JP2019069889A - Alumina sintered body and production method therefor - Google Patents

Alumina sintered body and production method therefor Download PDF

Info

Publication number
JP2019069889A
JP2019069889A JP2018178652A JP2018178652A JP2019069889A JP 2019069889 A JP2019069889 A JP 2019069889A JP 2018178652 A JP2018178652 A JP 2018178652A JP 2018178652 A JP2018178652 A JP 2018178652A JP 2019069889 A JP2019069889 A JP 2019069889A
Authority
JP
Japan
Prior art keywords
sintered body
alumina
less
content
alumina sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018178652A
Other languages
Japanese (ja)
Other versions
JP7154912B2 (en
Inventor
早侑 吉田
Sayu Yoshida
早侑 吉田
宮下 幸久
Yukihisa Miyashita
幸久 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to CN201880065428.0A priority Critical patent/CN111201208B/en
Priority to KR1020207009705A priority patent/KR102354650B1/en
Priority to PCT/JP2018/036914 priority patent/WO2019069939A1/en
Priority to US16/753,756 priority patent/US11760694B2/en
Priority to TW107135180A priority patent/TWI763933B/en
Publication of JP2019069889A publication Critical patent/JP2019069889A/en
Application granted granted Critical
Publication of JP7154912B2 publication Critical patent/JP7154912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To provide an alumina sintered body that has corrosion resistance as well as low dielectric loss characteristic and in which a dense membrane can be deposited uniformly, and a production method of the alumina sintered body.SOLUTION: An alumina sintered body according to the present invention is the alumina sintered body with the Al content of 99.8 wt% or more in terms of AlO, in which the content of Si in the alumina sintered body is 170 ppm or more and 600 ppm or less in terms of SiO, the content of Na is 27 ppm or less in terms of NaO, and the alumina sintered body density is 3.96 g/cmor more.SELECTED DRAWING: None

Description

本発明はアルミナ質焼結体及びその製造方法に関し、例えば、プラズマ処理装置、半導体・液晶表示装置製造用エッチャー、CVD装置等に使用される部材等に好適に用いられる、あるいはまたコーティングされる耐プラズマ性部材の基材等に好適に用いられるアルミナ質焼結体、及び前記アルミナ質焼結体の製造方法に関する。   The present invention relates to an alumina-based sintered body and a method for producing the same, which is suitably used or coated on, for example, a member used in a plasma processing apparatus, an etcher for manufacturing a semiconductor / liquid crystal display, a CVD apparatus, etc. The present invention relates to an alumina sintered body suitably used as a base material or the like of a plasma property member, and a method for producing the alumina sintered body.

アルミナ質焼結体は、耐熱性、耐薬品性、耐プラズマ性に優れ、さらに高周波領域での誘電正接(tanδ)が小さいことから、例えば、プラズマ処理装置、半導体・液晶表示装置製造用エッチャー、CVD装置等に使用される部材等、またコーティングされる耐プラズマ性部材の基材等に用いられている。
そしてまた、このアルミナ質焼結体における耐食性、誘電正接(誘電損失)を向上させるため、種々の提案がなされている。
Alumina-based sintered bodies are excellent in heat resistance, chemical resistance, plasma resistance, and have a small dielectric loss tangent (tan δ) in a high frequency region, so, for example, plasma processing devices, etchers for manufacturing semiconductor / liquid crystal display devices, It is used for the member etc. which are used for a CVD apparatus etc., and the base material etc. of the plasma-resistant member to be coated.
In addition, various proposals have been made to improve the corrosion resistance and dielectric loss tangent (dielectric loss) in this alumina sintered body.

例えば、特許文献1では、高い耐食性を有しつつ、Naの酸化物を含有しながらも誘電正接の低いアルミナ質焼結体および半導体製造装置用部材ならびに液晶パネル製造装置用部材を提供することを目的とし、全構成成分100質量%のうち、NaをNaO換算した含有量が30ppm以上500ppm以下であり、AlをAl換算した含有量が99.4質量%以上であり、8.5GHzにおける誘電正接の値が、NaをNaO換算した含有量の値の0.5倍以下であるアルミナ質焼結体が提案されている。 For example, Patent Document 1 provides an alumina sintered body having a low dielectric loss tangent while having a high corrosion resistance and containing an oxide of Na, a member for a semiconductor manufacturing apparatus, and a member for a liquid crystal panel manufacturing apparatus. the purpose, of all components 100% by weight, or less 500ppm content 30ppm or more and the Na Na 2 and O terms, it is the Al Al 2 O 3-converted content of 99.4% by mass or more, 8 An aluminous sintered body is proposed in which the value of the dielectric loss tangent at 5 GHz is not more than 0.5 times the value of the Na 2 O converted content.

