WO2012077763A1 - Method for producing transition metal hydroxide - Google Patents

Method for producing transition metal hydroxide Download PDF

Info

Publication number
WO2012077763A1
WO2012077763A1 PCT/JP2011/078475 JP2011078475W WO2012077763A1 WO 2012077763 A1 WO2012077763 A1 WO 2012077763A1 JP 2011078475 W JP2011078475 W JP 2011078475W WO 2012077763 A1 WO2012077763 A1 WO 2012077763A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
metal hydroxide
stirring
slurry
reactor
Prior art date
Application number
PCT/JP2011/078475
Other languages
French (fr)
Japanese (ja)
Inventor
泰賀 大林
武弘 大谷
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012077763A1 publication Critical patent/WO2012077763A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing a transition metal hydroxide.
  • the lithium composite metal oxide is used as a positive electrode active material contained in a positive electrode in a secondary battery such as a lithium secondary battery.
  • Lithium secondary batteries have already been put into practical use as power sources for mobile phones and notebook computers.
  • a transition metal element-containing solution containing a transition metal element such as Ni or Mn is brought into contact with a basic solution, so that transition metal water is obtained.
  • a slurry containing a solid (precipitate) containing an oxide as a main component is obtained, and the resulting slurry is solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and the obtained wet cake is dried.
  • a method of obtaining a dried product made of a transition metal hydroxide mixing the obtained dried product with a lithium compound, and firing it.
  • transition metal hydroxides In the production of transition metal hydroxides, when the transition metal element-containing solution is brought into contact with the basic solution, the composition of the transition metal hydroxide to be generated is non-uniform unless the pH of these solutions is within a certain range. It is easy to become. Therefore, in order to suppress fluctuations in pH, a batch contact method is adopted in which an aqueous solution containing a transition metal element is added to and mixed with a large amount of a basic aqueous solution.
  • the present invention relates to the following inventions.
  • a transition metal element-containing solution and a basic solution are fed into a flow reactor and brought into contact with stirring and mixing in the flow reactor so that the transition metal hydroxide is a main component.
  • a method for producing a transition metal hydroxide comprising a step of continuously obtaining a slurry containing a solid material.
  • the flow reactor is a tubular reactor having a stirring mechanism.
  • the residence time of the slurry in the flow reactor is 60 seconds or less.
  • ⁇ 4> The method according to any one of ⁇ 1> to ⁇ 3>, wherein the flow reactor is a tubular reactor equipped with a high-speed rotary stirrer.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4> above, wherein the transition metal element contained in the transition metal element-containing solution is one or more elements selected from Ni and Mn. .
  • ⁇ 6> The transition metal element contained in the transition metal element-containing solution contains one or more elements selected from the group consisting of Co and Fe in addition to one or more elements selected from Ni and Mn.
  • ⁇ 7> A transition metal hydroxide is obtained by the method according to any one of ⁇ 1> to ⁇ 6> above, and the obtained transition metal hydroxide is mixed with a lithium compound and fired.
  • a transition metal element-containing solution and a basic solution are fed into a flow reactor and contacted with stirring and mixing in the flow reactor. And a step of continuously obtaining a slurry containing a solid containing a transition metal hydroxide as a main component.
  • the solid content mainly composed of transition metal hydroxide has a transition metal hydroxide content of 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 90 It means a solid matter of not less than mass% or not less than 95 mass%.
  • the transition metal element-containing solution and the basic solution can be mixed continuously and uniformly in a short time, and the grain growth of the produced transition metal hydroxide can be suppressed.
  • a transition metal hydroxide having a smaller particle size and a higher specific surface area can be obtained.
  • FIG. 3 the state of the solid substance 162 which has the transition metal hydroxide as a main component in the inlet side 106a, the intermediate part 106b, and the outlet side 106c of the flow-type reactor 110 which manufactures a transition metal hydroxide is shown, respectively. , Conceptually using balloons 152, 154, and 156.
  • a solid 262 is generated at the initial stage of the production of the transition metal hydroxide (FIG. 4). (A)).
  • the solid material 262 generated in the initial stage is in direct contact with the transition metal element-containing solution 102 and the basic solution 104 supplied thereafter, and thus the solid material 262 is used as a core to produce a transition metal hydroxide in the middle stage.
  • Grain grows as in solids 262a (FIG. 4 (b)) and at the later stages of transition metal hydroxide production (FIG. 4 (c)). Such grain growth becomes more remarkable when a large amount of slurry is produced on an industrial scale.
  • the flow reactor used in the present invention may be any flow reactor that can stir the supplied transition metal element-containing solution and the basic solution, for example, a tubular reaction having a stirring mechanism. It may be a vessel.
  • a slurry containing a solid containing a transition metal hydroxide as a main component has a relatively high viscosity, it is generally difficult to uniformly mix in a short time.
  • a tubular reactor having a stirring mechanism, particularly a high-speed rotary stirrer uniform mixing can be achieved in a short time. According to this, since the residence time of the slurry in the tubular reactor is shortened, excessive grain growth of the solid content (transition metal hydroxide) can be avoided.
  • a predetermined obstacle for example, a coil shape, a bead, a protrusion formed on the inner wall of a tubular flow path, etc.
  • a tubular flow channel inner wall itself having a spiral shape, or having a structure in which a fixed stirring blade (turbine) is formed, so that turbulent flow can be generated in the flow channel.
  • examples of the tubular reactor equipped with a stirring mechanism include a line mixer, a static mixer, a homomixer, a homogenizer, and a pipeline homomixer.
  • the transition metal element contained in the transition metal element-containing solution is not limited as long as the hydroxide can be mixed with a lithium compound and fired to become a positive electrode active material of a secondary battery.
  • a positive electrode active material of a secondary battery For example, Ni, Mn, Co, Fe, Cr, Ti and the like.
  • one or more elements selected from the group consisting of Ni and Mn are preferable.
  • one or more elements selected from the group consisting of Co and Fe are further added. It is preferable to contain.
  • NaOH and KOH anhydrides and hydrates thereof are preferable to use.
  • Two or more of the above-mentioned bases may be used in combination.
  • Basic solution is usually used as an aqueous solution.
  • concentration of the base in this basic aqueous solution is usually about 0.5 to 10 mol / L, preferably about 1 to 8 mol / L.
  • the water used for the basic aqueous solution is preferably pure water and / or ion-exchanged water.
  • the basic aqueous solution may contain an organic solvent other than water, such as alcohol, a pH adjuster, and the like as long as the effects of the present invention are not impaired.
  • the transition metal element-containing solution and the basic aqueous solution are mixed by the stirring system 1 having the above-described configuration as follows. First, from the raw material tank 2a and the raw material tank 2b, the transition metal element-containing solution, respectively as a raw material and the basic aqueous solution is supplied to the liquid supply pipe P 3 via the liquid feed pipe P 1, P 2. The supply amounts of the transition metal element-containing solution and the basic aqueous solution are controlled at appropriate speeds by the liquid feed pumps 3a and 3b. In addition, in order to suppress the oxidative deterioration of the produced transition metal hydroxide, it may be fed and mixed in a closed system. In a preferred embodiment, the slurry exiting the tubular reactor 10 is transferred as it is to the next solid-liquid separation step and does not pass through the tubular reactor again.
  • the internal volume of the reactor main body 11 is appropriately designed in consideration of the type of raw material, the production amount of slurry, etc., and widely applied from a test machine with an internal volume of about 50 mL to 10 L to an actual machine with an internal volume of about 10 L to 100 L. it can. Further, the ratio D / L between the vessel diameter D and the vessel length L of the reactor main body 11 is usually 0.1 to 0.7, preferably 0.35 to 0.45.
  • the second stirring unit 13 has a structure in which a turbine 13a and a stator 13b are overlapped, and is arranged at a stage subsequent to the first stirring unit 12 and before the discharge port 11b.
  • the turbine 13 a is attached to the shaft 14 and can be rotated at high speed by the motor 15.
  • the blade diameter d ′ of the turbine 13a is a ratio to the vessel diameter D of the reactor main body 11, and d ′ / D is usually about 0.5 to 0.8, preferably 0.6 to 0.7. Is set to be
  • the residence time of the slurry in a flow reactor such as a tubular reactor is preferably as short as possible without impairing uniform mixing.
  • slurry residence time in the flow reactor means a value obtained by dividing the internal volume (m 3 ) of the tubular reactor by the slurry production rate (m 3 / sec).
  • Slurry production rate is the volume of slurry produced per unit time, and is the total weight of the basic solution and transition metal element-containing solution supplied into the tubular reactor per unit time (in terms of the weight of the slurry produced). (Corresponding) is divided by the density of the produced slurry.
  • the mixing temperature is not particularly limited as long as a slurry containing a solid material (transition metal hydroxide) having a uniform composition can be obtained, but it is usually in a temperature range from room temperature to about 80 ° C.
  • the obtained wet cake is dried to obtain a dried transition metal hydroxide. Drying is usually performed by heat treatment, but may be performed by air drying, vacuum drying, or the like. As the drying atmosphere, air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable. When drying is performed by heat treatment, the temperature is usually 50 to 300 ° C.
  • the mixing may be either dry mixing or wet mixing, but from the viewpoint of simplicity, dry mixing is preferable.
  • Examples of the mixing device include stirring and mixing, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a ball mill, and the like.
  • the holding temperature in the firing is preferably in the range of 650 ° C. or higher and 900 ° C. or lower.
  • the holding time at the holding temperature is usually 0.1 to 20 hours, preferably 0.5 to 8 hours.
  • the rate of temperature rise to the holding temperature is usually 50 ° C. to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 ° C. to 400 ° C./hour.
  • As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable.
  • the lithium composite metal oxide thus obtained may be pulverized using a ball mill, a jet mill or the like. It may be possible to adjust the BET specific surface area of the lithium composite metal oxide by grinding. Moreover, you may repeat a grinding
  • the amount (mol) of Li is usually 0.5 or more and 1 with respect to the total amount (mol) of transition metal elements M such as Ni, Mn, Fe and Co. It is preferably 0.5 or more and 1.5 or less and 1.5 or less, more preferably 1.0 or more and 1.4 or less in the sense of further increasing the capacity retention rate.
  • the BET specific surface area of the powder B 2 was 8.8 m 2 / g.
  • the powder X-ray diffraction pattern was measured, the crystal structure of the powder B 2 was found to be a crystal structure belonging to the space group of R-3m.

