TW201125194A - ery and lithium-ion battery using the same. - Google Patents

ery and lithium-ion battery using the same. Download PDF

Info

Publication number
TW201125194A
TW201125194A TW099142506A TW99142506A TW201125194A TW 201125194 A TW201125194 A TW 201125194A TW 099142506 A TW099142506 A TW 099142506A TW 99142506 A TW99142506 A TW 99142506A TW 201125194 A TW201125194 A TW 201125194A
Authority
TW
Taiwan
Prior art keywords
positive electrode
ion battery
lithium
active material
electrode active
Prior art date
Application number
TW099142506A
Other languages
Chinese (zh)
Other versions
TWI435491B (en
Inventor
Ryuichi Nagase
Yasuhiro Kawahashi
Original Assignee
Jx Nippon Mining & Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx Nippon Mining & Metals Corp filed Critical Jx Nippon Mining & Metals Corp
Publication of TW201125194A publication Critical patent/TW201125194A/en
Application granted granted Critical
Publication of TWI435491B publication Critical patent/TWI435491B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a positive electrode active substance for lithium-ion battery, for achieving a high-capacity and high-efficiency lithium-ion battery. The positive electrode active substance for lithium-ion battery consists of primary particles, secondary particles formed by aggregation of the primary particles, or mixture of the primary particles and the secondary particles. The sphericity, which is defined to be the projected area circle diameter of a projected particle image divided by the minimum circumscribed circle diameter of the projected particle image, of the aforementioned primary particles or secondary particles is 0.3 to 0.95. The average particle size of the primary particles or secondary particles is 2 to 8 <mu>m. The ratio surface area thereof is 0.3 to 1.8 m<2>/g. The tap density thereof is more than 2.0 g/cm<3>.

