JP2000026166A - High purity silicon nitride-base corrosion resistant member and its production - Google Patents
High purity silicon nitride-base corrosion resistant member and its productionInfo
- Publication number
- JP2000026166A JP2000026166A JP10191643A JP19164398A JP2000026166A JP 2000026166 A JP2000026166 A JP 2000026166A JP 10191643 A JP10191643 A JP 10191643A JP 19164398 A JP19164398 A JP 19164398A JP 2000026166 A JP2000026166 A JP 2000026166A
- Authority
- JP
- Japan
- Prior art keywords
- silicon nitride
- plasma
- resistant member
- sintered body
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Drying Of Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特にフッ素系及び
塩素系腐食性ガス或いはフッ素系・塩素系プラズマに対
して高い耐食性を有し、パーティクルやコンタミネーシ
ョンの発生が少ない、半導体製造用装置の内壁部材や被
処理物を支持する支持体などの治具等としての使用に好
適な窒化珪素質耐食性部材とその製造方法に関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing semiconductors, which has high corrosion resistance especially to fluorine-based and chlorine-based corrosive gases or fluorine-based / chlorine-based plasma, and generates little particles and contamination. The present invention relates to a silicon nitride-based corrosion-resistant member suitable for use as a jig or the like for an inner wall member or a support for supporting an object to be processed, and a method for manufacturing the same.
【0002】[0002]
【従来の技術】半導体素子や液晶などの高集積回路形成
に使用されるドライプロセスやプラズマコーティング等
プラズマの利用が近年急速に進んでいる。半導体におけ
るプラズマプロセスとしては、フッ素系等のハロゲン系
腐食ガスがその反応性の高さから、気相成長、エッチン
グやクリーニングに利用されている。2. Description of the Related Art In recent years, the use of plasma, such as a dry process and plasma coating, used for forming highly integrated circuits such as semiconductor devices and liquid crystals has been rapidly advancing. As a plasma process in a semiconductor, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning because of its high reactivity.
【0003】これら腐食性ガスに接触する部材は、高い
耐食性が要求される。従来から被処理物以外のこれらプ
ラズマに接触する部材は、一般にガラスや石英などのS
iO2 を主成分とする材料や、ステンレス、モネル等の
金属が多用されている。[0003] These members that come into contact with corrosive gas are required to have high corrosion resistance. Conventionally, members other than the object to be processed that come into contact with these plasmas are generally made of glass or quartz.
Materials containing iO 2 as a main component and metals such as stainless steel and Monel are frequently used.
【0004】また、半導体製造時において、ウェハを支
持固定するサセプタ材としてアルミナ質焼結体、サファ
イア、AlN質焼結体、又はこれらをCVD法等により
表面被覆したものが耐食性に優れるとして使用されてい
る。また、グラファイト、窒化硼素をコーティングした
ヒータ等も使用されている。[0004] In the manufacture of semiconductors, as a susceptor material for supporting and fixing a wafer, an alumina-based sintered body, sapphire, an AlN-based sintered body, or those coated with a surface by a CVD method or the like are used because they have excellent corrosion resistance. ing. Further, a heater coated with graphite or boron nitride is also used.
【0005】[0005]
【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素あるいは塩素プラズマに
接すると接触面がエッチングされ、表面性状が変化して
エッチングに影響する等の問題が生じていた。また、ス
テンレスなどの金属を使用した部材でも耐食性が不充分
なため、腐食によって特に半導体製造においては不良品
発生の原因となっていた。アルミナ、AlN質焼結体や
コーティング材は、上記の材料に比較してフッ素系ガス
に対して耐食性に優れるものの、高温でプラズマと接す
ると腐食が徐々に進行して焼結体の表面から結晶粒子の
脱粒が生じたり、プラズマとの反応生成物が析出・剥離
してパーティクル発生の原因になるという問題が起きて
いた。However, conventionally used glass and quartz have insufficient corrosion resistance in plasma and are intensely depleted. In particular, when they come into contact with fluorine or chlorine plasma, the contact surface is etched and the surface properties are reduced. There have been problems such as changes that affect etching. Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion has caused defective products especially in semiconductor manufacturing. Alumina and AlN sintered compacts and coating materials have better corrosion resistance to fluorine-based gases than the above materials, but when they come in contact with plasma at high temperatures, the corrosion gradually progresses and the surface of the sintered compact crystallizes. There has been a problem that particles are shed, or a reaction product with plasma is deposited and separated to cause particles.
【0006】このようなパーティクルの発生は、半導体
の高集積化、プロセスのさらなるクリーン化が図られる
中、イオン衝撃や、気相反応で生成したごく微細なパー
ティクルによってメタル配線の断線、パターンの欠陥等
による素子特性の劣化や歩留まりの低下等の不具合を発
生する恐れが生じている。[0006] The generation of such particles is caused by breaking of metal wiring and pattern defects due to ion bombardment and extremely fine particles generated by a gas phase reaction in the course of higher integration of semiconductors and further cleanliness of the process. There is a possibility that problems such as deterioration of the device characteristics and a decrease in the yield due to the above may occur.