Abstract

Provided is a method capable of evenly mixing a solution comprising a transition metal element with alkali on an industrial scale, and obtaining a high quality transition metal hydroxide. The method for producing a transition metal hydroxide according to the present invention comprises the step of feeding a transition metal element containing solution and a basic solution into a flow through reactor, contacting the solutions by stirring and mixing the solutions in the flow through reactor, and thereby continuously obtaining a slurry comprising solid matter the main component thereof being a transition metal hydroxide.

Description

遷移金属水酸化物の製造方法Process for producing transition metal hydroxide
 本発明は、遷移金属水酸化物の製造方法に関する。 The present invention relates to a method for producing a transition metal hydroxide.
 リチウム複合金属酸化物は、リチウム二次電池等の二次電池における正極中に含まれる正極活物質として用いられている。リチウム二次電池は、既に携帯電話やノートパソコン等の電源として実用化されている。 The lithium composite metal oxide is used as a positive electrode active material contained in a positive electrode in a secondary battery such as a lithium secondary battery. Lithium secondary batteries have already been put into practical use as power sources for mobile phones and notebook computers.
 また、リチウム二次電池は、自動車用途や電力貯蔵用途等の中・大型用途においても、適用が試みられている。このような用途では高出力が求められるため、正極活物質として用いられるリチウム複合金属酸化物は、電極反応活性を高める必要がある。そのために、リチウム複合金属酸化物には、粒径がより小さく、比表面積がより高いものが求められている。 Also, lithium secondary batteries have been tried to be applied to medium and large-sized applications such as automobile applications and power storage applications. Since such a use requires high output, the lithium composite metal oxide used as the positive electrode active material needs to increase the electrode reaction activity. Therefore, lithium composite metal oxides are required that have a smaller particle size and a higher specific surface area.
 リチウム複合金属酸化物の製造方法としては、特許文献1に開示されているように、Ni、Mn等の遷移金属元素を含有する遷移金属元素含有溶液を塩基性溶液と接触させて、遷移金属水酸化物を主成分とする固形物(沈殿物)を含むスラリーを得、得られたスラリーを全量ろ過により固液分離して遷移金属水酸化物のウェットケークを得、得られたウェットケークを乾燥させて、遷移金属水酸化物からなる乾燥物を得、得られた乾燥物をリチウム化合物と混合し、焼成する方法が知られている。 As a method for producing a lithium composite metal oxide, as disclosed in Patent Document 1, a transition metal element-containing solution containing a transition metal element such as Ni or Mn is brought into contact with a basic solution, so that transition metal water is obtained. A slurry containing a solid (precipitate) containing an oxide as a main component is obtained, and the resulting slurry is solid-liquid separated by filtration to obtain a transition metal hydroxide wet cake, and the obtained wet cake is dried. There is known a method of obtaining a dried product made of a transition metal hydroxide, mixing the obtained dried product with a lithium compound, and firing it.
 なお、遷移金属水酸化物の製造において、遷移金属元素含有溶液を塩基性溶液と接触させる際に、それらの溶液のpHが一定の範囲でないと、生成する遷移金属水酸化物の組成が不均一になりやすい。そのため、pHの変動を抑制するために、多量の塩基性水溶液に遷移金属元素を含有する水溶液を添加して混合するバッチ式接触方法が取られている。 In the production of transition metal hydroxides, when the transition metal element-containing solution is brought into contact with the basic solution, the composition of the transition metal hydroxide to be generated is non-uniform unless the pH of these solutions is within a certain range. It is easy to become. Therefore, in order to suppress fluctuations in pH, a batch contact method is adopted in which an aqueous solution containing a transition metal element is added to and mixed with a large amount of a basic aqueous solution.
 このバッチ式接触方法では、塩基性水溶液に、遷移金属元素を含有する水溶液を添加混合していくに従い、混合された液のpHが低下していく傾向にある。そこで、塩基性水溶液を追添加する等してpHが所定の範囲(例えば、pH9以上)となるように調節することも提案されている。 In this batch contact method, the pH of the mixed liquid tends to decrease as an aqueous solution containing a transition metal element is added to and mixed with the basic aqueous solution. Therefore, it has also been proposed to adjust the pH to be within a predetermined range (for example, pH 9 or more) by adding a basic aqueous solution.
国際公開第09/041722号パンフレットInternational Publication No. 09/041722 Pamphlet
 上記記載のように、リチウム複合金属酸化物のための遷移金属水酸化物の製造のためには様々な方法が提案されている。しかしながら、粒径がより小さくかつ比表面積がより高いリチウム複合金属酸化物、及びそのための粒径がより小さくかつ比表面積がより高い遷移金属水酸化物の製造方法がまだ求められている。 As described above, various methods have been proposed for the production of transition metal hydroxides for lithium composite metal oxides. However, there is still a need for a method for producing a lithium composite metal oxide having a smaller particle size and a higher specific surface area, and a transition metal hydroxide having a smaller particle size and a higher specific surface area.
 本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the following inventions meet the above-mentioned object, and have reached the present invention.
 すなわち、本発明は、以下の発明に係るものである。
 〈1〉遷移金属元素含有溶液と塩基性溶液とを、流通式反応器内に送液して、上記流通式反応器内で攪拌混合しながら接触させ、それによって遷移金属水酸化物を主成分とする固形物を含むスラリーを連続的に得る工程を含む、遷移金属水酸化物の製造方法。
 〈2〉上記流通式反応器が、攪拌機構を有する管型反応器である、上記〈1〉項に記載の方法。
 〈3〉上記流通式反応器内でのスラリーの滞留時間が、60秒以下である、上記〈1〉又は〈2〉項に記載の方法。
 〈4〉上記流通式反応器が、高速回転攪拌機を備えた管型反応器である、上記〈1〉~〈3〉項のいずれか一項に記載の方法。
 〈5〉上記遷移金属元素含有溶液に含有されている遷移金属元素が、Ni及びMnから選ばれる1以上の元素である、上記〈1〉~〈4〉項のいずれか一項に記載の方法。
 〈6〉上記遷移金属元素含有溶液に含有されている遷移金属元素が、Ni及びMnから選ばれる1以上の元素に加え、Co及びFeからなる群から選ばれる1以上の元素を含む、上記〈1〉~〈5〉項のいずれか一項に記載の方法。
 〈7〉上記〈1〉~〈6〉項のいずれか一項に記載の方法により遷移金属水酸化物を得、得られた遷移金属水酸化物をリチウム化合物と混合し、焼成することを特徴とする、リチウム複合金属酸化物の製造方法。
That is, the present invention relates to the following inventions.
<1> A transition metal element-containing solution and a basic solution are fed into a flow reactor and brought into contact with stirring and mixing in the flow reactor so that the transition metal hydroxide is a main component. A method for producing a transition metal hydroxide, comprising a step of continuously obtaining a slurry containing a solid material.
<2> The method according to <1> above, wherein the flow reactor is a tubular reactor having a stirring mechanism.
<3> The method according to <1> or <2>, wherein the residence time of the slurry in the flow reactor is 60 seconds or less.
<4> The method according to any one of <1> to <3>, wherein the flow reactor is a tubular reactor equipped with a high-speed rotary stirrer.
<5> The method according to any one of <1> to <4> above, wherein the transition metal element contained in the transition metal element-containing solution is one or more elements selected from Ni and Mn. .
<6> The transition metal element contained in the transition metal element-containing solution contains one or more elements selected from the group consisting of Co and Fe in addition to one or more elements selected from Ni and Mn. The method according to any one of items 1> to <5>.
<7> A transition metal hydroxide is obtained by the method according to any one of <1> to <6> above, and the obtained transition metal hydroxide is mixed with a lithium compound and fired. A method for producing a lithium composite metal oxide.
 遷移金属水酸化物を製造する本発明の方法によれば、粒径がより小さくかつ比表面積がより高い遷移金属水酸化物、特にリチウム複合金属酸化物、より特に二次電池正極材の原料として好適なリチウム複合金属酸化物を、高い生産性で製造することができる。 According to the method of the present invention for producing a transition metal hydroxide, as a raw material for a transition metal hydroxide having a smaller particle size and a higher specific surface area, particularly a lithium composite metal oxide, more particularly a secondary battery positive electrode material A suitable lithium composite metal oxide can be produced with high productivity.
高速回転攪拌機を備えた管型反応器を有する攪拌システムの概要図である。It is a schematic diagram of the stirring system which has a tubular reactor provided with the high-speed rotary stirrer. 高速回転攪拌機の断面概要図である。It is a cross-sectional schematic diagram of a high-speed rotary stirrer. 遷移金属水酸化物を製造する本発明の方法を概念的に示す図である。It is a figure which shows notionally the method of this invention which manufactures a transition metal hydroxide. 遷移金属水酸化物を製造する従来の方法を概念的に示す図である。It is a figure which shows notionally the conventional method of manufacturing a transition metal hydroxide.
 遷移金属水酸化物を製造する本発明の方法は、遷移金属元素含有溶液と塩基性溶液とを、流通式反応器内に送液して、この流通式反応器内で攪拌混合しながら接触させ、それによって遷移金属水酸化物を主成分とする固形物を含むスラリーを連続的に得る工程を含む。なお、本発明に関して、遷移金属水酸化物を主成分とする固形物は、遷移金属水酸化物の含有率が50質量%以上、60質量%以上、70質量%以上、80質量%以上、90質量%以上、又は95質量%以上である固形物を意味している。 In the method of the present invention for producing a transition metal hydroxide, a transition metal element-containing solution and a basic solution are fed into a flow reactor and contacted with stirring and mixing in the flow reactor. And a step of continuously obtaining a slurry containing a solid containing a transition metal hydroxide as a main component. In the present invention, the solid content mainly composed of transition metal hydroxide has a transition metal hydroxide content of 50 mass% or more, 60 mass% or more, 70 mass% or more, 80 mass% or more, 90 It means a solid matter of not less than mass% or not less than 95 mass%.
 この本発明の方法によれば、遷移金属元素含有溶液と塩基性溶液とを、連続的に且つ短時間で均一に混合することができ、また生成した遷移金属水酸化物の粒成長を抑制でき、結果として粒径がより小さくかつ比表面積がより高い遷移金属水酸化物を得ることができる。 According to the method of the present invention, the transition metal element-containing solution and the basic solution can be mixed continuously and uniformly in a short time, and the grain growth of the produced transition metal hydroxide can be suppressed. As a result, a transition metal hydroxide having a smaller particle size and a higher specific surface area can be obtained.
 このような粒成長の抑制は、図3に示すような機構によって達成されている。なお、図3では、遷移金属水酸化物を製造する流通式反応器110の入口側106a、中間部106b、及び出口側106cにおける遷移金属水酸化物を主成分とする固形物162の状態をそれぞれ、吹き出し152、154及び156を用いて概念的に示している。 Such suppression of grain growth is achieved by a mechanism as shown in FIG. In addition, in FIG. 3, the state of the solid substance 162 which has the transition metal hydroxide as a main component in the inlet side 106a, the intermediate part 106b, and the outlet side 106c of the flow-type reactor 110 which manufactures a transition metal hydroxide is shown, respectively. , Conceptually using balloons 152, 154, and 156.
