度水酸化二フケ〃粉末Bは、その細孔容積が0.028
+w//9と小さく、0粒子の%程度に過ぎない。これ
は、8粒子がC粒子よりも20〜50%高密度であると
いうことである・即ち1活物質粒子が高ra度であるた
めには、できる限り比表面積、及び空孔容積が小さなも
のでなければならないことを示している。なお、B粉末
の内部細孔分布は、A粉末とほぼ同様であり、亜鉛を含
んでいてもA粉末同様に高密度であることが確認された
C powder has a specific surface area of about 66 trl/9 and a pore radius of 1
It is present in large amounts ranging from 5 to 100 people. ,
Its pore volume is 0.136 d! /fi and particle volume (
0.41 dlg"), and the pores are quite large. On the other hand, the zinc-added high-density hydroxide didander powder B of the present invention has a pore volume of 0.028 dlg").
It is as small as +w//9 and is only about 0% of particles. This means that 8 particles have a density of 20 to 50% higher than that of C particles.In other words, in order for one active material particle to have a high ra, it must have a specific surface area and pore volume as small as possible. It shows that it must be. It was confirmed that the internal pore distribution of the B powder was almost the same as that of the A powder, and that it had a high density like the A powder even though it contained zinc.

これらの水酸化ニッケμ粉末に、アルカリ電解液に溶解
し0o(1)錯イオンを生成する少量のコバルト化合物
、Coo、α−Co(OH)2%  β−0O(OH)
2あるいは酢酸コバμトなどの粉末を混合した。しかる
後、1%の力〜ボキシ〜メチ〜セ1vct−ズの溶解し
た水溶液を加えて流動性のあるぺ一7ト蔽を作製した。
A small amount of cobalt compound, Coo, α-Co(OH) 2% β-0O(OH), which dissolves in an alkaline electrolyte to form 0O(1) complex ion, is added to these nickel hydroxide μ powders.
2 or a powder such as cobalt acetate. Thereafter, an aqueous solution containing 1% VCT-1VCT-Z was added to prepare a fluid coating.

このペースト液を多孔度95%の耐アルカリ繊維基板1
例えばニッケ!繊維基板等に所定量充填させ、乾燥後二
フケ/1/’[極とした。
Apply this paste solution to an alkali-resistant fiber substrate 1 with a porosity of 95%.
For example, Nikkei! A predetermined amount of the solution was filled into a fiber substrate, etc., and after drying, it was made into a didander/1/' [pole.

一方、Km(ミフシェメタル)、Ni、ムEを所定量秤
量し、アーク溶解炉にて4回溶融させ1MmNi4,7
ムl Q、S水素吸蔵合金を得た。これを機械的に粉砕
し、水素吸蔵合金粉末試料とした。この粉末に3%のP
vム水溶液を加え、ペースト状態にして、正極同様のニ
ッケ〃繊維基板に充填し、乾燥後水素吸蔵電極とした@
これらを、ボリアミド不織布をセパシー夕とし、比重1
.28の水酸化カリウム水溶液を電解液として、正極容
量規制の公称容量100100O。
On the other hand, predetermined amounts of Km (Mifshemetal), Ni, and MuE were weighed and melted four times in an arc melting furnace to 1MmNi4,7.
Mul Q,S hydrogen storage alloy was obtained. This was mechanically crushed to obtain a hydrogen storage alloy powder sample. This powder contains 3% P.
Added an aqueous solution of hydrogen to make a paste, filled it into a nickel fiber substrate similar to the positive electrode, and after drying, made it into a hydrogen storage electrode.
These were treated with a polyamide nonwoven fabric as a separator, and the specific gravity was 1.
.. Nominal capacity of positive electrode capacity regulation is 100100O using No. 28 potassium hydroxide aqueous solution as electrolyte.

単3サイズ密閉型二フケ〜−水素電池を組み立てた。こ
の電池を各種条件で充放電した後、電池を解体し、以下
の結果を得た。
I assembled a AA size sealed Nifuke hydrogen battery. After charging and discharging this battery under various conditions, the battery was disassembled and the following results were obtained.

