WO2009035128A1 - Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide - Google Patents

Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide Download PDF

Info

Publication number
WO2009035128A1
WO2009035128A1 PCT/JP2008/066802 JP2008066802W WO2009035128A1 WO 2009035128 A1 WO2009035128 A1 WO 2009035128A1 JP 2008066802 W JP2008066802 W JP 2008066802W WO 2009035128 A1 WO2009035128 A1 WO 2009035128A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide powder
powder
fine particle
titanium
Prior art date
Application number
PCT/JP2008/066802
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Yoshida
Hideki Sakai
Masashi Wagatsuma
Original Assignee
Toho Titanium Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd. filed Critical Toho Titanium Co., Ltd.
Priority to JP2009532263A priority Critical patent/JPWO2009035128A1/en
Publication of WO2009035128A1 publication Critical patent/WO2009035128A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3615Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C1/3623Grinding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a method for producing fine particle titanium oxide powder and fine particle titanium oxide powder suitable for a catalyst, a solar cell, a dielectric material and the like.
  • Titanium oxide is used in various applications such as pigments, dielectric materials, and UV shielding materials. In recent years, applications to photocatalysts and solar cells are also in the spotlight. As described above, titanium oxide has a wide variety of uses, but because of demands for improvement in performance, miniaturization, high refractive index, transparency, etc., titanium oxide having fine particles and good dispersibility is required.
  • the dispersibility of fine particle titanium oxide is an important factor in extracting the performance of titanium oxide. For example, when used as a photocatalyst or a solar cell, it is difficult to transmit light if the dispersibility is poor, so the characteristics such as catalyst performance, transparency, and photoelectric conversion efficiency are deteriorated.
  • Barium titanate which is a typical dielectric, is obtained by a solid-state reaction between barium carbonate and titanium oxide. In this reaction, barium oxide generated by decomposition of barium carbonate diffuses into titanium oxide. It is said that when dissolved, it produces palynium titanate. For this reason, the particle diameter of the barium titanate obtained is governed by the size of the titanium oxide particles, and in order to obtain fine barium titanate, fine and well-dispersed titanium oxide is required.
  • the titanium oxide powder is produced by a liquid phase method in which titanyl sulfate, titanium tetrachloride, organic titanium, etc. are hydrolyzed in a liquid phase, and titanium halide is oxygenated. Is roughly classified into a gas phase method of reacting with an oxidizing gas such as water vapor in the gas phase. Generally, titanium oxide obtained by the vapor phase method does not use a solvent, so it is finer and more dispersible than titanium oxide obtained by the liquid phase method, and it is excellent in crystallinity because it is a reaction at a high temperature. It has the features such as.
  • a titania silica mixed crystal particle produced by a gas phase oxidation method is used as a container having a rotating blade.
  • agglomeration of the powder or dissociation of the three-dimensional structure is disclosed by stirring at a peripheral speed of 4 to 60 m / s.
  • a Henschel mixer is exemplified.
  • titanium oxide produced by vapor phase oxidation of titanium tetrachloride gas has the problem that Henschel mixers cannot sufficiently dissociate agglomerates.
  • Japanese Patent Application Laid-Open No. Hei 10-19 4 7 4 1 discloses that titanium dioxide powder obtained by gas phase oxidation of titanium tetrachloride is subjected to pressure molding with a pressure roll type compressor to reduce the volume.
  • a flake-like powder that can be easily broken can be obtained by setting the bulk density to 0.8 g / cm 3 or more.
  • the efficiency was poor. Disclosure of the invention
  • the present invention provides a fine titanium oxide powder and a fine titanium oxide powder that are fine particles, have good dispersibility, are efficient in transportation, storage, transportation, etc., and easy to handle. It is intended to be provided.
  • the present inventors have conducted extensive research for the purpose of solving the secondary particle structure in which the titanium oxide primary particles are aggregated.
  • the raw material titanium oxide powder was subjected to impact or shear.
  • the titanium oxide powder obtained by crushing with a powder grinder and then agitated with a stirrer is fine but has good dispersibility and is efficient in transportation, storage, transportation, etc.
  • the present inventors have found that it is easy to handle and have completed the present invention based on this finding.
  • the raw titanium oxide powder is crushed by a crusher by impact or shear to obtain a crushed powder, and the crushed powder is stirred using a stirrer to obtain fine titanium oxide powder.
  • a method for producing fine-particle titanium oxide powder characterized by comprising: a second step;
  • a fine particle titanium oxide powder characterized by having a BET specific surface area of 10 to 200 m 2 / g and a tap density of 0.4 g_cm 3 or more is provided.
  • FIG. 1 illustrates a conical screw (planet type) mixer that is a stirrer
  • FIG. 1 is a diagram showing the best mode for carrying out the invention
  • the method for producing fine particle titanium oxide powder of the present invention includes a first step of pulverizing with a pulverizer by impact or shear to obtain a pulverized powder, and stirring the pulverized powder with a stirrer. And a second step of obtaining fine particle titanium oxide powder.
  • Examples of the raw material titanium oxide powder used in the method of the present invention include titanium oxide powder obtained by oxidizing titanium halide by a normal gas phase method, liquid phase method, or the like.
  • Examples of the raw material titanium oxide powder obtained by the vapor phase method include those obtained by hydrolyzing or oxidizing titanium halide vapor in the vapor phase.
  • Examples of the raw material titanium oxide powder obtained by the liquid phase method include those obtained by neutralizing or hydrolyzing titanium salts such as titanium halide, titanium sulfate, and titanium alkoxide.
  • examples of the raw material titanium oxide powder include those obtained by spraying a titanium salt solution such as titanium halide, titanyl sulfate, titan alkoxide, and organic titanium salt in a heated oxidizing atmosphere. Can do.
  • titanium halide vapor such as titanium tetrachloride and titanium trichloride, that is, titanium oxide primary particles obtained by hydrolyzing or oxidizing titanium halide gas in the gas phase. Aggregates are preferable, and among the aggregates of the titanium oxide primary particles, those obtained by using titanium tetrachloride vapor are more preferable.
  • titanium oxide primary particles When titanium halide gas is hydrolyzed or oxidized in the gas phase, fine titanium oxide primary particles are produced, but the primary titanium oxide produced is primary. Since the particles easily aggregate, the titanium oxide obtained by hydrolysis or oxidation reaction becomes secondary particles in which fine titanium oxide primary particles are aggregated, that is, aggregates of titanium oxide primary particles.
  • titanium tetrachloride gas is supplied to the reaction section, where oxygen gas is used in the method (1) and oxygen gas is used in the method (2).
  • the hydrogen gas, the water vapor in the method (3), and the hydrogen gas, oxygen gas and water vapor in the method (4) are reacted with each other, but the oxygen gas and the amount of titanium tetrachloride gas supplied to the reaction section It is desirable that the total amount of water vapor supply be equal to or greater than the chemical equivalent of oxidizing all titanium tetrachloride.
  • the amount of water vapor supplied is equal to or greater than the chemical equivalent of oxidizing all of titanium tetrachloride, the titanium oxide formation reaction is performed uniformly, making it easier to control the crystal of the titanium oxide produced, resulting in a high specific surface area. Therefore, it is easy to obtain a rutile type titanium oxide powder having a high rutile ratio and an anatase type titanium oxide powder having a high specific surface area.
  • the chemical equivalent of oxidizing all of titanium tetrachloride means the chemical equivalent of water vapor when titanium tetrachloride is reacted with oxygen or water vapor.
  • titanium tetrachloride (T i C 1 4 ) 1 oxygen (O 2) is 1 molar moles
  • titanium tetrachloride (T i C 1 4) steam per 1 mol (H 2 0) is 2 mol.
  • the supply amount of oxygen gas with respect to the supply amount of hydrogen gas to the reaction section is not less than the chemical equivalent for burning all the hydrogen.
  • the chemical equivalent of burning all hydrogen is 1 mole of oxygen (0 2 ) gas per 2 moles of hydrogen (H 2 ) gas.
  • the hydrogenation rate can be increased by supplying hydrogen gas. Specifically, it is preferable to supply and react oxygen (0 2 ) gas more than twice as much as hydrogen (H 2 ) gas in a volume ratio of gas when the supply gas supplied to the reaction section is in a standard state.
  • the supply rate of titanium tetrachloride gas, water gas, oxygen gas and water vapor is the reaction scale or each supply. It can be set as appropriate because it varies depending on the diameter of the nozzle for supplying the gas, but it is desirable to set the supply speed of each supply gas, particularly titanium tetrachloride gas, in the reaction section so as to be in a turbulent flow region.
  • the titanium tetrachloride gas, hydrogen gas, oxygen gas and water vapor can be diluted with an inert gas such as argon or nitrogen, and supplied to the reaction section to be reacted.
  • an inert gas such as argon or nitrogen
  • anatase-type raw material titanium oxide powder having a high specific surface area and a low rutile ratio can be obtained.
  • a rutile-type raw material titanium oxide powder having a high specific surface area and a high rutile ratio can be obtained.
  • the method for producing raw material titanium oxide powder of (1) to (4) above it is desirable to supply titanium tetrachloride gas, hydrogen gas, oxygen gas and water vapor in a preheated state when supplying them to the reaction section.
  • the preheating temperature is preferably 500 ° C or higher, more preferably 500 to 900 ° C.
  • each supply gas reacts in the reaction section to produce raw material titanium oxide powders.
  • the reaction temperature in the reaction part is preferably equal to or higher than the temperature at which titanium oxide is formed, specifically 500 ° C or higher, more preferably 550 to 900 ° C.
  • the rutile ratio (rutile content rate) of the raw material raw titanium oxide powder is controlled by controlling the preheating temperature and reaction temperature of each supply gas. Can be controlled.
  • the preheating temperature is 5 from 00 to 800 ° C, more preferably 550 to 800 ° C .
  • the rutile ratio is 90.
  • the preheating temperature is preferably more than 800 ° C and not more than 900 ° C, and more preferably 850 to 900 ° C.
  • at least titanium oxide particles are used in order to prevent agglomeration of the produced particles after reacting each supply gas to produce raw material titanium oxide powders.
  • the raw material titanium oxide powder is cooled as soon as possible to less than 300 ° C.
  • the obtained raw titanium oxide powder is then heated in a vacuum or in an air or nitrogen gas atmosphere as necessary.
  • the chlorine remaining in the raw material titanium oxide powder may be removed by contacting with steam or alcohol. Then, the raw material titanium oxide powder from which the chlorine content has been removed may be classified or sieved as necessary.
  • the raw titanium oxide powder is crushed by a crusher using impact or shear to obtain a crushed powder.
  • the unraveling machine include a high-speed rotating powder mill or a jet mill.
  • a high-speed rotary pulverizer is a device that pulverizes powder by impact or cutting by rotating pins and blades at high speed.
  • An example of a high-speed rotary crusher is a pin mill.
  • the peripheral speed of the pins and blades is preferably 100 to 200 mZsec.
  • the jet mill is a device that pulverizes powder by injecting powder into a gas such as air jetted from a nozzle at a high pressure and colliding with each other or between the particle and the impact plate.
  • the raw titanium oxide powder is pulverized by a pulverizer to obtain a pulverized powder.
  • the obtained pulverized powder has a tap density slightly higher than that before the treatment in the first step, but its specific surface area, primary particle diameter, and particle size distribution width hardly change. Therefore, in the first step, it is considered that the action of gently releasing the aggregation of the primary particles of the raw material titanium oxide powder is performed.
  • the pulverized powder is stirred using a stirrer to obtain fine-particle titanium oxide powder.
  • the agitator include, for example, a horizontal cylindrical mixer, a V-type mixer, a double cone mixer, a ribbon mixer, a high-speed fluid mixer, a rotating disk mixer, a stirring mixer, and a cone type. Screw (planet type) Stirrers such as mixers can be listed.
  • the agitation is performed by giving flow from a plurality of directions to the defatted powder charged in the container.
  • the conical screw (planet type) mixing is used.
  • the machine can be mentioned.