【0007】本発明者らは、このような問題を解決する
ため、先にフッ素・塩素系プラズマに対して材料表面に
安定なハロゲン化物を形成する周期律表第2A、3A族
元素を主成分とする材料により形成することを提案して
きた。しかしながら、周期律表第2A、3A族元素を主
成分とする材料は、フッ素・塩素系のプラズマに対して
は安定ではあっても、材料表面に形成されたハロゲン化
物の脱落や、気相における反応によってパーティクルが
発生してしまうものであった。[0007] In order to solve such a problem, the present inventors have first made a group 2A or 3A element of the periodic table that forms a stable halide on the material surface against fluorine-chlorine-based plasma. Has been proposed. However, a material containing a Group 2A or 3A element of the periodic table as a main component is stable against fluorine-chlorine-based plasma, but the halide formed on the surface of the material drops off, Particles were generated by the reaction.
【0008】[0008]
【課題を解決するための手段】本発明者らは、フッ素系
及び塩素系腐食ガス或いはプラズマに対して、高い耐食
性を有し、半導体の性能を損ねるパーティクルの発生を
抑制できる材料について検討を重ねた結果、窒化珪素、
炭化珪素、ダイヤモンド等の原子結合力の高い化合物が
優れた耐食性を示すこと、特に窒化珪素はプラズマと反
応してフッ素や塩素と反応した場合においても、構成元
素が蒸気圧の高い反応物を生成しガスとして系外に放出
されるため、パーティクルを発生して素子を汚染する恐
れがないことを見いだした。Means for Solving the Problems The present inventors have repeatedly studied materials which have high corrosion resistance to fluorine-based and chlorine-based corrosive gases or plasmas and can suppress the generation of particles which impair the performance of semiconductors. As a result, silicon nitride,
Compounds with a high atomic bond, such as silicon carbide and diamond, exhibit excellent corrosion resistance.Especially, silicon nitride reacts with plasma and reacts with fluorine or chlorine, forming constituents with high vapor pressure even when the constituent elements react. Since it is released out of the system as a gas, it has been found that there is no risk of generating particles and contaminating the device.
【0009】しかし、窒化珪素は難焼結性であるため、
焼結体の緻密化を図る上で焼結助剤を添加することが必
要不可欠であった。この焼結助剤成分は、焼結体中で窒
化珪素結晶の粒界に存在するが、ハロゲン系腐食ガス又
はプラズマと直接表面が接触した場合、ガス・プラズマ
の種や条件によりこの焼結助剤成分が選択的にエッチン
グされるか、もしくはハロゲンとの反応物を形成してパ
ーティクル発生の原因になりうることがわかってきた。
即ち、窒化珪素焼結体においてプラズマ中でのパーティ
クル発生を抑制するには、粒界相を形成する焼結助剤成
分を含有しないか、あるいは選択的にエッチングされた
り反応物がパーティクルを発生しない成分のみを助剤と
して選択する必要がある。However, since silicon nitride is difficult to sinter,
Addition of a sintering aid was indispensable for densification of the sintered body. This sintering aid component is present at the grain boundaries of silicon nitride crystals in the sintered body. However, when the surface comes into direct contact with a halogen-based corrosive gas or plasma, the sintering aid component depends on the type and conditions of the gas plasma. It has been found that the agent component can be selectively etched or form a reactant with the halogen to cause particle generation.
That is, in order to suppress the generation of particles in plasma in the silicon nitride sintered body, a sintering aid component forming a grain boundary phase is not contained, or the silicon nitride is selectively etched or a reactant does not generate particles. Only the components need to be selected as auxiliaries.
【0010】そこで、本発明によれば、窒化珪素質焼結
体の焼結助剤としての金属成分を実質的にSiのみとす
ることにより、焼結体の耐食性を飛躍的に向上でき、プ
ラズマ中でのパーティクル発生を抑制できることを見い
だした。Therefore, according to the present invention, the corrosion resistance of the sintered body can be remarkably improved by substantially using only Si as the metal component as a sintering aid for the silicon nitride based sintered body. It has been found that the generation of particles inside can be suppressed.
【0011】すなわち、本発明の窒化珪素質耐食性部材
は、ハロゲン系腐食ガスあるいはそのプラズマと直接接
触する表面が、窒化珪素を主相とし、酸素をSiO2 換
算で1.0〜15.0重量%含有し、かつSi以外の不
純物金属量が総量で0.1重量%以下、相対密度95%
以上の焼結体からなることを特徴とするものである。な
お、その粒界相は、主としてSiO2 及び/またはSi
2 N2 Oから構成されることが望ましい。[0011] That is, silicon nitride corrosion resistant member of the present invention, the surface which contacts the halogen-based corrosive gas or directly with the plasma, the silicon nitride as a main phase, 1.0 to 15.0 wt oxygen in terms of SiO 2 %, And the total amount of impurity metals other than Si is 0.1% by weight or less, and the relative density is 95%.
It is characterized by comprising the above sintered body. The grain boundary phase is mainly composed of SiO 2 and / or Si.
Is composed of 2 N 2 O is desirably.
【0012】また、その製造方法は、窒化珪素を主成分
として、Si以外の不純物金属量の総量が0.1重量%
以下、酸素をSiO2 換算で1.0〜15.0重量%含
有する窒化珪素粉末あるいはその成形体を、非酸化雰囲
気中1600〜2000℃、150〜500kgf/c
m2 で加圧焼成してなることを特徴とするものである。[0012] Further, the manufacturing method is characterized in that silicon nitride is used as a main component and the total amount of impurity metals other than Si is 0.1% by weight.