Description

201125194 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種鋰離子電池用正極活性物質、鋰離 子電池用正極及使用其之鋰離子電池。 【先前技術】 鋰離子電池之正極活性物質通常使用含鋰之過渡金屬 氧化物具體而&amp; ,為鈷酸經(LiCo〇2)、鎳酸链(LiNi02)、 猛酸链(LiMn2〇4)等,為了改善特性(高容量化、循環特性、 :存特性、減低内部電阻、充放電特性)或提高安全性,目 刚正進仃料之複合化。尤其對於車載用或負載調平(㈣ — a用等大型用*中之鋰離子電池,要求與迄今之行動 電話用或個人電腦用不同之特性。具體而t,對於車载用 要求高容量及低電a,對於負载調平則要求高容量 命。 可 以及 ,如 要因 、為了顯現該等特性,正極活性物質材料之複合 尤其是粉體之填夯θ ^ 具兄ί·生疋重要的,其中就高容量化而 何效率良好地填充柏η从τ 、死相冋性此之正極材料粉體成為 素。 ⑽上返問題,例如日本特開聰_ιΐ44〇 利文獻1)中揭示右_ &amp; , ^ # + 有種尖晶石型鋰錳複合氧化物粒子,哕 冰 長徑/短徑)為〇·8〜1.2之球狀軔工π 構成。並且記載有.4 ^ 本子所 優異之鋰,t人 错此可獲得使用有填充特性及結晶性 複合氧化物粒子的經二次電池用正極。 曰本特開平U— 16574號公報(專利文獻2)中揭示 3 201125194 有一種球狀鋰錳複合氧化物,構成該氧化物之粒子之球形 度(=假設粒子為完整球體而根據粒度分佈求出之比表面積 /根據B E T法求出之比表面積)為〇 · I 6以上。並且記載有: 藉此可獲得即便於高電流密度下亦具有高放電容量、且用 作電極時具有高填充性的鋰離子二次電池用之鋰錳複合氧 化物。 專利文獻1 :日本特開2006 — 1 14408號公報 專利文獻2 :曰本特開平!丨—1 6574號公報 【發明内容】 然而,作為實現可全部滿足對電池所要求之重要特性 即高容量且高效率之鐘離子電池的正極活性物質尚有改 善之餘地》 因此,本發明之課題,在於提供一種實現高容量及高 效率之鐘離子電池的鐘離子電池用正極活性物質。又,本 發明之其他課題’在於提供使用上述鐘離子電池用正極活 性物質之輯子電池用正極及使用其之鐘離子電池。 關於電池之南容量化及冥令| ^ ^ ^ ^ 篁化及间效率化,本發明人著眼於正 極活性物質之填充,降;隹# .执、付+ 爐占研究的結果,發現:藉由使 構成正極活性物質之粒子 方把/狀為抆制在特定形狀範圍之 實現古六I — 圍斤規疋)而非球狀,可提供 性物質。 ㈣子電Α㈣離子電池用正極活 一方面係關於一種鋰 次粒子、該一次粒子 基於上述見解而完成之本發明, 離子電池用正極活性物質,其係由_ 4 201125194 凝聚而形成之二次粒子、或該一次 物所構成,上述一次輪不々 夂一-人粒子之此合 像之投影面積圓直徑/二二:粒子之球形度卜… 0.3〜0.95, -次粒子或二技影像之最小外接圓直徑)為 比表面積為o.M 8mV “立子之平均粒徑為2〜8/zm, 太以3日 ,敲緊密度為2.0g/cm3以上。 中 中 Ni 卜、…冗 電'也用正極活性物質於-實施形態 + , 物貝為含鋰之過渡金屬氧化物。 本發明之鋰離子雷、冰 池用正極活性物質於另一實施形態 上迷έ鐘之過渡今麗条 虱化物中之過渡金屬,係選自由 …所組成之群中之!種或2種以上。 本發明,另一方ϊϋ,# ΗΗ μ 係關於—種鋰離子電池用正極, 其使用有本發明之鋰離子電池用正極活性物質。 务月再另方面,係關於一種鋰離子電池,其使 用有本發明之鋰離子電池用正極。 根據本發明,可提供_種實現高容量及高效率之㈣ 子電池的鋰離子電池用正極活性物質。 【實施方式】 (鐘離子電池用正極活性物質之構成) 作為本發明之實施形態之經離子電池用正極活性物質 之材料’可廣泛使用適用作為一般鐘離子電池用正極用之 ° &amp;物負的化合物’尤佳為使用姑酸裡(Lic〇〇2)、錄酸 (liN!〇2)、錳酸鋰(LlMn2〇4)等含鋰之過渡金屬氧化物。 .3鋰之過渡金屬氧化物中之過渡金屬,較佳為選自由 Nl、Mn、Co及Fe所組成之群中之1種或2種以上。又, 201125194 鋰相對於含鋰之過渡金屬氧 孔化物中之全部金屬的比率^ 佳為超過1.0且未達’車乂 •,、原因在於:若為丨〇 難以保持穩定之結晶構造;若 .乂下,則 马1.3以上’則無法確.蛩、丄 之高容量。正極活性物質之姓Β α *保電池 負之結晶構造只要為鋰可插入 離之構造,則無特別限定,4 烟入、脫 鋰離子電池用正極活性物 構&amp;。 可由-次粒子凝聚而形成之_ U 2 十所構成,亦 办成之一次粒子所構成,進而亦 一次粒子及二次粒子夕,.¾人*由 +之混合物所構成。本發明之鋰離子雷 池用正極活性物質,Α , 雕卞電 軋由使構成粒子之形狀為控制 形狀範圍之方形(形狀俜由扣工&gt; I 牡将疋 非球狀,而提高填充性,從而實現高容量及高效率之^ 子:池。更具體而f ’構成鐘離子電池用正極活性物質之 一次粒子或二次粒子之技报$ 之球形度(=粒子投影像之投影面積圖 直徑/粒子投影像之最小外接圓錢)為G.3〜G.95。圓 此處,上述「球形度」係所謂之「瓦德爾之近似球形 」’此值越接近卜粒子越接近球形(參照:「粉體工學 第卷叙體之基礎物性」ρ3 6〜38[粉體工學會編 曰刊工業新聞社,2005年])。 扁, 右-人粒子或二次粒子之球形度未達〇·3,則缺乏填 :生;若超過〇·95,則於填充時易產生空隙。又,一次粒子 或二次粒子之球形度較佳為〇·6〜0.85,更佳為0·65〜〇8。 '义之劂量,例如可使用sEM(Scanning Electron croscope .掃描式電子顯微鏡)照片。具體而言,球形度 係藉由如下方式求得··自sem照片觀察例如_個左右: 201125194 一次粒子及/或:次粒子,算出料 值。 心度並求出平均 鐘離子電池用正極活性物質之一次 平均粒徑……比表面積為〇3〜18:—人拉子之 度為2.0g/ cm3以上。 / g,破緊密 +若平均粒徑未達2”,則會變得難以塗佈至集電體 右平均粒徑超過8⑽,則於填道體 性下降。又,平均粒徑更佳為3〜一生‘隙,導致填充 :比表面積未達〇.3mVg ’則變得難以確保高容量。 右t面積超過“々g,則會變得難以塗佈至集電體。 又’比表面積更佳為0 5〜1 5m2/g。 右敲緊密度未達2.0g/cm3,則難以確保高容量。又, 敲緊密度更佳為2.1g/cm3以上。 鐘離子電池用正極活性物f之加壓密度(_ de削y),係藉由如下方式算出:於例如直徑為2〇_等之 圓筒,金屬模具,添加正極活性物質之粉丨20g,以“⑽ /cm之壓力進行成形,然後自成形體之重量與體積算出。 加壓密度與敲緊密度相比,進行有加壓,目此粉末變得更 易填,,成為填充性之指標。此時之成形壓力較佳為η〇η ^ cm。其原因在於:若超過u〇n/ —2,則有正極活性物 質之粒子自身被破壞之可能性。加壓密度較佳為2 s〜4 2g /cm3 ’ 更佳為 3 〇〜3 8g/cm3。 (鋰離子電池用正極及使用其之鋰離子電池之構成) 本發明之實施形態之鋰離子電池用正極,例如具有如 7 201125194 下構造.將上述構成之鐘離子電池用正極活性物質、導電 助劑與黏合劑混合而製備成之正極合劑,設置於由紹箱等 所構成之集電體的單面或雙面。又,本發明之實施形態之 鐘離子電池’具備有此種構成之鐘離子電池用正極。 (鋰離子電池用正極活性物質及使用其之鋰離子電池之 製造方法) 其次,對本發明之實施形態之鋰離子電池用正極活性 物質及使用其之鋰離子電池之製造方法進行說明。 首先,於添加有鋰化合物之成為主成分之過渡金屬鹽 之水溶液,添加鹼性氫氧化物或鹼性碳酸鹽,藉此製備鋰 離子電池用正極活性物質前驅物。或者,向驗性氫氧化物 或驗性碳酸鹽之溶液或懸浮液,添加成為主成分之過渡金 屬鹽之水溶液,藉此製備經離子電池用正極活性物質前驅 物。於前者之情形時,易出現局部pH值較高之區域,易成 為組成不均之原因,因此後者較佳。 —作為所添加之鋰化合物,並無限定,可列舉:碳酸鋰' 氫氧化鋰、氧化鋰、氣化鋰、硝酸鋰'硫酸鋰、碳酸氫鋰、 乙酸鐘、氧化鐘、漠化經、*典化链、過氧化經。其中,因 處理谷易且價格低廉’故以碳酸鋰較佳。 作為過渡金屬(Ni ' Mn、Co及Fe中之任意!種或2種 以上)之鹽之水溶液,可使用硝酸鹽溶液、硫酸鹽溶液、氣 =物溶液或乙酸鹽溶液等。尤其是為了避免混入陰離子所 造成之影響’較佳為使用硝酸鹽溶液。 作為驗性氫氧化物,較佳為使用氫氧化鈉、氫氧化鉀 8 201125194 及氫氧化链等。作盔认山 料驗性碳酸鹽,較佳為使㈣酸鈉、碳 酸虱鈉、碳酸鉀及碳酸鋰等。 反 '、人將所侍之正極活性物質前驅物乾燥,並於適宜 條件下進行氧化處理( ,θ (於氧化環境中進行燒製等)及粉碎,藉 1^_活性物質之粉體。於乾燥步驟中,雖然可使用 r之乾燥方法’但若使用例如流動層乾燥之類的抑制乾 :粉凝聚之方法’輸物之粒子會均勾地分散,故較佳。 、,且’於上述燒製步驟巾,若於填充時制促進粉末接觸 2方法’則反應會均質地進行,故較佳。又,於粉碎步驟 中1然可使用公知之粉碎方法,但於操作時’為了避免 X刀之〜響’較理想為使用乾燥空氣。於實現良好之球形 度方面,冑重要的是氧化處理。作為其條件,較理想為於 以兩階段進行升溫後,料數小時。此時,於第—階段之 升:,進行作為乾燥粉之礙酸鹽的脫碳酸,於第二階段之 升/皿進仃充分之氧化。並且’於第二階段之最終溫度下 保持數小時’而進行球形度之調整。其後,保持數小時, 降'皿至室溫。第一階段之結束溫度較佳為650°C〜850°C, 更佳為〜刚。c。若未達㈣。c,則無法充分進行脫 碳酸’若超過85(TC’則局部會發生氧化反應·,故不理想。 I ’第二階段之結束溫度較佳為850〜1()〇(rC ,更佳為_ yc右未達850 C,則促進球形度之反應慢,若超過 00 C,則會發生氧脫離,難以保持結晶構造,故不理想。 保持時間較佳為1〜4小時。較佳為考慮連續爐中之總處理 夺門而。又疋保持時間。由於氧化已結束,該保持係用以形 201125194 成粒子形狀, 持時間更佳為 故而長時間保持會促進氧之脫離。因此,保 1〜2小時。 可利用以此種方式獲得之㈣子電池用正極活性物 質’依據公知手段’製作鋰離子電池用正極及使用其之鋰 離子電池。以此種方式形成之輯子電池,係將正極活性 物質中之_次粒子或二次粒子之球形度控制為〜〇 %, 因而成為高容量且高效率。因此’特別適用於車載用或負 載調平用等要求該等特性之大型用途。 [實施例] 以下提供用以更好地理解本發明及其優點之實施例, 但本發明並不限定於該等實施例。 (實施例) (正極材料之製作) 4由使用Ni、Μη及Co之确酸鹽水溶液與碳酸裡之濕 式法,製作前驅物。製造前驅物時之Ni、Mn及之添加 莫耳比’係設為 Ni : Μη: C〇= 60 : 20 : 20。 更具體而言,係使碳酸鋰懸浮於純水中,於其中滴加 特疋量之硝酸水溶液,於滴加全部量後,繼續攪拌1小時, 使反應進行。 於將該前驅物乾燥後,以表1所示之條件進行氧化處 理,再進行粉碎,製得正極材料。 (評價) 利用感應耦合電漿原子放射光譜儀(ICP 一 〇ES)測量各 正極材料中之U、Ni ' Μη及Co含量,確認過渡金屬之比 10 201125194 率與添加相同(塊體狀態之組成比以Ni、Μη、Co之莫耳比 計分別為60%、20%、20%)。又’藉由X射線繞射,確認 結晶構造為層狀構造。由上述分析值確認氧量超過化學計 量係數10%。 平均粒徑係設為藉由雷射繞射法測得之粒度分佈之5〇 %控’比表面積係設為BET值’敲緊密度係設為輕敲2〇〇 次後之密度。球形度係自粒子之SEM照片獲得1 〇〇個粒子 之資料並求出該等之平均值。 加壓密度,係於直徑20mm之金屬模具添加各正極材料 20g,以!ton/cm2之壓力進行成形,然後根據成形體之重 量與體積而算出。 S ·/之比例秤量此等之正極材料、導電材料與 黏合劑,將正極材料與導電材料混合於有機溶劑(Ν—甲基 。叫咬酮)中溶解有黏合劑者以聚體化,將其塗佈於^上 並進行乾燥後,進行壓製而形成正極。