第2図に、各種水酸化ニッケμと活物質利用率の関係を
示した。活物質組成が水酸化工フケ!のみから成るム、
Oを比較すると、高い活物質利用率を得るためには高い
比表面積が必要であることがわかる。しかしながら、水
酸化工フケμの結晶中に少量の亜鉛を添加したBは、比
表面積が小さいにも拘らず、従来粉末0と変わらない高
い利用率を示している。
Figure 2 shows the relationship between various types of nickel hydroxide μ and the active material utilization rate. The active material composition is hydroxide! Mu consisting only of
Comparing O, it can be seen that a high specific surface area is required to obtain a high active material utilization rate. However, B, which has a small amount of zinc added to the crystals of hydroxide dandruff μ, shows a high utilization rate that is as high as that of the conventional powder 0, despite its small specific surface area.

従来粉末に比べ高密度粉末が、同一体積基板により多く
充填できるため、極板単位体積あたりのエネルギー密度
は、従来粉末0が504 mAh/CC1高密度粉末B
が620mムh/CCと高密度粉末Bが従来粉末Cより
も20%程度高い値となったO 活物質の高密度化による比表面積の減少會こより、電解
液から反応種プロトンの出入口が縮小するわけであるが
、亜鉛を添加することで水酸化ニッケル結晶に歪を持た
せることにより、固相でのプロトン移動がスムーズにな
ったものと考察される0即ち〜プロトンの移動は、粒子
の比表面積と結晶内部(固相)での拡散速度の二つの因
子に支配されており、結晶が同一の場合は、比表面積に
支配され、結晶が畳なる場合は内部歪に支配されるもの
と考察される。
Compared to conventional powder, more high-density powder can be filled into the same volume substrate, so the energy density per unit volume of the electrode plate is 504 mAh for conventional powder 0/CC1 high-density powder B
is 620 mmh/CC, which is about 20% higher for high-density powder B than for conventional powder C. Due to the increased density of the active material, the specific surface area is reduced.As a result, the entrance and exit of reactive species protons from the electrolyte is reduced. However, by adding zinc to the nickel hydroxide crystal, it is thought that the proton movement in the solid phase becomes smoother. It is governed by two factors: specific surface area and diffusion rate inside the crystal (solid phase).If the crystals are the same, it is governed by the specific surface area, and if the crystals are folded, it is governed by internal strain. Will be considered.

活物質が反応するためには集電体から活物質粒子表面に
スムーズに電子を移動させる必要があり、上述した如く
遊離状II(水酸化工フケ〃に固溶することなく粒子表
面に存在)にある導電性を持ったCooOH粒子のネッ
トワークが不可欠である。このネットワークをつくるC
oo添加剤については、添加剤量を増加させると、活物
質利用率も増加する。しかし、添加剤そのものは、導電
性に寄与するのみで実際には放電しないため、極板エネ
ルギー密度は、15%付近より低下する傾向を示してい
る。
In order for the active material to react, it is necessary to smoothly move electrons from the current collector to the active material particle surface, and as mentioned above, free form II (exists on the particle surface without being solidly dissolved in hydroxide dandruff). A network of conductive CooOH particles is essential. C to create this network
For the oo additive, increasing the amount of additive also increases the active material utilization. However, since the additive itself only contributes to conductivity and does not actually cause discharge, the plate energy density tends to decrease from around 15%.