Hereinafter, a silicon nitride powder containing 1.0 to 15.0% by weight of oxygen in terms of SiO 2 or a compact thereof is placed in a non-oxidizing atmosphere at 1600 to 2000 ° C. and 150 to 500 kgf / c.
It is characterized by being fired under pressure at m 2 .
【0013】[0013]
【発明の実施の形態】本発明の耐食性部材は、フッ素系
または塩素系等のハロゲン系の腐食ガスまたはプラズマ
と表面が直接接触する部材であり、フッ素系ガスとして
は、SF6 、NF3 、CF4 、CHF3 、ClF3 、H
F等が、また塩素系ガスとしては、Cl2 、BCl3 、
HCl等が挙げられ、これらのガスが導入された雰囲気
にマイクロ波や高周波等を導入するとこれらのガスがプ
ラズマ化される。BEST MODE FOR CARRYING OUT THE INVENTION The corrosion-resistant member of the present invention is a member whose surface is in direct contact with a halogen-based corrosive gas or plasma such as a fluorine-based or chlorine-based gas. Examples of the fluorine-based gas include SF 6 , NF 3 , and the like. CF 4 , CHF 3 , ClF 3 , H
F, etc., and chlorine-based gases such as Cl 2 , BCl 3 ,
HCl and the like. When a microwave, a high frequency, or the like is introduced into an atmosphere in which these gases are introduced, these gases are turned into plasma.
【0014】本発明によれば、このようなハロゲン系の
腐食ガスあるいはそのプラズマに直接接触する表面を、
窒化珪素質焼結体から構成するものである。窒化珪素
は、フッ素、塩素と反応した場合、SiF4 やSiCl
4 など蒸気圧の高い反応性生物を形成し、ガスとして系
外に排出されるためコンタミやパーティクルを発生しな
い。また、原子同士の結合力が大きいためハロゲン系ガ
スやプラズマと反応しにくく、優れた耐食性を示す。According to the present invention, the surface in direct contact with such a halogen-based corrosive gas or its plasma,
It is made of a silicon nitride sintered body. When silicon nitride reacts with fluorine or chlorine, SiF 4 or SiCl
Form reactive products with high vapor pressure, such as 4, and are discharged out of the system as a gas, so they do not generate contamination or particles. In addition, since the bonding force between atoms is large, it does not easily react with a halogen-based gas or plasma, and exhibits excellent corrosion resistance.
【0015】また、プラズマとの接触部位における耐食
性を高める上で、相対密度が95%以上、特に98%以
上の緻密体であることが望ましい。さらに、シリコンウ
ェハの大口径化に伴い、製造装置や構成部品自体も大型
化することから、強度および耐熱衝撃性を高める必要が
あり、また、塩素系ガス及びそのプラズマを使用する場
合は、熱サイクルによる部品の劣化が問題視されてくる
ことから耐熱信頼性を高める上でも、焼結体の相対密度
は95%以上必要である。In order to enhance the corrosion resistance at the site of contact with the plasma, it is desirable that the dense body has a relative density of 95% or more, particularly 98% or more. Further, as the diameter of the silicon wafer increases, the manufacturing equipment and the components themselves also increase in size.Therefore, it is necessary to increase the strength and thermal shock resistance. The relative density of the sintered body needs to be 95% or more in order to improve the heat resistance because the deterioration of parts due to the cycle is regarded as a problem.
【0016】窒化珪素は、単独では焼結しないことか
ら、従来よりSiO2 の他、希土類元素等の周期律表第
3A族元素や、MgO等のアルカリ土類金属酸化物、A
l2 O3 等の焼結助剤を添加することにより緻密化が図
られる。そして、この焼結体の組織は、窒化珪素からな
る主結晶相と、主として焼結助剤として添加した成分や
不純物成分によって形成される粒界相から構成されるも
のである。ハロゲン系ガスに対する耐食性の観点では、
窒化珪素はそれ自体共有結合を有する化学的に安定な化
合物からなるために耐食性に優れるが、前記焼結助剤や
不純物として混入する成分によって耐食性が劣り、その
粒界相が局所的にエッチングされたり、ガスと容易に反
応してしまう。Since silicon nitride does not sinter alone, conventionally, in addition to SiO 2, a group 3A element of the periodic table such as a rare earth element, an alkaline earth metal oxide such as MgO, or
Densification is achieved by adding a sintering aid such as l 2 O 3 . The structure of the sintered body is composed of a main crystal phase made of silicon nitride and a grain boundary phase formed mainly by a component added as a sintering aid or an impurity component. From the viewpoint of corrosion resistance to halogen-based gas,
Silicon nitride itself is excellent in corrosion resistance because it is composed of a chemically stable compound having a covalent bond itself.However, the corrosion resistance is poor due to the components mixed as the sintering aid and impurities, and the grain boundary phase is locally etched. Or reacts easily with gas.
【0017】そこで、本発明によれば、耐食性を劣化さ
せるような焼結助剤成分を添加せずに、かつ耐食性を損
なわない程度で焼結性を維持するため、所定の比率で酸
素分を含有せしめることが重要である。すなわち、窒化
珪素を主相とし、酸素をSiO2 換算で1.0〜15.