  • a conical screw (planet type) mixer is a stirrer equipped with a conical container that narrows downward and a screw that rotates and revolves within the conical container.
  • a conical screw (planet type) mixer that is a stirrer, the screw provided in the mixer extends in parallel with the inner wall of the conical container, in parallel with the inner wall of the conical container. While rotating around an inclined rotation axis, it revolves around the central axis of the conical container along the inner wall of the conical container.
  • FIG. 1 is a schematic cross-sectional view showing a conical screw (planet type) mixer, showing a cross-sectional shape along the central axis of the conical container.
  • the conical screw (planet type) mixer shown in FIG. 1 is an example of the mixer, and is not limited thereto.
  • a stirrer 1 composed of a conical-shaped screw (planet-type) mixer includes a conical container 2 that becomes narrower as it goes downward, and a lid 3 that is installed at the top of the conical container 2.
  • a vertical shaft 4 that is rotatably attached to the lid 3 so that the shaft center coincides with the central axis 10 of the conical container 2, and a revolving motor that is attached to the vertical shaft 4 to drive the vertical shaft 4 to rotate.
  • the screw 8 extends in the vertical direction while spirally winding around the outer periphery of the inclined mandrel 7 in the conical container 2.
  • the screw 8 rotates around the rotation axis 11 that is inclined parallel to the inner wall of the conical container 2 by rotating the inclined mandrel 7 by the rotation motor 9.
  • the screw 8 revolves along the inner wall of the conical container 2 with the central axis 10 of the conical container 2 as the central axis by operating the revolving motor 5 and rotating the vertical shaft 4. .
  • the agitator 1 causes the powder 8 to flow upward in the conical container 2 as the screw 8 rotates, and the revolution direction in the conical container 2 as the screw 8 revolves. A flow of spiral powder is generated. Due to the planetary movement of the screw 8, a downward flow of powder is generated in the conical container 2.
  • stirrer 1 composed of a conical screw (planet type) mixer
  • examples of the stirrer 1 composed of a conical screw (planet type) mixer include “NV B mixer” manufactured by Nishimura Machinery Co., Ltd., “Nauta mixer” manufactured by Hosokawa Micron Corporation.
  • finely divided titanium oxide powder is obtained by stirring the pulverized powder using a stirrer in the second step.
  • the tap density of the raw material titanium oxide can be further increased, and a uniform fine particle titanium oxide powder with a narrow particle size distribution width can be obtained.
  • the resulting fine particle titanium oxide powder comprises primary particles
  • the agglomeration of is solved.
  • the average particle size of the primary particles contained in the resulting fine particle titanium oxide powder is an average particle size by image analysis with SEM photographs, which is 1 OO nm or less, preferably 5 to 70 nm. .
  • the fine particle titanium oxide powder obtained has a particle size distribution (S PAN) of 1 to 2, preferably 1 to 1.8.
  • the particle size distribution (S PAN) is determined by measuring the particle size using a laser light scattering diffractometry particle size measuring machine, and the volume statistic D 90 (the integrated particle size in the volume integrated particle size distribution is 90%.
  • D 10 10% particle size in cumulative particle size distribution ( ⁇ )
  • the BET ratio table area of the fine particle titanium oxide powder obtained by performing the second step is preferably 10 to 200 m 2 / g, more preferably 20 to 200 m 2 Z g, and 30 to 200 m 2 / g. Is more preferable.
  • Tatsu flop density of the resulting fine titanium oxide powder is preferably 0. 4 g / cm 3 or more, 0. S g / cm 3 or more is preferable et.
  • the upper limit of the tap density is not particularly limited, but 1. lg / cm 3 is preferable.
  • the tap density is measured by the following measuring method using a measuring device such as “Tap Densator KYT-4000” manufactured by Seishin Enterprise Co., Ltd.
  • a measurement sample is filled in 5 to 15 g in a 5 Om 1 cup equipped with an auxiliary force cup, and tapped 300 times with this measuring apparatus.
  • the tap density is calculated by the following equation.
  • Tap density (g / ml) sample mass (g) Z reading scale (ml)
  • the raw material titanium oxide powder having a large particle size is obtained by performing the treatment in the first step and the second step.
  • the resulting fine particle titanium oxide powder has a small D 50 and D 90 in particle size measurement, a narrow particle size distribution (S PAN), and a B ET ratio
  • the surface area is large and the tap density is high.
  • the finely divided titanium oxide powder obtained by the method for producing finely divided titanium oxide powder of the present invention has a small D 50 and a large BET specific surface area in the particle size measurement, so that it is fine but dispersible.
  • the fine particle titanium oxide powder obtained by the method for producing the fine particle titanium oxide powder of the present invention has a high tap density, it is efficient in transportation, storage, transportation, etc., and easy to handle.
  • the fine particle titanium oxide powder of the present invention is characterized by having a BET specific surface area of 10 to 20 Om 2 Zg and a tap density of 0.4 g / cm 3 or more.
  • BET specific surface area of the fine titanium oxide powder of the present invention is preferably 20 ⁇ 200m 2 / g, 30 ⁇ 200m 2 / g is more preferable.
  • the tap density of the fine particle titanium oxide powder of the present invention is preferably 0.5 g / cm 3 or more, and the upper limit of the tap density is not particularly limited, but is preferably 1. lg / cm 3 .
  • the BET specific surface area of the fine particle titanium oxide powder of the present invention is 20 to 200 m 2 / g, the particle size of the fine particle titanium oxide powder becomes small, and the dispersibility becomes good while being fine particles.
  • the tap density of the fine particle titanium oxide powder of the present invention is 0.4 gZ C m 3 or more, the efficiency of transportation, storage, transportation, etc. is improved and handling is facilitated.
  • the rutile ratio is preferably 80% or more, and 85% or more. More preferably, it is more preferably 90% or more.
  • the rutile ratio is 80% or more, a material having excellent optical characteristics such as a high ultraviolet shielding effect and a high refractive index can be provided.
  • the fine particle titanium oxide powder of the present invention is anatase type titanium oxide powder
  • the rutile ratio is preferably 30% or less, more preferably 20% or less, and '10% or less More preferably. When the rutile ratio is 30% or less, a suitable photocatalytic material can be obtained.
  • the measurement method of the rutile ratio is the X-ray diffraction measurement according to the method of AS TM D 3 720-84, and the peak area of the strongest diffraction line (surface index 1 1 0) of rutile crystalline titanium oxide (I r) and the peak area (I a) of the strongest diffraction line (surface index 10 1) of anatase-type crystalline titanium oxide are calculated by the following formula.
  • Rutile conversion rate (% by weight) 1 00-1 00 / (1 + 1.2 X 1 r / I a) where the peak area (I r) and peak area (I a)
  • the area of the portion of the corresponding diffraction line that protrudes from the base line is referred to as a known method.
  • the area can be obtained by computer calculation, approximate triangulation, or the like.
  • the fine particle titanium oxide powder of the present invention desirably has a high purity with a very small content of impurity elements, and Fe, A1, Si and Na contained in the fine particle titanium oxide powder of the present invention are: Each is preferably less than 100 ppm by mass, particularly preferably less than 20 ppm by mass, C 1 is preferably less than 1000 ppm by mass, particularly preferably less than 500 ppm by mass, 50 More preferably, the mass is less than p pm.
  • the average particle size of the primary particles contained in the fine particle titanium oxide powder of the present invention is an average particle size obtained by image analysis in SEM photographs and is less than lOO nm It is preferably 5 to 70 ⁇ .
  • the average particle size of the primary particles of the fine particle titanium oxide powder of the present invention is within the above range, for example, the number of laminated ceramic capacitors is increased, and the dielectric layer and the electrode layer are thinned. Can also respond.
  • the particle size distribution (S PAN) of the fine particle titanium oxide powder of the present invention is not particularly limited, but is preferably 1 to 2, particularly preferably 1 to 1.8.
  • the fine particle titanium oxide powder of the present invention can be suitably produced by the method for producing the fine particle titanium oxide powder of the present invention.
  • the rutile ratio of titanium oxide powder (%), BET specific surface area (m 2 / g), tap density ( g Zcm 3 ), average particle size of primary particles ( nm )
  • the particle size and particle size distribution ( ⁇ ) were measured by the following method.
  • the peak area (I r) of the strongest interference line (surface index 1 1 0) of rutile crystalline titanium oxide and the strongest interference line (surface index of titanium oxide powder) in the X-ray diffraction pattern was determined and calculated from the above formula.
  • the X-ray diffraction measurement conditions are as follows.
  • Measurement was performed by the following measuring method using a “Tap Densaichi KYT-4000” measuring device manufactured by Seishin Enterprise Co., Ltd.
  • the average particle size was calculated by measuring the particle size of the primary particles from the SEM photograph by the intercept method.
  • the SEM imaging conditions and intercept method conditions are as follows.
  • SEM lines are drawn at 1 cm intervals, and the intersection of the primary particle outline and the line is taken as the diameter of the particle.
  • the average particle diameter of 500 primary particles was determined by the above method.
  • Particle size and particle size distribution measurement> Using a laser light scattering diffraction particle size analyzer (LA-920: manufactured by HORIBA, Ltd.), suspend an appropriate amount of titanium oxide powder in pure water, add a dispersant, and apply ultrasonic waves for 3 minutes. The particles were dispersed, the particle size was measured, and the particle size distribution of volume statistics was obtained.
  • LA-920 laser light scattering diffraction particle size analyzer
  • the particle size distribution is D 90 (particle size of 90% in the cumulative particle size distribution ( ⁇ )), D 50 (particle size of 50% in the cumulative particle size distribution (/ xm)), D 10 (10% particle size ( ⁇ ⁇ )) in the integrated particle size distribution is calculated, and the particle size distribution (S PAN) is calculated by the following formula.
  • Raw material titanium oxide powder was prepared by a vapor phase method in which titanium tetrachloride was oxidized in contact with oxygen gas, hydrogen gas and water vapor in the gas phase.
  • titanium tetrachloride gas preheated and vaporized to 600 ° C. is diluted with nitrogen gas.
  • hydrogen gas, oxygen gas and water vapor preheated to 60 ° C. are supplied from another supply nozzle, and titanium tetrachloride is heated at 65 ° C. in a gas phase reaction tube. An oxidation reaction was performed.
  • the raw material titanium oxide powder a was pulverized with a Hosokawa Micron pin mill “Colopretus” to obtain a pulverized powder.
  • the crushing conditions are raw material titanium oxide powder b 300 kg, supply speed 100 kg / h, and peripheral speed 1550 m / sec.
  • the obtained pulverized powder was stirred with a “Nauta mixer” (capacity: 500 liters) manufactured by Hosokawa Micron Corporation to obtain fine-particle titanium oxide powder.
  • the stirring treatment conditions were pulverized powder 300 kg, revolution speed 1 rpm, and rotation speed 80 rpm. Table 3 shows the characteristics of the fine titanium oxide powder.
  • the raw material titanium oxide powder a was pulverized with a Hosokawa Micron pin mill “Colopretus” to obtain a pulverized powder.
  • the crushing conditions are: raw material titanium oxide powder a 300 kg, supply speed 100 kg / h, and peripheral speed 150 m / sec.
  • Table 3 shows the characteristics of the pulverized powder.
  • the raw material titanium oxide powder a was stirred with “Nautamixa” manufactured by Hosokawa Micron Corporation to obtain titanium oxide powder.
  • the stirring treatment conditions were: raw material titanium oxide powder a 30 kg, revolution speed 1 rpm, rotation speed 8 O rpm.
  • Table 3 shows the characteristics of the obtained titanium oxide powder.
  • the fine particle titanium oxide powder obtained in Example 1 has a higher tap density than the pulverized powder obtained in Comparative Example 1, the titanium oxide powder obtained in Comparative Example 2, and the raw material titanium oxide powder a. D 5 0 and D 9 0 are small and SPAN is narrow. From this, it can be seen that by performing both the first step and the second step according to the method of the present invention, a finely divided titanium oxide powder in which the raw material titanium oxide powder is finely unwound can be obtained. Industrial applicability
  • the present invention it is possible to provide a method for producing finely divided titanium oxide powder and finely divided titanium oxide, which are excellent in dispersibility, efficient in transportation, storage, transportation and the like and easy to handle.