また、このネットワークを形成し得るコバルト化合物と
して、Coo以外に、a−co(OH)2、β−Co(
OH)2などのCo(I[)錯イオンを生成する化合物
が挙げられるが、これらの化合物を添加した場合の活物
質利用率は、C3oO>α−00(OH)2〉β−Co
(OH)2になる。この理由は、電解液への溶解性に起
因すると考えられる。即ち、β−Co(OH)2の場合
、電解液注液後溶存酸素で酸化され、褐色の溶解性の低
いco(on)s(もしくはC0HO2であられされる
)が形成され易く、一方、Q−Co(OH)2の場合、
(1−00(OH)2−β−Co(0■)2を経由する
ために00(OH)3がより形成されにくい。Cooの
場合s Co(OH)3がまったく形成されないために
最も優れた添加剤といえる。
In addition to Coo, cobalt compounds that can form this network include a-co(OH)2, β-Co(
Examples include compounds that generate Co(I[) complex ions such as OH)2, but the active material utilization rate when these compounds are added is C3oO>α-00(OH)2>β-Co
(OH) It becomes 2. The reason for this is thought to be due to the solubility in the electrolytic solution. That is, in the case of β-Co(OH)2, it is easily oxidized by dissolved oxygen after pouring the electrolyte to form brown, low-solubility co(on)s (or ashes with COHO2); on the other hand, Q -Co(OH)2,
(00(OH)3 is more difficult to form because it passes through 1-00(OH)2-β-Co(0■)2. In the case of Coo, s is the best because Co(OH)3 is not formed at all. It can be said that it is an additive.

より具体的には、溶解速度の見地より、β−Co(OH
)2を出発原料に200〜800℃の高温不活性雰囲気
下にて加熱生成させた結晶化度の低いものが望ましい。
More specifically, from the viewpoint of dissolution rate, β-Co(OH
) 2 as a starting material by heating at a high temperature of 200 to 800° C. in an inert atmosphere and having a low degree of crystallinity is desirable.

水酸化工フケ〃をHOOO2−イオン中に浸漬し1表面
に水酸化コバルトを析出させた粉末なペースト充填した
[11Mは、CoO粉末を混合したvLtMよりも利用
率が劣り、β−Co(OH)z粉末を混合した?u程度
であった。更に、オキV水酸化ニッケ/I/粉末の表面
に導電性の0oOOHNを形成させた粉末(具体的には
、OoO粉末を混合した電極を充放電した後、電極から
集電体であるニッケル繊維を除去したもの)を再度ペー
スト充填した電極は、利用率が悪い。即ち、活物質粉末
と集電体との導電性ネットワーク(OOOOH)は、作
製された′WIL極中で形成されることが不可欠である
。つまり、予め活物質粒子表面に形成しても、粒子間の
接続が不完全では効果が匹くなることを示している。従
って、!極を電池として組み立てた後tc coo粉末
の溶解と再析出をおこなわせることが必要であり、具体
的には溶解性の非常に高いCoo粉末を添加するか、あ
るいは、電池組み立て後に適当な放置期間をおくことで
ある。
Cobalt hydroxide was immersed in HOOO2- ions and filled with a powdery paste with cobalt hydroxide precipitated on the surface. ) Did you mix z powder? It was about u. Furthermore, after charging and discharging an electrode in which conductive OoOOHN is formed on the surface of Oki-V nickel hydroxide/I/powder (specifically, after charging and discharging an electrode mixed with OoO powder, nickel fibers as a current collector are removed from the electrode). Electrodes that are re-filled with paste (removed) have a poor utilization rate. That is, it is essential that a conductive network (OOOOOH) between the active material powder and the current collector be formed in the produced 'WIL pole. In other words, even if it is formed on the surface of the active material particles in advance, the effect will be negligible if the connections between the particles are incomplete. Therefore,! After assembling the electrodes as a battery, it is necessary to dissolve and reprecipitate the TC coo powder. Specifically, it is necessary to add highly soluble Coo powder, or to leave it for an appropriate period of time after assembling the battery. It is to put

10の高電流密度で充電し、充電末期の正極活物質にお
けるγ−NiOOH生成量と活物質粉末の種類の相関関
係をX線解析により調べた。
Charging was carried out at a high current density of 10, and the correlation between the amount of γ-NiOOH produced in the positive electrode active material at the end of charging and the type of active material powder was investigated by X-ray analysis.