 すなわち、この本発明の方法では、図3に示すように、遷移金属元素含有溶液102と塩基性溶液104とを、流通式反応器110内に送液して、この流通式反応器110内で攪拌混合しながら接触させる。このような接触によって生じる遷移金属水酸化物を主成分とする固形物は、流通式反応器110内を入口側106aから出口側106cへと流れ、生成物流れ108として取り出される。したがって、生成した固形物は、通式反応器110の入口側において新たに供給される遷移金属元素含有溶液102及び塩基性溶液104とは直接には接触しないので、吹き出し152、154及び156で示されているように、生成した固形物162を核とした粒成長が最小限に抑制されている。 That is, in the method of the present invention, as shown in FIG. 3, the transition metal element-containing solution 102 and the basic solution 104 are fed into the flow reactor 110, and the flow reactor 110 Contact with stirring. The solid material mainly composed of transition metal hydroxide generated by such contact flows in the flow reactor 110 from the inlet side 106a to the outlet side 106c, and is taken out as a product stream 108. Therefore, the generated solid is not in direct contact with the transition metal element-containing solution 102 and the basic solution 104 that are newly supplied on the inlet side of the general reactor 110, and is thus indicated by the blowouts 152, 154, and 156. As can be seen, grain growth centered on the generated solid 162 is minimized.
 これに対して、従来技術でのように、遷移金属元素含有溶液と塩基性溶液とをバッチ式で混合させる場合、遷移金属水酸化物の製造の初期において、固形物262が生成する(図4(a))。初期に生成したこの固形物262は、その後に供給される遷移金属元素含有溶液102及び塩基性溶液104と直接に接触し、それによって固形物262を核として、遷移金属水酸化物の製造の中期において固形物262aでのように(図4(b))、そして遷移金属水酸化物の製造の後期において固形物262bでのように(図4(c))、粒成長する。このような粒成長は、工業的スケールで大量にスラリーを製造する場合にはより顕著になる。 On the other hand, when the transition metal element-containing solution and the basic solution are mixed batchwise as in the prior art, a solid 262 is generated at the initial stage of the production of the transition metal hydroxide (FIG. 4). (A)). The solid material 262 generated in the initial stage is in direct contact with the transition metal element-containing solution 102 and the basic solution 104 supplied thereafter, and thus the solid material 262 is used as a core to produce a transition metal hydroxide in the middle stage. Grain grows as in solids 262a (FIG. 4 (b)) and at the later stages of transition metal hydroxide production (FIG. 4 (c)). Such grain growth becomes more remarkable when a large amount of slurry is produced on an industrial scale.
 (流通式反応器)
 本発明において用いられる流通式反応器は、供給される遷移金属元素含有溶液と塩基性溶液との撹拌を行うことができる任意の流通式反応器であってよく、例えば攪拌機構を有する管型反応器であってよい。
(Flow reactor)
The flow reactor used in the present invention may be any flow reactor that can stir the supplied transition metal element-containing solution and the basic solution, for example, a tubular reaction having a stirring mechanism. It may be a vessel.
 遷移金属水酸化物を主成分とする固形物を含有するスラリーは、粘度が比較的高いため、一般的には、短時間での均一混合が困難である。しかしながら、攪拌機構を有する管型反応器、特に高速回転攪拌機を用いることにより、短時間で均一に混合することができる。これによれば、管型反応器内でのスラリーの滞留時間が短くなるので、固形分(遷移金属水酸化物)の過度の粒成長を回避することができる。 Since a slurry containing a solid containing a transition metal hydroxide as a main component has a relatively high viscosity, it is generally difficult to uniformly mix in a short time. However, by using a tubular reactor having a stirring mechanism, particularly a high-speed rotary stirrer, uniform mixing can be achieved in a short time. According to this, since the residence time of the slurry in the tubular reactor is shortened, excessive grain growth of the solid content (transition metal hydroxide) can be avoided.
 本発明で用いられる攪拌機構を備えた管型反応器としては、管状の流路内に所定の障害物(例えばコイル形状、ビーズ、管状の流路の内壁に形成した突起物等)を配置したり、管状の流路内壁自体を渦巻き型にしたり、固定式攪拌翼(タービン)を形成した構造を有することにより、その流路内で乱流を発生させることができるものが挙げられる。具体的には、攪拌機構を備えた管型反応器としては、ラインミキサー、スタティックミキサー、ホモミキサー、ホモジナイザー、パイプラインホモミキサー等が挙げられる。 As a tubular reactor equipped with a stirring mechanism used in the present invention, a predetermined obstacle (for example, a coil shape, a bead, a protrusion formed on the inner wall of a tubular flow path, etc.) is disposed in a tubular flow path. Or a tubular flow channel inner wall itself having a spiral shape, or having a structure in which a fixed stirring blade (turbine) is formed, so that turbulent flow can be generated in the flow channel. Specifically, examples of the tubular reactor equipped with a stirring mechanism include a line mixer, a static mixer, a homomixer, a homogenizer, and a pipeline homomixer.
 攪拌機構を備えた管型反応器の中でも、高速回転攪拌機を備えた管型反応器が好ましい。高速回転攪拌機は、モータ等の駆動機構により高速回転する特殊形状のタービンと、その外周部に回転部から数mm以下のクリアランスを隔てて設けられたステーターとから構成されている。高速回転攪拌機は例えば、約1~40m/sec程度の周速で高速回転するタービンとステーターの間で生じる剪断力、圧力変動、キャビテーション、衝突力等によって、対象となる液体を攪拌する装置である。 Among the tubular reactors equipped with a stirring mechanism, the tubular reactor equipped with a high-speed rotating stirrer is preferable. The high-speed rotating stirrer is composed of a specially shaped turbine that rotates at high speed by a drive mechanism such as a motor, and a stator that is provided on the outer periphery of the turbine with a clearance of several mm or less from the rotating portion. A high-speed rotating stirrer is a device that stirs a target liquid by shearing force, pressure fluctuation, cavitation, collision force, etc. generated between a turbine rotating at a high speed at a peripheral speed of about 1 to 40 m / sec and a stator, for example. .
 高速回転攪拌機を備えた管型反応器の具体例としては、TKパイプラインホモミキサー(商品名、プライミクス株式会社製)、TKホモミックラインフロー(商品名、プライミクス株式会社製)、フィルミックス(商品名、プライミクス株式会社製)、コロイドミル(商品名、神鋼パンテック株式会社製)、スラッシャー(商品名、三井三池化工機株式会社製)、トリゴナル湿式微粉砕機(商品名、三井三池化工機株式会社製)、キャビトロン(商品名、株式会社ユーロテック製)、ファインフローミル(商品名、太平洋機工株式会社製)等が挙げられる。 Specific examples of a tubular reactor equipped with a high-speed rotary stirrer include TK pipeline homomixer (trade name, manufactured by Primics Co., Ltd.), TK homomic line flow (trade name, manufactured by Primics Co., Ltd.), and fill mix (product) Name, Primix Co., Ltd.), colloid mill (trade name, manufactured by Shinko Pantech Co., Ltd.), slasher (trade name, manufactured by Mitsui Miike Chemical Co., Ltd.), trigonal wet milling machine (trade name, Mitsui Miike Chemical Co. Company-made), Cavitron (trade name, manufactured by Eurotech Co., Ltd.), fine flow mill (trade name, manufactured by Taiheiyo Kiko Co., Ltd.), and the like.
(遷移金属元素含有溶液)
 遷移金属元素含有溶液に含有される遷移金属元素としては、その水酸化物が、リチウム化合物と混合され、焼成されることにより二次電池の正極活物質となりうるものであれば制限がなく、例えば、Ni、Mn、Co、Fe、Cr、Ti等を挙げることができる。この中でも、高容量の二次電池用正極を得るという観点からは、Ni及びMnからなる群から選ばれる1以上の元素であることが好ましい。さらに、より高容量の二次電池用正極を得るという観点からは、Ni及びMnからなる群から選ばれる1以上の元素に加えて、さらにCo及びFeからなる群から選ばれる1以上の元素を含有することが好ましい。
(Transition metal element-containing solution)
The transition metal element contained in the transition metal element-containing solution is not limited as long as the hydroxide can be mixed with a lithium compound and fired to become a positive electrode active material of a secondary battery. For example, , Ni, Mn, Co, Fe, Cr, Ti and the like. Among these, from the viewpoint of obtaining a high-capacity positive electrode for a secondary battery, one or more elements selected from the group consisting of Ni and Mn are preferable. Furthermore, from the viewpoint of obtaining a positive electrode for a secondary battery having a higher capacity, in addition to one or more elements selected from the group consisting of Ni and Mn, one or more elements selected from the group consisting of Co and Fe are further added. It is preferable to contain.
 遷移金属元素含有溶液は、例えば、それぞれの遷移金属元素の金属単体、酸化物、水酸化物、オキシ水酸化物、炭酸塩、硫酸塩、硝酸塩、酢酸塩、ハロゲン化物、アンモニウム塩、シュウ酸塩、アルコキシド等を、水又はこれらを溶解することが可能な有機溶剤、例えばアルコール等の溶媒に溶解して調製することができる。 Transition metal element-containing solutions include, for example, simple metals, oxides, hydroxides, oxyhydroxides, carbonates, sulfates, nitrates, acetates, halides, ammonium salts, and oxalates of the respective transition metal elements. An alkoxide or the like can be prepared by dissolving in water or an organic solvent capable of dissolving them, for example, a solvent such as alcohol.
 溶媒としては通常、水が用いられ、好ましくは純水、イオン交換水等が用いられる。なお、上記遷移金属元素の単体又は化合物が上記溶媒に溶解し難い場合には、それらを塩酸、硫酸、硝酸、酢酸等を含有する溶液に溶解させて作製してもよい。この中でも遷移金属元素の硫酸塩、例えば、Niの硫酸塩、Mnの硫酸塩、Coの硫酸塩及びFeの硫酸塩を水に溶解して得られる水溶液であることが好ましい。Feの硫酸塩としては、2価のFeの硫酸塩であることが好ましい。 As the solvent, water is usually used, preferably pure water, ion-exchanged water or the like. When the transition metal element alone or the compound is difficult to dissolve in the solvent, it may be prepared by dissolving them in a solution containing hydrochloric acid, sulfuric acid, nitric acid, acetic acid or the like. Among these, an aqueous solution obtained by dissolving a sulfate of a transition metal element, for example, a sulfate of Ni, a sulfate of Mn, a sulfate of Co and a sulfate of Fe, in water is preferable. The Fe sulfate is preferably a divalent Fe sulfate.
(塩基性溶液)
 塩基性溶液に含有される塩基としては、例えば、LiOH(水酸化リチウム)、NaOH(水酸化ナトリウム)、KOH(水酸化カリウム)、LiCO(炭酸リチウム)、NaCO(炭酸ナトリウム)、KCO(炭酸カリウム)及び(NHCO(炭酸アンモニウム)からなる群より選ばれる1種以上の無水物並びに該1種以上の水和物を挙げることができる。また、塩基として、アンモニアを挙げることもできる。
(Basic solution)
Examples of the base contained in the basic solution include LiOH (lithium hydroxide), NaOH (sodium hydroxide), KOH (potassium hydroxide), Li 2 CO 3 (lithium carbonate), Na 2 CO 3 (sodium carbonate). ), One or more anhydrides selected from the group consisting of K 2 CO 3 (potassium carbonate) and (NH 4 ) 2 CO 3 (ammonium carbonate), and the one or more hydrates. Also, ammonia can be mentioned as the base.
 また、製造コストの面から、用いる塩基として好ましくはNaOH及びKOHの無水物並びにその水和物を用いることが好ましい。また、上述の塩基は2つ以上併用してもよい。 Further, from the viewpoint of production cost, it is preferable to use NaOH and KOH anhydrides and hydrates thereof as the base to be used. Two or more of the above-mentioned bases may be used in combination.
 塩基性溶液は通常、水溶液として用いられる。この塩基性水溶液における塩基の濃度は、通常0.5~10モル/L程度、好ましくは1~8モル/L程度である。 Basic solution is usually used as an aqueous solution. The concentration of the base in this basic aqueous solution is usually about 0.5 to 10 mol / L, preferably about 1 to 8 mol / L.
 塩基性水溶液に使用される水は、好ましくは純水及び/又はイオン交換水である。また、塩基性水溶液は、本発明の効果をそこなわない範囲で、アルコール等水以外の有機溶媒や、pH調整剤等を含んでいてもよい。 The water used for the basic aqueous solution is preferably pure water and / or ion-exchanged water. The basic aqueous solution may contain an organic solvent other than water, such as alcohol, a pH adjuster, and the like as long as the effects of the present invention are not impaired.
 (スラリー)
 なお、得られるスラリーは、大部分が遷移金属水酸化物からなる沈殿物(固形分)と水などの溶媒とからなり、それ以外にもスラリーを得る過程で残った原料、副生塩、例えば、NaSO、KSO、添加剤、有機溶剤等を含んでいてもよい。
(slurry)
The slurry obtained is mainly composed of a precipitate (solid content) consisting of a transition metal hydroxide and a solvent such as water, and other raw materials, by-product salts, such as remaining in the process of obtaining the slurry. , Na 2 SO 4 , K 2 SO 4 , additives, organic solvents and the like may be included.
 (好適な実施形態)
 (好適な実施形態-遷移金属水酸化物の製造方法)
 以下、好適な実施形態として、スラリーの製造に高速回転攪拌機を備えた管型反応器を使用した例を、図面を参照して具体的に説明する。
(Preferred embodiment)
(Preferred Embodiment-Method for Producing Transition Metal Hydroxide)
Hereinafter, as a preferred embodiment, an example in which a tubular reactor equipped with a high-speed rotary stirrer is used for the production of slurry will be specifically described with reference to the drawings.
