WO2019117027A1 - Nickel-containing hydroxide and production method therefor - Google Patents

Nickel-containing hydroxide and production method therefor Download PDF

Info

Publication number
WO2019117027A1
WO2019117027A1 PCT/JP2018/045045 JP2018045045W WO2019117027A1 WO 2019117027 A1 WO2019117027 A1 WO 2019117027A1 JP 2018045045 W JP2018045045 W JP 2018045045W WO 2019117027 A1 WO2019117027 A1 WO 2019117027A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
containing hydroxide
particle size
hydroxide
particles
Prior art date
Application number
PCT/JP2018/045045
Other languages
French (fr)
Japanese (ja)
Inventor
一臣 漁師
元彬 猿渡
慶彦 中尾
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to JP2019559600A priority Critical patent/JP7220849B2/en
Publication of WO2019117027A1 publication Critical patent/WO2019117027A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.
  • the lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode.
  • a lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide which is relatively easy to synthesize, as a positive electrode material is expected as a battery having a high energy density since a high voltage of 4 V is obtained.
  • Practical application is in progress.
  • a battery using a lithium cobalt composite oxide many developments have been conducted to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
  • lithium cobalt composite oxide uses an expensive cobalt compound as a raw material
  • the unit cost per capacity of a battery using this lithium cobalt composite oxide is much higher than that of a nickel hydrogen battery, and the applicable application is considerable. It is limited. Therefore, the cost of the positive electrode material can be reduced not only for small secondary batteries for portable devices but also for large secondary batteries for electric power storage, electric vehicles, etc., and cheaper lithium ion secondary batteries can be manufactured. Expectations are high for making it possible, and it can be said that its realization has great industrial significance. In particular, high output is required for a secondary battery for hybrid vehicles that is rapidly spreading, and high output of lithium ion secondary battery is being studied.
  • lithium nickel complex oxide using nickel cheaper than cobalt can be mentioned.
  • the lithium nickel composite oxide exhibits a lower electrochemical potential than the lithium cobalt composite oxide, so decomposition by the oxidation of the electrolytic solution is less likely to be a problem, higher capacity can be expected, and battery voltage as high as cobalt type.
  • Development is actively conducted.
  • a lithium ion secondary battery is manufactured using a lithium-nickel composite oxide synthesized purely with only nickel as a positive electrode material, the relative cycle characteristics are inferior to those of cobalt, and it is relatively due to use or storage under high temperature environment.
  • lithium nickel composite oxides in which a part of nickel is replaced with cobalt or aluminum are known because they have the disadvantage of easily degrading the cell performance.
  • lithium nickel composite oxide which is a positive electrode active material
  • a nickel composite hydroxide which is a precursor is produced by a neutralization crystallization method, and this precursor is mixed with a lithium compound and fired.
  • Methods of obtaining lithium nickel composite oxides are known.
  • the powder properties of the lithium nickel composite oxide are greatly influenced by the powder properties of the precursor nickel composite hydroxide, and in particular, the most basic powder properties, the particle size distribution substantially reflects the particle size distribution of the precursor. Therefore, control of neutralization crystallization to obtain a precursor is extremely important.
  • lithium nickel composite oxide in order to obtain a high output lithium nickel composite oxide, it is necessary to obtain a fine nickel composite hydroxide in neutralization crystallization. Further, for increasing the capacity of the lithium-nickel composite oxide, it is effective to increase the volumetric energy density by the improvement of the packing property, and the improvement of the circularity of the particles is effective as the packing property improvement method. Therefore, in order to obtain a high output and high capacity lithium nickel composite oxide, it is preferable to use a nickel composite hydroxide having a small particle diameter and a high circularity as a precursor.
  • Patent Document 1 does not provide a technology for realizing a positive electrode active material having a truly small particle size.
  • Patent Document 2 discloses a positive electrode active material for a non-aqueous lithium secondary battery, which is a particle composed of a composite oxide of lithium and a transition metal, and at least the surface thereof is melted and solidified to be spheroidized.
  • a positive electrode active material for a non-aqueous lithium secondary battery which is a particle composed of a composite oxide of lithium and a transition metal, and at least the surface thereof is melted and solidified to be spheroidized.
  • the degree of circularity increases when the surface is melted, the positive electrode active material is more likely to aggregate as the particle size becomes finer, so when applied to small particle size particles, the melted particles aggregate vigorously. It will be done. Since this result leads to an increase in particle size, it is presumed that the packability of the positive electrode active material is greatly reduced and the output of the battery is also reduced. Therefore, Patent Document 2 also does not provide a technology for realizing a positive electrode active material having a very small particle size.
  • An object of the present invention is to provide a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery capable of achieving both high output and high capacity, and a method for producing the same. .
  • the inventors of the present invention conducted intensive studies on a method for producing a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery, and as a result It has been found that, by giving the above, it is possible to obtain a nickel-containing oxide having a fine particle diameter and a high spherical property, and to complete the present invention.
  • the nickel-containing hydroxide of the first invention has a general formula (1) Ni1-x-yCoxAly (OH) 2 + ⁇ (0 ⁇ x ⁇ 0.3, 0.005 ⁇ y ⁇ 0.15, x + y ⁇ 0.
  • the volume average particle diameter is 1.00 ⁇ m to 3.00 ⁇ m, which is an index indicating the spread of the particle size distribution [(d 90 ⁇ 10) / volume average particle size] is 0.50 or less, roundness (minimum circumscribed circle diameter of
  • the method for producing a nickel-containing hydroxide according to the second aspect of the present invention is a method for producing a nickel-containing hydroxide according to the present invention comprising the general formula (1): Ni1-x-yCoxAly (OH) 2 + .alpha.
  • a method for producing an oxide comprising stirring a reaction solution, a metal salt-containing aqueous solution, an alkali metal hydroxide, and In the neutralization crystallization step of supplying and reacting the complexing agent to obtain nickel-containing hydroxide particles, there is
  • the method for producing a nickel-containing hydroxide according to the third invention is characterized in that, in the second invention, an acceleration applying mechanism is used as a method for giving an acceleration to the slurry.
  • the method for producing a nickel-containing hydroxide according to a fourth aspect of the invention is characterized in that, in the third aspect, the acceleration applying mechanism is a centrifugal pump.
  • the nickel-containing hydroxide has a small particle size of 1.00 ⁇ m to 4.00 ⁇ m in volume average particle size, so that the specific surface area can be increased and high output can be exhibited.
  • the spread of the distribution is [(d90 ⁇ d10) / volume average particle diameter] is 0.5 or less, the amount of fine particles mixed can be reduced to ensure high output of the battery.
  • the degree of circularity is 0.95 or more, the packability of the positive electrode active material can be increased, so that high capacity of the battery can be achieved.
  • high output and high capacity of the battery can be compatible.
  • the particles grown into an irregular shape different from the spherical shape are subjected to a large shear force, crushed and spheroidized, and the particle diameter is maintained while maintaining the spherical property. grow up. Therefore, the particle size and the spread of the particle size distribution can be kept within the numerical range defined in the first invention, and the circularity can also be kept within the numerical range prescribed in the first invention.
  • the acceleration of the slurry can be efficiently increased with lower energy, nickel-containing hydroxide particles having a small particle size and high sphericality can be obtained efficiently.
  • the slurry can be accelerated radially outward by the rotation of the impeller housed in the casing of the centrifugal pump, and the acceleration can be easily realized high acceleration by raising the rotational speed Because it is suitable for applications that accelerate the slurry at high speed.
  • Ni x Coy M nz M t (OH) 2 + ⁇ (x + y + z + t 1, 0.1 y y ⁇ 0.5, 0.1 z z 0.8 0.8, 0 ⁇ t ⁇ 0.02, 0 ⁇ ⁇ ⁇ 0.5, M is not represented by one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W It is a nickel containing hydroxide used as a raw material of the positive electrode active material for water-based electrolyte secondary batteries.
  • the nickel-containing hydroxide particles (a) have a volume average particle diameter of 1.00 ⁇ m to 4.00 ⁇ m, and (b) is an index indicating the spread of the particle size distribution [(d 90 ⁇ d 10) / volume average Particle size] is 0.50 or less, and (c) circularity (area equivalent circle diameter of particle projection image / minimum circumscribed circle diameter of particle projection image) is 0.95 or more. It is characterized by
  • volume average particle size is an average particle size weighted by particle volume, and in a set of particles, the sum of the diameter of individual particles multiplied by the volume of the particles divided by the total volume of the particles is there.
  • the volume average particle size (MV) can be measured, for example, by a laser diffraction scattering method using a laser diffraction particle size distribution analyzer. When the volume average particle diameter is as small as 1.00 ⁇ m to 4.00 ⁇ m, the specific surface area can be increased to exhibit high output.
  • the volume average particle diameter is less than 1.00 ⁇ m
  • the paste viscosity is significantly increased when producing an electrode using a positive electrode active material using the same as a raw material.
  • the volume average particle size exceeds 4.00 ⁇ m, the specific surface area of the positive electrode active material using the same as a raw material is reduced, and the movement of lithium is restricted, so that sufficient output can not be exhibited.
  • (B) Volume particle size distribution An index indicating the spread of particle size distribution (particle size variation index) [(d90 ⁇ d10) / volume average particle size] is 0.50 or less, whereby fine particles and coarse particles are mixed. Can be suppressed to make the particle diameter of the secondary particles uniform, and high output of the battery can be realized. Further, since it is possible to suppress an increase in paste viscosity at the time of electrode production, the amount of solvent is small, and the drying step after coating becomes a short time, and there is an advantage that the drying shrinkage is small and the yield is improved.