Abstract

This invention provides a process for producing a fine particle power of titanium oxide which has good dispersibility, is good, for example, in a transfer, storage, and transport efficiency, and is easy to handle. The production process is characterized by comprising a first step of disintegrating a titanium oxide powder as a raw material with a disintegrator utilizing impact or shearing to give a disintegrated powder and a second step of agitating the disintegrated powder with an agitator to give a fine particle power of titanium oxide.

Description

明細書 微粒子酸化チタン粉末の製造方法及び微粒子酸化チタン粉末 技術分野  Technical field of manufacturing fine particle titanium oxide powder and fine particle titanium oxide powder
本発明は、 触媒、 太陽電池、 誘電体原料などに好適な、 微粒子酸化チ タン粉末を製造する方法及び微粒子酸化チタン粉末に関するものである。 背景技術  The present invention relates to a method for producing fine particle titanium oxide powder and fine particle titanium oxide powder suitable for a catalyst, a solar cell, a dielectric material and the like. Background art
酸化チタンは、 顔料、 誘電体原料、 紫外線遮蔽材料などの様々な用途 に利用されている。 また、 近年では、 光触媒や太陽電池などへの応用も 脚光を浴びつつある。 このように酸化チタンの用途は多岐に渡るが、 性 能の向上、 小型化、 高屈折率、 透明性などの要求から、 微粒で分散性の よい酸化チタンが求められている。  Titanium oxide is used in various applications such as pigments, dielectric materials, and UV shielding materials. In recent years, applications to photocatalysts and solar cells are also in the spotlight. As described above, titanium oxide has a wide variety of uses, but because of demands for improvement in performance, miniaturization, high refractive index, transparency, etc., titanium oxide having fine particles and good dispersibility is required.
微粒子酸化チタンの分散性は、 酸化チタンの性能を引き出す上で重要 な因子である。 例えば、 光触媒や太陽電池として使用する場合、 分散性 が悪いと光を透過しにくくなるため、 触媒性能、 透明性、 光電変換効率 などの特性を悪化させる。 また、 代表的な誘電体であるチタン酸バリウ ムは、 炭酸バリウムと酸化チタンの固相反応によって得られ、 この反応 においては、 炭酸バリ ウムの分解によって生成した酸化バリウムが酸化 チタン中に拡散固溶することにより、 チタン酸パリゥムを生成するとい われている。 このため、 得られるチタン酸バリウムの粒子径は、 酸化チ タン粒子の大きさに支配され、 微粒のチタン酸バリウムを得るには、 微 粒で分散性のよい酸化チタンが必要になる。  The dispersibility of fine particle titanium oxide is an important factor in extracting the performance of titanium oxide. For example, when used as a photocatalyst or a solar cell, it is difficult to transmit light if the dispersibility is poor, so the characteristics such as catalyst performance, transparency, and photoelectric conversion efficiency are deteriorated. Barium titanate, which is a typical dielectric, is obtained by a solid-state reaction between barium carbonate and titanium oxide. In this reaction, barium oxide generated by decomposition of barium carbonate diffuses into titanium oxide. It is said that when dissolved, it produces palynium titanate. For this reason, the particle diameter of the barium titanate obtained is governed by the size of the titanium oxide particles, and in order to obtain fine barium titanate, fine and well-dispersed titanium oxide is required.
酸化チタン粉末の製造方法は、 硫酸チタニル、 四塩化チタン、 有機チ タン等を液相で加水分解する液相法と、 ハロゲン化チタンを酸素あるい は水蒸気等の酸化性ガスと気相で反応させる気相法に大別される。 一般 的に気相法により得られる酸化チタンは、 溶媒を使用しないため、 液相 法により得られる酸化チタンに比べ、 微粒で分散性が良く、 また、 高温 での反応であるため結晶性が優れるなどの特徴を有する。 The titanium oxide powder is produced by a liquid phase method in which titanyl sulfate, titanium tetrachloride, organic titanium, etc. are hydrolyzed in a liquid phase, and titanium halide is oxygenated. Is roughly classified into a gas phase method of reacting with an oxidizing gas such as water vapor in the gas phase. Generally, titanium oxide obtained by the vapor phase method does not use a solvent, so it is finer and more dispersible than titanium oxide obtained by the liquid phase method, and it is excellent in crystallinity because it is a reaction at a high temperature. It has the features such as.
四塩化チタンを原料とし、 気相法により微粒子酸化チタンを得る方法 は、 種々提案されているが、 その一つとして、 酸化性ガスとして過剰の 水蒸気を用いる方法がある。 例えば、 特開平 2 0 0 5— 1 0 4 7 9 6号 公報には、 四塩化チタンガス、 酸素ガス、 水素ガス及ぴ水蒸気を気相状 態下で反応させる際、 水蒸気の供給量を、 四塩化チタンを酸化する化学 当量以上とする方法が開示されている。 しかし、 得られる酸化チタン粉 末は微粒になるに従い、 凝集し易くなり、 また嵩高くなる。 そのため、 酸化チタンを微粒とすることにより、 遠隔地へ粉末を輸送する際や、 粉 末をハンドリングする際の効率が悪くなるという問題があった。  Various methods have been proposed for obtaining fine-particle titanium oxide by a vapor phase method using titanium tetrachloride as a raw material, and one of them is a method using excess water vapor as an oxidizing gas. For example, in Japanese Patent Application Laid-Open No. 2 0 5 -1 0 4 7 9 6, when a titanium tetrachloride gas, oxygen gas, hydrogen gas and water vapor are reacted in a gas phase state, A method is disclosed in which titanium tetrachloride is oxidized to a chemical equivalent or more. However, as the resulting titanium oxide powder becomes finer, it tends to aggregate and becomes bulky. For this reason, there was a problem that the efficiency of transporting powder to a remote place or handling powder was reduced by making titanium oxide fine particles.
そのような問題を解決する手段として、 例えば、 特開 2 0 0 4— 2 1 0 5 8 6号公報には、 気相酸化法で作製したチタ二アーシリカ混晶粒子 を、 回転羽根を持つ容器に投入し、 周速 4 ~ 6 0 m/ sで攪拌処理を行 うことで、 粉体の凝集又は立体構造を解離する方法が開示されている。 具体的な装置としては、ヘンシェルミキサーが例示されている。しかし、 四塩化チタンガスの気相酸化法で作製した酸化チタンは、 ヘンシェルミ キサ一では十分に凝集を解離できないという問題があった。  As a means for solving such a problem, for example, in Japanese Patent Application Laid-Open No. 2 0 0 4-2 1 0 5 8 6, a titania silica mixed crystal particle produced by a gas phase oxidation method is used as a container having a rotating blade. And agglomeration of the powder or dissociation of the three-dimensional structure is disclosed by stirring at a peripheral speed of 4 to 60 m / s. As a specific device, a Henschel mixer is exemplified. However, titanium oxide produced by vapor phase oxidation of titanium tetrachloride gas has the problem that Henschel mixers cannot sufficiently dissociate agglomerates.
また、 特開平 1 0— 1 9 4 7 4 1号公報には、 四塩化チタンを気相酸 化して得られた二酸化チタン粉末を、 加圧ロール式の圧縮機により加圧 成形して減容し、 嵩密度 0 . 8 g / c m 3以上とすることでフレーク状 の解れ易い粉体が得られることが示されている。 しかし、 他の粉末と混 合、 再分散する場合、 効率が悪いという問題があった。 発明の開示 Japanese Patent Application Laid-Open No. Hei 10-19 4 7 4 1 discloses that titanium dioxide powder obtained by gas phase oxidation of titanium tetrachloride is subjected to pressure molding with a pressure roll type compressor to reduce the volume. In addition, it has been shown that a flake-like powder that can be easily broken can be obtained by setting the bulk density to 0.8 g / cm 3 or more. However, when mixed and redispersed with other powders, there was a problem that the efficiency was poor. Disclosure of the invention
したがって、 本発明は、 微粒でありながら.、 分散性が良好であり、 移 送、 保管、 輸送などの効率が良く、 取扱いが容易な微粒子酸化チタン粉 末を製造する方法及び微粒子酸化チタン粉末を提供することを目的とす るものである。  Therefore, the present invention provides a fine titanium oxide powder and a fine titanium oxide powder that are fine particles, have good dispersibility, are efficient in transportation, storage, transportation, etc., and easy to handle. It is intended to be provided.
本発明者らは、 上記の課題を解決すべく、 酸化チタン一次粒子が凝集 した二次粒子構造を解すことを目的に、 鋭意研究を重ねた結果、 原料酸 化チタン粉末を、 衝撃又はせん断による粉碎機により解砕処 ¾した後、 攪拌機を用いて攪拌処理して得られた酸化チタン粉末は、 微粒子であり ながら、 分散性が良好であり、 移送、 保管、 輸送などの効率が良く、 取 扱いが容易であることを見出し、 本知見に基づいて本発明を完成するに 至った。  In order to solve the above-mentioned problems, the present inventors have conducted extensive research for the purpose of solving the secondary particle structure in which the titanium oxide primary particles are aggregated. As a result, the raw material titanium oxide powder was subjected to impact or shear. The titanium oxide powder obtained by crushing with a powder grinder and then agitated with a stirrer is fine but has good dispersibility and is efficient in transportation, storage, transportation, etc. The present inventors have found that it is easy to handle and have completed the present invention based on this finding.
すなわち、 本発明は、  That is, the present invention
原料酸化チタン粉末を、 衝撃又はせん断による解砕機により解砕処理 し、 解砕処理粉末を得る第一工程と、 該解砕処理粉末を、 攪拌機を用い て攪拌処理し、 微粒子酸化チタン粉末を得る第二工程とを有することを 特徴とする微粒子酸化チタン粉末の製造方法、 および  The raw titanium oxide powder is crushed by a crusher by impact or shear to obtain a crushed powder, and the crushed powder is stirred using a stirrer to obtain fine titanium oxide powder. A method for producing fine-particle titanium oxide powder, characterized by comprising: a second step;
B E T比表面積が 1 0〜 2 0 0 m 2/ gであり、 且つタップ密度が 0 . 4 g _ c m 3以上であることを特徴とする微粒子酸化チタン粉末 を提供するものである。 A fine particle titanium oxide powder characterized by having a BET specific surface area of 10 to 200 m 2 / g and a tap density of 0.4 g_cm 3 or more is provided.
本発明によれば、 分散性が良好であり、 移送、 保管、 輸送などの効率 が良く、 取扱いが容易な微粒子酸化チタン粉末を製造する方法及ぴ微粒 子酸化チタンを提供することができる。 図面の簡単な説明  According to the present invention, it is possible to provide a method for producing finely divided titanium oxide powder and finely divided titanium oxide, which are excellent in dispersibility, efficient in transportation, storage, transportation and the like and easy to handle. Brief Description of Drawings
図 1は、 攪拌機である円錐型スクリュー (遊星型) 混合機を説明する 図である 発明を実施するための最良の形態 Figure 1 illustrates a conical screw (planet type) mixer that is a stirrer FIG. 1 is a diagram showing the best mode for carrying out the invention;
先ず、 本発明の微粒子酸化チタン粉末の製造方法について説明する。 本発明の微粒子酸化チタン粉末の製造方法は、 衝撃又はせん断による 解砕機により解碎処理し、 解碎処理粉末を得る第一工程と、 該解砕処理 粉末を、 攪拌機を用いて攪拌処理し、 微粒子酸化チタン粉末を得る第二 工程とを有することを特徴とするものである。  First, the manufacturing method of the fine particle titanium oxide powder of this invention is demonstrated. The method for producing fine particle titanium oxide powder of the present invention includes a first step of pulverizing with a pulverizer by impact or shear to obtain a pulverized powder, and stirring the pulverized powder with a stirrer. And a second step of obtaining fine particle titanium oxide powder.
本発明の方法において用いられる原料酸化チタン粉末としては、 ハロ ゲン化チタンを、 通常の気相法、 液相法などにより酸化して得られる酸 化チタン粉末を挙げることができる。  Examples of the raw material titanium oxide powder used in the method of the present invention include titanium oxide powder obtained by oxidizing titanium halide by a normal gas phase method, liquid phase method, or the like.