接著,製作以“作[Technical Field] The present invention relates to a positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery using the same. [Prior Art] The positive electrode active material of a lithium ion battery is usually a lithium-containing transition metal oxide, and is a cobalt acid (LiCo〇2), a nickel acid chain (LiNi02), a sensitizing acid chain (LiMn2〇4). In order to improve the characteristics (high capacity, cycle characteristics, storage characteristics, reduction of internal resistance, charge and discharge characteristics) or improvement of safety, the combination of materials is just beginning. Especially for automotive or load leveling ((4) - a large-scale use of lithium-ion batteries, etc., requires different characteristics than mobile phones or personal computers used to date. Specifically, for automotive applications, high capacity and Low power a, high load life is required for load leveling. And, if necessary, in order to visualize these characteristics, the compounding of the positive electrode active material material, especially the filling of the powder θ ^ is important to the ί ί Among them, high-capacity and high-efficiency filling of the cations of the positive electrode material from τ and dead phase enthalpy becomes a prime. (10) The problem of the upper return, for example, the Japanese escrow _ιΐ 44 〇li document 1) reveals the right _ &amp ; , ^ # + There is a kind of spinel-type lithium manganese composite oxide particles, and the long diameter/short diameter of the ice is composed of 球·8~1.2 spherical 轫 π. Further, it is described that lithium is excellent in the case of the present invention, and it is possible to obtain a positive electrode for a secondary battery using a composite oxide particle having a filling property and a crystalline composite oxide particle. Japanese Patent Publication No. Hei 16574 (Patent Document 2) discloses that there is a spherical lithium manganese composite oxide which constitutes the sphericity of the particles of the oxide (= assuming that the particles are complete spheres and are obtained from the particle size distribution) The specific surface area / specific surface area determined by the BET method is 〇·I 6 or more. Further, it is described that a lithium manganese composite oxide for a lithium ion secondary battery having a high discharge capacity even at a high current density and having high filling properties when used as an electrode can be obtained. Patent Document 1: Japanese Laid-Open Patent Publication No. 2006-1144408 Patent Document 2: 曰本特开平! In the case of realizing a positive electrode active material of a clock ion battery which can satisfy all the important characteristics required for a battery, that is, high capacity and high efficiency, the present invention has a problem of improvement. It is to provide a positive electrode active material for a clock ion battery which realizes a high-capacity and high-efficiency clock ion battery. Further, another subject of the present invention is to provide a positive electrode for a battery using the positive electrode active material for a clock ion battery, and a clock ion battery using the same. Regarding the south capacity of the battery and the meditation | ^ ^ ^ ^ The inventors focused on the filling and lowering of the positive active material; 隹#. A substance can be provided by making the particle constituting the positive electrode active material into a shape of a specific shape, rather than a spherical shape. (4) Sub-Electric Electron (IV) The positive electrode for an ion battery is a secondary particle in which a lithium secondary particle and the primary particle are completed based on the above findings, and a positive electrode active material for an ion battery, which is formed by agglomeration of _ 4 201125194 Or the primary object, the above-mentioned one round does not mean the projected area of the image of the human particle circle diameter / 22: the sphericity of the particle... 0.3~0.95, - the smallest of the secondary particle or the second image The diameter of the circumscribed circle is the specific surface area of oM 8mV. The average particle size of the stand is 2~8/zm, and the taper is 2.0g/cm3 or more. The middle and the middle of the Ni, the ... The active material is in the embodiment +, and the object is a lithium-containing transition metal oxide. The lithium ion lightning and ice pool positive electrode active material of the present invention is in the transition of the present invention. The transition metal is selected from the group consisting of: or two or more. The present invention, the other side, ##μ is a positive electrode for a lithium ion battery, which is used in the lithium ion battery of the present invention. Positive active material In another aspect, the present invention relates to a lithium ion battery using the positive electrode for a lithium ion battery of the present invention. According to the present invention, a positive electrode active for a lithium ion battery having a high capacity and high efficiency (IV) subcell can be provided. [Embodiment] (Structure of Positive Electrode Active Material for Ion Battery) The material of the positive electrode active material for ion battery according to the embodiment of the present invention can be widely used as a positive electrode for general plasma batteries. The negative compound is particularly preferred for the use of lithium-containing transition metal oxides such as Lic 〇〇 2, acid (liN! 