  • d90 and d10 mean particle sizes accumulated from the side of smaller particle size, and the cumulative volume is 90% and 10% of the total volume of all particles.
  • the d90 and d10 can be measured by the laser diffraction scattering method using a laser diffraction particle size distribution analyzer, similarly to the volume average particle diameter (MV).
  • (C) Circularity The circularity referred to in the present specification is determined by [area equivalent circle diameter of particle projection image / minimum circumscribed circle diameter of particle projection image]. As this value is closer to 1, it means that the particles have a shape close to a perfect circle. Also, since particles are solid, it is best to use sphericity as an index, but this is difficult and is replaced by circularity. However, the method of measuring the area equivalent circle diameter of the particle projection image and the minimum circumscribed circle diameter of the particle projection image can be obtained from the projection image of the particle measured by a commercially available electron microscope.
  • the degree of circularity is 0.95 or more, the spherical property is considerably high, and the packability of the positive electrode active material can be maintained high. Therefore, the volumetric energy density of the battery can be maintained in a suitable range.
  • the degree of circularity is less than 0.95, the packing property of the positive electrode active material made from the material decreases, and as a result, the volumetric energy density of the battery decreases, which is not preferable.
  • the present invention is characterized in that (a) volume average particle diameter, (b) particle size distribution, and (c) circularity all satisfy the above-mentioned numerical range.
  • High battery power is achieved by (a) volume average particle size and (b) particle size distribution, and high capacity is achieved by (c) circularity. Therefore, the present invention can realize both high output and high capacity.
  • the metal salt-containing aqueous solution is an aqueous solution in which salts of the constituent elements of the above-mentioned nickel-containing hydroxide are dissolved in water to adjust the salt concentration.
  • the composition of the metal salt-containing aqueous solution is preferably the composition ratio of the metal element in the general formula.
  • the pH of the reaction solution (nickel complex hydroxide solution after reaction) can be controlled by supplying an alkali metal hydroxide.
  • the alkali metal hydroxide is not particularly limited, and for example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used.
  • the alkali metal hydroxide can be added directly to the reaction solution, but is preferably added as an aqueous solution because of the ease of pH control.
  • the method of adding the alkali metal hydroxide aqueous solution is not particularly limited either, and it is a pump that can control the flow rate such as a metering pump while sufficiently stirring the reaction solution, and the pH at a liquid temperature of 25 ° C is 10 to It may be added so as to be in the range of 13 (! Comparative Example 3!).
  • the complexing agent is not particularly limited as long as it is an ammonium ion supplier, as long as it can form a nickel ammine complex in the reaction aqueous solution.
  • ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be mentioned.
  • ammonium ion donors any one that forms the complex can be used, and examples thereof include ethylenediaminetetraacetic acid, nitrite triacetic acid, uracildiacetic acid and glycine.
  • ammonia water is more preferably used from the viewpoint of ease of handling and the like.
  • a region having an acceleration of 900 m / s 2 or more is provided, and when the slurry is passed through this region, particles grown into a different shape different from a spherical shape are subjected to a large shear force and are crushed and spheroidized. . And, the particle diameter grows while maintaining the spherical property. This will be explained more specifically.
  • the neutralization crystallization step a large number of secondary particles in which primary particles are aggregated are produced, and these become nickel-containing hydroxide particles. When a large number of secondary particles are bound by aggregation, it becomes irregular shaped particles with low sphericity.
  • Such irregularly shaped particles are sheared by acceleration in the slurry to reduce the number of aggregation, and eventually separate into individual secondary particles. As a result of separation, since it becomes spherical, it becomes spherical nickel-containing hydroxide particles that should be inherent.
  • the acceleration In the case of exerting the above shear force, it is effective to set the acceleration to 900 m / s 2 or more. On the contrary, if there is no region where the acceleration is 900 m / s2 or more, that is, if the maximum acceleration in the system is less than 900 m / s2, the shear force on the particles is insufficient, and the average particle diameter of 3.00 ⁇ m or less It is not preferable because it becomes difficult to obtain the particles possessed, and the sphericity tends to decrease.
  • any method may be used as long as the slurry can be provided with the necessary acceleration.
  • a pump as an acceleration application mechanism
  • a stirrer, a centrifuge or the like can be used.
  • the reason why the pump is efficient is that the acceleration of the slurry can be increased efficiently with lower energy.
  • an orifice or reducer in which the diameter of the flow path of the slurry is partially narrowed.
  • the stirrer 2 utilized for stirring in a tank can also be abbreviate
  • the manufacturing equipment shown in FIG. 1 is a reaction tank, 2 is a stirrer which stirs a slurry.
  • a pump 3 is connected to the reaction tank 1 by a suction pipe 4 and a return pipe 5 so that the pump 3 can apply an acceleration to the slurry.
  • the slurry can be introduced into the pump 3 from the reaction tank 1 and returned to the reaction tank 1 from the pump 3 by using the above-mentioned manufacturing equipment, that is, it can be accelerated continuously by small flow rate when it is circulated. Is preferable in that In such equipment, it is possible to provide an acceleration region of the slurry in the pump 3 or in the flow paths of the pump pipes 4 and 5.
  • the pump used in the present invention is preferably a centrifugal pump.
  • the centrifugal pump can accelerate the slurry radially outward by the impeller provided in the casing, and the acceleration can easily realize high acceleration by raising the rotational speed, so it is suitable for applications that accelerate the slurry at high speed, It is more suitable than other pumps.
  • a laser diffraction type particle size distribution analyzer (MT3300EX2 manufactured by Microtrac Bell Inc.) was used for measurement of particle size distribution.
  • a wet flow type particle size and shape analyzer (manufactured by Malvern Instruments Ltd., FPIA-3000) was used.
  • each sample of the reagent special grade reagent by Wako Pure Chemical Industries Ltd. was used for manufacture of nickel containing hydroxide.
  • Example 1 Add 40 L of pure water, 25% caustic soda solution as alkali metal hydroxide and 25% aqueous ammonia solution as complexing agent to a crystallization reaction vessel with a volume of 200 L with 4 baffles attached
  • the internal pH was adjusted to 12.40, and the ammonia concentration in the tank was adjusted to 12 g / L.
  • Example 2 In Example 1, the rotation speed was increased to 500 rpm using a 7.5 kW stirrer without using a centrifugal pump to obtain a nickel-containing hydroxide. The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 1.9 ⁇ m, D50: 2.3 ⁇ m, D90: 3.0 ⁇ m, volume average particle size: 2.5 ⁇ m, (D90-D10) / volume The average particle size was 0.44 and the roundness was 0.97.
  • Example 3 In Example 1, a nickel-cobalt-manganese mixed aqueous solution having a nickel molar concentration of 0.6 mol / L, a cobalt molar concentration of 0.6 mol / L, and a manganese molar concentration of 0.6 mol / L is used instead of the nickel-cobalt sulfate mixed aqueous solution.
  • the contained hydroxide was obtained.
  • the particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 1.7 ⁇ m, D50: 2.0 ⁇ m, D90: 2.7 ⁇ m, volume average particle size: 2.2 ⁇ m, (D90-D10) / volume Average particle size: 0.45, circularity 0.97.
  • Example 1 Using the centrifugal pump in Example 1, a nickel-containing hydroxide was obtained at a frequency of 7 Hz (impeller rotational speed: 360 rpm). The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.9 ⁇ m, D50: 3.6 ⁇ m, D90: 4.8 ⁇ m, volume average particle size: 3.9 ⁇ m, (D90-D10) / volume The average particle size was 0.49, and the roundness was 0.94.
  • Example 2 A nickel-containing hydroxide was obtained using the stirrer in Example 2 at a rotational speed of 350 rpm. The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 3.4 ⁇ m, D50: 4.3 ⁇ m, D90: 5.5 ⁇ m, volume average particle size: 4.6 ⁇ m, (D90-D10) / volume The average particle size was 0.46 and the roundness was 0.93.
  • Example 3 A nickel-containing hydroxide was obtained using the stirrer in Example 2 at a rotational speed of 200 rpm. The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.1 ⁇ m, D50: 2.8 ⁇ m, D90: 4.0 ⁇ m, volume average particle size: 2.9 ⁇ m, (D90-D10) / MV It was 0.66 and circularity 0.91.
  • Comparative example 4 In Comparative Example 1, a nickel-cobalt-manganese mixed aqueous solution having a nickel molar concentration of 0.6 mol / L, a cobalt molar concentration of 0.6 mol / L, and a manganese molar concentration of 0.6 mol / L is used instead of the nickel-cobalt sulfate mixed aqueous solution.
  • the contained hydroxide was obtained.
  • the particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.3 ⁇ m, D50: 2.9 ⁇ m, D90: 4.2 ⁇ m, volume average particle size: 3.0 ⁇ m, (D90-D10) / volume
  • the average particle size was 0.63 and the roundness was 0.90.
  • Example 1 to 3 and Comparative Examples 1 to 4 the acceleration at a position where the acceleration is maximum in the system was determined by simulation using general-purpose fluid analysis software.
  • fluid analysis software ANSYS CFX Ver 15.0 (trade name) manufactured by ANSYS was used.
  • the area handled in the rotational coordinate system is cylindrical, and its center line is superimposed on the stirring axis or the center line of the stirring blade, its diameter is set to 115% of the blade diameter of the stirring blade, and the vertical direction is stirred From the inner bottom of the tank to the liquid level.
  • the volume average particle diameter is 1.00 ⁇ m to 3.00 ⁇ m by reacting in a system having an area of 900 m / s 2 or more in the system, which is an index showing the spread of particle size distribution. It was confirmed that [(d90-d10) / volume average particle diameter] was 0.50 or less and particles having a circularity of 0.95 or more were obtained.
  • the mixing was performed using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willie et Bakofen (WAB)).
  • the obtained mixture is calcined at 750 ° C. for 8 hours in an oxygen stream (oxygen: 100% by volume) in Examples 1 and 2 and Comparative Examples 1, 2 and 3, and in Example 3 and Comparative Example 4, the air flow
  • the mixture was calcined at 950 ° C. for 8 hours in medium (oxygen: 20% by volume), cooled and then crushed to obtain a positive electrode active material.
  • the volume average particle size and tap density of the positive electrode active material are shown in Table 2.
  • the tap density tends to decrease with the refinement of the particle size, but from Table 2, the tap density is small while the particle size is fine in Examples 1 and 2 It was confirmed that the energy density of the battery was improved. This is due to the high circularity of the precursor nickel composite hydroxide particles, in other words, the high sphericity.