 図1は、高速回転攪拌機を備えた管型反応器を有する攪拌システム1の概要図である。攪拌システム1は、高速回転攪拌機を備えた管型反応器10と、遷移金属元素含有溶液を貯留する原料タンク(貯留槽)2a及び塩基性水溶液を貯留する原料タンク2bと、原料タンク2a,2bに貯留された溶液を、配管P,P,Pを介して、管型反応器10に供給する送液ポンプ3a,3bとを備える。 FIG. 1 is a schematic diagram of a stirring system 1 having a tubular reactor equipped with a high-speed rotating stirrer. The stirring system 1 includes a tubular reactor 10 equipped with a high-speed rotating stirrer, a raw material tank (storage tank) 2a for storing a transition metal element-containing solution, a raw material tank 2b for storing a basic aqueous solution, and raw material tanks 2a and 2b. Are provided with liquid feed pumps 3a and 3b for supplying the solution stored in the pipe reactor 10 through the pipes P 1 , P 2 and P 3 .
 上記構成の攪拌システム1による遷移金属元素含有溶液と塩基性水溶液との混合は以下のように行われる。まず、原料タンク2a及び原料タンク2bから、それぞれ原料となる遷移金属元素含有溶液と塩基性水溶液とが、送液管P,Pを介して送液管Pに供給される。遷移金属元素含有溶液と塩基性水溶液の供給量は、送液ポンプ3a,3bにて適当な速度に制御される。なお、生成する遷移金属水酸化物の酸化劣化を抑制するために、密閉系で送給混合してもよい。また、好ましい実施態様では、管型反応器10を出たスラリーは、そのまま次の固液分離工程に移送され、再度管型反応器を通さない。 The transition metal element-containing solution and the basic aqueous solution are mixed by the stirring system 1 having the above-described configuration as follows. First, from the raw material tank 2a and the raw material tank 2b, the transition metal element-containing solution, respectively as a raw material and the basic aqueous solution is supplied to the liquid supply pipe P 3 via the liquid feed pipe P 1, P 2. The supply amounts of the transition metal element-containing solution and the basic aqueous solution are controlled at appropriate speeds by the liquid feed pumps 3a and 3b. In addition, in order to suppress the oxidative deterioration of the produced transition metal hydroxide, it may be fed and mixed in a closed system. In a preferred embodiment, the slurry exiting the tubular reactor 10 is transferred as it is to the next solid-liquid separation step and does not pass through the tubular reactor again.
 図2は、高速回転攪拌機を備えた管型反応器10の断面概要図である。図2に示すように管型反応器10は、反応器本体11と、第1攪拌部12と、第2攪拌部13と、シャフト14と、モータ15を主要部とする。 FIG. 2 is a schematic cross-sectional view of a tubular reactor 10 equipped with a high-speed rotary stirrer. As shown in FIG. 2, the tubular reactor 10 includes a reactor main body 11, a first stirring unit 12, a second stirring unit 13, a shaft 14, and a motor 15 as main parts.
 反応器本体11は、ステンレス製管状容器のような管状容器であり、その一端に設けられた水平方向に開口した吸入口11aと、反応器本体11の中央付近に設けられた吐出口11bとを有する。 The reactor main body 11 is a tubular container such as a stainless steel tubular container. The reactor main body 11 includes a suction port 11a provided at one end of the reactor main body 11 and a discharge port 11b provided near the center of the reactor main body 11. Have.
 なお、反応器本体11の内容積は、原料の種類やスラリーの生産量等を考慮して適宜設計され、内容積50mL~10L程度のテスト機から、内容積10L~100L程度の実機まで広く適用できる。また、反応器本体11の容器径Dと容器長さLの比、D/Lは、通常、0.1~0.7であり、0.35~0.45が好適である。 The internal volume of the reactor main body 11 is appropriately designed in consideration of the type of raw material, the production amount of slurry, etc., and widely applied from a test machine with an internal volume of about 50 mL to 10 L to an actual machine with an internal volume of about 10 L to 100 L. it can. Further, the ratio D / L between the vessel diameter D and the vessel length L of the reactor main body 11 is usually 0.1 to 0.7, preferably 0.35 to 0.45.
 第1攪拌部12は、タービン12aとステーター12bとを重ね合わせた構造であり、吸入口11aの近傍に配置されている。タービン12aは、シャフト14に直結され、モータ15によって高速回転することができる。一方、ステーター12bは反応器本体11に固定されている。 The first stirring unit 12 has a structure in which the turbine 12a and the stator 12b are overlapped, and is disposed in the vicinity of the suction port 11a. The turbine 12 a is directly connected to the shaft 14 and can be rotated at high speed by the motor 15. On the other hand, the stator 12 b is fixed to the reactor main body 11.
 タービン12aの内面には、周方向に延びる攪拌羽根が所定の間隔をおいて設けられており、ステーター12bの内面には、周方向に延びる攪拌羽根が所定の間隔をおいて設けられている。そして、タービン12aとステーター12bとは、2mm以下程度のクリアランスを隔ててその攪拌羽根同士を係合させて重ね合わせてある。タービン12aは、シャフト14に取り付けられており、モータ15によって高速回転することができる。タービン12aの翼径dは、反応器本体11の容器径Dとの比、d/Dが、通常、0.5~0.8程度であり、好適には0.6~0.7となるように設定される。 Stirring blades extending in the circumferential direction are provided at a predetermined interval on the inner surface of the turbine 12a, and stirring blades extending in the circumferential direction are provided at a predetermined interval on the inner surface of the stator 12b. The turbine 12a and the stator 12b are overlapped with each other with the stirring blades engaged with each other with a clearance of about 2 mm or less. The turbine 12 a is attached to the shaft 14 and can be rotated at high speed by the motor 15. The blade diameter d of the turbine 12a is a ratio with the vessel diameter D of the reactor main body 11, and d / D is usually about 0.5 to 0.8, preferably 0.6 to 0.7. Is set as follows.
 第2攪拌部13も第1攪拌部12同様に、タービン13aと、ステーター13bとを重ね合わせた構造であり、第1攪拌部12の後段かつ吐出口11bの前段に配置されている。タービン13aは、シャフト14に取り付けられており、モータ15によって高速回転することができる。タービン13aの翼径d’は、反応器本体11の容器径Dとの比、d’/Dが、通常、0.5~0.8程度であり、好適には0.6~0.7となるように設定される。 Similarly to the first stirring unit 12, the second stirring unit 13 has a structure in which a turbine 13a and a stator 13b are overlapped, and is arranged at a stage subsequent to the first stirring unit 12 and before the discharge port 11b. The turbine 13 a is attached to the shaft 14 and can be rotated at high speed by the motor 15. The blade diameter d ′ of the turbine 13a is a ratio to the vessel diameter D of the reactor main body 11, and d ′ / D is usually about 0.5 to 0.8, preferably 0.6 to 0.7. Is set to be
 なお、タービン12a,13aにおける攪拌翼の形状等は特に限定されるものではなく、高速攪拌ができるものであればよい。 The shape of the stirring blades in the turbines 12a and 13a is not particularly limited as long as it can perform high-speed stirring.
 高速回転攪拌機を備えた管型反応器10では、モータ15を駆動させることにより、タービン12a及びタービン13aが周速約1~40m/sec程度で回転する。そして、タービンの高速回転によって生じる吸入口11aと、吐出口11bとの間の圧力差を利用して、送液管Pを介して供給された原料の混合液を、吸入口11aより吸入する。なお、送液管P内での遷移金属元素含有溶液と塩基性溶液との反応をできるだけ回避するために、Pの長さは設計上許される範囲で短い方がよい。 In the tubular reactor 10 equipped with a high-speed rotating stirrer, the turbine 12a and the turbine 13a rotate at a peripheral speed of about 1 to 40 m / sec by driving the motor 15. Then, by utilizing the suction port 11a caused by high speed rotation of the turbine, the pressure differential between the discharge port 11b, and a mixture of the supplied material through the liquid feed pipe P 3, inhaled from the suction port 11a . In order to avoid as much as possible the reaction of the transition metal element-containing solution and basic solution in the liquid feed pipe P 3, the length of the P 3 had better short range allowed in design.
 吸入された混合原料液は、第1攪拌部12において、高速回転するタービン12aとステーター12bとの隙間を通過することにより生じる剪断力、圧力変動、キャビテーション等の攪拌力によって強制的に混合され、後段の第2攪拌部13に供給される。 The sucked mixed raw material liquid is forcibly mixed in the first stirring unit 12 by a stirring force generated by passing through a gap between the turbine 12a rotating at high speed and the stator 12b, a stirring force such as shearing force, pressure fluctuation, cavitation, It is supplied to the second stirring unit 13 at the subsequent stage.
 吸入された混合原料液は、第2攪拌部13においても、同様に高速回転するタービン13aとステーター13bを通過することにより、更に均一に攪拌混合される。 The mixed raw material liquid thus sucked is also stirred and mixed evenly in the second stirring section 13 by passing through the turbine 13a and the stator 13b, which are similarly rotated at a high speed.
 なお、本実施形態では、第1攪拌部12及び第2攪拌部13の2つの攪拌部を有する高速回転攪拌機を備えた管型反応器を示したが、攪拌部の数は2つに限定されず、本発明の目的である遷移金属元素含有溶液を塩基性溶液と工業的スケールで均一に混合することが十分行えれば、攪拌部は1つでもよい。 In the present embodiment, a tubular reactor provided with a high-speed rotary stirrer having two stirring sections, the first stirring section 12 and the second stirring section 13, is shown, but the number of stirring sections is limited to two. If the transition metal element-containing solution, which is the object of the present invention, can be sufficiently mixed with the basic solution on an industrial scale, the number of stirring units may be one.
 管型反応器のような流通式反応器内でのスラリーの滞留時間は、均一な混合を損なわない範囲で短いほどよい。ここで、「流通式反応器内でのスラリーの滞留時間」とは、管型反応器の内容積(m)をスラリー生成速度(m/sec)で除したものを意味する。「スラリー生成速度」は、単位時間当たりに生成するスラリーの体積であり、単位時間当たりに管型反応器内に供給する塩基性溶液及び遷移金属元素含有溶液の合計重量(これが生成するスラリー重量に相当する)を、生成したスラリーの密度で除することで求めることができる。 The residence time of the slurry in a flow reactor such as a tubular reactor is preferably as short as possible without impairing uniform mixing. Here, “slurry residence time in the flow reactor” means a value obtained by dividing the internal volume (m 3 ) of the tubular reactor by the slurry production rate (m 3 / sec). “Slurry production rate” is the volume of slurry produced per unit time, and is the total weight of the basic solution and transition metal element-containing solution supplied into the tubular reactor per unit time (in terms of the weight of the slurry produced). (Corresponding) is divided by the density of the produced slurry.
 スラリーの滞留時間が長くなりすぎると、生成する遷移金属水酸化物の粒径が大きくなりすぎるおそれがあるため、好ましくは60秒以下、より好ましくは30秒以下、特に好ましくは15秒以下である。なお、スラリーの滞留時間は、タービン12a,13aの回転速度や送液ポンプ3a,3bの送液量によって制御することができる。 If the residence time of the slurry becomes too long, the particle size of the transition metal hydroxide produced may become too large, so it is preferably 60 seconds or less, more preferably 30 seconds or less, and particularly preferably 15 seconds or less. . The residence time of the slurry can be controlled by the rotational speed of the turbines 12a and 13a and the amount of liquid fed by the liquid feed pumps 3a and 3b.
 混合温度は、均一な組成の固形物(遷移金属水酸化物)が含まれるスラリーを得ることができれば特に制限はされないが、通常、室温から80℃程度の温度範囲である。 The mixing temperature is not particularly limited as long as a slurry containing a solid material (transition metal hydroxide) having a uniform composition can be obtained, but it is usually in a temperature range from room temperature to about 80 ° C.
 上記工程で得られたスラリーを固液分離した後、分離された遷移金属水酸化物のウェットケーク(固形分)を乾燥することにより、遷移金属水酸化物からなる乾燥物を得ることができる。 After the slurry obtained in the above step is subjected to solid-liquid separation, the dried transition metal hydroxide wet cake (solid content) is dried to obtain a dried product of transition metal hydroxide.
 固液分離方法は、いかなる方法によってもよく、具体的にはろ過、遠心分離、沈降分離等の方法が挙げられるが、通常、操作性、コスト面から、ろ過が好ましく用いられる。 The solid-liquid separation method may be any method, and specifically includes methods such as filtration, centrifugation, and sedimentation separation. Usually, filtration is preferably used in terms of operability and cost.