0重量%、望ましくは2.0〜10.0重量%含有し、
かつSi以外の不純物金属量の総量が0.1重量%以
下、特に0.05重量%以下であることが重要である。Therefore, according to the present invention, in order to maintain the sintering property without adding the sintering aid component which deteriorates the corrosion resistance and to the extent that the corrosion resistance is not impaired, the oxygen content is reduced at a predetermined ratio. It is important to include it. That is, the silicon nitride as a main phase, oxygen in terms of SiO 2 1.0 to 15.
0% by weight, desirably 2.0 to 10.0% by weight,
It is important that the total amount of impurity metals other than Si be 0.1% by weight or less, particularly 0.05% by weight or less.
【0018】ここで、酸素とは、窒化珪素焼結体中の全
酸素量であり、そのほとんどは、Si3 N4 原料中の不
可避的酸素あるいは意図的に添加したSiO2 中の酸素
である。Here, the oxygen is the total amount of oxygen in the silicon nitride sintered body, and most of the oxygen is inevitable oxygen in the Si 3 N 4 raw material or oxygen in SiO 2 added intentionally. .
【0019】焼結体組成を上記範囲に限定した理由は、
前記SiO2 換算量が1.0重量%未満では、焼結性が
低下するため、焼結体の緻密化が困難となり、また、1
5.0重量%以上では焼結体中に占める粒界相の割合が
高くなり、粒界に存在する多量のSi酸化物が選択的に
エッチングされ、表面の荒れ、脱粒が生じて耐食性が大
きく損なわれるためである。The reason for limiting the composition of the sintered body to the above range is as follows.
If the SiO 2 conversion amount is less than 1.0% by weight, the sinterability decreases, so that it becomes difficult to densify the sintered body.
If the content is more than 5.0% by weight, the ratio of the grain boundary phase in the sintered body becomes high, and a large amount of Si oxide present in the grain boundary is selectively etched, and the surface is roughened and the grains are removed, resulting in high corrosion resistance. It is because it is damaged.
【0020】また、本発明の窒化珪素質焼結体は組織
上、窒化珪素からなる主結晶相と、その粒界にS、O、
Nを含有する粒界相が存在し、その粒界相はガラス質か
らなっていてもよいが、SiO2 あるいはSi2 N2 O
により形成される結晶相が含まれることが望ましい。こ
れらSi化合物は主結晶相を含め、ハロゲン系のガスま
たはプラズマと反応しても蒸気圧の高いハロゲン化物や
気体を生成して系外に排出される。またSi以外の不純
物金属を0.1重量%以下とすることにより、Si以外
の金属不純物からなる粒界相の選択的なエッチングや、
低蒸気圧ハロゲン化物の形成によるパーティクルの発生
やコンタミによるウェハの汚染を抑制することができ
る。The silicon nitride sintered body of the present invention is structurally characterized by a main crystal phase composed of silicon nitride and S, O,
There is a grain boundary phase containing N, and the grain boundary phase may be made of glass, but may be made of SiO 2 or Si 2 N 2 O.
It is desirable to include a crystal phase formed by the following. Even if these Si compounds, including the main crystal phase, react with a halogen-based gas or plasma, they generate halides or gases having a high vapor pressure and are discharged out of the system. When the content of the impurity metal other than Si is set to 0.1% by weight or less, selective etching of the grain boundary phase composed of metal impurities other than Si can be performed.
The generation of particles due to the formation of low vapor pressure halide and the contamination of the wafer due to contamination can be suppressed.
【0021】本発明の窒化珪素質耐食性部材は、以下の
方法によって作製される。Si以外の金属不純物の総量
が0.1重量%以下、特に0.05重量%以下、平均粒
径2μm以下、不純物酸素量0.5〜2.0重量%のα
型あるいはβ型高純度窒化珪素原料粉末を用いて、Si
以外の金属不純物の総量が0.1重量%以下、酸素をS
iO2 換算で1.0〜15.0重量%含有する窒化珪素
質粉末を作製する。高純度窒化珪素原料粉末は、もとも
と高純度に作製されたものを使用することもできるが、
金属不純物を含有する原料粉末を真空中、塩素または水
素雰囲気中800〜1900℃で純化処理を行うことに
より得ることも可能である。The silicon nitride corrosion-resistant member of the present invention is manufactured by the following method. Α having a total amount of metal impurities other than Si of 0.1% by weight or less, particularly 0.05% by weight or less, an average particle diameter of 2 μm or less, and an impurity oxygen amount of 0.5 to 2.0% by weight.
, Or β-type high-purity silicon nitride raw material powder
The total amount of metal impurities other than 0.1% by weight or less
iO 2 to produce silicon nitride powder containing 1.0 to 15.0 wt% in terms of. As the high-purity silicon nitride raw material powder, it is possible to use the one originally produced with high purity,
It is also possible to obtain a raw material powder containing metal impurities by performing a purification treatment in a chlorine or hydrogen atmosphere at 800 to 1900 ° C. in a vacuum.