Abstract

Provided are: a nickel-containing hydroxide that has a small particle size, a narrow particle size distribution, and high sphericity; and a production method therefor. This nickel-containing hydroxide serves as a raw material for a positive electrode active substance for non-aqueous electrolyte secondary batteries and has a weight-average particle diameter of 1.00–3.00 µm, a spread of particle size distribution, expressed by the index (d90–d10)/weight-average particle diameter, of no more than 0.50, and a circularity of at least 0.95. This production method for the nickel-containing hydroxide is characterized by a region in which the acceleration of slurry including nickel-containing hydroxide particles reaches at least 900 m/s2 being present in a neutralization crystallization process in which a metal salt-containing aqueous solution, an alkali metal hydroxide, and a complexing agent are supplied and reacted, while stirring a reaction solution, and nickel-containing hydroxide particles are obtained.

Description

ニッケル含有水酸化物およびその製造方法Nickel-containing hydroxide and method for producing the same
 本発明は、非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物、およびその製造方法に関する。 The present invention relates to a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery, and a method for producing the same.
 近年、携帯電話、ノート型パーソナルコンピュータなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が要求されている。また、ハイブリット自動車を始めとする電気自動車用の電池として、高出力の二次電池の開発も要求されている。このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、電解液などで構成され、負極および正極の活物質には、リチウムを脱離および挿入することが可能な材料が用いられている。 2. Description of the Related Art In recent years, with the spread of portable electronic devices such as mobile phones and notebook personal computers, development of small and lightweight secondary batteries having high energy density has been required. In addition, development of a high output secondary battery is also required as a battery for electric vehicles including hybrid vehicles. There is a lithium ion secondary battery as a non-aqueous electrolyte secondary battery satisfying such a demand. The lithium ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution and the like, and a material capable of desorbing and inserting lithium is used as the active material of the negative electrode and the positive electrode.
 リチウム複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高エネルギー密度を有する電池として期待され、実用化が進んでいる。リチウムコバルト複合酸化物を用いた電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 A lithium ion secondary battery using a lithium composite oxide, particularly a lithium cobalt composite oxide which is relatively easy to synthesize, as a positive electrode material is expected as a battery having a high energy density since a high voltage of 4 V is obtained. Practical application is in progress. In a battery using a lithium cobalt composite oxide, many developments have been conducted to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained.
 しかしながら、リチウムコバルト複合酸化物は、原料に高価なコバルト化合物を用いるため、このリチウムコバルト複合酸化物を用いる電池の容量あたりの単価は、ニッケル水素電池より大幅に高くなり、適用可能な用途はかなり限定されている。したがって、携帯機器用の小型二次電池についてだけではなく、電力貯蔵用や電気自動車用などの大型二次電池についても、正極材料のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることに対する期待は大きく、その実現は、工業的に大きな意義があるといえる。特に急速に普及しつつあるハイブリッド自動車用の二次電池には高出力が求められ、リチウムイオン二次電池の高出力化が検討されている。 However, since lithium cobalt composite oxide uses an expensive cobalt compound as a raw material, the unit cost per capacity of a battery using this lithium cobalt composite oxide is much higher than that of a nickel hydrogen battery, and the applicable application is considerable. It is limited. Therefore, the cost of the positive electrode material can be reduced not only for small secondary batteries for portable devices but also for large secondary batteries for electric power storage, electric vehicles, etc., and cheaper lithium ion secondary batteries can be manufactured. Expectations are high for making it possible, and it can be said that its realization has great industrial significance. In particular, high output is required for a secondary battery for hybrid vehicles that is rapidly spreading, and high output of lithium ion secondary battery is being studied.
 リチウムイオン二次電池用活物質の新たなる材料としては、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物を挙げることができる。このリチウムニッケル複合酸化物は、リチウムコバルト複合酸化物よりも低い電気化学ポテンシャルを示すため、電解液の酸化による分解が問題になりにくく、より高容量が期待でき、コバルト系と同様に高い電池電圧を示すことから、開発が盛んに行われている。しかし、純粋にニッケルのみで合成したリチウムニッケル複合酸化物を正極材料としてリチウムイオン二次電池を作製した場合、コバルト系に比ベサイクル特性が劣り、また、高温環境下での使用や保存により比較的電池性能を損ないやすいという欠点を有しているため、ニッケルの一部をコバルトやアルミニウムで置換したリチウムニッケル複合酸化物が一般的に知られている。  As a new material of the active material for lithium ion secondary batteries, lithium nickel complex oxide using nickel cheaper than cobalt can be mentioned. The lithium nickel composite oxide exhibits a lower electrochemical potential than the lithium cobalt composite oxide, so decomposition by the oxidation of the electrolytic solution is less likely to be a problem, higher capacity can be expected, and battery voltage as high as cobalt type. Development is actively conducted. However, when a lithium ion secondary battery is manufactured using a lithium-nickel composite oxide synthesized purely with only nickel as a positive electrode material, the relative cycle characteristics are inferior to those of cobalt, and it is relatively due to use or storage under high temperature environment. Generally, lithium nickel composite oxides in which a part of nickel is replaced with cobalt or aluminum are known because they have the disadvantage of easily degrading the cell performance.
 リチウムニッケル複合酸化物の高出力化は、電解液との反応面積を増加させること、具体的には小粒径化による表面積増加が有効であることが知られている。正極活物質であるリチウムニッケル複合酸化物の一般的な製造方法としては、中和晶析法により前駆体であるニッケル複合水酸化物を作製し、この前駆体をリチウム化合物と混合して焼成し、リチウムニッケル複合酸化物を得る方法が知られている。リチウムニッケル複合酸化物の粉体特性は前駆体であるニッケル複合水酸化物の粉体特性により大きな影響を受け、とくに最も基本的な粉体特性である粒度分布は前駆体の粒度分布をほぼ反映するため、前駆体を得る中和晶析の制御は極めて重要である。 It is known that increasing the output of the lithium nickel composite oxide is effective to increase the reaction area with the electrolytic solution, specifically to increase the surface area by reducing the particle size. As a general production method of a lithium nickel composite oxide which is a positive electrode active material, a nickel composite hydroxide which is a precursor is produced by a neutralization crystallization method, and this precursor is mixed with a lithium compound and fired. Methods of obtaining lithium nickel composite oxides are known. The powder properties of the lithium nickel composite oxide are greatly influenced by the powder properties of the precursor nickel composite hydroxide, and in particular, the most basic powder properties, the particle size distribution substantially reflects the particle size distribution of the precursor. Therefore, control of neutralization crystallization to obtain a precursor is extremely important.
 つまり、高出力なリチウムニッケル複合酸化物を得るには、中和晶析において微細なニッケル複合水酸化物を得る必要がある。また、リチウムニッケル複合酸化物の高容量化については、充填性向上による体積エネルギー密度増加が有効であり、充填性向上方法としては、粒子の円形度向上が有効である。よって、高出力かつ高容量なリチウムニッケル複合酸化物を得るには、小粒径かつ高円形度のニッケル複合水酸化物を前駆体とするのが好ましい。 That is, in order to obtain a high output lithium nickel composite oxide, it is necessary to obtain a fine nickel composite hydroxide in neutralization crystallization. Further, for increasing the capacity of the lithium-nickel composite oxide, it is effective to increase the volumetric energy density by the improvement of the packing property, and the improvement of the circularity of the particles is effective as the packing property improvement method. Therefore, in order to obtain a high output and high capacity lithium nickel composite oxide, it is preferable to use a nickel composite hydroxide having a small particle diameter and a high circularity as a precursor.
 特許文献1には、一次粒子又は二次粒子の球形度(=粒子投影像の面積円相当径/ 粒子投影像の最小外接円直径)が0.3~0.95であり、一次粒子又は二次粒子の体積平均粒径が2~8μmであり、比表面積が0.3~1.8m2/gであり、タップ密度が2.0g/cm3以上であるリチウムイオン電池用正極活物質が提示されている。しかし、実施例としては平均粒径が4.2μm~6.8μmのものしか記載されておらず、平均粒径が約4μm以下の小粒径の正極活物質を開示していない。したがって、特許文献1は真に小粒径の正極活物質を実現する技術を提供したものではない。 In Patent Document 1, the sphericity (= area equivalent circle diameter of particle projection image / minimum circumscribed circle diameter of particle projection image) of primary particles or secondary particles is 0.3 to 0.95, and primary particles or secondary particles A positive electrode active material for a lithium ion battery having a volume average particle diameter of 2 to 8 μm, a specific surface area of 0.3 to 1.8 m 2 / g, and a tap density of 2.0 g / cm 3 or more ing. However, in the examples, only materials having an average particle diameter of 4.2 μm to 6.8 μm are described, and a positive electrode active material having a small particle diameter of about 4 μm or less is not disclosed. Therefore, Patent Document 1 does not provide a technology for realizing a positive electrode active material having a truly small particle size.