〇 2), and lithium manganate (LlMn 2 〇 4). The transition metal in the metal oxide is preferably one or more selected from the group consisting of Nl, Mn, Co, and Fe. Further, 201125194 lithium is relative to all of the lithium-containing transition metal oxygen pores. The ratio of metal ^ is better than 1.0 and does not reach 'rut 乂 ·, because the reason is that it is difficult to maintain a stable crystal structure if it is ;; if it is under the 则, then the horse is above 1.3, it is impossible to confirm. Capacity The material 之 α * The crystal structure of the negative battery is not particularly limited as long as it is a structure in which lithium can be inserted, and the positive electrode active material for the lithium-ion or lithium-ion battery is formed and aggregated. _ U 2 consists of ten particles, which are also composed of primary particles, and then primary particles and secondary particles, and 3⁄4 people* consist of a mixture of +. The positive electrode active material for lithium ion mine pool of the present invention, Α, The embossing and electric rolling is performed by making the shape of the constituting particles into a square shape for controlling the shape range (the shape is 扣 扣 & > I 牡 疋 疋 non-spherical, and the filling property is improved, thereby achieving high capacity and high efficiency: the pool. More specifically, f' constitutes the sphericity of the primary particle or secondary particle of the positive electrode active material for the clock ion battery (=the projected area of the particle projection image diameter/the minimum external volume of the particle projection image) is G. 3~G.95. Here, the above-mentioned "sphericity" is the so-called "Vader's approximate spherical shape". The closer the value is to the spherical particle, the closer it is to the spherical shape (see: "Basic properties of the powder engineering volume" ρ3 6~38 [ The Institute of Powder Engineering edited the Industrial News Agency, 2005]). Flat, right-human particles or secondary particles have a sphericity of less than 〇·3, which lacks filling: if it exceeds 〇95, it will easily create voids during filling. Further, the sphericity of the primary particles or secondary particles is preferably 〇·6 to 0.85, more preferably 0·65 to 〇8. For example, an sEM (Scanning Electron Croscope) photograph can be used. Specifically, the sphericity is obtained by observing, for example, _ from the sem photograph: 201125194 Primary particles and/or secondary particles, and calculating the material value. The average average particle diameter of the positive electrode active material for the average ion battery is determined by the heart rate. The specific surface area is 〇3 to 18: the degree of human pull is 2.0 g/cm3 or more. / g, broken tight + if the average particle size is less than 2", it will become difficult to apply to the right average particle size of the current collector more than 8 (10), then the body properties will decrease in the fill. Further, the average particle size is more preferably 3 ~ A lifetime 'gap, resulting in filling: the specific surface area is less than 〇.3mVg', it becomes difficult to ensure high capacity. If the right t area exceeds "々g, it will become difficult to apply to the current collector. Further, the specific surface area is preferably from 0 5 to 15 m 2 /g. When the right knocking degree is less than 2.0 g/cm3, it is difficult to ensure high capacity. Further, the knocking degree is more preferably 2.1 g/cm3 or more. The pressure density (_de-cut y) of the positive electrode active material f for the ion battery is calculated by, for example, a cylinder having a diameter of 2 Å or the like, a metal mold, and 20 g of a powder of a positive electrode active material. The molding was carried out under the pressure of "(10) / cm, and then the weight and volume of the molded body were calculated. The pressure density was compared with the knocking degree, and the powder was more easily filled, and the filling property was an index. The molding pressure at this time is preferably η 〇 η ^ cm. The reason for this is that if it exceeds u 〇 n / -2, the particles of the positive electrode active material itself may be destroyed. The pressure density is preferably 2 s~ 4 2g /cm3 ' More preferably 3 〇~3 8g/cm3. (Position of a positive electrode for a lithium ion battery and a lithium ion battery using the same) The positive electrode for a lithium ion battery according to an embodiment of the present invention has, for example, 7201125194 Structure: A positive electrode mixture prepared by mixing a positive electrode active material, a conductive auxiliary agent, and a binder for a clock ion battery having the above configuration, and being provided on one or both sides of a current collector composed of a case or the like. The clock ion battery of the embodiment of the invention A positive electrode for a battery for a lithium ion battery, and a positive electrode active material for a lithium ion battery, and a method for producing a lithium ion battery using the same, and a positive electrode active material for a lithium ion battery according to an embodiment of the present invention A method for producing a lithium ion battery is described. First, an alkali hydroxide or an alkali carbonate is added to an aqueous solution containing a transition metal salt as a main component of a lithium compound, thereby preparing a positive electrode active material precursor for a lithium ion battery. Alternatively, an aqueous solution of a transition metal salt as a main component may be added to a solution or suspension of an anatase hydroxide or an inorganic carbonate to prepare a positive electrode active material precursor for an ion battery. It is easy to cause a local pH value, and it is easy to be a cause of uneven composition, so the latter is preferable. - As the lithium compound to be added, there is no limitation, and lithium carbonate, lithium hydroxide, lithium oxide, and gas are exemplified. Lithium, lithium nitrate 'lithium sulfate, lithium hydrogencarbonate, acetic acid clock, oxidation clock, desertification, * normalized chain, peroxidation. It is preferable to use calcium carbonate as the aqueous solution of the transition metal (any of Ni' Mn, Co and Fe, or two or