【0022】窒化珪素原料粉末中のSi以外の金属不純
物の総量が0.1重量%を越える場合、高濃度に不純物
を含む低融点の粒界相が生成され、ハロゲン系腐食ガス
あるいはプラズマに曝される環境下で長時間使用した場
合、焼結体内部の粒界相成分が部材表面に向かって容易
に拡散移動するために、浸食が焼結体内部まで進行し、
耐食性を低下させるとともに、半導体に対して悪影響を
及ぼす。When the total amount of metal impurities other than Si in the silicon nitride raw material powder exceeds 0.1% by weight, a low-melting grain boundary phase containing a high concentration of impurities is generated and exposed to a halogen-based corrosive gas or plasma. When used for a long time in an environment where the grain boundary phase component inside the sintered body easily diffuses and moves toward the member surface, erosion proceeds to the inside of the sintered body,
It reduces corrosion resistance and adversely affects semiconductors.
【0023】窒化珪素粉末のみで酸素量が不足する場合
には、上記窒化珪素原料粉末に、SiO2 粉末を適宜添
加、混合すればよい。When the amount of oxygen is insufficient with only the silicon nitride powder, an SiO 2 powder may be appropriately added to and mixed with the silicon nitride raw material powder.
【0024】この窒化珪素質粉末をモールドに充填ある
いは所望の形状に成形し、1600〜2000℃、特に
1700〜1950℃の非酸化雰囲気中で、150〜5
00kgf/cm2 の圧力で加圧焼成する。成形法とし
ては、プレス成形、鋳込み成形、冷間静水圧成形、押し
出し成形、シート成形、射出成形等の公知の方法が採用
される。また、焼成雰囲気は、低温域では常圧で焼成で
きるが、窒化珪素の分解が生じる1800℃以上では、
1.5気圧以上の窒素雰囲気であることが窒化珪素の分
解を防止し緻密化を促すために好ましい。The silicon nitride-based powder is filled in a mold or molded into a desired shape, and heated in a non-oxidizing atmosphere at 1600 to 2000 ° C., particularly 1700 to 1950 ° C., for 150 to 5 minutes.
Pressure calcination is performed at a pressure of 00 kgf / cm 2 . As a molding method, a known method such as press molding, cast molding, cold isostatic molding, extrusion molding, sheet molding, or injection molding is employed. The firing atmosphere can be fired at normal pressure in a low temperature range, but at 1800 ° C. or higher where decomposition of silicon nitride occurs,
A nitrogen atmosphere of 1.5 atm or more is preferable in order to prevent decomposition of silicon nitride and promote densification.
【0025】焼成方法としては、150〜500kgf
/cm2 の圧力下によるホットプレス、1000気圧以
上の不活性雰囲気中での熱間静水圧焼成法等が採用でき
るが、コストおよび焼結性を高める点から、前記ホット
プレス法が望ましい。また、焼結体の密度を向上させる
ために、前記ホットプレスを行った後、さらに熱間静水
圧焼成を行ってもよい。As the firing method, 150 to 500 kgf
Hot pressing under a pressure of / cm 2 , hot isostatic firing in an inert atmosphere of 1000 atm or more can be employed, but the hot pressing is preferred from the viewpoint of increasing cost and sinterability. Further, in order to improve the density of the sintered body, hot isostatic firing may be further performed after the hot pressing.
【0026】なお、ホットプレスの場合、カーボンモー
ルドによって焼結体中にわずかにカーボンが混入する場
合があるが、その量は0.5重量%以下であれば特に問
題ない。In the case of hot pressing, carbon may be slightly mixed into the sintered body due to the carbon mold, but there is no particular problem if the amount is 0.5% by weight or less.
【0027】上記の焼成により、相対密度95%以上、
特に98%以上の焼結体を得る。なお、上記焼結体が低
密度で多量の気孔を有する場合は、それだけガスやプラ
ズマとの接触面積が増加し消耗が早くなるため、開気孔
率0.2%以下であることが望ましい。得られた焼結体
に対し、適宜研削加工を施し、所定の寸法の製品形状に
仕上げる。この時、耐食性を高める上では、前記腐食性
ガスあるいはそのプラズマと接触する焼結体表面の表面
粗さ(Ra)が、1μm以下、特に0.5μm以下、さ
らには0.1μm以下であることが望ましい。By the above calcination, the relative density is 95% or more,
In particular, a sintered body of 98% or more is obtained. If the sintered body has a low density and a large number of pores, the contact area with the gas or plasma increases and the consumption is accelerated. Therefore, the open porosity is desirably 0.2% or less. The obtained sintered body is appropriately subjected to a grinding process to finish it into a product shape having a predetermined size. At this time, in order to enhance the corrosion resistance, the surface roughness (Ra) of the surface of the sintered body that comes into contact with the corrosive gas or the plasma thereof is 1 μm or less, particularly 0.5 μm or less, and further 0.1 μm or less. Is desirable.
【0028】[0028]
【実施例】以下に具体的なプラズマに対する耐食性評価
実験を行った。平均粒径0.3μm、α率90%の窒化
珪素粉末を用い、純度、金属不純物および焼結助剤とし
て添加したSiO2 を、原料中に含まれる不純物酸素を
SiO2 換算したものと併せて表1に示す割合となるよ
うに添加混合した。この原料粉体をカーボン製モールド
に充填し、窒素雰囲気中、表1に示す条件でホットプレ
ス(HP)を行った。EXAMPLE An experiment for evaluating the corrosion resistance to specific plasma was carried out below. Using silicon nitride powder having an average particle size of 0.3 μm and an α ratio of 90%, purity, metal impurities and SiO 2 added as a sintering aid are combined with those obtained by converting impurity oxygen contained in the raw material into SiO 2. Addition and mixing were performed so that the ratios shown in Table 1 were obtained. This raw material powder was filled in a carbon mold and subjected to hot pressing (HP) in a nitrogen atmosphere under the conditions shown in Table 1.