 特許文献2には、リチウムと遷移金属の複合酸化物からなる粒子であり、その少なくとも表面が溶融凝固して球状化されている非水系リチウム二次電池用正極活物質が提示されている。しかし、表面を溶融させると円形度が上昇すると考えられるものの、正極活物質は粒径が微細化するほど凝集しやすくなるため、小粒径粒子に適用した場合は、溶融した粒子同士が激しく凝集することになる。この結果は大粒径化をもたらすので、正極活物質の充填性を大きく低下させ、電池の出力も低下させると推測される。したがって、特許文献2も真に小粒径の正極活物質を実現する技術を提供したものではない。 Patent Document 2 discloses a positive electrode active material for a non-aqueous lithium secondary battery, which is a particle composed of a composite oxide of lithium and a transition metal, and at least the surface thereof is melted and solidified to be spheroidized. However, although it is thought that the degree of circularity increases when the surface is melted, the positive electrode active material is more likely to aggregate as the particle size becomes finer, so when applied to small particle size particles, the melted particles aggregate vigorously. It will be done. Since this result leads to an increase in particle size, it is presumed that the packability of the positive electrode active material is greatly reduced and the output of the battery is also reduced. Therefore, Patent Document 2 also does not provide a technology for realizing a positive electrode active material having a very small particle size.
 特許文献3には、円形度が低いほど二次粒子内部の一次粒子が導電助剤と接触しやすくなるため出力が上がるとの記述(段落0023)があるが、小粒径の粒体では円形度低下により充填性が著しく低下することは明らかであるので、電池の高出力と高容量の両立を実現したものとは考えられない。 Although there is a description (Paragraph 0023) in Patent Document 3 that the primary particles inside the secondary particles are more easily in contact with the conductive aid as the degree of circularity is lower (paragraph 0023), the particles having small particle diameters are circular. Since it is clear that the degree of packing decreases significantly due to the reduction in temperature, it can not be considered that both high output and high capacity of the battery are realized.
 上記のように、これまでの従来技術では高出力と高容量を両立させること、すなわち粒径が微細かつ円形度が高いリチウムニッケル複合酸化物を得ることは困難であった。 As described above, it has been difficult to achieve high output and high capacity simultaneously, that is, to obtain a lithium-nickel composite oxide having a fine particle diameter and a high degree of circularity, in the prior art so far.
WO2011-083648号公報WO 2011-083648 特開2002-110156号公報Japanese Patent Application Laid-Open No. 2002-110156 特開2008-186753号公報JP 2008-186753A
 本発明は、上記事情に鑑みて、高出力と高容量を両立できる非水系電解質二次電池用正極活物質の原材料としてのニッケル含有水酸化物、およびその製造方法を提供することを目的とする。 An object of the present invention is to provide a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery capable of achieving both high output and high capacity, and a method for producing the same. .
 本発明者は、非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物の製造方法に関して鋭意研究を重ねた結果、晶析中のニッケル含有水酸化物スラリーに一定以上の加速度を与えることで、粒径が微細かつ球状性の高いニッケル含有酸化物を得ることができるとの知見を得て、本発明を完成するに至った。 The inventors of the present invention conducted intensive studies on a method for producing a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery, and as a result It has been found that, by giving the above, it is possible to obtain a nickel-containing oxide having a fine particle diameter and a high spherical property, and to complete the present invention.
 第1発明のニッケル含有水酸化物は、一般式(1)Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)または一般式(2)NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物であって、体積平均粒径が1.00μm~3.00μmであり、粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径]が0.50以下であり、円形度(粒子投影像の面積円相当径/粒子投影像の最小外接円直径)が0.95以上であることを特徴とする。
 第2発明のニッケル含有水酸化物の製造方法は、一般式(1)Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)または一般式(2)NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物の製造方法であって、反応溶液を撹拌しながら、金属塩含有水溶液と、アルカリ金属水酸化物、および錯化剤を供給して反応させてニッケル含有水酸化物粒子を得る中和晶析工程において、ニッケル含有水酸化物粒子を含むスラリーの加速度が900m/s2以上となる領域が存在することを特徴とする。
 第3発明のニッケル含有水酸化物の製造方法は、第2発明において、前記スラリーに加速度を与える方法として、加速度付加機構を使用することを特徴とする。
 第4発明のニッケル含有水酸化物の製造方法は、第3発明において、前記加速度付加機構が遠心ポンプであることを特徴とする。
The nickel-containing hydroxide of the first invention has a general formula (1) Ni1-x-yCoxAly (OH) 2 + α (0 ≦ x ≦ 0.3, 0.005 ≦ y ≦ 0.15, x + y <0. 5, 0 ≦ α ≦ 0.5, M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) or the general formula (2) Ni x Co y M n s M t (OH) ) 2 + α (x + y + z + t = 1, 0.1 y y 0.5 0.5, 0.1 z z 0.8 0.8, 0 t t 0.02 0.02, 0 α α 0.5 0.5, M is Ti, V Nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery represented by at least one additive element selected from Cr, Zr, Nb, Mo, Hf, Ta, and W) The volume average particle diameter is 1.00 μm to 3.00 μm, which is an index indicating the spread of the particle size distribution [(d 90 − 10) / volume average particle size] is 0.50 or less, roundness (minimum circumscribed circle diameter of the area circle equivalent diameter / particle projected image of a particle projected image) is equal to or is less than 0.95.
The method for producing a nickel-containing hydroxide according to the second aspect of the present invention is a method for producing a nickel-containing hydroxide according to the present invention comprising the general formula (1): Ni1-x-yCoxAly (OH) 2 + .alpha. <0.5, 0 ≦ α ≦ 0.5, M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) or the general formula (2) NixCoyMnzMt (OH) 2 + α (x + y + z + t = 1, 0.1 ≦ y ≦ 0.5, 0.1 ≦ z ≦ 0.8, 0 ≦ t ≦ 0.02, 0 ≦ α ≦ 0.5, M is Nickel-containing water as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery represented by one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W) A method for producing an oxide, comprising stirring a reaction solution, a metal salt-containing aqueous solution, an alkali metal hydroxide, and In the neutralization crystallization step of supplying and reacting the complexing agent to obtain nickel-containing hydroxide particles, there is a region where the acceleration of the slurry containing the nickel-containing hydroxide particles is 900 m / s 2 or more. It features.
The method for producing a nickel-containing hydroxide according to the third invention is characterized in that, in the second invention, an acceleration applying mechanism is used as a method for giving an acceleration to the slurry.
The method for producing a nickel-containing hydroxide according to a fourth aspect of the invention is characterized in that, in the third aspect, the acceleration applying mechanism is a centrifugal pump.
 第1発明によれば、ニッケル含有水酸化物が、体積平均粒径が1.00μm~4.00μmという小粒径であることにより、比表面積を大きくして高い出力を発揮でき、また、粒度分布の広がりが[(d90-d10)/体積平均粒径]が0.5以下であることにより、微細粒子混入量を少なくして電池の高出力を確保できる。さらに、円形度が0.95以上であることにより正極活物質の充填性を高くできるので電池の高容量を達成できる。このように第1発明のニッケル含有水酸化物によれば電池の高出力と高容量を両立できる。
 第2発明によれば、加速度が900m/s2以上の領域では、球状と異なる異形に成長した粒子は大きなせん断力を受け、破砕されて球状化すると共に、その球状性を維持したまま粒径が成長する。このため、粒径と粒度分布の広がりを第1発明に規定する数値範囲に収めることができ、かつ円形度も第1発明に規定する数値範囲に収めることができる。 第3発明によれば、より低エネルギーで効率よくスラリーの加速度を増加させることができるので、能率よく小粒径で球状性の高いニッケル含有水酸化物粒子が得られる。
 第4発明により、遠心ポンプを用いれば、前記遠心ポンプのケーシング内に収納されたインペラーの回転によりスラリーを半径方向外側に加速でき、その加速度は回転数を上げることで容易に高加速を実現できるので、スラリーを高速加速する用途に適している。
According to the first aspect of the invention, the nickel-containing hydroxide has a small particle size of 1.00 μm to 4.00 μm in volume average particle size, so that the specific surface area can be increased and high output can be exhibited. When the spread of the distribution is [(d90−d10) / volume average particle diameter] is 0.5 or less, the amount of fine particles mixed can be reduced to ensure high output of the battery. Furthermore, when the degree of circularity is 0.95 or more, the packability of the positive electrode active material can be increased, so that high capacity of the battery can be achieved. Thus, according to the nickel-containing hydroxide of the first aspect of the present invention, high output and high capacity of the battery can be compatible.
According to the second aspect of the invention, in the region where the acceleration is 900 m / s 2 or more, the particles grown into an irregular shape different from the spherical shape are subjected to a large shear force, crushed and spheroidized, and the particle diameter is maintained while maintaining the spherical property. grow up. Therefore, the particle size and the spread of the particle size distribution can be kept within the numerical range defined in the first invention, and the circularity can also be kept within the numerical range prescribed in the first invention. According to the third aspect of the invention, since the acceleration of the slurry can be efficiently increased with lower energy, nickel-containing hydroxide particles having a small particle size and high sphericality can be obtained efficiently.
According to the fourth invention, if a centrifugal pump is used, the slurry can be accelerated radially outward by the rotation of the impeller housed in the casing of the centrifugal pump, and the acceleration can be easily realized high acceleration by raising the rotational speed Because it is suitable for applications that accelerate the slurry at high speed.
本発明に係るニッケル含有水酸化物およびその製造方法の説明図である。It is explanatory drawing of the nickel containing hydroxide concerning this invention, and its manufacturing method.
 以下に、本発明の実施形態を図面に基づき説明する。
(ニッケル含有水酸化物)
 まず、本発明に係るニッケル含有水酸化物を説明する。
 本発明のニッケル含有水酸化物は、(1)一般式:Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5)または(2)一般式:NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物である。
 そして、このニッケル含有水酸化物粒子は、(a)体積平均粒径が1.00μm~4.00μmであり、(b)粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径]が0.50以下であり、(c)円形度(粒子投影像の面積円相当径/粒子投影像の最小外接円直径)が0.95以上であるという三つの粉体特性を備えることを特徴とする。
Hereinafter, embodiments of the present invention will be described based on the drawings.
(Nickel-containing hydroxide)
First, the nickel-containing hydroxide according to the present invention will be described.