また、特許文献2では、位置の相違に応じた誘電正接のばらつきを図ることができるアルミナ質焼結体及びその製造方法を提供することを目的とし、Al含有量が99.4〜99.8質量%の範囲に含まれ、Si含有量がSiO換算で0.11〜0.38質量%の範囲に含まれ、表層部及び内部のそれぞれにおける結晶粒子径の偏差が0.06μm以下であり、かつ、表層部及び内部のそれぞれにおける6.5μm以上の粒子径を有する結晶の占有率の偏差が0.6%以下であるアルミナ質焼結体が提案されている。 In Patent Document 2, three content intended, Al 2 O to provide an alumina sintered body and a manufacturing method thereof can be reduced variations in dielectric loss tangent in accordance with the difference in position 99.4~ It is contained in the range of 99.8 mass%, Si content is contained in the range of 0.11 to 0.38 mass% in conversion of SiO 2 , and the deviation of the crystal particle diameter in each of the surface layer part and the inside is 0.06 μm An alumina-based sintered body has been proposed which has the following deviations of the occupancy of crystals having a particle diameter of 6.5 μm or more in each of the surface layer portion and the inside: 0.6% or less.

更に、特許文献3では、加工容易性の向上を図りながら、安定的に誘電正接の低下を図ることができるアルミナ質焼結体及びその製造方法を提供することを目的とし、Alの純度が99.3wt%以上であって、Al結晶粒子内にTiがTiO換算で0.08〜0.20wt%の範囲で固溶し、SiがSiO換算で焼結体に0.05〜0.40wt%の範囲で含有されているアルミナ質焼結体が提案されている。 Further, in Patent Document 3, while improving ease of processing, stably and to provide an alumina sintered body it is possible to reduce the dielectric loss tangent and its manufacturing method, the Al 2 O 3 The purity is 99.3 wt% or more, and Ti is dissolved in Al 2 O 3 crystal particles in the range of 0.08 to 0.20 wt% in terms of TiO 2 , and Si is a sinter in terms of SiO 2 An alumina-based sintered body contained in the range of 0.05 to 0.40 wt% has been proposed.

また、特許文献4では、耐プラズマ部材において、より安価または基材の強度が要求される場合には、アルミナセラミックス基材の表面に、YまたはYAGからなる耐プラズマ性を有する膜を形成することが提案されている。
更に、膜形成に関して、例えば、特許文献5には、半導体製造装置を構成するための基部材の表面に、厚さ200μm以下セラミック溶射皮膜を形成することが示されている。尚、特許文献5には溶射膜の気孔率が5〜10%であることが示されている。
Further, in Patent Document 4, in the plasma-resistant member, when cost or strength of the substrate is required, a film having plasma resistance made of Y 2 O 3 or YAG is formed on the surface of the alumina ceramic substrate. It is proposed to form.
Furthermore, regarding film formation, for example, Patent Document 5 discloses that a ceramic spray-coated film having a thickness of 200 μm or less is formed on the surface of a base member for constituting a semiconductor manufacturing apparatus. In addition, it is shown by patent document 5 that the porosity of a sprayed film is 5-10%.

特開2015−163569号公報JP, 2015-163569, A 特開2013−155098号公報JP, 2013-155098, A 特開2013−180909号公報JP, 2013-180909, A 特開2005−225745号公報JP 2005-225745 A 特開2013−95973号公報JP, 2013-95973, A