【0029】比較例として、純度99.99重量%以上
の石英ガラスを準備した(試料No.5)。また、焼結
助剤としてY2 O3 またはアルミナを添加した試料を準
備した(試料No.19〜23)。これら粉末に対し、
ホットプレス(HP)あるいは窒素ガス加圧焼成(GP
S)により、窒素雰囲気中、表1に示す条件で同様に焼
結体を作製した。As a comparative example, a quartz glass having a purity of 99.99% by weight or more was prepared (Sample No. 5). Was also prepared and the sample added Y 2 O 3 or alumina as a sintering aid (Sample No.19~23). For these powders,
Hot press (HP) or nitrogen gas pressure firing (GP
By S), similarly, a sintered body was produced in a nitrogen atmosphere under the conditions shown in Table 1.
【0030】[0030]
【表1】 [Table 1]
【0031】得られた焼結体を用いて、まずアルキメデ
ス法により窒化珪素質焼結体の密度を測定し、理論密度
に対する比率である相対密度(%)を算出した。結果は
表2に示した。Using the obtained sintered body, the density of the silicon nitride based sintered body was first measured by the Archimedes method, and the relative density (%) as a ratio to the theoretical density was calculated. The results are shown in Table 2.
【0032】(耐食性試験1)得られた焼結体に対し
て、表面を表面粗さ(Ra)が0.1μm以下となるよ
うに鏡面加工した直径22cmの円盤を作製し、RIE
プラズマエッチング装置にて、CF4 (60sccm)
+ Ar(60sccm)のフッ素系プラズマに室温で曝
し、エッチングレートとパーティクルの有無を調査し
た。エッチング条件は圧力10Pa、RF出力1kW、
プラズマ照射時間3時間とした。エッチングレートはテ
スト前後の重量変化を基に算出した。パーティクルの有
無は、プラズマ照射後の円盤上に8インチのSiウェハ
を載せたのち、ウェハの接触面の凹凸をレーザー散乱に
よって検出し、パーティクルカウンタにて0.3μm以
上のパーティクル個数を計測した。結果を表2に示す。(Corrosion Resistance Test 1) A disk having a diameter of 22 cm was mirror-finished on the obtained sintered body so that the surface had a surface roughness (Ra) of 0.1 μm or less, and RIE was performed.
CF 4 (60sccm) with plasma etching equipment
The wafer was exposed to a fluorine-based plasma of + Ar (60 sccm) at room temperature, and the etching rate and the presence or absence of particles were examined. Etching conditions are pressure 10 Pa, RF output 1 kW,
The plasma irradiation time was 3 hours. The etching rate was calculated based on the weight change before and after the test. The presence / absence of particles was determined by placing an 8-inch Si wafer on a disk after plasma irradiation, detecting the unevenness of the contact surface of the wafer by laser scattering, and counting the number of particles of 0.3 μm or more with a particle counter. Table 2 shows the results.
【0033】(耐食性試験2)また、RIEプラズマエ
ッチング装置にて、Cl2 (100sccm)の塩素プ
ラズマ中に室温で曝し、エッチングレートとパーティク
ルの有無を調査した。エッチング条件は、圧力4Pa、
RF出力1.8kW、プラズマ照射時間3時間とした。
評価方法は実施例1と同様である。結果を表2に示す。(Corrosion Resistance Test 2) Further, the film was exposed to chlorine plasma of Cl 2 (100 sccm) at room temperature using an RIE plasma etching apparatus, and the etching rate and the presence or absence of particles were examined. The etching conditions are a pressure of 4 Pa,
The RF output was 1.8 kW and the plasma irradiation time was 3 hours.
The evaluation method is the same as in the first embodiment. Table 2 shows the results.
【0034】[0034]
【表2】 [Table 2]
【0035】表2の結果によれば、試料No.6はSi
O2 成分が少ないため、緻密化できず、その結果、耐食
性が低下すると共に脱粒によって2500個以上のパー
ティクルが発生し、使用に耐えない。また、試料No.
7は窒化珪素と比べて耐食性の劣るSiO2 を過剰に含
有しており、それが選択的にエッチングされることで粒
界相が除去され、窒化珪素粒子が脱粒して多量のパーテ
ィクルを発生している。試料No.9、11は不純物金
属を0.1重量%を越えて含有しており、その結果、パ
ーティクル発生の原因となっている。試料No.12は
焼成温度が低すぎるため、試料No.13、16はプレ
ス圧力の不足により緻密化が充分でなくパーティクルが
多量に発生した。試料No.18は焼成温度が高すぎて
窒化珪素の分解が起こり、耐食性が大きく低下してい
る。試料No.19、20は、粒界相にフッ素と反応し
て蒸気圧の低い固体を形成するY、Alを含有するた
め、材料のエッチング率は低下するが、粒界相とフッ素
の反応生成物がパウダー化し、多量のパーティクルを発
生している。According to the results shown in Table 2, the sample No. 6 is Si
Due to the small amount of the O 2 component, it cannot be densified. As a result, the corrosion resistance is reduced, and 2500 or more particles are generated due to the shedding of particles, which is unusable. In addition, the sample No.