The nickel-containing hydroxides of the present invention have the following general formula: (1) General formula: Ni1-x-yCoxAly (OH) 2 + α (0 ≦ x ≦ 0.3, 0.005 ≦ y ≦ 0.15, x + y <0. 5, 0 α α) 0.5) or (2) General formula: Ni x Coy M nz M t (OH) 2 + α (x + y + z + t = 1, 0.1 y y ≦ 0.5, 0.1 z z 0.8 0.8, 0 ≦ t ≦ 0.02, 0 ≦ α ≦ 0.5, M is not represented by one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W It is a nickel containing hydroxide used as a raw material of the positive electrode active material for water-based electrolyte secondary batteries.
The nickel-containing hydroxide particles (a) have a volume average particle diameter of 1.00 μm to 4.00 μm, and (b) is an index indicating the spread of the particle size distribution [(d 90 −d 10) / volume average Particle size] is 0.50 or less, and (c) circularity (area equivalent circle diameter of particle projection image / minimum circumscribed circle diameter of particle projection image) is 0.95 or more. It is characterized by
(a)体積平均粒径[MV]
 体積平均粒径(MV)とは粒子体積で重み付けした平均粒径であり、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で割ったものである。体積平均粒径(MV)はたとえば、レーザー回析式粒度分布計を用いたレーザー回折散乱法によって測定することが可能である。 体積平均粒径が1.00μm~4.00μmという小粒径であることにより、比表面積を大きくして高い出力を発揮できる。
(A) Volume average particle size [MV]
The volume average particle size (MV) is an average particle size weighted by particle volume, and in a set of particles, the sum of the diameter of individual particles multiplied by the volume of the particles divided by the total volume of the particles is there. The volume average particle size (MV) can be measured, for example, by a laser diffraction scattering method using a laser diffraction particle size distribution analyzer. When the volume average particle diameter is as small as 1.00 μm to 4.00 μm, the specific surface area can be increased to exhibit high output.
 上記数値範囲を外れると、つぎの問題が生ずる。体積平均粒径が1.00μm未満になると、これを原料とした正極活物質を用いて電極を作製する際に、ペースト粘度が著しく上昇するため好ましくない。また、体積平均粒径が4.00μmを超えると、これを原料とした正極活物質の比表面積が低下し、リチウムの移動が制限されるため十分な出力を発揮できない。 Outside the above numerical range, the following problems occur. When the volume average particle diameter is less than 1.00 μm, the paste viscosity is significantly increased when producing an electrode using a positive electrode active material using the same as a raw material. In addition, when the volume average particle size exceeds 4.00 μm, the specific surface area of the positive electrode active material using the same as a raw material is reduced, and the movement of lithium is restricted, so that sufficient output can not be exhibited.
(b)体積粒度分布
 粒度分布の広がり(粒径ばらつき指数)を示す指標である[(d90-d10)/体積平均粒径]が0.50以下であることにより、微細粒子や粗大粒子の混入が抑制されて二次粒子の粒径が均一となり、電池の高出力化を実現できる。また、電極作製時のペースト粘度の上昇を抑制できるので、溶媒の量が少なくて済み塗工後の乾燥工程が短時間となるほか、乾燥収縮が小さく歩留りが向上するという利点が生ずる。
(B) Volume particle size distribution An index indicating the spread of particle size distribution (particle size variation index) [(d90−d10) / volume average particle size] is 0.50 or less, whereby fine particles and coarse particles are mixed. Can be suppressed to make the particle diameter of the secondary particles uniform, and high output of the battery can be realized. Further, since it is possible to suppress an increase in paste viscosity at the time of electrode production, the amount of solvent is small, and the drying step after coating becomes a short time, and there is an advantage that the drying shrinkage is small and the yield is improved.
 一方、[(d90-d10)/体積平均粒径]が0.50を超えると、サブミクロン以下の微細粒子混入量が多くなり、上記と同様に電極作製時にペースト粘度が著しく上昇するため好ましくない。
 なお、d90、d10とはそれぞれ粒径の小さい側から累積し、その累積体積が全粒子の合計体積の90%、10%となる粒径を意味している。d90およびd10は、体積平均粒径(MV)と同様に、レーザー回折式粒度分布計を用いてレーザー回折散乱法によって測定することができる。
On the other hand, if [(d90-d10) / volume average particle diameter] exceeds 0.50, the amount of fine particles mixed with submicrons or less increases, and the paste viscosity is significantly increased during electrode preparation as described above, which is not preferable. .
Note that d90 and d10 mean particle sizes accumulated from the side of smaller particle size, and the cumulative volume is 90% and 10% of the total volume of all particles. The d90 and d10 can be measured by the laser diffraction scattering method using a laser diffraction particle size distribution analyzer, similarly to the volume average particle diameter (MV).
(c)円形度
 本明細書でいう円形度は、[粒子投影像の面積円相当径/粒子投影像の最少外接円直径]で求められる。この値が1に近いほど粒子は真円に近い形状であることを意味する。また、粒子は立体であるので球形度を指標とするのが最善であるが、これは難しいので円形度で代替する。
 ただし、粒子投影像の面積円相当径、粒子投影像の最少外接円直径の測定方法は市販の電子顕微鏡で測定した粒子の投影像から求めることができる。
(C) Circularity The circularity referred to in the present specification is determined by [area equivalent circle diameter of particle projection image / minimum circumscribed circle diameter of particle projection image]. As this value is closer to 1, it means that the particles have a shape close to a perfect circle. Also, since particles are solid, it is best to use sphericity as an index, but this is difficult and is replaced by circularity.
However, the method of measuring the area equivalent circle diameter of the particle projection image and the minimum circumscribed circle diameter of the particle projection image can be obtained from the projection image of the particle measured by a commercially available electron microscope.
 本発明では円形度を0.95以上としているので、かなり球状性も高く、正極活物質の充填性を高く維持できる。このため、電池の体積エネルギー密度を好適範囲に維持できる。
 一方、円形度が0.95を下回ると、これを原料とした正極活物質の充填性が低下し、結果として電池の体積エネルギー密度が減少するため好ましくない。
In the present invention, since the degree of circularity is 0.95 or more, the spherical property is considerably high, and the packability of the positive electrode active material can be maintained high. Therefore, the volumetric energy density of the battery can be maintained in a suitable range.
On the other hand, when the degree of circularity is less than 0.95, the packing property of the positive electrode active material made from the material decreases, and as a result, the volumetric energy density of the battery decreases, which is not preferable.
 本発明では、上記のように(a)体積平均粒径、(b)粒度分布、および(c)円形度の全てが上記数値範囲を満足する点に特徴がある。(a)体積平均粒径と(b)粒度分布により高い電池出力が達成され、(c)円形度により高容量が達成される。それゆえ、本発明では高出力と高容量の両立を実現できる。 As described above, the present invention is characterized in that (a) volume average particle diameter, (b) particle size distribution, and (c) circularity all satisfy the above-mentioned numerical range. High battery power is achieved by (a) volume average particle size and (b) particle size distribution, and high capacity is achieved by (c) circularity. Therefore, the present invention can realize both high output and high capacity.
(製造方法)
 つぎに、本発明のニッケル含有水酸化物の製造方法を説明する。
 本発明に係るニッケル含有水酸化物の製造方法は、(1)一般式:Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5)または(2)一般式:NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物の製造方法であって、反応溶液を撹拌しながら、金属塩含有水溶液と、アルカリ金属水酸化物、および錯化剤を供給して反応させてニッケル含有水酸化物粒子を得る中和晶析工程において、ニッケル含有水酸化物粒子を含むスラリーの加速度が900m/s2以上となる領域が存在することを特徴とする。
(Production method)
Below, the manufacturing method of the nickel containing hydroxide of this invention is demonstrated.
The method for producing a nickel-containing hydroxide according to the present invention comprises: (1) a general formula: Ni1-x-yCoxAly (OH) 2 + α (0 ≦ x ≦ 0.3, 0.005 ≦ y ≦ 0.15, x + y <0.5, 0 ≦ α ≦ 0.5) or (2) General formula: NixCoyMnzMt (OH) 2 + α (x + y + z + t = 1, 0.1 ≦ y ≦ 0.5, 0.1 ≦ z ≦ 0 .8, 0 ≦ t ≦ 0.02, 0 ≦ α ≦ 0.5, M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W A method for producing a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising: a metal salt-containing aqueous solution, an alkali metal hydroxide, and a complex while stirring a reaction solution In the neutralization crystallization step of supplying and reacting an oxidizing agent to obtain nickel-containing hydroxide particles, nickel It is characterized in that there is a region where the acceleration of the slurry containing the contained hydroxide particles is 900 m / s 2 or more.
 金属塩含有水溶液は、上記ニッケル含有水酸化物の各構成元素の塩を水に溶解させて塩濃度を調節した水溶液である。前記金属塩含有水溶液の組成は、前記一般式における金属元素の組成比とすることが好ましい。 The metal salt-containing aqueous solution is an aqueous solution in which salts of the constituent elements of the above-mentioned nickel-containing hydroxide are dissolved in water to adjust the salt concentration. The composition of the metal salt-containing aqueous solution is preferably the composition ratio of the metal element in the general formula.
 アルカリ金属水酸化物を供給することにより反応溶液(反応後のニッケル複合水酸化物溶液)のpHを制御することができる。アルカリ金属水酸化物は、特に限定されるものではなく、たとえば、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物水溶液を用いることができる。アルカリ金属水酸化物を、直接、反応溶液に添加することもできるが、pH制御の容易さから、水溶液として添加することが好ましい。
 アルカリ金属水酸化物水溶液の添加方法も特に限定されるものではなく、反応溶液を十分に攪拌しながら、定量ポンプなどの流量制御が可能なポンプで、液温25℃基準でのpHが10~13(!比較例3!)の範囲となるように添加すればよい。
The pH of the reaction solution (nickel complex hydroxide solution after reaction) can be controlled by supplying an alkali metal hydroxide. The alkali metal hydroxide is not particularly limited, and for example, an aqueous alkali metal hydroxide solution such as sodium hydroxide or potassium hydroxide can be used. The alkali metal hydroxide can be added directly to the reaction solution, but is preferably added as an aqueous solution because of the ease of pH control.
The method of adding the alkali metal hydroxide aqueous solution is not particularly limited either, and it is a pump that can control the flow rate such as a metering pump while sufficiently stirring the reaction solution, and the pH at a liquid temperature of 25 ° C is 10 to It may be added so as to be in the range of 13 (! Comparative Example 3!).