第6図に示す如く、水酸化ニッケルの結晶中に亜鉛な固
溶状態で添加すれば、添加量の増加に伴いγ−NiOO
Hの生成量が減少することがわかる。
As shown in Figure 6, if zinc is added as a solid solution in the crystals of nickel hydroxide, as the amount added increases, γ-NiOO
It can be seen that the amount of H produced decreases.

γ−NiOOHを多量に生成する、水酸化ニッケ〃のみ
の高密度粉末ムの場合、第4図のように2段放電となる
が、亜鉛添加高密度粉末はr−N100H生成が防止さ
れており、このようなことはない。
In the case of high-density powder containing only nickel hydroxide, which produces a large amount of γ-NiOOH, a two-stage discharge occurs as shown in Figure 4, but with zinc-added high-density powder, r-N100H generation is prevented. , this is not the case.

第5図は、活物質、充放電温度及び活物質利用率の関係
を示したものである。亜鉛とコバルトの両者を固溶体添
加したDにおいては、亜鉛単独添加のBより高温下(約
45℃)での充電性能の向上が認められた。
FIG. 5 shows the relationship among active materials, charge/discharge temperatures, and active material utilization rates. In D, in which both zinc and cobalt were added as a solid solution, the charging performance at high temperature (about 45° C.) was found to be improved compared to B in which only zinc was added.

第6図に、この電池のサイクル特性を示す。FIG. 6 shows the cycle characteristics of this battery.

Bは、添加剤を含まないムに較べ1− Ni0OHの生
成が抑えられているため、長期間容量低下を引き起こす
事なく、安定した性能を示した。
In B, the production of 1-NiOH was suppressed compared to the rubber containing no additives, so it showed stable performance without causing a long-term capacity drop.

尚、上記実施例において、基板として金属繊維焼結体を
示したが、これらに限定されるものではない。また、亜
鉛の添加効果は、本発明の製法以外にも、結晶性の高い
水酸化ニッケ〃粒子に対しては、同様に認められ1さら
に、コバルト、カドミウム、その他、亜鉛以外の異種金
属との混合添加においても同様の効果が認められるが、
無公害性の見地から、亜鉛単独で用いる方が好ましい。
In the above embodiments, a metal fiber sintered body is used as the substrate, but the substrate is not limited to this. In addition to the production method of the present invention, the effect of adding zinc has been similarly observed for highly crystalline nickel hydroxide particles1. A similar effect is observed in mixed addition, but
From the viewpoint of non-polluting properties, it is preferable to use zinc alone.

発明の効果 上述した如く、本発明は水酸化ニッケρ粉末をより高密
度化し、更に高密度化に伴うγ−NiOO11の生成を
毒性の少ない添加剤によって防止し、長寿命化するとと
もに、活物質の利用率を向上させ、且つ放電電位の高い
”フケ1vvii用活物質を用いることにより、きわめ
て高い二ネpギー密度と無公害性を両立させたニッケル
−水素電池を提供することが出来るので、その工業的価
値は極めて大である。
Effects of the Invention As described above, the present invention increases the density of nickel hydroxide ρ powder, prevents the formation of γ-NiOO11 due to the increase in density using a less toxic additive, extends the life of the active material, and By improving the utilization rate of nickel-metal hydride and using an active material for dandruff 1vvii with a high discharge potential, it is possible to provide a nickel-metal hydride battery that is both extremely high in energy density and non-polluting. Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の水酸化ニッケル粉末と本発明の高密度
水酸化ニッケル粉末の細孔径分布の曲線を示した図であ
る。 第2図は、水酸化ニッケ〃粒子の比表面積と活物質利用
率の関係を示した図である。 第3図は、添加量とγ−NiOOHの生成量の関係を示
したものである。 第4図は、ニッケル−水素電池の放電曲線図である。 第5図は、活物質、充放電温度及び活物質利用率の関係
を示した図である。 第6図は、ニッケル−水素電池のサイクル特性を示した
図である。 第2図 第1図 DES Dv(Log  r)vs  rγ 活物質利用率(%) 10             100PORE RA
DILtS([M) a E、T Area Total  Pare  V
OILIITII!1ゴ7q      ml/g C6a28     0.15 A  2a55     0.04 000 Zn添加量(wt%) (1都) 第6I21 サイクル数(−) 第5図 度
FIG. 1 is a diagram showing pore size distribution curves of a conventional nickel hydroxide powder and a high-density nickel hydroxide powder of the present invention. FIG. 2 is a diagram showing the relationship between the specific surface area of nickel hydroxide particles and the active material utilization rate. FIG. 3 shows the relationship between the amount added and the amount of γ-NiOOH produced. FIG. 4 is a discharge curve diagram of a nickel-metal hydride battery. FIG. 5 is a diagram showing the relationship among active materials, charging/discharging temperatures, and active material utilization rates. FIG. 6 is a diagram showing the cycle characteristics of a nickel-hydrogen battery. Figure 2 Figure 1 DES Dv (Log r) vs rγ Active material utilization rate (%) 10 100PORE RA
DILtS([M) a E, T Area Total Pare V
OILITII! 1go7q ml/g C6a28 0.15 A 2a55 0.04 000 Zn addition amount (wt%) (1 capital) No. 6I21 Number of cycles (-) No. 5 Fig.