ところで、特許文献5に示すようなセラミック溶射皮膜がコーティングされた半導体製造装置用部材にあっては、溶射被膜は200μm程度の厚さを有し、溶射膜の気孔率が5〜10%であるため、プラズマ曝露下で使用すると、溶射被膜が剥離し、パーティクルを発生させる虞があった。
一方、近年では成膜技術の多様化によって、溶射膜厚が数μm程度とより薄膜化する傾向にあり、基材に薄膜化した溶射膜を成膜した際、基材に存在する気孔によって、均一な成膜が妨げられるという課題があった。
しかしながら、特許文献1〜3に示すように、アルミナ質焼結体の耐食性、誘電正接(誘電損失)については幾つかの提案があるものの、本出願人が知る限り、緻密な溶射膜を均一に成膜することができるアルミナ質焼結体については提案されていない。
By the way, in a member for a semiconductor manufacturing apparatus coated with a ceramic sprayed coating as shown in Patent Document 5, the sprayed coating has a thickness of about 200 μm, and the porosity of the sprayed film is 5 to 10%. Therefore, when used under plasma exposure, the thermal spray coating may peel off and generate particles.
On the other hand, in recent years, with the diversification of film formation technology, the thickness of the sprayed film tends to be reduced to about several μm, and when the sprayed film formed on the substrate is formed, pores are present in the substrate. There has been a problem that uniform film formation is hindered.
However, as shown in Patent Documents 1 to 3, although there are several proposals for the corrosion resistance and dielectric loss tangent (dielectric loss) of the alumina-based sintered body, as far as the present applicant knows, a dense sprayed film can be made uniform. It has not been proposed about the alumina-based sintered body which can be formed into a film.

本発明者らは、上記状況に鑑みて、コーティングされる耐プラズマ性部材の基材として好適なアルミナ質焼結体を鋭意研究した。そして、耐食性を有する共に、低誘電損失特性を有するアルミナ質焼結体であって、基材に緻密な膜を均一に成膜することができるアルミナ質焼結体を想到し、本発明を完成した。   In view of the above-mentioned situation, the present inventors diligently studied an alumina sintered body suitable as a substrate of a plasma resistant member to be coated. Further, the present invention is completed on the basis of an alumina-based sintered body having corrosion resistance and low dielectric loss characteristics, and capable of uniformly forming a dense film on a base material. did.

本発明は、耐食性を有する共に、低誘電損失特性を有し、また緻密な膜を均一に成膜することができるアルミナ質焼結体、及びそのアルミナ質焼結体の製造方法を提供することを目的とするものである。   The present invention provides an alumina-based sintered body having corrosion resistance, low dielectric loss characteristics, and capable of uniformly forming a dense film, and a method for producing the alumina-based sintered body. Purpose.

上記目的を達成するためになされた本発明にかかるアルミナ質焼結体は、AlをAl換算した含有量が99.8wt%以上のアルミナ質焼結体であって、前記アルミナ質焼結体中のSiをSiO換算した含有量が170ppm以上600ppm以下、NaをNaO換算した含有量が27ppm以下であり、かつ前記アルミナ質焼結体密度が3.96g/cm以上であることを特徴としている。 The alumina-based sintered body according to the present invention made to achieve the above object is an alumina-based sintered body having a content of 99.8 wt% or more of Al converted to Al 2 O 3, and the alumina-based sintered body When the content of Si in the body is converted to SiO 2 from 170 ppm to 600 ppm, the content of Na converted to Na 2 O is 27 ppm or less, and the density of the aluminous sintered body is 3.96 g / cm 3 or more It is characterized by certain things.

本発明にかかる特定の構成を有するアルミナ質焼結体は、耐食性を有すると共に、低誘電損失特性を有している。また、アルミナ質焼結体の密度が3.96g/cm以上あり、緻密性を有している。その結果、アルミナ質焼結体の気孔が少なく、表面に膜を成膜した際、基材に均一な緻密な膜を成膜することができる。 The alumina sintered body having the specific constitution according to the present invention has corrosion resistance and low dielectric loss characteristics. In addition, the density of the alumina sintered body is 3.96 g / cm 3 or more, and has a compactness. As a result, when the film is formed on the surface with few pores of the alumina sintered body, a uniform dense film can be formed on the substrate.