more kinds), and a nitrate solution or a sulfate solution can be used. Gas = solution or acetate solution, etc. In particular, in order to avoid the influence of the incorporation of anions, it is preferred to use a nitrate solution. As an anhydride hydroxide, it is preferred to use sodium hydroxide or potassium hydroxide 8 201125194 and Hydroxide chain, etc. As a helmet, it is preferable to make sodium (tetra), sodium strontium carbonate, potassium carbonate and lithium carbonate, etc. Anti-, the person who is serving the precursor of the positive active material is dried, and Oxidation treatment (, θ (fired in an oxidizing environment, etc.) and pulverization under suitable conditions, and powder of 1^_active material. In the drying step, although the drying method of r can be used, it is preferable to use a method of suppressing dryness such as fluidized bed drying: the method of powder agglomeration. Further, it is preferable that the above-mentioned calcining step towel is subjected to a method of promoting powder contact at the time of filling, and the reaction proceeds homogeneously. Further, in the pulverization step, a known pulverization method can be used, but it is preferable to use dry air in order to avoid the X-knife. In terms of achieving good sphericity, it is important to oxidize. As a condition, it is preferred to carry out the temperature in two stages and then to feed for several hours. At this time, in the first stage, the decarbonation as the acid salt of the dry powder is carried out, and the second stage of the rise/dish is fully oxidized. And the sphericity is adjusted by holding for a few hours at the final temperature of the second stage. Thereafter, keep it for a few hours and lower it to room temperature. The temperature at the end of the first stage is preferably 650 ° C to 850 ° C, more preferably ~ just. c. If not reached (four). c, if the decarbonation is not sufficiently carried out 'If it exceeds 85 (TC', the oxidation reaction will occur locally, so it is not preferable. The end temperature of the second stage is preferably 850~1 () 〇 (rC, more preferably _ yc is less than 850 C, and the reaction to promote sphericity is slow. If it exceeds 00 C, oxygen detachment occurs and it is difficult to maintain the crystal structure, which is not preferable. The holding time is preferably 1 to 4 hours. The total treatment in the continuous furnace takes over and the time is maintained. Since the oxidation has ended, the retention system is used to shape the shape of the particles of 201125194, and the holding time is better, and the long-term retention will promote the detachment of oxygen. Therefore, ~2 hours. The positive electrode active material for a sub-battery obtained in this manner can be used to produce a positive electrode for a lithium ion battery and a lithium ion battery using the same according to a known method. The battery formed in this manner will be Since the sphericity of the secondary particles or the secondary particles in the positive electrode active material is controlled to be 〇%, it has high capacity and high efficiency. Therefore, it is particularly suitable for large-scale applications requiring such characteristics, such as for vehicle use and load leveling. [ EXAMPLES The following examples are provided to better understand the present invention and its advantages, but the present invention is not limited to the examples. (Example) (Production of Positive Electrode Material) 4 Using Ni, Μ, and Co The precursor is prepared by the wet solution method of the aqueous solution of the acid salt and the carbonated acid. The Ni, Mn and the molar ratio of the added molar ratio of the precursor are set to Ni: Μη: C〇= 60 : 20 : 20. More specifically In other words, lithium carbonate is suspended in pure water, and a special amount of aqueous nitric acid solution is added dropwise thereto, and after the total amount is added dropwise, stirring is continued for 1 hour to carry out the reaction. After drying the precursor, The conditions shown in Fig. 1 were oxidized and then pulverized to obtain a positive electrode material. (Evaluation) U, Ni' Μ η and Co contents in each positive electrode material were measured by inductively coupled plasma atomic emission spectrometry (ICP-ES). It is confirmed that the ratio of the transition metal 10 201125194 is the same as the addition (the composition ratio of the bulk state is 60%, 20%, 20% by the molar ratio of Ni, Μη, Co, respectively), and 'by X-ray diffraction, It was confirmed that the crystal structure was a layered structure. The amount of oxygen was confirmed from the above analysis value. The stoichiometric coefficient is 10%. The average particle size is set to 5 〇% of the particle size distribution measured by the laser diffraction method. The specific surface area is set to the BET value. The knocking degree is set to tap 2〇〇. Density after the second. The sphericity is obtained from the SEM photograph of the particles, and the average value of the particles is obtained. The pressure density is 20 g of the metal mold with a diameter of 20 mm, and each positive electrode material is added to 20 g. The pressure of /cm2 is formed, and then calculated according to the weight and volume of the formed body. S · / ratio is used to weigh the positive electrode material, conductive material and adhesive, and the positive electrode material and the conductive material are mixed in the organic solvent (Ν-甲base. In the case where the binder is dissolved in the ketone, it is polymerized, coated on the film, dried, and then pressed to form a positive electrode. Then, making