気相法により得られる原料酸化チタン粉末としては、 ハロゲン化チタ ンの蒸気を、 気相中で加水分解又は酸化させて得られるものを挙げるこ とができる。 液相法により得られる原料酸化チタン粉末としては、 ハロ ゲン化チタン、 硫酸チタエル、 チタンアルコキシド等のチタン塩を中和 または加水分解して得られるものを挙げることができる。また、その他、 原料酸化チタン粉末としては、 ハロゲン化チタン、 硫酸チタニル、 チタ ンアルコキシド、 有機チタン塩等のチタン塩溶液を、 加熱された酸化雰 囲気中に噴霧することにより得られるものを挙げることができる。  Examples of the raw material titanium oxide powder obtained by the vapor phase method include those obtained by hydrolyzing or oxidizing titanium halide vapor in the vapor phase. Examples of the raw material titanium oxide powder obtained by the liquid phase method include those obtained by neutralizing or hydrolyzing titanium salts such as titanium halide, titanium sulfate, and titanium alkoxide. In addition, examples of the raw material titanium oxide powder include those obtained by spraying a titanium salt solution such as titanium halide, titanyl sulfate, titan alkoxide, and organic titanium salt in a heated oxidizing atmosphere. Can do.
特に、 原料酸化チタン粉末としては、 四塩化チタン、 三塩化チタン等 のハロゲン化チタンの蒸気、 すなわち、 ハロゲン化チタンガスを、 気相 中で加水分解又は酸化させることにより得られる酸化チタン一次粒子の 凝集物が好ましく、 上記酸化チタン一次粒子の凝集物のうち、 四塩化チ タンの蒸気を用いて得られるものがより好ましい。  In particular, as the raw material titanium oxide powder, titanium halide vapor such as titanium tetrachloride and titanium trichloride, that is, titanium oxide primary particles obtained by hydrolyzing or oxidizing titanium halide gas in the gas phase. Aggregates are preferable, and among the aggregates of the titanium oxide primary particles, those obtained by using titanium tetrachloride vapor are more preferable.
ハロゲン化チタンガスを、 気相中で加水分解又は酸化させると、 微粒 な酸化チタンの一次粒子が生成するものの、 生成した酸化チタンの一次 粒子は凝集し易いので、 加水分解又は酸化反応により得られる酸化チタ ンは、 微粒な酸化チタンの一次粒子が凝集した二次粒子、 すなわち、 酸 化チタン一次粒子の凝集物となる。 When titanium halide gas is hydrolyzed or oxidized in the gas phase, fine titanium oxide primary particles are produced, but the primary titanium oxide produced is primary. Since the particles easily aggregate, the titanium oxide obtained by hydrolysis or oxidation reaction becomes secondary particles in which fine titanium oxide primary particles are aggregated, that is, aggregates of titanium oxide primary particles.
以下、 原料酸化チタン粉末を作製する具体的方法として、 四塩化チタ ンガスを、 気相中で加水分解又は酸化させる方法について詳述する。 原料酸化チタン粉末を作製する具体的方法としては、  Hereinafter, as a specific method for producing the raw material titanium oxide powder, a method of hydrolyzing or oxidizing titanium tetrachloride gas in the gas phase will be described in detail. As a specific method for producing raw material titanium oxide powder,
( 1 ) 四塩化チタンガスと、 酸素ガスとを接触させ反応させる方法、 (1) A method in which titanium tetrachloride gas and oxygen gas are brought into contact with each other and reacted.
( 2 ) 四塩化チタンガスと、 酸素ガス及び水素ガスとを接触させ反応さ せる方法、 (2) A method of bringing titanium tetrachloride gas into contact with oxygen gas and hydrogen gas and reacting them,
( 3 ) 四塩化チタンガスと、 水蒸気とを接触させ反応させる方法、 ある いは、  (3) A method in which titanium tetrachloride gas is brought into contact with water vapor and reacted, or
( 4 ) 四塩化チタンガスと、 水素ガス、 酸素ガス及ぴ水蒸気とを接触さ せ反応させる方法  (4) A method in which titanium tetrachloride gas is brought into contact with hydrogen gas, oxygen gas and water vapor to react.
により、 四塩化チタンガスを気相中で加水分解又は酸化させる方法を挙 げることができる。 Thus, a method of hydrolyzing or oxidizing titanium tetrachloride gas in the gas phase can be mentioned.
上記 (1 ) 〜 (4 ) の原料酸化チタン粉末作製方法では、 四塩化チタ ンガスを反応部に供給し、該反応部で、 (1 ) の方法では酸素ガス、 (2 ) の方法では酸素ガス及ぴ水素ガス、 (3 ) の方法では水蒸気、 (4 ) の方 法では水素ガス、 酸素ガス及び水蒸気と接触させ反応させるが、 反応部 への四塩化チタンガスの供給量に対する、 酸素ガスと水蒸気の総供給量 を、 四塩化チタンを全て酸化する化学当量以上とすることが望ましい。 特に、 水蒸気の供給量が、 四塩化チタンを全て酸化する化学当量以上で あると、 酸化チタンの生成反応が均一に行われるため、 生成する酸化チ タンの結晶制御がし易くなり、 高比表面積でルチル化率の高いルチル型 の酸化チタン粉末や、 高比表面積でアナターゼ型の酸化チタン粉末を得 易くなる。 ここで、 四塩化チタンを全て酸化する化学当量とは、 四塩化チタンを 酸素または水蒸気で反応させる場合の水蒸気の化学当量を意味し、 酸素 の場合、 四塩化チタン (T i C 1 4) 1モルに対して酸素 (O 2) が 1モ ル、 水蒸気の場合、 四塩化チタン (T i C 1 4) 1モルに対して水蒸気 (H20) が 2モルである。 In the raw material titanium oxide powder preparation methods (1) to (4) above, titanium tetrachloride gas is supplied to the reaction section, where oxygen gas is used in the method (1) and oxygen gas is used in the method (2). The hydrogen gas, the water vapor in the method (3), and the hydrogen gas, oxygen gas and water vapor in the method (4) are reacted with each other, but the oxygen gas and the amount of titanium tetrachloride gas supplied to the reaction section It is desirable that the total amount of water vapor supply be equal to or greater than the chemical equivalent of oxidizing all titanium tetrachloride. In particular, if the amount of water vapor supplied is equal to or greater than the chemical equivalent of oxidizing all of titanium tetrachloride, the titanium oxide formation reaction is performed uniformly, making it easier to control the crystal of the titanium oxide produced, resulting in a high specific surface area. Therefore, it is easy to obtain a rutile type titanium oxide powder having a high rutile ratio and an anatase type titanium oxide powder having a high specific surface area. Here, the chemical equivalent of oxidizing all of titanium tetrachloride means the chemical equivalent of water vapor when titanium tetrachloride is reacted with oxygen or water vapor. In the case of oxygen, titanium tetrachloride (T i C 1 4 ) 1 oxygen (O 2) is 1 molar moles, in the case of water vapor, titanium tetrachloride (T i C 1 4) steam per 1 mol (H 2 0) is 2 mol.
上記 (3) および (4) の方法において、 反応部に供給する供給ガス を標準状態としたときガスの体積比で、 四塩化チタンガスの 5倍以上の 水蒸気を供給することが好ましく、 四塩化チタンガスの 7倍以上の水蒸 気を供給することがより好ましい。  In the methods (3) and (4) above, when the supply gas supplied to the reaction section is in a standard state, it is preferable to supply water vapor at a volume ratio of 5 or more times that of titanium tetrachloride gas. It is more preferable to supply water vapor more than 7 times that of titanium gas.
また、 上記 (2) および (4) の方法においては、 反応部への水素ガ スの供給量に対する、 酸素ガスの供給量を、 水素をすベて燃焼させる化 学当量以上とすることが好ましく、 ここで、 水素をすベて燃焼させる化 学当量とは、 水素 (H2) ガス 2モルに対して酸素 (02) ガスが 1モル である。水素ガスを供給することで レチル化率を上げることができる。 具体的には、 反応部に供給する供給ガスを標準状態としたときガスの 体積比で、 水素 (H2) ガスの 2倍以上の酸素 (02) ガスを供給し反応 させることが好ましい。 In the above methods (2) and (4), it is preferable that the supply amount of oxygen gas with respect to the supply amount of hydrogen gas to the reaction section is not less than the chemical equivalent for burning all the hydrogen. Here, the chemical equivalent of burning all hydrogen is 1 mole of oxygen (0 2 ) gas per 2 moles of hydrogen (H 2 ) gas. The hydrogenation rate can be increased by supplying hydrogen gas. Specifically, it is preferable to supply and react oxygen (0 2 ) gas more than twice as much as hydrogen (H 2 ) gas in a volume ratio of gas when the supply gas supplied to the reaction section is in a standard state.
上記 (1) 〜 (4) の原料酸化チタン粉末方法において、 反応部に供 給する供給ガスの供給量について、 各供給ガスを標準状態としたときの 四塩化チタンガス 1 リツトルに対する水素ガス、 酸素ガス及び水蒸気の 体積比を表 1及び表 2に示す。 表 1は、 アナターゼ型の原料酸化チタン 粉末を作製する場合の体積比、 表 2はルチル型の原料酸化チタン粉末を 作製する場合の体積比を示す。 表 1 In the raw material titanium oxide powder method of (1) to (4) above, regarding the supply amount of the supply gas supplied to the reaction section, titanium tetrachloride gas when each supply gas is in a standard state, hydrogen gas for 1 liter, oxygen Tables 1 and 2 show the volume ratio of gas and water vapor. Table 1 shows the volume ratio when producing anatase-type raw material titanium oxide powder, and Table 2 shows the volume ratio when producing rutile-type raw material titanium oxide powder. table 1
Figure imgf000009_0001
Figure imgf000009_0001
(注意:伹し、 水蒸気と酸素ガスの合計量を、 四塩化チタンを全て酸化 する化学当量以上とし、 さらに、 水素ガスを供給する場合は、 酸素ガス の供給量を、 水素をすベて燃焼させる化学当量以上とする。) 表 2  (Caution: Make sure that the total amount of water vapor and oxygen gas is equal to or greater than the chemical equivalent of oxidizing all titanium tetrachloride. In addition, when supplying hydrogen gas, the amount of oxygen gas supplied is combusted with all hydrogen. Table 2
Figure imgf000009_0002
Figure imgf000009_0002
(注意:但し、 水蒸気と酸素ガスの合計量を、 四塩化チタンを全て酸化 する化学当量以上とし、 さらに、 水素ガスを供給する場合は、 酸素ガス の供給量を、 水素をすベて燃焼させる化学当量以上とする。) 上記 (1 ) 〜 (4 ) の原料酸化チタン粉末の作製方法において、 四塩 化チタンガス、 水 ガス、 酸素ガス及び水蒸気の供給速度は、 反応スケ ール又は各供給ガスを供給するノズル径等により異なるので適宜設定す ることができるが、 反応部での各供給ガス、 特に四塩化チタンガスの供 給速度は乱流域になるように設定することが望ましい。 また、 上記四塩 化チタンガス、 水素ガス、 酸素ガス及び水蒸気を、 アルゴンや窒素のご とき不活性ガスで希釈し、 反応部に供給し反応させることもできる。 上記 (1 ) 〜 (4 ) の原料酸化チタン粉末の作製方法において、 四塩 化チタンの供給量に対する水素ガス、 酸素ガス及び水蒸気の供給量の比 を、 表 1記載の比とすることで、 高比表面積でかつルチル化率の低いァ ナターゼ型原料酸化チタン粉末を得ることができ、 また、 表 2記載の比 とすることで、 高比表面積でかつルチル化率の高いルチル型原料酸化チ タン粉末を得ることができる。 (Caution: However, the total amount of water vapor and oxygen gas should be more than the chemical equivalent of oxidizing all titanium tetrachloride. Furthermore, when supplying hydrogen gas, the oxygen gas supply amount is burned with all the hydrogen. In the method for producing raw material titanium oxide powders of (1) to (4) above, the supply rate of titanium tetrachloride gas, water gas, oxygen gas and water vapor is the reaction scale or each supply. It can be set as appropriate because it varies depending on the diameter of the nozzle for supplying the gas, but it is desirable to set the supply speed of each supply gas, particularly titanium tetrachloride gas, in the reaction section so as to be in a turbulent flow region. Further, the titanium tetrachloride gas, hydrogen gas, oxygen gas and water vapor can be diluted with an inert gas such as argon or nitrogen, and supplied to the reaction section to be reacted. In the method for producing a raw material titanium oxide powder according to the above (1) to (4), By making the ratio of the supply amount of hydrogen gas, oxygen gas and water vapor to the supply amount of titanium fluoride as shown in Table 1, anatase-type raw material titanium oxide powder having a high specific surface area and a low rutile ratio can be obtained. In addition, by setting the ratios shown in Table 2, a rutile-type raw material titanium oxide powder having a high specific surface area and a high rutile ratio can be obtained.
また、 上記 (1)〜 (4) の原料酸化チタン粉末の作製方法において、 四塩化チタンガス、 水素ガス、 酸素ガス及び水蒸気を反応部に供給する 際に、 予熱した状態で供給することが望ましく、 予熱温度は 500°C以 上が好ましく、 500〜 900°Cがより好ましい。  In addition, in the method for producing raw material titanium oxide powder of (1) to (4) above, it is desirable to supply titanium tetrachloride gas, hydrogen gas, oxygen gas and water vapor in a preheated state when supplying them to the reaction section. The preheating temperature is preferably 500 ° C or higher, more preferably 500 to 900 ° C.