No. 7 excessively contains SiO 2, which is inferior in corrosion resistance to silicon nitride, and selectively etches it to remove the grain boundary phase, and the silicon nitride particles are shed to generate a large amount of particles. ing. Sample No. Nos. 9 and 11 contain an impurity metal in excess of 0.1% by weight, which results in the generation of particles. Sample No. Sample No. 12 has a too low firing temperature. In Nos. 13 and 16, densification was not sufficient due to insufficient press pressure, and a large amount of particles were generated. Sample No. In No. 18, the sintering temperature was too high, silicon nitride was decomposed, and the corrosion resistance was greatly reduced. Sample No. In Nos. 19 and 20, since the grain boundary phase contains Y and Al which react with fluorine to form a solid having a low vapor pressure, the etching rate of the material is lowered, but the reaction product of the grain boundary phase and fluorine is powder. And generate a large amount of particles.
【0036】本発明による試料No.1〜4、8、1
0、14、15、17は、現在汎用的に使用されている
石英ガラス(試料No.5)と比較して約2倍以上の耐
食性を示し、なおかつパーティクルの発生は1000個
以下に抑制されている上、試料表面自体にも反応生成物
の堆積等は確認されなかった。Sample No. 1 according to the present invention. 1-4, 8, 1
Nos. 0, 14, 15, and 17 show about twice or more the corrosion resistance as compared with quartz glass (sample No. 5) which is currently widely used, and generation of particles is suppressed to 1,000 or less. In addition, no deposition of reaction products was observed on the sample surface itself.
【0037】[0037]
【発明の効果】以上詳述したように、本発明によれば、
フッ素系及び塩素系腐食性ガス或いはプラズマに曝され
る部材として所定の高純度窒化珪素質焼結体を使用する
ことにより、高温・高密度のフッ素系及び塩素系腐食雰
囲気に長時間の耐久性を有し、且つコンタミネーション
やパーティクルを発生しないこと、大型部品としての機
械的強度を保持することから、半導体製造用装置、とり
わけプラズマ処理装置の内壁部材や被処理物を支持する
支持体などの治具等の部材として使用することにより、
半導体製造の歩留り向上とともに高品質の半導体素子を
作製することができる。As described in detail above, according to the present invention,
By using a specified high-purity silicon nitride sintered body as a member exposed to fluorine-based and chlorine-based corrosive gases or plasma, it can withstand long-term durability in high-temperature, high-density fluorine-based and chlorine-based corrosive atmospheres. Since it does not generate contamination and particles, and retains mechanical strength as a large component, it can be used as an apparatus for semiconductor manufacturing, especially a support for supporting an inner wall member of a plasma processing apparatus or an object to be processed. By using it as a member such as a jig,
A semiconductor device of high quality can be manufactured while improving the yield of semiconductor manufacturing.
フロントページの続き (72)発明者 福留 武郎 鹿児島県国分市山下町1番4号 京セラ株 式会社総合研究所内 Fターム(参考) 4G001 BA04 BA32 BA71 BA73 BB04 BB32 BB71 BB73 BC13 BC42 BC43 BC52 BC54 BC55 BD04 BD13 BD37 BD38 BE11 BE33 BE35 5F004 AA15 AA16 BA04 BB13 BB14 BB29 DA00 DA01 DA04 DA11 DA16 DA17 DA18 DA20 DA23 DA29 5F031 DA13 EA02 EA04 MA23 MA28 MA32 PA26 5F045 AA08 BB14 EB03 EC05 EM09Continued on the front page (72) Inventor Takeo Fukudome 1-4-4 Yamashita-cho, Kokubu-shi, Kagoshima F-term in Kyocera Research Institute (reference) 4G001 BA04 BA32 BA71 BA73 BB04 BB32 BB71 BB73 BC13 BC42 BC43 BC52 BC54 BC55 BD04 BD13 BD37 BD38 BE11 BE33 BE35 5F004 AA15 AA16 BA04 BB13 BB14 BB29 DA00 DA01 DA04 DA11 DA16 DA17 DA18 DA20 DA23 DA29 5F031 DA13 EA02 EA04 MA23 MA28 MA32 PA26 5F045 AA08 BB14 EB03 EC05 EM09
Claims (3)
と直接接触する表面が、窒化珪素を主相とし、酸素をS
iO2 換算で1.0〜15.0重量%含有し、かつSi
以外の不純物金属量が総量で0.1重量%以下、相対密
度95%以上の焼結体からなることを特徴とする高純度
窒化珪素質耐食性部材。A surface which is in direct contact with a halogen-based corrosive gas or its plasma is mainly composed of silicon nitride,
1.0 to 15.0% by weight in terms of SiO 2
A high-purity silicon nitride-based corrosion-resistant member comprising a sintered body having a total amount of impurity metals other than 0.1% by weight or less and a relative density of 95% or more.
び/またはSi2 N2Oから構成されることを特徴とす
る請求項1記載の高純度窒化珪素質耐食性部材。2. The high-purity silicon nitride-based corrosion-resistant member according to claim 1, wherein the grain boundary phase of the sintered body is mainly composed of SiO 2 and / or Si 2 N 2 O.
と直接接触する表面を有する耐食性部材の製造方法であ
って、窒化珪素を主成分とし、Si以外の不純物金属量
の総量が0.1重量%以下、酸素をSiO2 換算で1.