 錯化剤は、アンモニウムイオン供給体であれば、特に限定されるものではなく、反応水溶液中でニッケルアンミン錯体を形成可能なものであればよい。たとえば、アンモニア、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、フッ化アンモニウムなどが挙げられる。
 また、アンモニウムイオン供給体以外にも、前記錯体を形成するものであれば用いることができ、たとえば、エチレンジアミン四酢酸、ニトリト三酢酸、ウラシル二酢酸およびグリシンなどが挙げられる。これらのうち、取扱いの容易性などの観点から、アンモニア水を用いることがより好ましい。
The complexing agent is not particularly limited as long as it is an ammonium ion supplier, as long as it can form a nickel ammine complex in the reaction aqueous solution. For example, ammonia, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride and the like can be mentioned.
In addition to ammonium ion donors, any one that forms the complex can be used, and examples thereof include ethylenediaminetetraacetic acid, nitrite triacetic acid, uracildiacetic acid and glycine. Among them, ammonia water is more preferably used from the viewpoint of ease of handling and the like.
 本発明の製造工程には、加速度が900m/s2以上の領域が設けられ、この領域にスラリーを通過させると、球状と異なる異形に成長した粒子は大きなせん断力を受け、破砕されて球状化する。そして、その球状性を維持したまま粒径が成長する。
 これをより具体的にさらに説明する。中和晶析工程では一次粒子が凝集した二次粒子が沢山生じ、これがニッケル含有水酸化物粒子となる。凝集により多数の二次粒子が結合した場合、球状性の低い異形粒子となる。こうした異形粒子は、スラリー中で加速度を受けることでせん断されて凝集数が減少し、最終的には個別の二次粒子に分離する。分離した結果、球状になるので、本来あるべき球状のニッケル含有水酸化物粒子となる。
In the manufacturing process of the present invention, a region having an acceleration of 900 m / s 2 or more is provided, and when the slurry is passed through this region, particles grown into a different shape different from a spherical shape are subjected to a large shear force and are crushed and spheroidized. . And, the particle diameter grows while maintaining the spherical property.
This will be explained more specifically. In the neutralization crystallization step, a large number of secondary particles in which primary particles are aggregated are produced, and these become nickel-containing hydroxide particles. When a large number of secondary particles are bound by aggregation, it becomes irregular shaped particles with low sphericity. Such irregularly shaped particles are sheared by acceleration in the slurry to reduce the number of aggregation, and eventually separate into individual secondary particles. As a result of separation, since it becomes spherical, it becomes spherical nickel-containing hydroxide particles that should be inherent.
 上記のようなせん断力を働かせる場合、加速度を900m/s2以上とすると効果的である。これに反し、加速度が900m/s2以上となる領域が存在しない場合、つまり系内で最大の加速度が900m/s2を下回る場合、粒子に対するせん断力が不足し、3.00μm以下の平均粒径を持つ粒子を得ることが困難となり、球状性も低下しやすくなるため好ましくない。 In the case of exerting the above shear force, it is effective to set the acceleration to 900 m / s 2 or more. On the contrary, if there is no region where the acceleration is 900 m / s2 or more, that is, if the maximum acceleration in the system is less than 900 m / s2, the shear force on the particles is insufficient, and the average particle diameter of 3.00 μm or less It is not preferable because it becomes difficult to obtain the particles possessed, and the sphericity tends to decrease.
(加速度を与える方法)
 本発明のニッケル含有水酸化物の製造方法では、スラリーに必要な加速度を与えることができるなら、どのような手法を用いてもよい。たとえば、加速度付加機構としてポンプのほか、撹拌機や遠心分離機なども利用できる。 しかしながら、900m/s2以上という高い加速度を与えるには、ポンプを利用する方が効率的である。ポンプが効率的な理由は、より低エネルギーで効率よくスラリーの加速度を増加させることができることにある。また、加速度付加機構としてポンプに加えて、スラリーの流路の直径が一部狭くなっているオリフィスやレジューサを用いることもできる。流路が狭くなることで、スラリーの流速をさらに加速することができる。なお、ポンプによる循環量で槽内を十分に撹拌できる場合は、槽内撹拌に利用する撹拌機2を省略することもできる。
(How to give acceleration)
In the method for producing a nickel-containing hydroxide of the present invention, any method may be used as long as the slurry can be provided with the necessary acceleration. For example, in addition to a pump as an acceleration application mechanism, a stirrer, a centrifuge or the like can be used. However, it is more efficient to use a pump to give a high acceleration of 900 m / s 2 or more. The reason why the pump is efficient is that the acceleration of the slurry can be increased efficiently with lower energy. In addition to the pump as the acceleration application mechanism, it is also possible to use an orifice or reducer in which the diameter of the flow path of the slurry is partially narrowed. By narrowing the flow path, the flow rate of the slurry can be further accelerated. In addition, when the inside of a tank can fully be stirred by the circulation amount by a pump, the stirrer 2 utilized for stirring in a tank can also be abbreviate | omitted.
 加速度付加機構としてポンプを使用する方法には、図1に示す製造設備を用いるのが好適である。
 1は反応槽で、2はスラリーを撹拌する撹拌機である。反応槽1にはポンプ3が吸引管4と返送管5で連結されていて、ポンプ3でスラリーに加速度を加えることができるようになっている。
 上記製造設備を利用し、反応槽1内からスラリーをポンプ3に導入し、ポンプ3から反応槽1に戻す、つまり循環させる方法をとると小流量ずつ連続的に加速できるので、エネルギー効率が高くなる点で好適である。このような設備において、ポンプ3内部、あるいはポンプ配管4、5の流路内において、スラリーの加速領域をもたせることができる。
For the method of using the pump as the acceleration application mechanism, it is preferable to use the manufacturing equipment shown in FIG.
1 is a reaction tank, 2 is a stirrer which stirs a slurry. A pump 3 is connected to the reaction tank 1 by a suction pipe 4 and a return pipe 5 so that the pump 3 can apply an acceleration to the slurry.
The slurry can be introduced into the pump 3 from the reaction tank 1 and returned to the reaction tank 1 from the pump 3 by using the above-mentioned manufacturing equipment, that is, it can be accelerated continuously by small flow rate when it is circulated. Is preferable in that In such equipment, it is possible to provide an acceleration region of the slurry in the pump 3 or in the flow paths of the pump pipes 4 and 5.
 本発明において、ポンプを用いる場合は、遠心ポンプ、ダイヤフラムポンプ、スクリューポンプ、ギヤポンプ、ホースポンプ等が一般的に用いられる。ただし、本発明で用いるポンプは、遠心ポンプであることが好ましい。遠心ポンプはケーシング内に設けられたインペラーでスラリーを半径方向外側に加速でき、その加速度は回転数を上げることで容易に高加速を実現できるので、スラリーを高速に加速する用途に適しており、他のポンプよりも好適である。 In the present invention, in the case of using a pump, a centrifugal pump, a diaphragm pump, a screw pump, a gear pump, a hose pump and the like are generally used. However, the pump used in the present invention is preferably a centrifugal pump. The centrifugal pump can accelerate the slurry radially outward by the impeller provided in the casing, and the acceleration can easily realize high acceleration by raising the rotational speed, so it is suitable for applications that accelerate the slurry at high speed, It is more suitable than other pumps.
(本発明の製法による効果)
 上記のごとく、遠心ポンプ3でスラリーを高速加速すれば、異常な形に結合した二次粒子同士が分離するので、ニッケル含有水酸化物の単分散性、球状性を向上できる。また、小粒径と分散性と球状性を有するニッケル含有酸化物粒子を用いて正極活物質を製造することにより、非水系電解質二次電池の出力および容量を共に向上させることができる。
(Effect of the manufacturing method of the present invention)
As described above, when the slurry is accelerated at a high speed by the centrifugal pump 3, secondary particles bonded in an abnormal shape are separated from each other, so that the monodispersity and the spherical property of the nickel-containing hydroxide can be improved. In addition, by producing a positive electrode active material using nickel-containing oxide particles having a small particle size, dispersibility and sphericity, both the output and capacity of the non-aqueous electrolyte secondary battery can be improved.
 実施例および比較例によって、本発明をさらに詳細に説明する。
 以下の実施例および比較例において、粒度分布の測定には、レーザ回折式粒度分布計(マイクロトラック・ベル株式会社製、MT3300EX2)を用いた。円形度の測定には、湿式フロー式粒子径・形状分析装置(Malvern Instruments Ltd.製、FPIA-3000)を用いた。
 なお、本実施例では、ニッケル含有水酸化物の製造には、和光純薬工業株式会社製試薬特級の各試料を使用した。
The present invention will be described in more detail by way of examples and comparative examples.
In the following examples and comparative examples, a laser diffraction type particle size distribution analyzer (MT3300EX2 manufactured by Microtrac Bell Inc.) was used for measurement of particle size distribution. For measurement of the degree of circularity, a wet flow type particle size and shape analyzer (manufactured by Malvern Instruments Ltd., FPIA-3000) was used.
In addition, in the present Example, each sample of the reagent special grade reagent by Wako Pure Chemical Industries Ltd. was used for manufacture of nickel containing hydroxide.
(実施例1)
 邪魔板を4枚取り付けた槽容積200Lの晶析反応槽に、純水40L、アルカリ金属水酸化物として25%苛性ソーダ溶液、錯化剤として25%アンモニア水溶液を添加して、25℃での槽内pHを12.40、槽内アンモニア濃度を12g/Lに調整した。40℃に保持した反応槽内を直径25cmの6枚羽根フラットタービン翼を用いて280rpmで攪拌しつつ、定量ポンプを用いて、ニッケルモル濃度1.4mol/L、コバルトモル濃度0.3mol/Lの硫酸ニッケルコバルト混合水溶液を580ml/min、アルミニウム濃度0.43mol/Lのアルミン酸ナトリウム水溶液を92ml/minで供給し、併せて25%苛性ソーダ溶液および25%アンモニア水溶液を断続的に添加し、25℃でのpHが12.40、アンモニア濃度が12g/Lに維持されるように制御した。同時に槽内のスラリーを遠心ポンプ(スプルト工業製、HDS13-25WJ、容量11kW)を用い、周波数10Hz(インペラ回転数520rpm)にて循環させた。反応開始から4時間後に原料供給ポンプおよび遠心ポンプを停止し、ニッケル含有水酸化物スラリーを濾過、乾燥して粉末状のニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:1.6μm、D50:2.1μm、D90:2.6μm、体積平均粒径:2.2μm、(D90-D10)/体積平均粒径:0.45、円形度0.99であった。
Example 1