ここで、MgをMgO換算した含有量割合が,前記SiO換算した含有量に対し、1.0以上4.0以下であることが望ましい。
また、CaをCaO換算した含有量割合が,前記SiO換算した含有量に対し、3.0以下であることが望ましい。
また、前記アルミナ質焼結体の平均気孔径が5μm以下であることが望ましい。また、前記アルミナ質焼結体のアルミナ結晶粒子の平均結晶粒径が3μm以上40μm以下であることが望ましい。
更に、前記アルミナ質焼結体の少なくとも一部に耐食膜または耐食層が形成されても良い。
また、本発明にかかるアルミナ質焼結体は、水素雰囲気中1600℃〜1900℃で焼成することによって製造される。
Here, the content ratio of Mg converted to MgO is preferably 1.0 or more and 4.0 or less with respect to the content converted to SiO 2 .
Further, the content ratio of Ca converted to CaO is preferably 3.0 or less with respect to the content converted to SiO 2 .
The average pore diameter of the alumina sintered body is preferably 5 μm or less. Moreover, it is desirable that the average crystal grain size of the alumina crystal particle of the said alumina-based sintered body is 3 micrometers or more and 40 micrometers or less.
Furthermore, a corrosion resistant film or a corrosion resistant layer may be formed on at least a part of the alumina sintered body.
Moreover, the alumina-based sintered body according to the present invention is manufactured by firing at 1600 ° C. to 1900 ° C. in a hydrogen atmosphere.

本発明によれば、耐食性を有すると共に、低誘電損失特性を有するアルミナ質焼結体を得ることができる。また、本発明によれば、アルミナ質焼結体の表面に膜を形成した際、緻密な膜を均一に形成できるアルミナ質焼結体を得ることができる。   According to the present invention, an alumina sintered body having corrosion resistance and low dielectric loss characteristics can be obtained. Further, according to the present invention, when a film is formed on the surface of an alumina sintered body, an alumina sintered body capable of uniformly forming a dense film can be obtained.

本発明にかかるアルミナ質焼結体は、AlをAl換算した含有量が99.8wt%以上のアルミナ質焼結体であって、前記アルミナ質焼結体中のSiをSiO換算した含有量が170ppm以上600ppm以下、NaをNaO換算した含有量が27ppm以下であり、かつ前記アルミナ質焼結体密度が3.96g/cm以上であることを特徴としている。 The alumina-based sintered body according to the present invention is an alumina-based sintered body in which the content of Al converted to Al 2 O 3 is 99.8 wt% or more, and the Si in the alumina-based sintered body is converted to SiO 2. The content is 170 ppm to 600 ppm, the content of Na converted to Na 2 O is 27 ppm or less, and the density of the aluminous sintered body is 3.96 g / cm 3 or more.

本発明にかかるアルミナ質焼結体は、耐食性を有すると共に、低誘電損失特性を有し、基材に均一な緻密な膜を成膜することができる点に特徴がある。   The alumina sintered body according to the present invention is characterized in that it has corrosion resistance, low dielectric loss characteristics, and can form a uniform dense film on a substrate.

本発明のアルミナ質焼結体における、AlをAl換算した含有量は99.8wt%以上である。AlをAl換算した含有量が99.8wt%未満の場合には、反応性の高いハロゲン系腐食ガスやそれらのプラズマに対して高い耐食性が得られないため、好ましくない。 The content of Al converted to Al 2 O 3 in the alumina sintered body of the present invention is 99.8 wt% or more. If the content of Al converted to Al 2 O 3 is less than 99.8 wt%, high corrosion resistance to highly reactive halogen-based corrosive gases and their plasmas can not be obtained, which is not preferable.

前記アルミナ質焼結体に含有されるAl以外の成分は、アルミナ製造工程において不可避的に混入する物質であり、例えば、Si,Mg,Na,Ca等の物質が挙げられる。
このアルミナ質焼結体における、SiをSiO換算した含有量は170ppm以上600ppm以下である。
SiをSiO換算した含有量が170ppm未満の場合には、低誘電損失特性の発現に必要なケイ酸塩が均一に形成されないため誘電損失が大きくなり、省電力化の効果が得られないため、好ましくない。
一方、SiをSiO換算した含有量が600ppmを超える場合には、アルミナ質焼結体の密度が小さく、緻密にならないため、好ましくない。
具体的には、本発明にかかるアルミナ質焼結体の密度は3.96g/cm以上である。
Components other than Al 2 O 3 contained in the alumina-based sintered body are substances which are inevitably mixed in the alumina manufacturing process, and examples thereof include substances such as Si, Mg, Na, Ca and the like.
The content of Si converted to SiO 2 in this alumina sintered body is 170 ppm or more and 600 ppm or less.
If the content of Si converted to SiO 2 is less than 170 ppm, the silicate required for the expression of low dielectric loss characteristics is not uniformly formed, the dielectric loss increases, and the effect of power saving can not be obtained. Not desirable.
On the other hand, when the content of Si converted into SiO 2 exceeds 600 ppm, the density of the aluminous sintered body is small and it is not preferable because it does not become compact.
Specifically, the density of the alumina sintered body according to the present invention is 3.96 g / cm 3 or more.