そして、 上記 (1) 〜 (4) の原料酸化チタン粉末の作製方法におい ては、 各供給ガスが反応部で反応し、 原料酸化チタン粉末が生成する。 反応部の反応温度は、 酸化チタンが生成する温度以上、 具体的には 50 0°C以上であることが好ましく、 550〜 900°Cであることがより好 ましい。  And in the production methods of the raw material titanium oxide powders of the above (1) to (4), each supply gas reacts in the reaction section to produce raw material titanium oxide powders. The reaction temperature in the reaction part is preferably equal to or higher than the temperature at which titanium oxide is formed, specifically 500 ° C or higher, more preferably 550 to 900 ° C.
上記 (1) 〜 (4) の原料酸化チタン粉末の作製方法においては、 各 供給ガスの予熱温度及び反応温度を制御することによって、 生成する原 料酸化チタン粉末のルチル化率 (ルチル含有率) を制御することができ る。 ルチル化率 10%以下のようにルチル化率の低いアナターゼ型酸化 チタン粉末を製造する場合、 予熱温度は500〜800°Cであることが 好ましく、 550〜800°Cであることがより好ましい。 In the production method of raw material titanium oxide powders of (1) to (4) above, the rutile ratio (rutile content rate) of the raw material raw titanium oxide powder is controlled by controlling the preheating temperature and reaction temperature of each supply gas. Can be controlled. When producing the low anatase type titanium oxide powder with rutile content as 10% or less rutile content, it is preferred that the preheating temperature is 5 from 00 to 800 ° C, more preferably 550 to 800 ° C .
一方、 ルチル化率 90。 以上のようにルチル化率の高いルチル型酸化 チタン粉末を製造する場合、 予熱温度は 800°Cを超え 900°C以下で あることが好ましく、 850〜900°Cであることがより好ましい。 上記 (1) 〜 (4) の原料酸化チタン粉末の作製方法においては、 各 供給ガスを反応させて、 原料酸化チタン粉末を生成させた後、 生成粒子 の凝集を防ぐために、 少なく とも酸化チタン粒子が焼成する温度以下、 P T/JP2008/066802 On the other hand, the rutile ratio is 90. As described above, when producing a rutile-type titanium oxide powder having a high rutile ratio, the preheating temperature is preferably more than 800 ° C and not more than 900 ° C, and more preferably 850 to 900 ° C. In the production method of raw material titanium oxide powders of (1) to (4) above, at least titanium oxide particles are used in order to prevent agglomeration of the produced particles after reacting each supply gas to produce raw material titanium oxide powders. Below the firing temperature, PT / JP2008 / 066802
具体的には 3 0 0 °C未満まで可及的速やかに、 原料酸化チタン粉末を冷 却する。 Specifically, the raw material titanium oxide powder is cooled as soon as possible to less than 300 ° C.
上記 (1 ) 〜 (4 ) の原科酸化チタン粉末の作製方法においては、 次 いで、 必要に応じて、 得られた原料酸化チタン粉末を、 真空中又は空気 若しくは窒素ガス雰囲気中で加熱し、 あるいは、 スチーム又はアルコー ルと接触させることにより、 原料酸化チタン粉末中に残留する塩素分を 除去してもよい。 また、 次いで、 塩素分が除去された原料酸化チタン粉 末を、 必要に応じて、 分級又は篩分してもよい。  In the production method of the raw titanium oxide powders of the above (1) to (4), the obtained raw titanium oxide powder is then heated in a vacuum or in an air or nitrogen gas atmosphere as necessary. Alternatively, the chlorine remaining in the raw material titanium oxide powder may be removed by contacting with steam or alcohol. Then, the raw material titanium oxide powder from which the chlorine content has been removed may be classified or sieved as necessary.
本発明の方法においては、 第一工程において、 原料酸化チタン粉末を 衝撃またはせん断による解砕機により解砕処理し、解砕処理粉末を得る。 解碎機としては、 高速回転粉碎機又はジエツトミル等が挙げられる。 高速回転粉砕機は、 ピン、 ブレードなどを高速回転させ、 衝撃又はせん 断により、 粉体の粉砕を行う装置である。 高速回転粉砕機としては、 例 えば、 ピンミルなどが拳げられる。 高速回転粉砕機では、 ピンやプレー ドの周速は、 1 0 0〜 2 0 0 mZ s e cであることが好ましい。 また、 ジエツトミルは、 高圧でノズルから噴射する空気などの気体に粉体を卷 き込み、 粒子相互又は粒子と衝撃板との衝突により、 粉体の粉砕を行う 装置である。  In the method of the present invention, in the first step, the raw titanium oxide powder is crushed by a crusher using impact or shear to obtain a crushed powder. Examples of the unraveling machine include a high-speed rotating powder mill or a jet mill. A high-speed rotary pulverizer is a device that pulverizes powder by impact or cutting by rotating pins and blades at high speed. An example of a high-speed rotary crusher is a pin mill. In a high-speed rotary pulverizer, the peripheral speed of the pins and blades is preferably 100 to 200 mZsec. The jet mill is a device that pulverizes powder by injecting powder into a gas such as air jetted from a nozzle at a high pressure and colliding with each other or between the particle and the impact plate.
本発明の方法においては、 第一工程において、 原料酸化チタン粉末を 解碎機により解砕処理し、 解砕処理粉末を得る。 得られる解砕処理粉末 は、 第一工程による処理前よりもタップ密度が若干増加するものの、 そ の比表面積、 一次粒子径、 粒度分布幅はほとんど変化しない。 従って、 第一工程においては、 原料酸化チタン粉末の一次粒子の凝集を緩やかに 解す作用を施していると考えられる。  In the method of the present invention, in the first step, the raw titanium oxide powder is pulverized by a pulverizer to obtain a pulverized powder. The obtained pulverized powder has a tap density slightly higher than that before the treatment in the first step, but its specific surface area, primary particle diameter, and particle size distribution width hardly change. Therefore, in the first step, it is considered that the action of gently releasing the aggregation of the primary particles of the raw material titanium oxide powder is performed.
そして、 本発明の方法においては、 第二工程において、 上記解砕処理 粉末を、 攪拌機を用いて攪拌処理し、 微粒子酸化チタン粉末を得る。 上記攪拌機としては、 例えば、 水平円筒型混合機、 V型混合機、 二重 円錐型混合機、 リボン型混合機、高速流動型混合機、回転円板型混合機、 攪拌型混合機、 円錐型スク リ ュー (遊星型) 混合機などの攪拌機等を挙 げることができる。 In the method of the present invention, in the second step, the pulverized powder is stirred using a stirrer to obtain fine-particle titanium oxide powder. Examples of the agitator include, for example, a horizontal cylindrical mixer, a V-type mixer, a double cone mixer, a ribbon mixer, a high-speed fluid mixer, a rotating disk mixer, a stirring mixer, and a cone type. Screw (planet type) Stirrers such as mixers can be listed.
上記攪拌 は、 容器内に投入された解碎処理粉末に対して、 複数の方 向から流れを与えるものが効率面から好ましく、 このような攪拌機とし ては、 上記円錐型スクリュー (遊星型) 混合機を挙げることができる。 円錐型スク リ ュー (遊星型) 混合機は、 下方にいくにつれて狭まる円 錐形容器と、 円錐形容器内で自転及び公転するスクリユーとを備える攪 拌機である。  From the viewpoint of efficiency, it is preferable that the agitation is performed by giving flow from a plurality of directions to the defatted powder charged in the container. As such an agitator, the conical screw (planet type) mixing is used. The machine can be mentioned. A conical screw (planet type) mixer is a stirrer equipped with a conical container that narrows downward and a screw that rotates and revolves within the conical container.
攪拌機である円錐型スク リュー (遊星型) 混合機に備えられているス クリューは、 円錐形容器内で、 円錐形容器の内壁に並行に傾斜して伸張 し、 円錐形容器の内壁に並行に傾斜している自転軸の周りを自転すると 共に、 円錐形容器の内壁に沿って、 円錐形容器の中心軸の周りを公転す る。  A conical screw (planet type) mixer that is a stirrer, the screw provided in the mixer extends in parallel with the inner wall of the conical container, in parallel with the inner wall of the conical container. While rotating around an inclined rotation axis, it revolves around the central axis of the conical container along the inner wall of the conical container.
攪拌機である円錐型スク リ ュー (遊星型) 混合機について、 図 1を参 照しつつ説明する。 図 1は、 円錐型スク リュー (遊星型) 混合機を示す 模式的な断面図であり、 円錐形容器の中心軸に沿う断面形状を示してい る。 なお、 図 1に示す円錐型スクリュー(遊星型)混合機は、 該混合機の 一例であり、 これに限定されるものではない。  A conical screw (planet type) mixer, which is an agitator, will be described with reference to FIG. Fig. 1 is a schematic cross-sectional view showing a conical screw (planet type) mixer, showing a cross-sectional shape along the central axis of the conical container. The conical screw (planet type) mixer shown in FIG. 1 is an example of the mixer, and is not limited thereto.
図 1中、 円錐型スク リ ュー (遊星型) 混合機からなる攪拌機 1は、 下 方にいくにつれて狭くなる円錐形容器 2と、 該円錐形容器 2の上部に設 置される蓋 3と、 軸心が円錐形容器 2の中心軸 1 0と重なるように、 蓋 3に回転可能に付設される垂直軸 4と、 垂直軸 4を回転駆動させるため に、垂直軸 4に付設される公転モーター5と、一端が垂直軸 4に繋がり、 他端が自転モーター 9に繋がっている公転アーム 6と、 公転アーム 6の 他端に取り付けられている自転モーター 9と、 スク リ ユー 8が外周に形 成され、 軸心が円錐形容器 2の内壁に並行するように配置されてなり、 —端が自転モーター 9に繋がっている傾斜心棒 7とにより構成されてい る。 In FIG. 1, a stirrer 1 composed of a conical-shaped screw (planet-type) mixer includes a conical container 2 that becomes narrower as it goes downward, and a lid 3 that is installed at the top of the conical container 2. A vertical shaft 4 that is rotatably attached to the lid 3 so that the shaft center coincides with the central axis 10 of the conical container 2, and a revolving motor that is attached to the vertical shaft 4 to drive the vertical shaft 4 to rotate. 5 and a revolving arm 6 with one end connected to the vertical shaft 4 and the other end connected to the rotation motor 9, and The rotation motor 9 attached to the other end and the screw 8 are formed on the outer periphery, and the shaft center is arranged in parallel with the inner wall of the conical container 2, and the end is connected to the rotation motor 9. And the inclined mandrel 7.
上記スク リュー 8は、 円錐形容器 2内で、 傾斜心棒 7の外周部に螺旋 状に卷回しつつ上下方向に伸張している。  The screw 8 extends in the vertical direction while spirally winding around the outer periphery of the inclined mandrel 7 in the conical container 2.
上記スクリユー 8は、 自転モーター 9で傾斜心棒 7を回転させること により、 円錐形容器 2の内壁に並行して傾斜している自転軸 1 1を中心 軸として、 自転する。  The screw 8 rotates around the rotation axis 11 that is inclined parallel to the inner wall of the conical container 2 by rotating the inclined mandrel 7 by the rotation motor 9.
また、 スク リ ュー 8は、 公転モーター 5を作動させ、 垂直軸 4を回転 させることにより、 円錐形容器 2の内壁に沿って、 円錐形容器 2の中心 軸 1 0を中心軸として、 公転する。  The screw 8 revolves along the inner wall of the conical container 2 with the central axis 10 of the conical container 2 as the central axis by operating the revolving motor 5 and rotating the vertical shaft 4. .
攪拌機 1は、 スク リ ュー 8が自転することにより、 円錐形容器2内に 上方向に粉体の流れを生じさせ、 且つスクリユー 8が公転することによ り、 円錐形容器 2内の公転方向に渦巻き状の粉体の流れを生じさせる。 スク リユー 8が遊星運動することにより、 円錐形容器 2内に粉体の下方 向の流れが生じる。 The agitator 1 causes the powder 8 to flow upward in the conical container 2 as the screw 8 rotates, and the revolution direction in the conical container 2 as the screw 8 revolves. A flow of spiral powder is generated. Due to the planetary movement of the screw 8, a downward flow of powder is generated in the conical container 2.
円錐型スクリュー (遊星型) 混合機からなる攪拌機 1 としては、 例え ば、株式会社西村機械製作所製 「N V Bミキサー」、 ホソカワミクロン株 式会社製 「ナウタミキサ」 等を挙げることができる。  Examples of the stirrer 1 composed of a conical screw (planet type) mixer include “NV B mixer” manufactured by Nishimura Machinery Co., Ltd., “Nauta mixer” manufactured by Hosokawa Micron Corporation.
本発明の方法においては、 第二工程で、 攪拌機を用いて解砕処理粉末 を攪拌処理することにより、 微粒子酸化チタン粉末を得る。 第二工程の 処理を施すことにより、 原料酸化チタンのタップ密度を更に増加させる ことができ、 粒度分布幅が狭く、 均一な微粒子酸化チタン粉末を得るこ とができる。  In the method of the present invention, finely divided titanium oxide powder is obtained by stirring the pulverized powder using a stirrer in the second step. By performing the treatment in the second step, the tap density of the raw material titanium oxide can be further increased, and a uniform fine particle titanium oxide powder with a narrow particle size distribution width can be obtained.