 ろ過の方法としては、漏斗内にろ材を設置してその内部にスラリーを流し込み、ろ紙上と漏斗内にある液体にかかる重力のみで求める固形分を得る自然ろ過、ろ紙の下面を減圧して大気圧をかけてろ過する減圧ろ過、耐圧の容器の下部にろ材を設置した後にスラリーを充填し、ろ過液面上部を圧縮空気もしくは窒素等の不活性ガスで加圧する加圧ろ過、遠心力を用いて差圧を得てろ過する遠心ろ過、フィルタープレスを利用した圧搾式ろ過等が挙げられる。工業スケールでの製造においては、操作性、コスト面から、フィルタープレスを利用した圧搾式ろ過が好ましく用いられる。なお、遷移金属水酸化物以外の不純物濃度を低減させる目的で、一旦ろ過を行った後に水等の洗浄用溶媒により、ウェットケークの洗浄を行うことが好ましい。 The filtration method is to install a filter medium in the funnel, pour the slurry into the funnel, and naturally filter to obtain the solid content obtained only by gravity on the liquid on the filter paper and in the funnel. Vacuum filtration that filters under pressure, filter medium is placed under the pressure-resistant container, and then the slurry is filled, pressure filtration that pressurizes the upper surface of the filtrate with an inert gas such as compressed air or nitrogen, using centrifugal force Centrifugal filtration for obtaining and filtering the differential pressure, and squeezing filtration using a filter press. In production on an industrial scale, squeezing filtration using a filter press is preferably used from the viewpoint of operability and cost. For the purpose of reducing the concentration of impurities other than the transition metal hydroxide, it is preferable to wash the wet cake with a washing solvent such as water after once filtering.
 なお、ウェットケークの含水量をどの程度まで低減させるかは、乾燥工程と併せて全体的な効率性を考慮して決定される。 It should be noted that to what extent the moisture content of the wet cake is reduced is determined in consideration of the overall efficiency together with the drying process.
 次いで、得られたウェットケークを乾燥することにより、遷移金属水酸化物の乾燥物を得る。乾燥は、通常、熱処理によって行われるが、送風乾燥、真空乾燥等によってもよい。また、乾燥の雰囲気としては、大気、酸素、窒素、アルゴン又はそれらの混合ガスを用いることができるが、大気雰囲気が好ましい。乾燥を熱処理によって行う場合には、通常50~300℃である。 Next, the obtained wet cake is dried to obtain a dried transition metal hydroxide. Drying is usually performed by heat treatment, but may be performed by air drying, vacuum drying, or the like. As the drying atmosphere, air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable. When drying is performed by heat treatment, the temperature is usually 50 to 300 ° C.
 遷移金属水酸化物の乾燥物のBET比表面積は、通常、10m/g以上150m/g以下程度である。乾燥物のBET比表面積は、乾燥温度によってある程度、調節することができる。 The BET specific surface area of the dried transition metal hydroxide is usually about 10 m 2 / g or more and 150 m 2 / g or less. The BET specific surface area of the dried product can be adjusted to some extent by the drying temperature.
 遷移金属水酸化物の乾燥物のBET比表面積は、後述の焼成時の反応性を促進させる意味で、20m/g以上であることが好ましく、30m/g以上であることがより好ましい。また、操作性の観点では、乾燥物のBET比表面積は、140m/g以下であることが好ましく、135m/g以下であることがより好ましい。 The BET specific surface area of the dried transition metal hydroxide is preferably 20 m 2 / g or more, more preferably 30 m 2 / g or more, in order to promote the reactivity during firing described later. Further, in the viewpoint of operability, BET specific surface area of the dried product is preferably 140 m 2 / g or less, and more preferably less 135m 2 / g.
 また、遷移金属水酸化物の乾燥物は、通常、0.001μm以上0.1μm以下の粒径の一次粒子と、一次粒子が凝集して形成された1μm以上100μm以下の粒径の二次粒子との混合物からなる。一次粒子、二次粒子の粒径は、走査型電子顕微鏡(以下、SEMということがある。)で観察することにより、測定することができる。二次粒子の粒径は、1μm以上50μm以下であることが好ましく、1μm以上30μm以下であることがより好ましい。 The dried transition metal hydroxide is usually a primary particle having a particle size of 0.001 μm or more and 0.1 μm or less, and a secondary particle having a particle size of 1 μm or more and 100 μm or less formed by aggregation of the primary particles. And a mixture. The particle diameters of the primary particles and the secondary particles can be measured by observing with a scanning electron microscope (hereinafter sometimes referred to as SEM). The particle size of the secondary particles is preferably 1 μm or more and 50 μm or less, and more preferably 1 μm or more and 30 μm or less.
 (好適な実施形態-リチウム複合金属酸化物の製造方法)
 上記により得られる遷移金属水酸化物の乾燥物をリチウム化合物と混合し、得られる混合物を焼成することにより、リチウム複合金属酸化物を得ることができる。リチウム化合物としては、水酸化リチウム、塩化リチウム、硝酸リチウム及び炭酸リチウムからなる群より選ばれる1種以上の無水物及び水和物を挙げることができる。
(Preferred Embodiment-Method for Producing Lithium Composite Metal Oxide)
A lithium composite metal oxide can be obtained by mixing the dried transition metal hydroxide obtained above with a lithium compound and firing the resulting mixture. Examples of the lithium compound include one or more anhydrides and hydrates selected from the group consisting of lithium hydroxide, lithium chloride, lithium nitrate, and lithium carbonate.
 混合は、乾式混合、湿式混合のいずれによってもよいが、簡便性の観点では、乾式混合が好ましい。混合装置としては、攪拌混合、V型混合機、W型混合機、リボン混合機、ドラムミキサー、ボールミル等を挙げることができる。 The mixing may be either dry mixing or wet mixing, but from the viewpoint of simplicity, dry mixing is preferable. Examples of the mixing device include stirring and mixing, a V-type mixer, a W-type mixer, a ribbon mixer, a drum mixer, a ball mill, and the like.
 上記焼成における保持温度により、リチウム複合金属酸化物のBET比表面積をある程度、調整することができる。通常、保持温度が高くなればなるほど、BET比表面積は小さくなる傾向にある。保持温度を低くすればするほど、BET比表面積は大きくなる傾向にある。 The BET specific surface area of the lithium composite metal oxide can be adjusted to some extent by the holding temperature in the firing. Usually, the higher the holding temperature, the smaller the BET specific surface area tends to be. The BET specific surface area tends to increase as the holding temperature is lowered.
 上記焼成における保持温度としては、650℃以上900℃以下の範囲であることが好ましい。上記保持温度で保持する時間は、通常0.1~20時間であり、好ましくは0.5~8時間である。上記保持温度までの昇温速度は、通常50℃~400℃/時間であり、上記保持温度から室温までの降温速度は、通常10℃~400℃/時間である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はそれらの混合ガスを用いることができるが、大気雰囲気が好ましい。 The holding temperature in the firing is preferably in the range of 650 ° C. or higher and 900 ° C. or lower. The holding time at the holding temperature is usually 0.1 to 20 hours, preferably 0.5 to 8 hours. The rate of temperature rise to the holding temperature is usually 50 ° C. to 400 ° C./hour, and the rate of temperature drop from the holding temperature to room temperature is usually 10 ° C. to 400 ° C./hour. As the firing atmosphere, air, oxygen, nitrogen, argon, or a mixed gas thereof can be used, but an air atmosphere is preferable.
 上記焼成の際に、混合物は、反応促進剤を含有していてもよい。反応促進剤として、具体的には、NaCl、KCl、RbCl、CsCl、CaCl、MgCl、SrCl、BaCl及びNHCl等の塩化物;NaCO、KCO、RbCO、CsCO、CaCO、MgCO、SrCO及びBaCO等の炭酸塩;KSO、NaSO等の硫酸塩;NaF、KF、NHF等のフッ化物が挙げられる。この中でも、好ましくはNa、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群から選ばれる1種以上の元素の塩化物、炭酸塩及び硫酸塩を挙げることができ、より好ましくはKCl、KCO、KSOである。また、反応促進剤を2種以上併用することもできる。 During the firing, the mixture may contain a reaction accelerator. Specific examples of the reaction accelerator include chlorides such as NaCl, KCl, RbCl, CsCl, CaCl 2 , MgCl 2 , SrCl 2 , BaCl 2 and NH 4 Cl; Na 2 CO 3 , K 2 CO 3 , Rb 2 Carbonates such as CO 3 , Cs 2 CO 3 , CaCO 3 , MgCO 3 , SrCO 3 and BaCO 3 ; sulfates such as K 2 SO 4 and Na 2 SO 4 ; fluorides such as NaF, KF and NH 4 F Can be mentioned. Among these, preferred are chlorides, carbonates and sulfates of one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba, and more preferred is KCl. , K 2 CO 3 , K 2 SO 4 . Two or more reaction accelerators can be used in combination.
 混合物が反応促進剤を含有することで、混合物の焼成時の反応性を向上させ、得られるリチウム複合金属酸化物のBET比表面積を調整することが可能な場合がある。反応促進剤を混合物に含有させるには、例えば遷移金属水酸化物をリチウム化合物と混合するときに反応促進剤を添加すればよい。なお、混合物と反応促進剤との混合割合は、混合物100重量部中0.1重量部以上100重量部以下が好ましく、1.0重量部以上25重量部以下がより好ましい。 When the mixture contains a reaction accelerator, it may be possible to improve the reactivity when the mixture is fired and to adjust the BET specific surface area of the obtained lithium composite metal oxide. In order to contain the reaction accelerator in the mixture, for example, the reaction accelerator may be added when the transition metal hydroxide is mixed with the lithium compound. The mixing ratio of the mixture and the reaction accelerator is preferably from 0.1 to 100 parts by weight, more preferably from 1.0 to 25 parts by weight, in 100 parts by weight of the mixture.
 このようにして得たリチウム複合金属酸化物は、ボールミルやジェットミル等を用いて粉砕してもよい。粉砕によって、リチウム複合金属酸化物のBET比表面積を調整することが可能な場合がある。また、粉砕と焼成を2回以上繰り返してもよい。また、リチウム複合金属酸化物は必要に応じて洗浄あるいは分級することもできる。 The lithium composite metal oxide thus obtained may be pulverized using a ball mill, a jet mill or the like. It may be possible to adjust the BET specific surface area of the lithium composite metal oxide by grinding. Moreover, you may repeat a grinding | pulverization and baking twice or more. Further, the lithium composite metal oxide can be washed or classified as necessary.
 (リチウム複合金属酸化物)
 上記の方法により得られるリチウム複合金属酸化物は、二次電池、中でも非水電解質二次電池に有用な正極活物質となる。
(Lithium composite metal oxide)
The lithium composite metal oxide obtained by the above method becomes a positive electrode active material useful for secondary batteries, particularly nonaqueous electrolyte secondary batteries.
 上記の方法により得られるリチウム複合金属酸化物は、通常、0.05μm以上1μm以下の平均粒径の一次粒子から構成され、一次粒子と、一次粒子が凝集して形成された0.1μm以上100μm以下の平均粒径の二次粒子との混合物からなる。一次粒子及び二次粒子の平均粒径は、それぞれSEM(走査型電子顕微鏡)で観察することにより、測定することができる。 The lithium composite metal oxide obtained by the above method is usually composed of primary particles having an average particle diameter of 0.05 μm or more and 1 μm or less, and is formed by agglomeration of primary particles and primary particles of 0.1 μm or more and 100 μm. It consists of a mixture with secondary particles of the following average particle size. The average particle diameters of the primary particles and the secondary particles can be measured by observing with an SEM (scanning electron microscope).
 上記の方法により得られるリチウム複合金属酸化物は、その構造が通常α-NaFeO型結晶構造、すなわちR-3mの空間群に帰属される結晶構造である。結晶構造は、リチウム複合金属酸化物について、CuKαを線源とする粉末X線回折測定により得られる粉末X線回折図形から同定することができる。 The lithium composite metal oxide obtained by the above method usually has an α-NaFeO 2 type crystal structure, that is, a crystal structure belonging to the R-3m space group. The crystal structure can be identified for a lithium composite metal oxide from a powder X-ray diffraction pattern obtained by powder X-ray diffraction measurement using CuKα as a radiation source.
 上記の方法により得られるリチウム複合金属酸化物では、Ni、Mn、Fe,Co等の遷移金属元素Mの合計量(モル)に対し、Liの量(モル)は、通常、0.5以上1.5以下であり、容量維持率をより高める意味で、0.95以上1.5以下であることが好ましく、より好ましくは1.0以上1.4以下である。 In the lithium composite metal oxide obtained by the above method, the amount (mol) of Li is usually 0.5 or more and 1 with respect to the total amount (mol) of transition metal elements M such as Ni, Mn, Fe and Co. It is preferably 0.5 or more and 1.5 or less and 1.5 or less, more preferably 1.0 or more and 1.4 or less in the sense of further increasing the capacity retention rate.