また、本発明にかかるアルミナ質焼結体における、NaをNaO換算した含有量は27ppm以下である。NaをNaO換算した含有量が27ppmを越えると、誘電損失が大きくなり、省電力化の効果が得られないため、好ましくない。 Further, the content of Na in terms of Na 2 O in the alumina sintered body according to the present invention is 27 ppm or less. If the content of Na converted to Na 2 O exceeds 27 ppm, the dielectric loss increases and the effect of power saving can not be obtained, which is not preferable.

また、本発明にかかるアルミナ質焼結体における、MgをMgO換算した含有量割合は、前記SiO換算した含有量に対し、1.0以上4.0以下であることが好ましい。
MgをMgO換算した含有量割合が前記SiO換算した含有量に対し、1.0以上4.0以下であることによりアルミナ質焼結体の粒界にケイ酸塩を形成することができるため、高密度、低誘電損失のアルミナ質焼結体を得ることができる。
In the alumina sintered body according to the present invention, the content ratio of Mg converted to MgO is preferably 1.0 or more and 4.0 or less with respect to the content converted to SiO 2 .
Since the content ratio of Mg converted to MgO is 1.0 or more and 4.0 or less with respect to the content converted to SiO 2 , silicate can be formed at the grain boundary of the aluminous sintered body Alumina sintered body having high density and low dielectric loss can be obtained.

また、本発明にかかるアルミナ質焼結体における、CaをCaO換算した含有量割合は、前記SiO換算した含有量に対し、3.0以下であることが好ましい。
CaをCaO換算した含有量割合が前記SiO換算した含有量に対し、3.0以下であることにより、粒界にケイ酸塩が形成されるため、低誘電損失のアルミナ質焼結体を得ることができる。
The content ratio of Ca converted to CaO in the alumina sintered body according to the present invention is preferably 3.0 or less with respect to the content converted to SiO 2 .
When the content ratio of Ca converted to CaO is 3.0 or less with respect to the content converted to SiO 2 , a silicate is formed at the grain boundaries, so that an alumina sintered body with low dielectric loss is obtained. You can get it.

このアルミナ質焼結体のアルミナ結晶粒子の平均結晶粒径は3μm以上40μm以下であることが好ましく、10μm以上25μm以下であることがさらに好ましい。
アルミナ質焼結体のアルミナ結晶粒子の平均結晶粒径が3μm以上40μm以下であるため、アルミナ質焼結体の気孔の存在を少なくできより高い密度の焼結体を得ることができると共に、3点曲げ強度が250MPa以上のアルミナ質焼結体を得ることができる。
また、このアルミナ質焼結体の平均気孔径が5μm以下であることが好ましい。アルミナ質焼結体の平均気孔径が5μm以下であることにより、アルミナ質焼結体の表面に薄膜を均一に形成することができる。
The average crystal grain size of alumina crystal particles of the alumina-based sintered body is preferably 3 μm to 40 μm, and more preferably 10 μm to 25 μm.
Since the average crystal grain size of the alumina crystal particles of the alumina-based sintered body is 3 μm or more and 40 μm or less, the existence of pores of the alumina-based sintered body can be reduced, and a sintered body with higher density can be obtained. An alumina sintered body having a point bending strength of 250 MPa or more can be obtained.
Moreover, it is preferable that the average pore diameter of this alumina-based sintered body is 5 μm or less. When the average pore diameter of the alumina sintered body is 5 μm or less, a thin film can be uniformly formed on the surface of the alumina sintered body.