本発明の方法において、 得られる微粒子酸化チタン粉末は、 一次粒子 の凝集が解されてなるものである。 In the method of the present invention, the resulting fine particle titanium oxide powder comprises primary particles The agglomeration of is solved.
本発明の方法において、 得られる微粒子酸化チタン粉末中に含まれる 一次粒子の平均粒径は、 S EM写真での画像解析による平均粒径で、 1 O O nm以下、 好ましくは 5〜 70 nmである。  In the method of the present invention, the average particle size of the primary particles contained in the resulting fine particle titanium oxide powder is an average particle size by image analysis with SEM photographs, which is 1 OO nm or less, preferably 5 to 70 nm. .
また、 本発明の方法において、 得られる微粒子酸化チタン粉末の粒度 分布 (S PAN) は、 1〜2、 好ましくは 1〜1. 8である。 なお、 本 発明において、 粒度分布 (S PAN) は、 レーザー光散乱回折法粒度測 定機を用い、 粒度を測定し、 体積統計値の D 90 (体積積算粒度分布に おける積算粒度で 90%の粒径 (μπι))、 D 50 (体積積算粒度分布に おける積算粒度で 50%の粒径 (/ m)) D 10 (体積積算粒度分布に おける積算粒度で 1 0%の粒径 (μπι)) を求め、 下記式で算出される値 である。  In the method of the present invention, the fine particle titanium oxide powder obtained has a particle size distribution (S PAN) of 1 to 2, preferably 1 to 1.8. In the present invention, the particle size distribution (S PAN) is determined by measuring the particle size using a laser light scattering diffractometry particle size measuring machine, and the volume statistic D 90 (the integrated particle size in the volume integrated particle size distribution is 90%. Particle size (μπι)), D 50 (50% particle size in cumulative particle size distribution (/ m)) D 10 (10% particle size in cumulative particle size distribution (μπι) ) And calculated by the following formula.
粒度分布 (S PAN) = (D 90— D 10) /D 50  Particle size distribution (S PAN) = (D 90— D 10) / D 50
また、 該第二工程を行い得られる微粒子酸化チタン粉末の B ET比表 面積は、 1 0〜 200 m2/ gが好ましく、 20〜 200 m 2Z gがより 好ましく、 30〜200m2/gがさらに好ましい。 Further, the BET ratio table area of the fine particle titanium oxide powder obtained by performing the second step is preferably 10 to 200 m 2 / g, more preferably 20 to 200 m 2 Z g, and 30 to 200 m 2 / g. Is more preferable.
また、 本発明の方法において、 得られる微粒子酸化チタン粉末のタツ プ密度は、 0. 4 g/cm3以上が好ましく、 0. S g/cm3以上がさ らに好ましい。 タップ密度の上限は、 特に制限されないが、 1. l g/ c m3が好ましい。 なお、 本発明において、 タップ密度は、 セイシン企 業社製 「タップデンサ一 KYT— 4000」 等の測定装置を用い、 以 下の測定方法により測定される。 Further, in the method of the present invention, Tatsu flop density of the resulting fine titanium oxide powder is preferably 0. 4 g / cm 3 or more, 0. S g / cm 3 or more is preferable et. The upper limit of the tap density is not particularly limited, but 1. lg / cm 3 is preferable. In the present invention, the tap density is measured by the following measuring method using a measuring device such as “Tap Densator KYT-4000” manufactured by Seishin Enterprise Co., Ltd.
先ず、 測定試料を、 補助力ップを備えた 5 Om 1カップに 5〜 1 5 g 充填し、 この測定装置にて 300回タッピングさせる。 次いで、 捕助力 ップを取り外して、 測定試料の充填面の目盛りを正確に読み取る。 そし て、 次式によりタップ密度を求める。 タップ密度 (g/m l ) =試料質量 (g) Z読み取り 目盛り (m l ) 本発明の方法において、 第一工程及び第二工程の処理を行うことによ り、 粒径が大きい原料酸化チタン粉末が、 微細に解砕され且つ解碎後の 粒子が凝集し難いので、 得られる微粒子酸化チタン粉末の粒度測定での D 50及ぴ D 90が小さく、 粒度分布 (S PAN) が狭く、 B ET比表 面積が大きく、 且つタップ密度が高くなる。 そして、 本発明の微粒子酸 化チタン粉末の製造方法により得られる微粒子酸化チタン粉末は、 粒度 測定での D 50が小さく且つ B ET比表面積が大きいので、 微細であり ながら、 分散性がよい。 また、 本発明の微粒子酸化チタン粉末の製造方 法により得られる微粒子酸化チタン粉末は、 タップ密度が高いので、 移 送、 保管、 輸送などの効率が良く、 取扱いが容易である。 First, a measurement sample is filled in 5 to 15 g in a 5 Om 1 cup equipped with an auxiliary force cup, and tapped 300 times with this measuring apparatus. Next, remove the trapping cap and read the scale on the filling surface of the measurement sample accurately. Then, the tap density is calculated by the following equation. Tap density (g / ml) = sample mass (g) Z reading scale (ml) In the method of the present invention, the raw material titanium oxide powder having a large particle size is obtained by performing the treatment in the first step and the second step. Since the finely pulverized particles are difficult to agglomerate, the resulting fine particle titanium oxide powder has a small D 50 and D 90 in particle size measurement, a narrow particle size distribution (S PAN), and a B ET ratio The surface area is large and the tap density is high. The finely divided titanium oxide powder obtained by the method for producing finely divided titanium oxide powder of the present invention has a small D 50 and a large BET specific surface area in the particle size measurement, so that it is fine but dispersible. In addition, since the fine particle titanium oxide powder obtained by the method for producing the fine particle titanium oxide powder of the present invention has a high tap density, it is efficient in transportation, storage, transportation, etc., and easy to handle.
本発明の微粒子酸化チタン粉末は、 BET比表面積が 10〜20 Om 2Zgであり、 且つタップ密度が 0. 4 g/ cm3以上であることを特徴 とするものである。 The fine particle titanium oxide powder of the present invention is characterized by having a BET specific surface area of 10 to 20 Om 2 Zg and a tap density of 0.4 g / cm 3 or more.
そして、 本発明の微粒子酸化チタン粉末の BET比表面積は、 20〜 200m2/gが好ましく、 30〜 200m2/ gがより好ましい。また、 本発明の微粒子酸化チタン粉末のタップ密度は、 0. 5 g/cm3以上 が好ましく、 タップ密度の上限は、 特に制限されないが、 1. l g/c m 3であることが好ましい。 本発明の微粒子酸化チタン粉末の B ET比 表面積が、 20〜 200 m2/ gであることにより、 微粒子酸化チタン 粉末の粒径が小さくなり、 微粒子でありながら、 分散性が良好となる。 また、 本発明の微粒子酸化チタン粉末のタップ密度が、 0. 4 gZCm 3以上であることにより、 移送、 保管、 輸送などの効率が向上し、 取扱 いが容易となる。 Then, BET specific surface area of the fine titanium oxide powder of the present invention is preferably 20~ 200m 2 / g, 30~ 200m 2 / g is more preferable. Moreover, the tap density of the fine particle titanium oxide powder of the present invention is preferably 0.5 g / cm 3 or more, and the upper limit of the tap density is not particularly limited, but is preferably 1. lg / cm 3 . When the BET specific surface area of the fine particle titanium oxide powder of the present invention is 20 to 200 m 2 / g, the particle size of the fine particle titanium oxide powder becomes small, and the dispersibility becomes good while being fine particles. In addition, when the tap density of the fine particle titanium oxide powder of the present invention is 0.4 gZ C m 3 or more, the efficiency of transportation, storage, transportation, etc. is improved and handling is facilitated.
本発明の微粒子酸化チタン粉末がルチル型酸化チタン粉末の場合、 ル チル化率が 80%以上であることが好ましく、 8 5%以上であることが より好ましく、 90 %以上であることがさらに好ましい。 ルチル化率が 80%以上であることにより、 紫外線遮蔽効果が高い、 髙屈折率である など、 光学的特性に優れる材料を提供できる。 また、 本発明の微粒子酸 化チタン粉末がアナターゼ型酸化チタン粉末である場合、 ルチル化率が 30 %以下であることが好ましく、 20%以下であることがより好まし く、 ' 1 0%以下であることがさらに好ましい。 ルチル化率が 30%以下 であることにより、 好適な光触媒材料とすることができる。 When the fine particle titanium oxide powder of the present invention is a rutile type titanium oxide powder, the rutile ratio is preferably 80% or more, and 85% or more. More preferably, it is more preferably 90% or more. When the rutile ratio is 80% or more, a material having excellent optical characteristics such as a high ultraviolet shielding effect and a high refractive index can be provided. Further, when the fine particle titanium oxide powder of the present invention is anatase type titanium oxide powder, the rutile ratio is preferably 30% or less, more preferably 20% or less, and '10% or less More preferably. When the rutile ratio is 30% or less, a suitable photocatalytic material can be obtained.
ここで、 ルチル化率の測定方法は、 A S TM D 3 720-84の方 法に従い X線回折測定を行い、ルチル型結晶酸化チタンの最強回折線(面 指数 1 1 0) のピーク面積 ( I r) と、 アナターゼ型結晶酸化チタンの 最強回折線 (面指数 10 1) のピーク面積 ( I a) を求め、 次式により 算出される。  Here, the measurement method of the rutile ratio is the X-ray diffraction measurement according to the method of AS TM D 3 720-84, and the peak area of the strongest diffraction line (surface index 1 1 0) of rutile crystalline titanium oxide (I r) and the peak area (I a) of the strongest diffraction line (surface index 10 1) of anatase-type crystalline titanium oxide are calculated by the following formula.
ルチル化率 (重量%) = 1 00- 1 00/ (1 + 1. 2 X 1 r / I a) 式中、 前記ピーク面積 ( I r) 及びピーク面積 ( I a) は、 X線回折ス ぺク トルの該当回折線におけるベースラインから突出した部分の面積を いい、 その算出方法は公知の方法で行えばよく、 例えば、 コンピュータ 計算、 近似三角形化などの手法により求められる。  Rutile conversion rate (% by weight) = 1 00-1 00 / (1 + 1.2 X 1 r / I a) where the peak area (I r) and peak area (I a) The area of the portion of the corresponding diffraction line that protrudes from the base line is referred to as a known method. For example, the area can be obtained by computer calculation, approximate triangulation, or the like.
本発明の微粒子酸化チタン粉末は、 不純物元素の含有量が極めて少な い高純度であることが望ましく、 本発明の微粒子酸化チタン粉末に含ま れる F e、 A 1、 S i及ぴ N aが、 各々 100質量 p p m未満であるこ とが好ましく、 20質量 p pm未満であることが特に好ましく、 また、 C 1が 1000質量 p m未満であることが好ましく、 500質量 p p m未満であることが特に好ましく、 50質量 p pm未満であることがよ り好ましい。  The fine particle titanium oxide powder of the present invention desirably has a high purity with a very small content of impurity elements, and Fe, A1, Si and Na contained in the fine particle titanium oxide powder of the present invention are: Each is preferably less than 100 ppm by mass, particularly preferably less than 20 ppm by mass, C 1 is preferably less than 1000 ppm by mass, particularly preferably less than 500 ppm by mass, 50 More preferably, the mass is less than p pm.
また、 本発明の微粒子酸化チタン粉末に含まれる一次粒子の平均粒径 は、 S EM写真での画像解析による平均粒径で、 l O O nm以下である ことが好ましく、 5〜70 ηπιであることが特に好ましい。 本発明の微 粒子酸化チタン粉末の一次粒子の平均粒径が上記範囲内にあることによ り、 例えば積層セラミックコンデンサの積層数が増加し、 誘電体層およ ぴ電極層が薄層化しても対応できる。 In addition, the average particle size of the primary particles contained in the fine particle titanium oxide powder of the present invention is an average particle size obtained by image analysis in SEM photographs and is less than lOO nm It is preferably 5 to 70 ηπι. When the average particle size of the primary particles of the fine particle titanium oxide powder of the present invention is within the above range, for example, the number of laminated ceramic capacitors is increased, and the dielectric layer and the electrode layer are thinned. Can also respond.
また、 本発明の微粒子酸化チタン粉末の粒度分布 (S PAN) は、 特 に制限されないが、 好ましくは 1〜2、 特に好ましくは 1〜1. 8であ る。  The particle size distribution (S PAN) of the fine particle titanium oxide powder of the present invention is not particularly limited, but is preferably 1 to 2, particularly preferably 1 to 1.8.