Add 40 L of pure water, 25% caustic soda solution as alkali metal hydroxide and 25% aqueous ammonia solution as complexing agent to a crystallization reaction vessel with a volume of 200 L with 4 baffles attached The internal pH was adjusted to 12.40, and the ammonia concentration in the tank was adjusted to 12 g / L. The molar concentration of nickel 1.4 mol / L and the molar concentration of cobalt 0.3 mol / L using a metering pump while stirring the inside of the reaction vessel maintained at 40 ° C. at 280 rpm using a six-blade flat turbine blade with a diameter of 25 cm. Of a mixed aqueous solution of nickel sulfate and cobalt sulfate at 580 ml / min and an aqueous solution of sodium aluminate at an aluminum concentration of 0.43 mol / L at 92 ml / min, combined with intermittent addition of 25% sodium hydroxide solution and 25% aqueous ammonia solution; The pH at ° C. was controlled to be 12.40, and the ammonia concentration was maintained at 12 g / L. At the same time, the slurry in the tank was circulated at a frequency of 10 Hz (impeller rotational speed 520 rpm) using a centrifugal pump (HDS 13-25 WJ, manufactured by Spluto Industrial Co., Ltd., capacity 11 kW). Four hours after the start of the reaction, the raw material feed pump and the centrifugal pump were stopped, and the nickel-containing hydroxide slurry was filtered and dried to obtain a powdery nickel-containing hydroxide.
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 1.6 μm, D50: 2.1 μm, D90: 2.6 μm, volume average particle size: 2.2 μm, (D90-D10) / volume Average particle size: 0.45, circularity 0.99.
(実施例2)
 実施例1において遠心ポンプを使用せず、7.5kWの撹拌機を用い、回転数を500rpmまで上昇させてニッケル含有水酸化物を得た。 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:1.9μm、D50:2.3μm、D90:3.0μm、体積平均粒径:2.5μm、(D90-D10)/体積平均粒径:0.44、円形度0.97であった。
(Example 2)
In Example 1, the rotation speed was increased to 500 rpm using a 7.5 kW stirrer without using a centrifugal pump to obtain a nickel-containing hydroxide. The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 1.9 μm, D50: 2.3 μm, D90: 3.0 μm, volume average particle size: 2.5 μm, (D90-D10) / volume The average particle size was 0.44 and the roundness was 0.97.
(実施例3)
 実施例1において、硫酸ニッケルコバルト混合水溶液の代わりにニッケルモル濃度0.6mol/L、コバルトモル濃度0.6mol/L、マンガンモル濃度0.6mol/Lの硫酸ニッケルコバルトマンガン混合水溶液を用い、ニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:1.7μm、D50:2.0μm、D90:2.7μm、体積平均粒径:2.2μm、(D90-D10)/体積平均粒径:0.45、円形度0.97であった。
(Example 3)
In Example 1, a nickel-cobalt-manganese mixed aqueous solution having a nickel molar concentration of 0.6 mol / L, a cobalt molar concentration of 0.6 mol / L, and a manganese molar concentration of 0.6 mol / L is used instead of the nickel-cobalt sulfate mixed aqueous solution. The contained hydroxide was obtained.
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 1.7 μm, D50: 2.0 μm, D90: 2.7 μm, volume average particle size: 2.2 μm, (D90-D10) / volume Average particle size: 0.45, circularity 0.97.
(比較例1)
 実施例1における遠心ポンプを用い、その周波数を7Hz(インペラ回転数360rpm)としてニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:2.9μm、D50:3.6μm、D90:4.8μm、体積平均粒径:3.9μm、(D90-D10)/体積平均粒径:0.49、円形度0.94であった。
(Comparative example 1)
Using the centrifugal pump in Example 1, a nickel-containing hydroxide was obtained at a frequency of 7 Hz (impeller rotational speed: 360 rpm).
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.9 μm, D50: 3.6 μm, D90: 4.8 μm, volume average particle size: 3.9 μm, (D90-D10) / volume The average particle size was 0.49, and the roundness was 0.94.
(比較例2)
 実施例2における撹拌機を用い、その回転数を350rpmとしてニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:3.4μm、D50:4.3μm、D90:5.5μm、体積平均粒径:4.6μm、(D90-D10)/体積平均粒径:0.46、円形度0.93であった。
(Comparative example 2)
A nickel-containing hydroxide was obtained using the stirrer in Example 2 at a rotational speed of 350 rpm.
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 3.4 μm, D50: 4.3 μm, D90: 5.5 μm, volume average particle size: 4.6 μm, (D90-D10) / volume The average particle size was 0.46 and the roundness was 0.93.
(比較例3)
 実施例2における攪拌機を用い、その回転数を200rpmとしてニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:2.1μm、D50:2.8μm、D90:4.0μm、体積平均粒径:2.9μm、(D90-D10)/MV:0.66、円形度0.91であった。
(Comparative example 3)
A nickel-containing hydroxide was obtained using the stirrer in Example 2 at a rotational speed of 200 rpm.
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.1 μm, D50: 2.8 μm, D90: 4.0 μm, volume average particle size: 2.9 μm, (D90-D10) / MV It was 0.66 and circularity 0.91.
(比較例4)
 比較例1において、硫酸ニッケルコバルト混合水溶液の代わりにニッケルモル濃度0.6mol/L、コバルトモル濃度0.6mol/L、マンガンモル濃度0.6mol/Lの硫酸ニッケルコバルトマンガン混合水溶液を用い、ニッケル含有水酸化物を得た。
 得られたニッケル含有水酸化物の粒度分布を測定したところ、D10:2.3μm、D50:2.9μm、D90:4.2μm、体積平均粒径:3.0μm、(D90-D10)/体積平均粒径:0.63、円形度0.90であった。
(Comparative example 4)
In Comparative Example 1, a nickel-cobalt-manganese mixed aqueous solution having a nickel molar concentration of 0.6 mol / L, a cobalt molar concentration of 0.6 mol / L, and a manganese molar concentration of 0.6 mol / L is used instead of the nickel-cobalt sulfate mixed aqueous solution. The contained hydroxide was obtained.
The particle size distribution of the obtained nickel-containing hydroxide was measured. D10: 2.3 μm, D50: 2.9 μm, D90: 4.2 μm, volume average particle size: 3.0 μm, (D90-D10) / volume The average particle size was 0.63 and the roundness was 0.90.
 実施例1~3および比較例1~4において、系内で加速度が最大となる場所の加速度を汎用の流体解析ソフトを用いたシミュレーションによって求めた。流体解析ソフトとしてはANSYS製のANSYS CFX Ver15.0(商品名)を用いた。 流体解析を行う領域のうち、攪拌軸や攪拌翼の周りは、攪拌軸や攪拌翼と共に回転する回転座標系で扱う。回転座標系で扱う領域は、円柱状であって、その中心線を攪拌軸や攪拌翼の中心線に重ね、その直径を攪拌翼の翼径の115%に設定し、上下方向の範囲を攪拌槽の内底面から液面までとする。解析領域のうち、その他の領域は、静止座標系で扱い、回転座標系と静止座標系とは、流体解析ソフトのインターフェイス機能である「Frozen Rotor」を用いて接続した。攪拌槽内の流れは乱流であるため、乱流モデルとしてSST(Shear Stress Transport)モデルを用いて計算した。
 その結果、実施例1,3および比較例1においては遠心ポンプのインペラー周辺で、実施例2、比較例2~4においては撹拌翼周辺で最大となることが確認された。最大加速度と体積平均粒径、および円形度を表1に示す。
Figure JPOXMLDOC01-appb-T000001
In Examples 1 to 3 and Comparative Examples 1 to 4, the acceleration at a position where the acceleration is maximum in the system was determined by simulation using general-purpose fluid analysis software. As fluid analysis software, ANSYS CFX Ver 15.0 (trade name) manufactured by ANSYS was used. Among the regions where fluid analysis is performed, the stirring shaft and the circumference of the stirring blade are handled in a rotational coordinate system that rotates with the stirring shaft and the stirring blade. The area handled in the rotational coordinate system is cylindrical, and its center line is superimposed on the stirring axis or the center line of the stirring blade, its diameter is set to 115% of the blade diameter of the stirring blade, and the vertical direction is stirred From the inner bottom of the tank to the liquid level. Among the analysis areas, the other areas were handled in a static coordinate system, and the rotational coordinate system and the static coordinate system were connected using "Frozen Rotor" which is an interface function of fluid analysis software. Since the flow in the stirring tank is a turbulent flow, it was calculated using a shear stress transport (SST) model as a turbulent flow model.
As a result, it was confirmed that the maximum was obtained around the impeller of the centrifugal pump in Examples 1 and 3 and Comparative Example 1, and around the stirring blade in Example 2 and Comparative Examples 2 to 4. The maximum acceleration, volume average particle size, and circularity are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 上記表1より、系内において加速度が900m/s2以上の領域を有する系内で反応させることで、体積平均粒径が1.00μm~3.00μmであり、粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径]が0.50以下であり、円形度が0.95以上となる粒子が得られることが確認された。
 実施例および比較例で得られた前記ニッケル含有酸化物粒子を、大気中にて温度800℃で2時間焙焼し、ニッケル含有酸化物粒子を回収した。Li/Me=1.02となるように水酸化リチウムを .量し、回収したニッケル含有酸化物粒子と混合して混合物を形成した。混合は、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて行った。得られたこの混合物を実施例1、2、および比較例1,2,3では酸素気流中(酸素:100容量%)にて750℃で8時間焼成、実施例3および比較例4では大気気流中(酸素:20容量%)にて950℃で8時間焼成し、冷却した後に解砕して正極活物質を得た。
 正極活物質の体積平均粒径、タップ密度を表2に示す。
Figure JPOXMLDOC01-appb-T000002
According to the above Table 1, the volume average particle diameter is 1.00 μm to 3.00 μm by reacting in a system having an area of 900 m / s 2 or more in the system, which is an index showing the spread of particle size distribution. It was confirmed that [(d90-d10) / volume average particle diameter] was 0.50 or less and particles having a circularity of 0.95 or more were obtained.
The nickel-containing oxide particles obtained in Examples and Comparative Examples were roasted in air at a temperature of 800 ° C. for 2 hours to recover the nickel-containing oxide particles. Lithium hydroxide was weighed to obtain Li / Me = 1.02 and mixed with the recovered nickel-containing oxide particles to form a mixture. The mixing was performed using a shaker mixer apparatus (TURBULA Type T2C manufactured by Willie et Bakofen (WAB)). The obtained mixture is calcined at 750 ° C. for 8 hours in an oxygen stream (oxygen: 100% by volume) in Examples 1 and 2 and Comparative Examples 1, 2 and 3, and in Example 3 and Comparative Example 4, the air flow The mixture was calcined at 950 ° C. for 8 hours in medium (oxygen: 20% by volume), cooled and then crushed to obtain a positive electrode active material.
The volume average particle size and tap density of the positive electrode active material are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 通常は上記表2程度の粒径範囲では、粒径の微細化に伴いタップ密度が低下する傾向があるが、表2より実施例1、2で得られたものは粒径が微細ながらタップ密度の低下が見られず、電池のエネルギー密度を向上させるものであることが確認された。これは、前駆体であるニッケル複合水酸化物粒子の高い円形度、換言すれば高い球状性によるものである。 Normally, in the particle size range of about Table 2 above, the tap density tends to decrease with the refinement of the particle size, but from Table 2, the tap density is small while the particle size is fine in Examples 1 and 2 It was confirmed that the energy density of the battery was improved. This is due to the high circularity of the precursor nickel composite hydroxide particles, in other words, the high sphericity.
  1 反応槽
  2 撹拌機
  3 ポンプ
 