本発明にかかるアルミナ質焼結体は、それ自体で用いても良いが、前記アルミナ質焼結体の表面に緻密な膜を形成したものを用いても良い。
この膜は、例えば、エアロゾルデポジション法やPVD法を用いてイットリア材料を、前記アルミナ質焼結体に成膜することで得られる。このようにイットリア材料を成膜したアルミナ質焼結体は、耐プラズマ性が高く、低発塵性に優れ、かつ基材の低誘電損失特性により省電力化等を達成できる。
また、上記したように、アルミナ質焼結体の平均気孔径が5μm以下であるため、アルミナ質焼結体の表面にイットリアの薄膜を均一に成膜することができる。
尚、前記アルミナ質焼結体の表面に形成される膜は、イットリア材料に限定されるものではなく、酸化イットリウムと酸化アルミニウムの複合酸化物(YAG)、酸化エルビウム、その他の希土類酸化物または希土類酸化物を含む複合酸化物等であっても良い。
The alumina-based sintered body according to the present invention may be used as it is, but may be one having a dense film formed on the surface of the alumina-based sintered body.
This film is obtained, for example, by depositing yttria material on the aluminous sintered body using an aerosol deposition method or a PVD method. The alumina-based sintered body in which the yttria material is formed into a film as described above has high plasma resistance, is excellent in low dusting property, and can achieve power saving and the like due to the low dielectric loss characteristics of the base material.
Further, as described above, since the average pore diameter of the alumina sintered body is 5 μm or less, a thin film of yttria can be uniformly formed on the surface of the alumina sintered body.
The film formed on the surface of the alumina sintered body is not limited to the yttria material, and a composite oxide of yttrium oxide and aluminum oxide (YAG), erbium oxide, other rare earth oxides or rare earth oxides It may be a composite oxide containing an oxide.

尚、膜が形成されるアルミナ質焼結体の表面の表面粗さRaは、0.1μm未満であることが望ましい。膜形成前に、アルミナ質焼結体の表面を鏡面研磨することにより、0.1μm未満の表面粗さにしても良い。即ち、膜が形成されるアルミナ質焼結体は、その表面の平均気孔径が5μm以下であり、表面粗さRaが0.1μm未満であることが望ましい。
このような表面を有するアルミナ質焼結体にあっては、薄膜をより均一に形成することができ、薄膜の剥離が抑制され、パーティクルの発生を抑制することができる。
また、前記アルミナ質焼結体の表面に形成される膜は、アルミナ質焼結体の表面の一部に形成されるものであっても良い。膜厚は特に限定されるものではないが、1〜20μmであると好ましい。
In addition, as for surface roughness Ra of the surface of the alumina sintered compact in which a film | membrane is formed, it is desirable that it is less than 0.1 micrometer. Before the film formation, the surface of the alumina sintered body may be mirror-polished to have a surface roughness of less than 0.1 μm. That is, it is desirable that the average pore diameter of the surface of the alumina sintered body on which the film is formed be 5 μm or less, and the surface roughness Ra be less than 0.1 μm.
In the case of the alumina-based sintered body having such a surface, the thin film can be formed more uniformly, peeling of the thin film can be suppressed, and generation of particles can be suppressed.
The film formed on the surface of the alumina sintered body may be formed on a part of the surface of the alumina sintered body. The film thickness is not particularly limited, but is preferably 1 to 20 μm.

また、アルミナ質焼結体は、アルミナ質焼結体の一般的な製造方法により製造することがきるが、一例を挙げれば以下の方法で製造することができる。
まず、 所定のメディアン径を有するAl粉末に、バインダー等(例えば、PVA)が加えられて原料粉末が調製される。この原料粉末をミキサーにより攪拌、混合して得たスラリーを造粒する。
Moreover, although an alumina-based sintered body can be manufactured by the general manufacturing method of an alumina-based sintered body, if an example is mentioned, it can be manufactured by the following method.
First, a binder or the like (for example, PVA) is added to Al 2 O 3 powder having a predetermined median diameter to prepare a raw material powder. The raw material powder is stirred and mixed by a mixer to granulate the obtained slurry.

この造粒粉を成形することにより、成形体が作製される。成形法としては、一軸プレス成形、CIP成形、湿式成形、加圧鋳込み等の種々の方法を用いることができる。
そして、前記成形体を1600〜1900℃の温度範囲で6時間以上にわたり水素雰囲気中で焼成することによって、アルミナ質焼結体が得られる。
このように、水素雰囲気中で1600〜1900℃で焼成することにより、高い密度のアルミナ質焼結体を得ることができる。
By molding this granulated powder, a molded body is produced. As the molding method, various methods such as uniaxial press molding, CIP molding, wet molding, pressure casting and the like can be used.
Then, the above-mentioned compact is sintered in a hydrogen atmosphere at a temperature range of 1600 to 1900 ° C. for 6 hours or more to obtain an aluminous sintered body.
Thus, a high density alumina sintered body can be obtained by firing at 1600 to 1900 ° C. in a hydrogen atmosphere.

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれらの実施例により制限されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited by these examples.