本発明の微粒子酸化チタン粉末は、 本発明の微粒子酸化チタン粉末の 製造方法により、 好適に作製することができる。  The fine particle titanium oxide powder of the present invention can be suitably produced by the method for producing the fine particle titanium oxide powder of the present invention.
(実施例) (Example)
次に、 本発明を実施例により更に具体的に説明するが、 本発明は、 こ れの実施例によって何ら制限されるものではない。  Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
なお、 以下の実施例および比較例において、 酸化チタン粉末のルチル 化率 (%)、 BET比表面積 (m2/g)、 タップ密度 (gZcm3)、 一 次粒子の平均粒径 (n m)、 粒度及び粒度分布 (μπι) は、 以下の方法に よ.り測定したものである。 In the following examples and comparative examples, the rutile ratio of titanium oxide powder (%), BET specific surface area (m 2 / g), tap density ( g Zcm 3 ), average particle size of primary particles ( nm ) The particle size and particle size distribution (μπι) were measured by the following method.
<ルチル化率〉 <Rutilization rate>
A S TM D 3 720 - 84に従い X線回折パターンにおける、 ルチ ル型結晶酸化チタンの最強干渉線 (面指数 1 1 0) のピーク面積 ( I r ) と、 酸化チタン粉末の最強干渉線 (面指数 1 01) のピーク面積 ( l a) を求め前述の算出式より求めた。 なお、' X線回折測定条件は下記の通り である。  According to AS TM D 3 720-84, the peak area (I r) of the strongest interference line (surface index 1 1 0) of rutile crystalline titanium oxide and the strongest interference line (surface index of titanium oxide powder) in the X-ray diffraction pattern The peak area (la) of 1 01) was determined and calculated from the above formula. The X-ray diffraction measurement conditions are as follows.
(X線回折測定条件)  (X-ray diffraction measurement conditions)
回折装置 RAD— 1 C (株式会社リガク製)  Diffraction device RAD— 1 C (manufactured by Rigaku Corporation)
X線管球 Cu 曙 066802 X-ray tube Cu 曙 066802
管電圧 ·管電流 40 kV、 30mA Tube voltage tube current 40 kV, 30 mA
スリ ッ ト DS— S S : 1度、 RS : 0. 1 5 mm  SLIT DS— S S: 1 degree, RS: 0.15 mm
モノクロメータ グラフアイ ト  Monochromator graph item
測定間隔 0. 002度  Measurement interval 0.002 degrees
計数方法 定時計数法  Counting method Constant clock method
く B ET比表面積 > B ET specific surface area>
B E T法により求めた。  It was determined by the BET method.
くタップ密度 > > Tap density>
株式会社セイシン企業社製 「タップデンサ一 KYT— 4000」 測 定装置を用い、 以下の測定方法により測定した。  Measurement was performed by the following measuring method using a “Tap Densaichi KYT-4000” measuring device manufactured by Seishin Enterprise Co., Ltd.
先ず、 測定試料を、 補助カップを備えた 5 Om 1カップに 5〜1 5 g 充填し、 該測定装置にて 300回タッピングさせる。 次いで、 上記補助 カップを取り外して、 測定試料の充填面の目盛りを正確に読み取る。 そ して、 次式によりタップ密度を求めた。  First, 5 to 15 g is filled into a 5 Om 1 cup equipped with an auxiliary cup, and the measurement sample is tapped 300 times with the measuring device. Next, the auxiliary cup is removed, and the scale on the filling surface of the measurement sample is accurately read. And the tap density was calculated by the following formula.
タップ密度 (g/m 1 ) =試料質量(g) 読み取り目盛り (m l ) く一次粒子の平均粒径 >  Tap density (g / m 1) = Sample mass (g) Reading scale (ml) Average particle size of primary particles>
S EM写真からインターセプト法にて一次粒子の粒径を測定し、 平均 粒径を算出した。 なお、 SEM撮影条件、 インターセプト法条件は下記 の通りである。  The average particle size was calculated by measuring the particle size of the primary particles from the SEM photograph by the intercept method. The SEM imaging conditions and intercept method conditions are as follows.
(SEM撮影条件)  (SEM shooting conditions)
装置 H I TACH I S - 4700  Equipment H I TACH I S-4700
倍率 1 0万倍  Magnification 1 million times
(インターセプト法)  (Intercept method)
S EM写真に 1 cm間隔で線を引き、 一次粒子の輪郭と線の交点をそ の粒子の直径とする。上記方法で一次粒子 500個の平均粒径を求めた。 く粒度及び粒度分布測定 > レーザー光散乱回折法粒度測定機 (LA— 9 2 0 :堀場製作所製) を 用い、適量の酸化チタン粉末を純水に懸濁させてから、分散剤を添加し、 超音波をかけて 3分間分散させ、 粒度を測定し、 体積統計値の粒度分布 を求めた。 なお、 粒度分布は、 D 9 0 (体積積算粒度分布における積算 粒度で 9 0 %の粒径 (μ πι))、 D 5 0 (体積積算粒度分布における積算 粒度で 5 0 %の粒径 (/x m))、 D 1 0 (体積積算粒度分布における積算 粒度で 1 0 %の粒径 (μ ιη)) を求め、 粒度分布 (S PAN) を下記式で 算出し 7こ。 SEM lines are drawn at 1 cm intervals, and the intersection of the primary particle outline and the line is taken as the diameter of the particle. The average particle diameter of 500 primary particles was determined by the above method. Particle size and particle size distribution measurement> Using a laser light scattering diffraction particle size analyzer (LA-920: manufactured by HORIBA, Ltd.), suspend an appropriate amount of titanium oxide powder in pure water, add a dispersant, and apply ultrasonic waves for 3 minutes. The particles were dispersed, the particle size was measured, and the particle size distribution of volume statistics was obtained. Note that the particle size distribution is D 90 (particle size of 90% in the cumulative particle size distribution (μππ)), D 50 (particle size of 50% in the cumulative particle size distribution (/ xm)), D 10 (10% particle size (μ ιη)) in the integrated particle size distribution is calculated, and the particle size distribution (S PAN) is calculated by the following formula.
S PAN= (D 9 0 -D 1 0) /Ώ 5 0  S PAN = (D 9 0 -D 1 0) / Ώ 5 0
[原料酸化チタン粉末 aの調製] [Preparation of raw material titanium oxide powder a]
四塩化チタンを気相中で酸素ガス、 水素ガス及ぴ水蒸気と接触させて 酸化する気相法により、 原料酸化チタン粉末を調製した。  Raw material titanium oxide powder was prepared by a vapor phase method in which titanium tetrachloride was oxidized in contact with oxygen gas, hydrogen gas and water vapor in the gas phase.
まず、 多重管パーナ一を上部に具備した内径 2 0 O mmの気相反応管 において、 多重管パーナ一に、 6 0 0°Cに予熱し気化させた四塩化チタ ンガスを、 窒素ガスで希釈して供給し、 一方、 別の供給ノズルから、 6 0 0°Cに予熱した水素ガス、 酸素ガス及び水蒸気を供給して、 気相反応 管内で 6 5 0°Cにて、 四塩化チタンの酸化反応を行った。 このとき、 各 供給ガスの供給量を、 標準状態として、 四塩化チタンを 1 0 0リ ットル /分、 酸素ガスを 6 0リツトル/分、 水素ガスを 3 0リツ トル/分、 水 蒸気を 1 0 0 0リツトル/分とした。 その後、 気相反応管の下部に位置 する冷却部に、 室温の乾燥空気を 1 0 0 0リツトル/分で供給すること により、 得られた生成物を冷却した。 次いで、 冷却処理した生成物を、 温度 3 5 0°Cで、 水蒸気と空気の混合ガスと接触させることにより、 塩 素分の除去を行い、 原料酸化チタン粉末 aを得た。 この原料酸化チタン 粉末の特性を表 3に示す。 (実施例 1 ) First, in a gas phase reaction tube with an inner diameter of 20 O mm, which is equipped with a multi-tube analyzer at the top, titanium tetrachloride gas preheated and vaporized to 600 ° C. is diluted with nitrogen gas. On the other hand, hydrogen gas, oxygen gas and water vapor preheated to 60 ° C. are supplied from another supply nozzle, and titanium tetrachloride is heated at 65 ° C. in a gas phase reaction tube. An oxidation reaction was performed. At this time, assuming that the supply amount of each supply gas is standard, titanium tetrachloride is 100 liters / minute, oxygen gas is 60 liters / minute, hydrogen gas is 30 liters / minute, and water vapor is 1 0 to 0 liters / minute. Thereafter, room temperature dry air was supplied at a rate of 100 liters / minute to a cooling unit located in the lower part of the gas phase reaction tube to cool the obtained product. Next, the cooled product was brought into contact with a mixed gas of water vapor and air at a temperature of 3500 ° C. to remove the chlorine component, thereby obtaining a raw material titanium oxide powder a. Table 3 shows the characteristics of this raw material titanium oxide powder. (Example 1)
原料酸化チタン粉末 aを、 ホソカワミクロン製ピンミル 「コロプレツ タス」 にて解砕し、 解砕処理粉末を得た。 解砕条件は、 原料酸化チタン 粉末 b 3 00 k g ,供給速度 1 0 0 k g/h、周速 1 5 0 m/ s e cで ある。 次いで、 得られた解砕処理粉末を、 ホソカワミクロン株式会社製 「ナウタミキサ」 (容量 50 00リツトル) にて攪拌処理し、微粒子酸化 チタン粉末を得た。 攪拌処理条件は、 解砕処理粉末 3 00 k g、 公転回 転数 1 r pm、 自転回転数 8 0 r pmである。 微粒子酸化チタン粉末の 特性を表 3に示す。  The raw material titanium oxide powder a was pulverized with a Hosokawa Micron pin mill “Colopretus” to obtain a pulverized powder. The crushing conditions are raw material titanium oxide powder b 300 kg, supply speed 100 kg / h, and peripheral speed 1550 m / sec. Next, the obtained pulverized powder was stirred with a “Nauta mixer” (capacity: 500 liters) manufactured by Hosokawa Micron Corporation to obtain fine-particle titanium oxide powder. The stirring treatment conditions were pulverized powder 300 kg, revolution speed 1 rpm, and rotation speed 80 rpm. Table 3 shows the characteristics of the fine titanium oxide powder.
(比較例 1) (Comparative Example 1)
原料酸化チタン粉末 aを、 ホソカワミクロン製ピンミル 「コロプレツ タス」 にて解砕し、 解砕処理粉末を得た。 解砕条件は、 原料酸化チタン 粉末 a 300 k g,供給速度 1 0 0 k g / h、周速 1 5 0 m/ s e cで ある。 解砕処理粉末の特性を表 3に示す。  The raw material titanium oxide powder a was pulverized with a Hosokawa Micron pin mill “Colopretus” to obtain a pulverized powder. The crushing conditions are: raw material titanium oxide powder a 300 kg, supply speed 100 kg / h, and peripheral speed 150 m / sec. Table 3 shows the characteristics of the pulverized powder.
(比較例 2) (Comparative Example 2)
原料酸化チタン粉末 aを、 ホソカワミクロン株式会社製 「ナウタミキ サ」 にて攪拌処理し、 酸化チタン粉末を得た。 攪拌処理条件は、 原料酸 化チタン粉末 a 3 0 Ό k g、 公転回転数 1 r p m、 自転回転数 8 O r p mである。 得られた酸化チタン粉末の特性を表 3に示す。 T/JP2008/066802 The raw material titanium oxide powder a was stirred with “Nautamixa” manufactured by Hosokawa Micron Corporation to obtain titanium oxide powder. The stirring treatment conditions were: raw material titanium oxide powder a 30 kg, revolution speed 1 rpm, rotation speed 8 O rpm. Table 3 shows the characteristics of the obtained titanium oxide powder. T / JP2008 / 066802
表 3 Table 3
Figure imgf000021_0001
実施例 1で得られた微粒子酸化チタン粉末は、 比較例 1で得られた解 砕処理粉末、 比較例 2で得られた酸化チタン粉末及び原料酸化チタン粉 末 aに比べ、 タップ密度が高く且つ D 5 0及ぴ D 9 0が小さく、 S P A Nが狭い。 このことから、 本発明の方法に従い、 第一工程及び第二工程 の両方の処理を行うことにより、 原料酸化チタン粉末が微細に解碎され た、 微粒子酸化チタン粉末を得ることができることが分かる。 産業上の利用可能性
Figure imgf000021_0001
The fine particle titanium oxide powder obtained in Example 1 has a higher tap density than the pulverized powder obtained in Comparative Example 1, the titanium oxide powder obtained in Comparative Example 2, and the raw material titanium oxide powder a. D 5 0 and D 9 0 are small and SPAN is narrow. From this, it can be seen that by performing both the first step and the second step according to the method of the present invention, a finely divided titanium oxide powder in which the raw material titanium oxide powder is finely unwound can be obtained. Industrial applicability
本発明によれば、 分散性が良好であり、 移送、 保管、 輸送などの効率 が良く、 取扱いが容易な微粒子酸化チタン粉末を製造する方法及ぴ微粒 子酸化チタンを提供することができる。  According to the present invention, it is possible to provide a method for producing finely divided titanium oxide powder and finely divided titanium oxide, which are excellent in dispersibility, efficient in transportation, storage, transportation and the like and easy to handle.