 上記の方法により得られるリチウム複合金属酸化物を以下の式(A)として表したときには、yは、通常、0.5以上1.5以下であり、好ましくは0.95以上1.5以下、より好ましくは1.0以上1.4以下である:
 Li(Ni1-x)O   (A)
 (ここで、Mは、1種以上の遷移金属元素を表し、xは、0<x<1である。)
When the lithium composite metal oxide obtained by the above method is expressed as the following formula (A), y is usually 0.5 or more and 1.5 or less, preferably 0.95 or more and 1.5 or less, More preferably, it is 1.0 or more and 1.4 or less:
Li y (Ni 1-x M x ) O 2 (A)
(Here, M represents one or more transition metal elements, and x is 0 <x <1.)
 また、本発明の効果を損なわない範囲で、上記の方法により得られる本発明のリチウム複合金属酸化物は、遷移金属元素の一部が、他元素で置換されていてもよい。ここで、他元素としては、B、Al、Ga、In、Si、Ge、Sn、Mg、Sc、Y、Zr、Hf、Nb、Ta、Mo、W、Tc、Ru、Rh、Ir、Pd、Cu、Ag、Zn等の元素を挙げることができる。 In addition, in the lithium composite metal oxide of the present invention obtained by the above method as long as the effects of the present invention are not impaired, a part of the transition metal element may be substituted with another element. Here, as other elements, B, Al, Ga, In, Si, Ge, Sn, Mg, Sc, Y, Zr, Hf, Nb, Ta, Mo, W, Tc, Ru, Rh, Ir, Pd, Examples of the element include Cu, Ag, and Zn.
 上記の方法により得られるリチウム複合金属酸化物を構成する粒子の表面に、リチウム複合金属酸化物とは異なる化合物を付着させてもよい。このような化合物としては、例えば、B、Al、Ga、In、Si、Ge、Sn、Mg及び遷移金属元素からなる群より選ばれる1種以上の元素を含有する化合物、好ましくはB、Al、Mg、Ga、In及びSnからなる群より選ばれる1種以上の元素を含有する化合物、より好ましくはAlの化合物を挙げることができる。この化合物として具体的には、上記元素の酸化物、水酸化物、オキシ水酸化物、炭酸塩、硝酸塩、有機酸塩を挙げることができ、好ましくは、酸化物、水酸化物、オキシ水酸化物である。また、これらの化合物を混合して用いてもよい。これら化合物の中でも、特に好ましい化合物はアルミナである。また、付着後に加熱を行ってもよい。 A compound different from the lithium composite metal oxide may be attached to the surface of the particles constituting the lithium composite metal oxide obtained by the above method. As such a compound, for example, a compound containing one or more elements selected from the group consisting of B, Al, Ga, In, Si, Ge, Sn, Mg and a transition metal element, preferably B, Al, A compound containing one or more elements selected from the group consisting of Mg, Ga, In and Sn, more preferably an Al compound. Specific examples of the compound include oxides, hydroxides, oxyhydroxides, carbonates, nitrates, and organic acid salts of the above elements. Preferably, the oxides, hydroxides, oxyhydroxides are used. It is a thing. Moreover, you may use these compounds in mixture. Among these compounds, a particularly preferred compound is alumina. Moreover, you may heat after adhesion.
 上記の方法により得られるリチウム複合金属酸化物は、正極活物質として有用であり、二次電池、特に非水電解質二次電池の正極に好適である。この二次電池に用いられる正極活物質は、上記の方法により得られるリチウム複合金属酸化物が主成分であればよい。 The lithium composite metal oxide obtained by the above method is useful as a positive electrode active material, and is suitable for a secondary battery, particularly a positive electrode of a nonaqueous electrolyte secondary battery. The positive electrode active material used for the secondary battery may be composed mainly of the lithium composite metal oxide obtained by the above method.
 二次電池用の正極は、上記の方法により得られたリチウム複合金属酸化物を正極活物質として、公知の方法、例えば、国際公開第09/041722号パンフレットに記載の方法にて作製することができる。 The positive electrode for a secondary battery can be produced by a known method, for example, the method described in WO 09/041722 using the lithium composite metal oxide obtained by the above method as a positive electrode active material. it can.
 以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples unless the gist thereof is changed.
 (実施例1)
 攪拌槽内で、水酸化カリウム100重量部を、蒸留水1159重量部に添加した。攪拌により水酸化カリウムを完全に溶解させ、水酸化カリウム水溶液(塩基性水溶液)を調製した。
Example 1
In a stirring tank, 100 parts by weight of potassium hydroxide was added to 1159 parts by weight of distilled water. Potassium hydroxide was completely dissolved by stirring to prepare an aqueous potassium hydroxide solution (basic aqueous solution).
 また、別の攪拌槽内で、蒸留水567重量部に、硫酸ニッケル(II)六水和物98.4重量部、硫酸マンガン(II)四水和物64.6重量部及び硫酸鉄(II)四水和物11.1重量部を添加した。攪拌によりこれらを溶解し、ニッケル-マンガン-鉄混合水溶液を得た。 Further, in another stirring tank, 567 parts by weight of distilled water, 98.4 parts by weight of nickel (II) sulfate hexahydrate, 64.6 parts by weight of manganese (II) sulfate tetrahydrate, and iron sulfate (II ) Added 11.1 parts by weight of tetrahydrate. These were dissolved by stirring to obtain a nickel-manganese-iron mixed aqueous solution.
 次いで、上記水酸化カリウム水溶液165重量部と上記ニッケル-マンガン-鉄混合水溶液95.1重量部とを、高速回転攪拌機を備えた管型反応器であるT.K.パイプラインホモミキサー(商品名、PRIMIX社)に、生成するスラリーのpHが一定になるように供給した。T.K.パイプラインホモミキサーを、周速15m/sで運転させて、固形物(共沈物)を含むスラリーを得た。このとき、スラリーの管型反応器(パイプラインホモミキサー)内での滞留時間は、0.8秒であった。得られたスラリーのpHは、13であった。 Next, 165 parts by weight of the above potassium hydroxide aqueous solution and 95.1 parts by weight of the above nickel-manganese-iron mixed aqueous solution were added to a tube reactor equipped with a high-speed rotary stirrer. K. It was supplied to a pipeline homomixer (trade name, PRIMIX) so that the pH of the slurry to be produced was constant. T. T. et al. K. The pipeline homomixer was operated at a peripheral speed of 15 m / s to obtain a slurry containing solid matter (coprecipitate). At this time, the residence time of the slurry in the tubular reactor (pipeline homomixer) was 0.8 seconds. The resulting slurry had a pH of 13.
 次いで、該スラリーについて、ろ過による固液分離を行った後、120℃で乾燥させて乾燥物Pを得た。乾燥物PのBET比表面積は110m/gであった。 Then, the slurry was subjected to solid-liquid separation by filtration to obtain a dried substance P 1 and dried at 120 ° C.. BET specific surface area of the dried product P 1 was 110m 2 / g.
 上記乾燥物P100重量部に対し、炭酸リチウム52.1重量部と硫酸カリウム14.3重量部とをボールミルを用いて乾式混合して、混合物を得た。次いで、該混合物をアルミナ製焼成容器に入れ、電気炉を用いて850℃で6時間保持することで焼成を行ない、室温まで冷却して、焼成品を得た。該焼成品を粉砕し、蒸留水でろ過及び洗浄を行ない、300℃で6時間乾燥して粉末Bを得た。 With respect to 100 parts by weight of the dried product P 1 , 52.1 parts by weight of lithium carbonate and 14.3 parts by weight of potassium sulfate were dry-mixed using a ball mill to obtain a mixture. Next, the mixture was placed in an alumina firing container and fired by holding at 850 ° C. for 6 hours using an electric furnace, and cooled to room temperature to obtain a fired product. Pulverizing the calcination product, subjected to filtration and washing with distilled water to obtain a powder B 1 was dried for 6 hours at 300 ° C..
 粉末BのBET比表面積は11m/gであった。粉末X線回折パターンを測定し、粉末Bの結晶構造は、R-3mの空間群に帰属される結晶構造であることがわかった。 BET specific surface area of the powder B 1 represents was 11m 2 / g. The powder X-ray diffraction pattern was measured, the crystal structure of the powder B 1 represents, it was found that a crystal structure belonging to the space group R-3m.
 (比較例1)
 攪拌槽内で、水酸化カリウム100重量部を、蒸留水535重量部に添加した。攪拌により水酸化カリウムを完全に溶解させ、水酸化カリウム水溶液(塩基性水溶液)を調製した。
(Comparative Example 1)
In a stirring tank, 100 parts by weight of potassium hydroxide was added to 535 parts by weight of distilled water. Potassium hydroxide was completely dissolved by stirring to prepare an aqueous potassium hydroxide solution (basic aqueous solution).
 また、別の攪拌槽内で、蒸留水255重量部に、硫酸ニッケル(II)六水和物98.4重量部、硫酸マンガン(II)四水和物64.6重量部及び硫酸鉄(II)四水和物11.1重量部を添加した。攪拌によりこれらを溶解し、ニッケル-マンガン-鉄混合水溶液を得た。 Further, in another stirring tank, 255 parts by weight of distilled water, 98.4 parts by weight of nickel (II) sulfate hexahydrate, 64.6 parts by weight of manganese (II) sulfate tetrahydrate, and iron sulfate (II ) Added 11.1 parts by weight of tetrahydrate. These were dissolved by stirring to obtain a nickel-manganese-iron mixed aqueous solution.
 次いで、別の攪拌層に、蒸留水936重量部と上記水酸化カリウム水溶液15.8重量部を仕込んだ。液温30℃にて、これらを攪拌しながら、上記水酸化カリウム水溶液165重量部と上記ニッケル-マンガン-鉄混合水溶液95.1重量部を滴下することにより、固形物(共沈物)が生成し、該固形物を含むスラリーを得た。なお、水酸化カリウム及びニッケル-マンガン-鉄混合水溶液の滴下速度は、実施例1における管型反応器への水酸化カリウム及びニッケル-マンガン-鉄混合水溶液の供給速度と同じにした。反応終点でのスラリーのpHを測定したところ、pHは13であった。 Next, 936 parts by weight of distilled water and 15.8 parts by weight of the aqueous potassium hydroxide solution were charged into another stirring layer. While stirring these at a liquid temperature of 30 ° C., 165 parts by weight of the potassium hydroxide aqueous solution and 95.1 parts by weight of the nickel-manganese-iron mixed aqueous solution are added dropwise to form a solid (coprecipitate). Thus, a slurry containing the solid was obtained. The dropping rate of the potassium hydroxide and nickel-manganese-iron mixed aqueous solution was the same as the supply rate of the potassium hydroxide and nickel-manganese-iron mixed aqueous solution to the tubular reactor in Example 1. When the pH of the slurry at the end of the reaction was measured, the pH was 13.
 次いで、該スラリーについて、ろ過による固液分離を行った後、120℃で乾燥させて乾燥物Rを得た。乾燥物RのBET比表面積は88m/gであった。 Next, the slurry was subjected to solid-liquid separation by filtration and then dried at 120 ° C. to obtain a dried product R 1 . BET specific surface area of the dried product R 1 was 88m 2 / g.
 上記乾燥物R100重量部に対し、炭酸リチウム52.1重量部と硫酸カリウム14.3重量部とをボールミルを用いて乾式混合して、混合物を得た。次いで、該混合物をアルミナ製焼成容器に入れ、電気炉を用いて850℃で6時間保持することで焼成を行なった。これを、室温まで冷却して、焼成品を得た。該焼成品を粉砕し、蒸留水でろ過ならびに洗浄を行ない、300℃で6時間乾燥して粉末Bを得た。 With respect to 100 parts by weight of the dried product R 1 , 52.1 parts by weight of lithium carbonate and 14.3 parts by weight of potassium sulfate were dry-mixed using a ball mill to obtain a mixture. Next, the mixture was placed in an alumina firing vessel and fired by holding at 850 ° C. for 6 hours using an electric furnace. This was cooled to room temperature to obtain a fired product. Pulverizing the calcination product, subjected to filtration and washed with distilled water to obtain a powder B 2 was dried for 6 hours at 300 ° C..
 粉末BのBET比表面積は8.8m/gであった。粉末X線回折パターンを測定し、粉末Bの結晶構造は、R-3mの空間群に帰属される結晶構造であることがわかった。 The BET specific surface area of the powder B 2 was 8.8 m 2 / g. The powder X-ray diffraction pattern was measured, the crystal structure of the powder B 2 was found to be a crystal structure belonging to the space group of R-3m.
 本発明によれば、二次電池の正極活物質の前駆体である遷移金属水酸化物を連続的、かつ、高効率に生産できるため、工業的に有望である。 According to the present invention, the transition metal hydroxide, which is a precursor of the positive electrode active material of the secondary battery, can be produced continuously and efficiently, which is industrially promising.
 1  攪拌システム
 2a  原料タンク(遷移金属元素)
 2b  原料タンク(塩基性溶液)
 3a,3b  送液ポンプ
 P,P,P  配管
 10  (高速回転攪拌機を備えた)管型反応器
 11  反応器本体
 11a  吸入口
 11b  吐出口
 12  第1攪拌部
 13  第2攪拌部
 12a,13a  タービン
 12b,13b  ステーター
 14  シャフト
 15  モータ
1 Stirring system 2a Raw material tank (transition metal element)
2b Raw material tank (basic solution)
3a, 3b Liquid feed pumps P 1 , P 2 , P 3 piping 10 Tubular reactor (equipped with a high-speed rotating stirrer) 11 Reactor body 11a Suction port 11b Discharge port 12 First stirring unit 13 Second stirring unit 12a, 13a Turbine 12b, 13b Stator 14 Shaft 15 Motor