(実験1)
表1に示すように、純度99.7wt%〜99.9wt%、メディアン径2μm以下のアルミナ粉末に、PVAを加えて原料粉末を調製する。そして、この原料粉末を16時間以上、攪拌、混合し、スラリーを得た。そして、この原料スラリーを造粒し、その造粒粉を成形型内に充填し、成形圧力1.5tonにてCIP成形を行った。
更に、この成形体を大気雰囲気下での脱脂工程を経て、水素雰囲気中1800℃(実施例1〜4,7、比較例1〜4)、1700℃(実施例5、比較例5)、1900℃(実施例6、比較例6)にて焼成することにより、実施例1〜7、比較例1〜6の各試料を作製した。
なお、必要に応じて焼結体のSi,Naの各含有量が本発明の範囲になるようにSiO、NaOを添加した。また、焼結体の密度が本発明の範囲になるようにアルミナ粉末のメディアン径を変化させた。
(Experiment 1)
As shown in Table 1, PVA is added to alumina powder having a purity of 99.7 wt% to 99.9 wt% and a median diameter of 2 μm or less to prepare a raw material powder. And this raw material powder was stirred and mixed for 16 hours or more, and the slurry was obtained. And this raw material slurry was granulated, the granulated powder was filled in the shaping | molding die, and CIP shaping | molding was performed with the shaping | molding pressure of 1.5 tons.
Further, this molded body is subjected to a degreasing process under an air atmosphere to obtain hydrogen atmosphere at 1800 ° C. (Examples 1 to 4, 7 and Comparative Examples 1 to 4), 1700 ° C. (Example 5 and Comparative Example 5), 1900 Each sample of Examples 1-7 and Comparative Examples 1-6 was produced by baking at ° C (Example 6, comparative example 6).
Incidentally, Si in the sintered body, the respective content of Na was added SiO 2, Na 2 O to be in the range of the present invention as needed. Further, the median diameter of the alumina powder was changed so that the density of the sintered body was within the range of the present invention.

そして、実施例1〜7、比較例1〜6の各試料の密度、誘電正接tanδについて評価した。その結果を表1に示す。   And it evaluated about the density of each sample of Examples 1-7 and Comparative Examples 1-6, and dielectric loss tangent tan-delta. The results are shown in Table 1.

尚、実験1、及び下記実験2〜4において、密度は、JIS R 1634により測定した。また、10〜20MHzの周波数におけるtanδ測定はインピーダンスアナライザを用いて測定した。更に、アルミナ結晶粒子の平均粒子径は、サンプル断面を鏡面研磨し、サーマルエッチングを施した後、走査型電子顕微鏡(SEM)により断面写真を撮影し、画像解析により算出した。また、3点曲げ強度はJIS R 1601により、焼成体純度はICP発光分析により測定した。   In addition, in the experiment 1 and the following experiments 2 to 4, the density was measured according to JIS R 1634. Moreover, tan-delta measurement in the frequency of 10-20 MHz was measured using the impedance analyzer. Furthermore, the average particle diameter of the alumina crystal particles was calculated by mirror image polishing of the sample cross section and thermal etching, then taking a cross-sectional photograph with a scanning electron microscope (SEM) and image analysis. Further, the three-point bending strength was measured according to JIS R 1601 and the sintered body purity was measured by ICP emission analysis.

更に、上記で得られた実施例1〜7、比較例1〜6の各試料(アルミナ焼結体)表面をRa<0.1μmになるよう鏡面研磨し、研磨面に対してエアロゾルデポジション法を用いて酸化イットリウム材料を1μmコーティングした。
尚、成膜は、成膜材料の前処理として270℃で12時間以上の乾燥を行い、以下の条件にてエアロゾル噴射を行った。
試料温度:室温,粉末容器温度:150℃,巻上/搬送ガス:He,粉末巻上流量:3L/min,粉末搬送流量:10L/min,粉末衝突角度:60°,ノズル開口形状:5×0.3mm,試料・ノズル間距離:5mm,試料移動速度:200mm/min,成膜pass数:10pass
Furthermore, the surface of each sample (alumina sintered body) of Examples 1 to 7 and Comparative Examples 1 to 6 obtained above is mirror-polished to Ra <0.1 μm, and the aerosol deposition method is applied to the polished surface. Was coated with 1 μm of yttrium oxide material.
In addition, the film formation performed drying for 12 hours or more at 270 degreeC as pre-processing of the film-forming material, and performed aerosol injection on condition of the following.
Sample temperature: room temperature, powder container temperature: 150 ° C., winding / carrier gas: He, powder winding flow rate: 3 L / min, powder conveyance flow rate: 10 L / min, powder collision angle: 60 °, nozzle opening shape: 5 × 0.3 mm, distance between sample and nozzle: 5 mm, sample moving speed: 200 mm / min, number of film forming passes: 10 pass