Claims

請求の範囲 The scope of the claims
1. 原料酸化チタン粉末を、 衝撃又はせん断による解砕機により解砕処 理し、.解砕処理粉末を得る第一工程と、 該解砕処理粉末を、 攪拌機を用 いて攪拌処理し、 微粒子酸化チタン粉末を得る第二工程とを有すること を特徴とする微粒子酸化チタン粉末の製造方法。 1. Raw material titanium oxide powder is pulverized by impact or shearing pulverizer, first step of obtaining pulverized powder, and the pulverized powder is stirred using a stirrer to oxidize fine particles And a second step of obtaining a titanium powder. A method for producing a fine particle titanium oxide powder.
2. 前記第一工程が、 原料酸化チタン粉末を、 高速回転粉砕機又はジ ットミルを用いて解砕処理し、 解砕処理粉末を得る工程である請求項 1 に記載の微粒子酸化チタン粉末の製造方法。  2. The production of finely divided titanium oxide powder according to claim 1, wherein the first step is a step of pulverizing the raw material titanium oxide powder using a high-speed rotary pulverizer or a jig mill to obtain a pulverized powder. Method.
3. 前記第二工程が、 解砕処理粉末を、 下方にいくにつれて狭まる円錐 形容器と、 該円錐形容器内で自転及び公転するスクリユーとを備える攪 拌機を用いて攪拌処理し、 微粒子酸化チタン粉末を得る工程である請求 項 1または請求項 2に記載の微粒子酸化チタン粉末の製造方法。  3. In the second step, the pulverized powder is agitated using a stirrer including a conical container that narrows downward and a screw that rotates and revolves in the conical container, and fine particle oxidation. 3. The method for producing a fine particle titanium oxide powder according to claim 1, wherein the method is a step of obtaining a titanium powder.
4. 前記原料酸化チタン粉末が、 ハロゲン化チタンを気相酸化して得ら れる酸化チタン粉末である請求項 1に記載の微粒子酸化チタン粉末の製 造方法。 4. The method for producing fine particle titanium oxide powder according to claim 1, wherein the raw material titanium oxide powder is a titanium oxide powder obtained by vapor phase oxidation of titanium halide.
5. 前記ハロゲン化チタンが、 四塩化チタンである請求項 4に記載の微 粒子酸化チタン粉末の製造方法。  5. The method for producing finely divided titanium oxide powder according to claim 4, wherein the titanium halide is titanium tetrachloride.
6. 得られる微粒子酸化チタン粉末の B ET比表面積が 1 0〜 20 Om V gである請求項 1記載の微粒子酸化チタン粉末の製造方法。 6. The method for producing fine particle titanium oxide powder according to claim 1, wherein the fine particle titanium oxide powder obtained has a BET specific surface area of 10 to 20 Om V g.
7. B E T比表面積が 1 0〜 200 m2/ gであり、 且つタップ密度が 0. 4 g/ cm3以上であることを特徴とする微粒子酸化チタン粉末。7. A fine particle titanium oxide powder having a BET specific surface area of 10 to 200 m 2 / g and a tap density of 0.4 g / cm 3 or more.
8. B E T比表面積が 20〜 200 m2/ gである請求項 7記載の微粒 子酸化チタン粉末。 8. The finely divided titanium oxide powder according to claim 7, which has a BET specific surface area of 20 to 200 m 2 / g.
9. タップ密度が 0. 5 gZ c m3以上である請求項 7記載の微粒子酸 化チタン粉末。 9. The particulate acid according to claim 7, wherein the tap density is 0.5 gZ cm 3 or more. Titanium powder.
PCT/JP2008/066802 2007-09-11 2008-09-10 Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide WO2009035128A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009532263A JPWO2009035128A1 (en) 2007-09-11 2008-09-10 Method for producing fine particle titanium oxide powder and fine particle titanium oxide powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007234877 2007-09-11
JP2007-234877 2007-09-11

Publications (1)

Publication Number Publication Date
WO2009035128A1 true WO2009035128A1 (en) 2009-03-19

Family

ID=40452133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/066802 WO2009035128A1 (en) 2007-09-11 2008-09-10 Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide

Country Status (2)

Country Link
JP (1) JPWO2009035128A1 (en)
WO (1) WO2009035128A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202486A (en) * 2009-03-06 2010-09-16 Toho Titanium Co Ltd Production method of particulate titanium oxide powder and particulate titanium oxide powder
WO2013100048A1 (en) * 2011-12-27 2013-07-04 石原産業株式会社 Titanium dioxide granules for use in production of titanium tetrachloride, and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177714A (en) * 1996-12-16 1998-06-30 Toda Kogyo Corp Titanium oxide particle powder for nonmagnetic base layer of magnetic recording medium which uses metal magnetic particle powder essentially comprising iron, substrate of magnetic recording medium having nonmagnetic base layer using that titanium oxide powder, and magnetic recording medium using that substrate
JP2003002749A (en) * 2001-04-18 2003-01-08 Tosoh Corp Indium oxide powder and method for manufacturing ito sputtering target
JP2005004816A (en) * 2003-06-09 2005-01-06 Toda Kogyo Corp Filler material for magnetic recording medium, and magnetic recording medium
JP2006083363A (en) * 2004-04-26 2006-03-30 Showa Denko Kk Coating material and use of the same
JP2007084401A (en) * 2005-09-26 2007-04-05 Nippon Chem Ind Co Ltd Method for producing tin disulfide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330763B2 (en) * 1994-12-28 2002-09-30 富士写真フイルム株式会社 Magnetic recording media
JP4672973B2 (en) * 2002-09-30 2011-04-20 昭和電工株式会社 Metal oxide structure containing titanium oxide, method for producing the same, and use thereof
JP2006299210A (en) * 2005-04-25 2006-11-02 Showa Denko Kk Coating material, photocatalytic film and its use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10177714A (en) * 1996-12-16 1998-06-30 Toda Kogyo Corp Titanium oxide particle powder for nonmagnetic base layer of magnetic recording medium which uses metal magnetic particle powder essentially comprising iron, substrate of magnetic recording medium having nonmagnetic base layer using that titanium oxide powder, and magnetic recording medium using that substrate
JP2003002749A (en) * 2001-04-18 2003-01-08 Tosoh Corp Indium oxide powder and method for manufacturing ito sputtering target
JP2005004816A (en) * 2003-06-09 2005-01-06 Toda Kogyo Corp Filler material for magnetic recording medium, and magnetic recording medium
JP2006083363A (en) * 2004-04-26 2006-03-30 Showa Denko Kk Coating material and use of the same
JP2007084401A (en) * 2005-09-26 2007-04-05 Nippon Chem Ind Co Ltd Method for producing tin disulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202486A (en) * 2009-03-06 2010-09-16 Toho Titanium Co Ltd Production method of particulate titanium oxide powder and particulate titanium oxide powder
WO2013100048A1 (en) * 2011-12-27 2013-07-04 石原産業株式会社 Titanium dioxide granules for use in production of titanium tetrachloride, and method for producing same

Also Published As

Publication number Publication date
JPWO2009035128A1 (en) 2010-12-24

Similar Documents

Publication Publication Date Title
JP5021106B2 (en) Titanium oxide sol, its production method, ultrafine titanium oxide, its production method and use
TWI278429B (en) Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP5883826B2 (en) Method for producing nanoparticle composition
US8101152B1 (en) Sonochemical synthesis of titanium-containing oxides
JP6271599B2 (en) Complexation precursor formulation methodology for industrial production of layered lithium mixed oxide fine and ultrafine powders and nanopowders for battery applications
US20050186133A1 (en) Process for preparing a strontium titanate powder
US20090061230A1 (en) Synthesis of Titanium Dioxide Nanoparticles
CN105358485A (en) Process for the preparation of lithium titanium spinel and its use
Tolstoy et al. Synthesis of birnessite structure layers at the solution–air interface and the formation of microtubules from them
JP2006102737A (en) Fine particle manufacturing method
WO2014196462A1 (en) Lithium titanate, production method for same, and electrical storage device employing same
CN101687664B (en) Process for preparing bismuth oxide, and the apparatus therefor
JPH07291607A (en) Production of ceramic powder
WO2009035128A1 (en) Process for producing fine particle powder of titanium oxide and fine particle powder of titanium oxide
TW201305056A (en) Titanium material for preparing lithium titanate and method for preparing the lithium titanate using the material
JP5275090B2 (en) Method for producing fine particle titanium oxide powder
JPWO2019117027A1 (en) Nickel-containing hydroxide and its manufacturing method
JP2013100200A (en) Method for producing lanthanum titanate compound and lanthanum titanate compound
WO2012077763A1 (en) Method for producing transition metal hydroxide
WO2009017212A1 (en) Method for producing titanium oxide powder with low halogen content, and titanium oxide powder with low halogen content
JP5057300B2 (en) Manufacturing method of ceramic powder
Pu et al. Anomalous phase transition of layered lepidocrocite titania nanosheets to anatase and rutile
JP3603553B2 (en) Method for producing aqueous dispersion
CN100334261C (en) Rutile type structure TiO2 single dispersed nano-monocrystal and its synthesis method
JPH10139429A (en) Production of lithium-titanium complex oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08830655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009532263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08830655

Country of ref document: EP

Kind code of ref document: A1