Claims (7)

  1.  遷移金属元素含有溶液と塩基性溶液とを、流通式反応器内に送液して、前記流通式反応器内で攪拌混合しながら接触させ、それによって遷移金属水酸化物を主成分とする固形物を含むスラリーを連続的に得る工程を含む、遷移金属水酸化物の製造方法。 The transition metal element-containing solution and the basic solution are fed into a flow reactor and brought into contact with stirring and mixing in the flow reactor, whereby a solid containing transition metal hydroxide as a main component. The manufacturing method of the transition metal hydroxide including the process of obtaining the slurry containing a thing continuously.
  2.  前記流通式反応器が、攪拌機構を有する管型反応器である、請求項1に記載の方法。 The method according to claim 1, wherein the flow reactor is a tubular reactor having a stirring mechanism.
  3.  前記流通式反応器内でのスラリーの滞留時間が、60秒以下である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the residence time of the slurry in the flow reactor is 60 seconds or less.
  4.  前記流通式反応器が、高速回転攪拌機を備えた管型反応器である、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the flow reactor is a tubular reactor equipped with a high-speed rotary stirrer.
  5.  前記遷移金属含有溶液に含有されている遷移金属元素が、Ni及びMnから選ばれる1以上の元素である、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the transition metal element contained in the transition metal-containing solution is one or more elements selected from Ni and Mn.
  6.  前記遷移金属含有溶液に含有されている遷移金属元素が、Ni及びMnから選ばれる1以上の元素に加え、Co及びFeからなる群から選ばれる1以上の元素を含む、請求項1~5のいずれか一項に記載の方法。 The transition metal element contained in the transition metal-containing solution contains one or more elements selected from the group consisting of Co and Fe in addition to one or more elements selected from Ni and Mn. The method according to any one of the above.
  7.  請求項1~6のいずれか一項に記載の方法により遷移金属水酸化物を得、得られた遷移金属水酸化物をリチウム化合物と混合し、焼成することを特徴とする、リチウム複合金属酸化物の製造方法。 A lithium composite metal oxide characterized by obtaining a transition metal hydroxide by the method according to any one of claims 1 to 6, mixing the obtained transition metal hydroxide with a lithium compound, and firing. Manufacturing method.
PCT/JP2011/078475 2010-12-09 2011-12-08 Method for producing transition metal hydroxide WO2012077763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274537 2010-12-09
JP2010274537 2010-12-09