Claims (5)

【特許請求の範囲】[Claims] (1)窒素吸着等温線の脱離側より算出される細孔径分
布において、細孔半径が30Å以上の内部遷移細孔の発
達を阻止し、更に全細孔容積を0.05ml/g以下に
制御した水酸化ニッケル粉末を正極活物質として用いた
ことを特徴とするニッケル−水素電池。
(1) In the pore size distribution calculated from the desorption side of the nitrogen adsorption isotherm, the development of internal transition pores with a pore radius of 30 Å or more is prevented, and the total pore volume is reduced to 0.05 ml/g or less. A nickel-hydrogen battery characterized by using controlled nickel hydroxide powder as a positive electrode active material.
(2)該水酸化ニッケル粉末活物質に亜鉛を添加し、さ
らにそれらの添加物が水酸化ニッケルの結晶中で固溶状
態にある請求項1記載のニッケル−水素電池。
(2) The nickel-hydrogen battery according to claim 1, wherein zinc is added to the nickel hydroxide powder active material, and the additive is in a solid solution state in the nickel hydroxide crystal.
(3)該水酸化ニッケル活物質粉末中にカドミウムが添
加されていないニッケル正極を用いた請求項2記載のニ
ッケル−水素電池。
(3) The nickel-hydrogen battery according to claim 2, wherein a nickel positive electrode in which cadmium is not added to the nickel hydroxide active material powder is used.
(4)亜鉛を固溶状態で含有する水酸化ニッケル活物質
粉末に、アルカリ電解液に溶解しコバルト錯イオンを生
成するコバルト化合物を5〜15wt%の範囲で添加し
、且つそのコバルト化合物粉末のほとんどが活物質粉末
と遊離状態にある請求項2記載のニッケル−水素電池。
(4) A cobalt compound that dissolves in an alkaline electrolyte to generate cobalt complex ions is added to a nickel hydroxide active material powder containing zinc in a solid solution state in a range of 5 to 15 wt%, and the cobalt compound powder is The nickel-hydrogen battery according to claim 2, wherein most of the nickel-hydrogen battery is in a free state with the active material powder.
(5)亜鉛以外に少量のコバルトが水酸化ニッケル活物
質粉末中に固溶状態で共存する請求項2記載のニッケル
−水素電池。
(5) The nickel-hydrogen battery according to claim 2, wherein a small amount of cobalt in addition to zinc coexists in solid solution in the nickel hydroxide active material powder.
JP1183249A 1989-07-14 1989-07-14 Nickel-hydrogen battery Expired - Lifetime JP2679274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1183249A JP2679274B2 (en) 1989-07-14 1989-07-14 Nickel-hydrogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1183249A JP2679274B2 (en) 1989-07-14 1989-07-14 Nickel-hydrogen battery

Publications (2)