為相對電極之評㈣2〇32型硬幣型電池,使用將H UPF6溶解於EC_DMC(1:1)而成者作為電解液,以… 之充電條件、3.GV之放電條件進行充放電。初期容量與初 :效率(放電量/充電量)之確認,係藉由〇ic之充放電 進仃。將此等結果示於表卜又,圖!表示實施例i之正極 活性物質之讀照片’圖2表示實施例5之正極活 之SEM照片。 貝 201125194 [表i] 燒製條件 第一階段 之溫度 第二階段 之溫度 第二階段 保持時間 球形度 平岣 粒投 比表 .面積 敲緊 密度 加座 密度 容量 年性— 效率 eC ΐ hr — Urn 一· · 4.5 mVg 0 68 g/cc &lt; %/ cm3 mAh/ — 158 % 3〇T … — 89.8 實施例1 750 940 0.72 實施例2 750 950 0.62 4.2 0.64 2.6 3.4 一 實施例3 750 920 2 0.82 5.4 0.78 2 3 \ Λ IS; 155 154 實施例4 750 920 1 0.55 5.2 0.74 0.82 2.4 2.2 3.2 ~ 3.1 實施例5 800 920 os〇 2 0.9 6.5 X犯例0 賁施例7 比較例1 〇UU 800 900 900 1050 2 1 I 0.4 0.92 0.25 4.9 6.8 「8·2 0.55 0.92 0.42 2.3 2.1 2 3.4 3.1 2 7 152 〇y.7 89.6 89.6 比較例2 600 820 3 0.98 8.6 1.62 1.8 2.6 U3 84.6 82.2 — j 實施例1〜7之球形度均為0.3〜0·95,平均粒徑均為2 〜8/zm,比表面積均為〇.3〜l_8m2/g,粉體特性(敲緊密 度及加壓密度)及電池特性均良好。又,三元系之真密度約 為4.7g/CC左右,加壓通常預計達到真密度之6〇〜7〇%左 右。確認實施例中,加壓密度為3g/cm3以上,當球形度為 0.4〜0.6時,加壓密度較高,球形度越接近〇 3或越接近 0.95,加壓密度越低。 比車乂例1及2之球形度均在〇 3〜〇 95之範圍外且平 均粒I在2〜8 y m之範圍外’粉體特性(敲緊密度及加壓密 度)及電池特性較實施例差。 【圖式簡單說明】 圖1係實施例1之正極活性物質之SEM照片》 圖2係實施例5之正極活性物質之SEM照片。 【主要元件符號說明】 無 12For the relative electrode evaluation (4) 2〇32 type coin type battery, use H UPF6 dissolved in EC_DMC (1:1) as the electrolyte, charge and discharge under the charging conditions of 3.GV. The initial capacity and the initial: efficiency (discharge amount/charge amount) are confirmed by the charge and discharge of 〇ic. Show these results in the table and again, map! A photograph of the positive electrode active material of Example i is shown. Fig. 2 shows an SEM photograph of the positive electrode of Example 5.贝201125194 [Table i] Firing conditions First stage temperature Second stage temperature Second stage hold time Sphericality Flat grain ratio table. Area knock tightness Add density capacity Yearly - Efficiency eC ΐ hr — Urn · · 4.5 mVg 0 68 g / cc &lt; % / cm3 mAh / — 158 % 3〇T ... — 89.8 Example 1 750 940 0.72 Example 2 750 950 0.62 4.2 0.64 2.6 3.4 A Example 3 750 920 2 0.82 5.4 0.78 2 3 \ Λ IS; 155 154 Example 4 750 920 1 0.55 5.2 0.74 0.82 2.4 2.2 3.2 ~ 3.1 Example 5 800 920 os 〇 2 0.9 6.5 X Crime 0 贲 Example 7 Comparative Example 1 〇UU 800 900 900 1050 2 1 I 0.4 0.92 0.25 4.9 6.8 "8·2 0.55 0.92 0.42 2.3 2.1 2 3.4 3.1 2 7 152 〇y.7 89.6 89.6 Comparative Example 2 600 820 3 0.98 8.6 1.62 1.8 2.6 U3 84.6 82.2 — j Example 1 The sphericity of ~7 is 0.3~0·95, the average particle size is 2~8/zm, the specific surface area is 〇.3~l_8m2/g, the powder characteristics (knock tightness and pressure density) and battery The characteristics are good. Moreover, the true density of the ternary system is about 4.7g/CC, and the pressure is usually expected to reach the true density. 6 〇~7〇%. In the examples, the pressure density is 3 g/cm3 or more, and when the sphericity is 0.4 to 0.6, the pressure density is high, and the sphericity is closer to 〇3 or closer to 0.95, and the pressure is increased. The lower the density, the sphericity of the ruthenium examples 1 and 2 are outside the range of 〇3 to 〇95 and the average granule I is outside the range of 2 to 8 ym, the powder characteristics (knock tightness and pressure density) and Fig. 1 is a SEM photograph of the positive electrode active material of Example 1. Fig. 2 is a SEM photograph of the positive electrode active material of Example 5. [Explanation of main component symbols] No 12