Publications (1)

Publication Number Publication Date
WO2012077763A1 true WO2012077763A1 (en) 2012-06-14

Family

ID=46207246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078475 WO2012077763A1 (en) 2010-12-09 2011-12-08 Method for producing transition metal hydroxide

Country Status (2)

Country Link
JP (1) JP2012136421A (en)
WO (1) WO2012077763A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061121A1 (en) * 2013-10-24 2015-04-30 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
JP2016201209A (en) * 2015-04-08 2016-12-01 帝人株式会社 Positive electrode active material, production method therefor, positive electrode composite material using positive electrode active material, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092337B1 (en) * 2011-07-20 2011-12-09 (주) 라미나 Lithium battery cathode materials for manufacturing an all-in-one type of continuous reactor, and it determines the separation device that includes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241146A (en) * 2003-02-03 2004-08-26 Mitsubishi Chemicals Corp Aluminum-containing lithium transition metal composite oxide, and positive electrode for lithium secondary batteries using this, and lithium secondary battery
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
JP2010170993A (en) * 2008-12-22 2010-08-05 Sumitomo Chemical Co Ltd Electrode mixture, electrode, and nonaqueous electrolyte secondary cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241146A (en) * 2003-02-03 2004-08-26 Mitsubishi Chemicals Corp Aluminum-containing lithium transition metal composite oxide, and positive electrode for lithium secondary batteries using this, and lithium secondary battery
JP2006151795A (en) * 2004-10-27 2006-06-15 Sumitomo Chemical Co Ltd Spherical nickel hydroxide powder and method for producing same
JP2010170993A (en) * 2008-12-22 2010-08-05 Sumitomo Chemical Co Ltd Electrode mixture, electrode, and nonaqueous electrolyte secondary cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015061121A1 (en) * 2013-10-24 2015-04-30 Dow Global Technologies Llc Improved lithium metal oxide cathode materials and method to make them
JP2017500685A (en) * 2013-10-24 2017-01-05 ダウ グローバル テクノロジーズ エルエルシー Improved lithium metal oxide cathode materials and methods for making them
JP2016201209A (en) * 2015-04-08 2016-12-01 帝人株式会社 Positive electrode active material, production method therefor, positive electrode composite material using positive electrode active material, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2012136421A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP7202393B2 (en) Method for preparing cathode material for rechargeable lithium-ion batteries
TWI517487B (en) Complexometric precursor formulation methodology for industrial production of fine and ultrafine powders and nanopowders of layered lithium mixed metal oxides for battery applications
JP6023587B2 (en) Method for producing positive electrode active material for lithium ion battery
JP5847352B2 (en) Lithium metal composite oxide powder
TWI412170B (en) Composite oxide containing lithium and a method for producing the same
KR101275845B1 (en) Apparatus using couette-taylor vortice reaction equipment for preparing precursor of cathode material for lithium secondary battery
CN105377766B (en) Nickel-manganese is compound oxyhydroxide, its manufacturing method and application thereof
JP6747291B2 (en) Nickel-manganese composite hydroxide particles and method for producing the same
JP4235409B2 (en) Method for producing fine barium carbonate and method for producing barium titanate
JP7292537B2 (en) Cathode material for lithium-ion battery, method for producing the same, and lithium-ion battery
WO2012077763A1 (en) Method for producing transition metal hydroxide
WO2011136036A1 (en) Method for producing transition metal hydroxide
WO2019117027A1 (en) Nickel-containing hydroxide and production method therefor
JP2017199561A (en) Lithium metal composite oxide powder
JP6605391B2 (en) Method for modifying lithium metal composite oxide powder
JP5758256B2 (en) Method for producing positive electrode material powder for fine lithium secondary battery
JP4032784B2 (en) Method for producing lithium transition metal composite oxide
JP2003297358A (en) Manufacturing method for composite oxide of lithium transition metal
JP5275090B2 (en) Method for producing fine particle titanium oxide powder
JP6475186B2 (en) Method for modifying lithium metal composite oxide powder
JP6495861B2 (en) Method for modifying lithium metal composite oxide powder
CN114530592B (en) Ternary cathode material and preparation method thereof
JP2013232319A (en) Method for manufacturing positive electrode active material for lithium secondary battery
WO2009035128A1 (en) Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide
WO2022265016A1 (en) Lithium-metal composite oxide, positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847423

Country of ref document: EP

Kind code of ref document: A1