1 reaction tank 2 stirrer 3 pump

Claims (4)

  1.  以下の一般式(1)または(2)で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物であって、体積平均粒径が1.00μm~3.00μmであり、粒度分布の広がりを示す指標である[(d90-d10)/体積平均粒径]が0.50以下であり、円形度(粒子投影像の面積円相当径/粒子投影像の最小外接円直径)が0.95以上であることを特徴とするニッケル含有水酸化物。
    (1)Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)
    (2)NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)
    A nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery represented by the following general formula (1) or (2), which has a volume average particle diameter of 1.00 μm to 3.00 μm And the index indicating the spread of particle size distribution [(d90−d10) / volume average particle diameter] is 0.50 or less, and the circularity (area equivalent circle diameter of particle projection image / minimum circumscribed particle projection image Nickel-containing hydroxide characterized in that the circle diameter is 0.95 or more.
    (1) Ni1-x-yCoxAly (OH) 2 + α (0 ≦ x ≦ 0.3, 0.005 ≦ y ≦ 0.15, x + y <0.5, 0 ≦ α ≦ 0.5, M is Ti , V, Cr, Zr, Nb, Mo, Hf, Ta, and W at least one additional element selected from W)
    (2) Ni x Coy M nz M t (OH) 2 + α (x + y + z + t = 1, 0.1 ≦ y 0.5 0.5, 0.1 z z 0.8 0.8, 0 t t 0.02 0.02, 0 α α 0.5 0.5 , M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W)
  2.  以下の一般式(1)または(2)で表される非水系電解質二次電池用正極活物質の原材料となるニッケル含有水酸化物の製造方法であって、反応溶液を撹拌しながら、金属塩含有水溶液と、アルカリ金属水酸化物、および錯化剤を供給して反応させてニッケル含有水酸化物粒子を得る中和晶析工程において、ニッケル含有水酸化物粒子を含むスラリーの加速度が900m/s2以上となる領域が存在することを特徴とするニッケル含有水酸化物の製造方法。
    (1)Ni1-x-yCoxAly(OH)2+α(0≦x≦0.3、0.005≦y≦0.15、x+y<0.5、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素)
    (2)NixCoyMnzMt(OH)2+α(x+y+z+t=1、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02、0≦α≦0.5、MはTi,V,Cr、Zr,Nb,Mo,Hf,Ta,およびWから選択される1種以上の添加元素
    A method for producing a nickel-containing hydroxide as a raw material of a positive electrode active material for a non-aqueous electrolyte secondary battery represented by the following general formula (1) or (2), which comprises: The acceleration of the slurry containing nickel-containing hydroxide particles is 900 m / in the neutralization crystallization step to obtain nickel-containing hydroxide particles by supplying and reacting an aqueous solution with an alkali metal hydroxide and a complexing agent to obtain nickel-containing hydroxide particles. A method for producing a nickel-containing hydroxide, characterized in that there is a region of s2 or more.
    (1) Ni1-x-yCoxAly (OH) 2 + α (0 ≦ x ≦ 0.3, 0.005 ≦ y ≦ 0.15, x + y <0.5, 0 ≦ α ≦ 0.5, M is Ti , V, Cr, Zr, Nb, Mo, Hf, Ta, and W at least one additional element selected from W)
    (2) Ni x Coy M nz M t (OH) 2 + α (x + y + z + t = 1, 0.1 ≦ y 0.5 0.5, 0.1 z z 0.8 0.8, 0 t t 0.02 0.02, 0 α α 0.5 0.5 , M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W
  3.  前記スラリーに加速度を与える方法として、ポンプを使用することを特徴とする請求項2に記載のニッケル含有水酸化物の製造方法。 The method for producing a nickel-containing hydroxide according to claim 2, wherein a pump is used as a method of giving acceleration to the slurry.
  4.  前記ポンプが遠心ポンプであることを特徴とする請求項3に記載のニッケル含有水酸化物の製造方法。 The said pump is a centrifugal pump, The manufacturing method of the nickel containing hydroxide of Claim 3 characterized by the above-mentioned.
PCT/JP2018/045045 2017-12-13 2018-12-07 Nickel-containing hydroxide and production method therefor WO2019117027A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019559600A JP7220849B2 (en) 2017-12-13 2018-12-07 Nickel-containing hydroxide and its production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-238350 2017-12-13
JP2017238350 2017-12-13

Publications (1)

Publication Number Publication Date
WO2019117027A1 true WO2019117027A1 (en) 2019-06-20

Family

ID=66819241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/045045 WO2019117027A1 (en) 2017-12-13 2018-12-07 Nickel-containing hydroxide and production method therefor

Country Status (2)

Country Link
JP (1) JP7220849B2 (en)
WO (1) WO2019117027A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202602A1 (en) * 2019-03-29 2020-10-08
WO2021025101A1 (en) * 2019-08-06 2021-02-11 株式会社田中化学研究所 Nickel composite hydroxide particles, positive electrode active material having nickel composite hydroxide particles as precursors, and method for producing positive electrode active material
CN115210187A (en) * 2020-03-27 2022-10-18 株式会社田中化学研究所 Method for producing nickel-containing hydroxide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515799A (en) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Inorganic compounds
WO2013125703A1 (en) * 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
WO2017217370A1 (en) * 2016-06-14 2017-12-21 住友金属鉱山株式会社 Production method for nickel-containing hydroxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515799A (en) * 2005-08-12 2009-04-16 トダ・コウギョウ・ヨーロッパ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Inorganic compounds
WO2013125703A1 (en) * 2012-02-23 2013-08-29 住友金属鉱山株式会社 Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
WO2017057311A1 (en) * 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
WO2017217370A1 (en) * 2016-06-14 2017-12-21 住友金属鉱山株式会社 Production method for nickel-containing hydroxide

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020202602A1 (en) * 2019-03-29 2020-10-08
JP7229271B2 (en) 2019-03-29 2023-02-27 Jx金属株式会社 Method for producing precursor of oxide-based positive electrode active material for all-solid-state lithium ion battery and method for producing oxide-based positive electrode active material for all-solid-state lithium ion battery
WO2021025101A1 (en) * 2019-08-06 2021-02-11 株式会社田中化学研究所 Nickel composite hydroxide particles, positive electrode active material having nickel composite hydroxide particles as precursors, and method for producing positive electrode active material
EP4012806A4 (en) * 2019-08-06 2023-09-06 Tanaka Chemical Corporation Nickel composite hydroxide particles, positive electrode active material having nickel composite hydroxide particles as precursors, and method for producing positive electrode active material
CN115210187A (en) * 2020-03-27 2022-10-18 株式会社田中化学研究所 Method for producing nickel-containing hydroxide
CN115210187B (en) * 2020-03-27 2024-02-13 株式会社田中化学研究所 Method for producing nickel hydroxide

Also Published As

Publication number Publication date
JP7220849B2 (en) 2023-02-13
JPWO2019117027A1 (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP6358077B2 (en) Nickel-cobalt composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
JP5877817B2 (en) Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material
JP5316726B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
JP5921705B2 (en) Reactor for producing precursor of lithium composite transition metal oxide and method for producing precursor
JP4941617B2 (en) Nickel composite hydroxide particles and non-aqueous electrolyte secondary battery
JP5630593B2 (en) Nickel composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method thereof
WO2012165654A1 (en) Positive electrode active material for nonaqueous secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery using positive electrode active material
WO2011067935A1 (en) Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP6443084B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
WO2012020768A1 (en) Production method for a composite compound comprising nickel and cobalt
JP6252383B2 (en) Manganese cobalt composite hydroxide and method for producing the same, positive electrode active material and method for producing the same, and non-aqueous electrolyte secondary battery
WO2019117027A1 (en) Nickel-containing hydroxide and production method therefor
TWI753429B (en) Stabilized high nickel nmc cathode materials for improved battery performance
WO2008091028A1 (en) Lithium transition metal oxide having layered structure
JP2011116580A5 (en)
WO2012020769A1 (en) Method for producing nickel-containing complex compound
JP2016011227A (en) Nickel complex hydroxide and production method of the same, positive electrode active substance and production method of the same, and non-aqueous electrolyte secondary battery
US20220194814A1 (en) Process for precipitating a mixed hydroxide, and cathode active materials made from such hydroxide
CN107922212B (en) Manganese-nickel composite hydroxide and method for producing same, lithium-manganese-nickel composite oxide and method for producing same, and nonaqueous electrolyte secondary battery
JP2011116583A (en) Manganese compound hydroxide particle and method for producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery
JP2014197556A (en) Positive electrode active material for nonaqueous secondary battery and nonaqueous electrolyte secondary battery using positive electrode active material
JP6409619B2 (en) Transition metal composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
CN109195919B (en) Method for producing nickel-containing hydroxide
JP6965718B2 (en) Method for producing nickel-containing hydroxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18889735

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18889735

Country of ref document: EP

Kind code of ref document: A1