Claims (1)

201125194 七、申請專利範圍: 1.-種ϋ離子電池用正極活性物質,其係由—次粒子' 該一次粒子凝聚而形成之二 粒子之混合物所構成, 欠粒子及二次 該一次粒子或二次粒子球 , 粒子投影像之投影 面積圓直ν粒子投影像之最小外接圓直徑)為^〜ο%, 該…欠粒子或二次粒子之平均粒徑為2〜8心,比表面 積為0.3〜i.W/g,敲緊密度為2〇g/cm3以上。 2·如申請專利職帛丨項之鐘離子電池用正極活性物 、、中’该正極活性物質為含鋰之過渡金屬氧化物。 μ 3·如中請專利範㈣2項之鐘離子電池用正極活性物 貝,其中’該含鐘之過渡金屬氧化物中之過渡金屬,係選 由沁^及心所組成之群…種或“重以上。 4 · —種經離子雷如用γρ ϋ υ- -1. 極’其使用有申請專利範圍第1 項之鋰離子電池用正極活性物質。 5 . 種離子雷 ';也,盆Π3 ., 灿 瓦池其使用有申請專利範圍第4項之鋰 離子電池用正極。 八、圖式: (如次頁) 13201125194 VII. Patent application scope: 1.- A positive electrode active material for a cesium ion battery, which is composed of a mixture of two particles formed by the primary particles agglomerating, the under-particles and the secondary particles or two. The sub-particle sphere, the projection area of the particle projection image is round and the smallest circumscribed circle diameter of the particle projection image is ^~ο%, and the average particle diameter of the under- or secondary particle is 2 to 8 hearts, and the specific surface area is 0.3. ~iW/g, the knocking degree is 2〇g/cm3 or more. 2. The positive electrode active material for a clock ion battery as claimed in the patent application, and the positive electrode active material is a lithium-containing transition metal oxide. 3 3· For example, please refer to Patent No. (4) for the positive electrode active material shell of the ion battery of the second item, in which the transition metal in the transition metal oxide containing the bell is selected from the group consisting of 沁^ and heart. 4 · - Type of ion-extracting γ ρ ϋ - - -1. Pole 'use the positive active material for lithium ion batteries of the patent application scope 1. 5. Kind of ion thunder'; also, pots 3 ., Chanwachi uses the positive electrode for lithium ion battery with the patent application scope item 4. VIII. Schema: (such as the next page) 13
TW099142506A 2010-01-06 2010-12-07 Positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery using the same TWI435491B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001270 2010-01-06