Publication Number Publication Date
JPH0346758A true JPH0346758A (en) 1991-02-28
JP2679274B2 JP2679274B2 (en) 1997-11-19

Family

ID=16132380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1183249A Expired - Lifetime JP2679274B2 (en) 1989-07-14 1989-07-14 Nickel-hydrogen battery

Country Status (1)

Country Link
JP (1) JP2679274B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212269A (en) * 1990-03-23 1992-08-03 Sanyo Electric Co Ltd Alkaline storage battery
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
US7604044B2 (en) 2002-02-19 2009-10-20 Denso Corporation Heat exchanger
JP7079870B1 (en) * 2021-04-12 2022-06-02 株式会社田中化学研究所 Method for manufacturing positive electrode material for nickel-metal hydride secondary battery and positive electrode material for nickel-hydrogen secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026340A (en) * 1988-04-13 1990-01-10 Kansai Shokubai Kagaku Kk Production of nickel hydroxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH026340A (en) * 1988-04-13 1990-01-10 Kansai Shokubai Kagaku Kk Production of nickel hydroxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212269A (en) * 1990-03-23 1992-08-03 Sanyo Electric Co Ltd Alkaline storage battery
WO1992022934A1 (en) * 1991-06-14 1992-12-23 Yuasa Corporation Nickel electrode for alkali storage batteries
US5366831A (en) * 1991-06-14 1994-11-22 Yuasa Corporation Nickel electrode for alkaline battery
US7604044B2 (en) 2002-02-19 2009-10-20 Denso Corporation Heat exchanger
JP7079870B1 (en) * 2021-04-12 2022-06-02 株式会社田中化学研究所 Method for manufacturing positive electrode material for nickel-metal hydride secondary battery and positive electrode material for nickel-hydrogen secondary battery
WO2022219898A1 (en) * 2021-04-12 2022-10-20 株式会社田中化学研究所 Positive electrode material for nickel hydrogen secondary battery and method for producing positive electrode material for nickel hydrogen secondary battery

Also Published As

Publication number Publication date
JP2679274B2 (en) 1997-11-19

Similar Documents

Publication Publication Date Title
JPH01260762A (en) Nickel electrode for alkaline battery and battery using same
JP3246345B2 (en) Nickel positive electrode for alkaline storage battery and nickel-hydrogen storage battery using the same
JP2000113904A (en) Alkaline storage battery
JPH0777129B2 (en) Nickel electrode active material and method for producing the same, nickel electrode and method for producing alkaline battery using the same
JP4252641B2 (en) Positive electrode for alkaline storage battery and positive electrode active material
JP2004071304A (en) Positive active material for alkaline storage battery, positive electrode using it, and alkaline storage battery
US7147676B2 (en) Method of preparing a nickel positive electrode active material
JPH0346758A (en) Nickel-hydrogen battery
JP4474722B2 (en) Alkaline storage battery and positive electrode for alkaline storage battery used therefor
JP2889669B2 (en) Non-sintered nickel positive electrode plate for alkaline storage batteries
WO1999017388A1 (en) Nickel-hydrogen storage battery
JP3082348B2 (en) Nickel-hydrogen battery
JP3547920B2 (en) Method for producing hydrogen storage alloy electrode
JP3639494B2 (en) Nickel-hydrogen storage battery
JPH0685325B2 (en) Active material for nickel electrode, nickel electrode and alkaline battery using the same
JPH06260166A (en) Nickel electrode for alkaline storage battery
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP3568337B2 (en) Hydrogen storage alloy electrode and metal hydride storage battery
JP3141141B2 (en) Sealed nickel-metal hydride storage battery
JPH01107465A (en) Manufacture of sealed alkaline secondary battery
JPH01187768A (en) Nickel electrode for alkali battery
JPH0690922B2 (en) Sealed alkaline storage battery
JPS60119079A (en) Hydrogen absorption electrode
JPH0613075A (en) Nickel electrode for alkaline storage battery
JPH01130467A (en) Hydrogen occlusive alloy electrode

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 12

EXPY Cancellation because of completion of term