0〜15.0重量%含有する窒化珪素質粉末あるいはそ
の成形体を、非酸化雰囲気中1600〜2000℃、1
50〜500kgf/cm2 で加圧焼成してなることを
特徴とする高純度窒化珪素質耐食性部材の製造方法。3. A method for producing a corrosion-resistant member having a surface directly in contact with a halogen-based corrosive gas or its plasma, wherein silicon nitride is a main component and the total amount of impurity metals other than Si is 0.1% by weight or less. , Oxygen in terms of SiO 2 .
A silicon nitride-based powder containing 0 to 15.0% by weight or a compact thereof is placed in a non-oxidizing atmosphere at 1600 to 2000 ° C.,
A method for producing a high-purity silicon nitride-based corrosion-resistant member, characterized by firing under pressure at 50 to 500 kgf / cm 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10191643A JP2000026166A (en) | 1998-07-07 | 1998-07-07 | High purity silicon nitride-base corrosion resistant member and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10191643A JP2000026166A (en) | 1998-07-07 | 1998-07-07 | High purity silicon nitride-base corrosion resistant member and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000026166A true JP2000026166A (en) | 2000-01-25 |
Family
ID=16278078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10191643A Pending JP2000026166A (en) | 1998-07-07 | 1998-07-07 | High purity silicon nitride-base corrosion resistant member and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000026166A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128568A (en) * | 2000-10-18 | 2002-05-09 | Ngk Insulators Ltd | Corrosion-resistant component |
KR20020062843A (en) * | 2001-01-25 | 2002-07-31 | 니뽄 가이시 가부시키가이샤 | Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing |
KR20100099137A (en) * | 2007-10-31 | 2010-09-10 | 램 리써치 코포레이션 | High lifetime consumable silicon nitride-silicon dioxide plasma processing components |
-
1998
- 1998-07-07 JP JP10191643A patent/JP2000026166A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002128568A (en) * | 2000-10-18 | 2002-05-09 | Ngk Insulators Ltd | Corrosion-resistant component |
JP4641609B2 (en) * | 2000-10-18 | 2011-03-02 | 日本碍子株式会社 | Corrosion resistant material |
KR20020062843A (en) * | 2001-01-25 | 2002-07-31 | 니뽄 가이시 가부시키가이샤 | Corrosion-resistive ceramic materials, method of producing the same, and members for semiconductor manufacturing |
KR20100099137A (en) * | 2007-10-31 | 2010-09-10 | 램 리써치 코포레이션 | High lifetime consumable silicon nitride-silicon dioxide plasma processing components |
US20110021031A1 (en) * | 2007-10-31 | 2011-01-27 | Taylor Travis R | High lifetime consumable silicon nitride-silicon dioxide plasma processing components |
JP2011503845A (en) * | 2007-10-31 | 2011-01-27 | ラム リサーチ コーポレーション | Silicon nitride-silicon dioxide high life consumable plasma processing components |
US8622021B2 (en) | 2007-10-31 | 2014-01-07 | Lam Research Corporation | High lifetime consumable silicon nitride-silicon dioxide plasma processing components |
KR101645043B1 (en) * | 2007-10-31 | 2016-08-02 | 램 리써치 코포레이션 | A plasma processing chamber, a plasma processing component and a method of manufacturing a plasma etch chamber processing component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3619330B2 (en) | Components for plasma process equipment | |
KR101593922B1 (en) | Polycrystal silicon carbide bulky part for a semiconductor process by chemical vapor deposition and preparation method thereof | |
JPH1045467A (en) | Corrosion resistant member | |
JPH11214365A (en) | Member for semiconductor element manufacturing device | |
US6258741B1 (en) | Corrosion-resistant member | |
JP3488373B2 (en) | Corrosion resistant materials | |
JP3618048B2 (en) | Components for semiconductor manufacturing equipment | |
JPH1012692A (en) | Dummy wafer | |
KR100500495B1 (en) | Aluminium nitride ceramics, members for use in a system for producing semiconductors, and corrosion resistant members | |
US6670294B2 (en) | Corrosion-resistive ceramic materials and members for semiconductor manufacturing | |
JP2000103689A (en) | Alumina sintered compact, its production and plasma- resistant member | |
JP3623054B2 (en) | Components for plasma process equipment | |
JP4641609B2 (en) | Corrosion resistant material | |
JP3659435B2 (en) | Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel. | |
JP2000239066A (en) | Corrosionproof member and its production, and member for plasma treatment device using the same | |
JP3500278B2 (en) | Corrosion resistant materials for semiconductor manufacturing | |
JP2000026166A (en) | High purity silicon nitride-base corrosion resistant member and its production | |
JP2001151559A (en) | Corrosion-resistant member | |
KR20090101245A (en) | Ceramic member and corrosion-resistant member | |
JP3716386B2 (en) | Plasma-resistant alumina ceramics and method for producing the same | |
JPH11279761A (en) | Corrosion resistant member | |
JPH11278944A (en) | Silicon nitride corrosion resistant member and its production | |
JP2005022971A (en) | Member for plasma processing device | |
JP4651145B2 (en) | Corrosion resistant ceramics | |
JP3732966B2 (en) | Corrosion resistant material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050408 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050920 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060530 |