Publications (2)

Publication Number Publication Date
TW201125194A true TW201125194A (en) 2011-07-16
TWI435491B TWI435491B (en) 2014-04-21

Family

ID=44305386

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099142506A TWI435491B (en) 2010-01-06 2010-12-07 Positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery using the same

Country Status (3)

Country Link
JP (1) JP5973167B2 (en)
TW (1) TWI435491B (en)
WO (1) WO2011083648A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160102083A (en) 2013-02-28 2016-08-26 닛산 지도우샤 가부시키가이샤 Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
CN105051952A (en) * 2013-03-15 2015-11-11 日产自动车株式会社 Positive electrode active material, positive electrode material, positive electrode, and nonaqueous electrolyte secondary battery
CN103259002A (en) * 2013-05-28 2013-08-21 宁德新能源科技有限公司 Lithium ion battery and electrode plate thereof
JP6273115B2 (en) * 2013-09-13 2018-01-31 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10236507B2 (en) 2014-01-31 2019-03-19 Sumitomo Metal Mining Co., Ltd. Nickel-manganese composite hydroxide particles, method for producing same, cathode active material for non-aqueous electrolyte secondary batteries, method for producing same, and non-aqueous electrolyte secondary battery
JP6519264B2 (en) * 2015-03-26 2019-05-29 日産自動車株式会社 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
CN110945693A (en) * 2017-07-31 2020-03-31 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
WO2019167558A1 (en) * 2018-02-27 2019-09-06 パナソニックIpマネジメント株式会社 Positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
JP6980587B2 (en) 2018-03-23 2021-12-15 株式会社東芝 Electrodes, rechargeable batteries, battery packs, and vehicles
CN114342121A (en) * 2019-08-30 2022-04-12 住友金属矿山株式会社 Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery
CN114883521B (en) * 2022-06-29 2022-10-18 比亚迪股份有限公司 Secondary battery pole piece, preparation method thereof and secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11292547A (en) * 1998-04-13 1999-10-26 Ishihara Sangyo Kaisha Ltd Lithium cobaltate, its production and lithium cell using that
JP4644895B2 (en) * 2000-01-24 2011-03-09 株式会社豊田中央研究所 Lithium secondary battery
JP2003151546A (en) * 2001-11-08 2003-05-23 Nichia Chem Ind Ltd Positive electrode active substance for lithium ion secondary battery and its manufacturing method
JP4952186B2 (en) * 2005-10-20 2012-06-13 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and secondary battery using the same
JP5094144B2 (en) * 2007-01-31 2012-12-12 日立マクセルエナジー株式会社 Positive electrode active material for lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
JP2009032647A (en) * 2007-06-25 2009-02-12 Mitsubishi Chemicals Corp Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2009117261A (en) * 2007-11-08 2009-05-28 Mitsubishi Chemicals Corp Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
KR101492304B1 (en) * 2007-12-28 2015-02-11 도다 고교 가부시끼가이샤 Lithium manganate for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5973167B2 (en) 2016-08-23
JPWO2011083648A1 (en) 2013-05-13
TWI435491B (en) 2014-04-21
WO2011083648A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
TW201125194A (en) ery and lithium-ion battery using the same.
JP4996117B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP6612356B2 (en) Multi-component material having an inclined structure for lithium ion battery, preparation method thereof, positive electrode of lithium ion battery and lithium ion battery
CN102763247B (en) Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery
JP2022008802A (en) Positive electrode active material for lithium secondary battery
JP5458886B2 (en) Compound powder, its production method and its use in lithium secondary battery
JP6560917B2 (en) Positive electrode material and non-aqueous electrolyte secondary battery using the positive electrode material
JP2020109771A (en) Positive-electrode active material for lithium secondary battery and lithium secondary battery having the same
KR101589294B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
TWI549343B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
WO2011108389A1 (en) Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
JP4804045B2 (en) Method for producing lithium iron composite oxide
US20160049654A1 (en) Positive Electrode Active Material For Lithium-Ion Battery, Positive Electrode For Lithium-Ion Battery, And Lithium-Ion Battery
TW201121126A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
TW201620840A (en) High-density precursor for manufacture of composite metal oxide cathodes for li-ion batteries
WO1998006670A1 (en) Lithium/nickel/cobalt composite oxide, process for preparing the same, and cathode active material for rechargeable battery
WO2016121156A1 (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for producing same and nonaqueous electrolyte secondary battery
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
TW201232905A (en) Electrode material and production method thereof
KR20150134259A (en) Lithium metal complex oxide and rechargeable batteries including the same
WO2022260072A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
KR20140123607A (en) Layered lithium nickel oxide, process for producing the same and lithium secondary cell employing it
JP5615769B2 (en) Lithium secondary battery
JP2014216077A (en) Positive electrode material for nonaqueous electrolyte lithium ion secondary battery and nonaqueous electrolyte lithium ion secondary battery using the positive electrode material
JP2005050582A (en) Positive pole for lithium secondary battery and lithium secondary battery using it