上記で得られた薄膜が形成された実施例1〜7、比較例1〜6の各試料について、走査型電子顕微鏡を用いて200μm×200μm程度の範囲で表面を観察し、得られた画像から画像解析ソフトを用いてボイドの径および個数を計測した。そして、表に記載するように、ボイドの個数が100個以下を満たす場合には均一な膜形成がなされたとして○、満たさない場合には不均一な膜形成であるとして×を付した。また特に、好ましい場合として、ボイドの平均径が5μm以下、ボイドの個数が80個未満場合に◎を付した。したがって、○は、ボイドの個数が80個以上、100個以下である。尚、◎、○、×の表記の基準は、以下の表1〜表4において同様である。   The surface of each sample of Examples 1 to 7 and Comparative Examples 1 to 6 in which the thin film obtained above was formed was observed in a range of about 200 μm × 200 μm using a scanning electron microscope, and the obtained image was obtained. The diameter and number of voids were measured using image analysis software. Then, as described in the table, when the number of voids was 100 or less, a uniform film was formed, and when it was not satisfied, a non-uniform film was formed. Further, in particular, in the case where the average diameter of the voids is 5 μm or less and the number of voids is less than 80, ◎ is given as a preferable case. Therefore, the number of voids is 80 or more and 100 or less. In addition, the reference | standard of description of (double-circle), (circle), and (X) is the same in the following Tables 1-4.

Figure 2019069889
Figure 2019069889

表1に示すように、実施例1〜7は、密度が3.96g/cm以上、tanδが10−3未満を示し、緻密で低誘電損失特性を有するアルミナ質焼結体であることが確認された。 As shown in Table 1, in Examples 1 to 7, it is an alumina sintered body having a density of 3.96 g / cm 3 or more, a tan δ of less than 10 −3 , and being dense and having a low dielectric loss characteristic. confirmed.

また、比較例1では、Naの含有率が多いため、密度が3.96g/cm未満を示した。また、tanδが10−3を超えた。その結果、緻密性、誘電損失特性において劣ることが判明した。 Further, in Comparative Example 1, the density was less than 3.96 g / cm 3 because the content of Na was high. Moreover, tan δ exceeded 10 −3 . As a result, it was found that the compactness and dielectric loss characteristics were inferior.

また、比較例2では、Si含有量が少なく、かつNa含有量が多いため、tanδが10−3を超えた。即ち、このアルミナ質焼結体は、誘電損失特性において劣ることが判明した。 In addition, in Comparative Example 2, since the Si content is small and the Na content is large, tan δ exceeded 10 −3 . That is, it was found that this alumina-based sintered body is inferior in dielectric loss characteristics.

また、比較例3では、Si含有量が多く、密度が3.96g/cm未満を示した。即ち、このアルミナ質焼結体は、緻密性において劣ることが判明した。 Moreover, in Comparative Example 3, the Si content was large, and the density was less than 3.96 g / cm 3 . That is, it was found that this alumina sintered body is inferior in compactness.

比較例4では、Si含有量が過剰であるために緻密化が阻害され、密度が3.96g/cm未満であった。即ち、このアルミナ質焼結体は、緻密性に劣り、アルミナ質焼結体の表面に緻密な膜を形成することが困難であることが判明した。 In Comparative Example 4, the densification was inhibited due to the excessive Si content, and the density was less than 3.96 g / cm 3 . That is, it was found that this alumina-based sintered body was inferior in compactness, and it was difficult to form a dense film on the surface of the alumina-based sintered body.

比較例5では、アルミナ純度が低く、密度は3.96g/cm未満であり、tanδが10−3を超えた。即ち、このアルミナ質焼結体は、緻密性に劣ることが判明した。 In Comparative Example 5, the alumina purity was low, the density was less than 3.96 g / cm 3 , and tan δ was more than 10 −3 . That is, it was found that this alumina-based sintered body is inferior in compactness.

比較例6では、アルミナ純度が低く、密度は3.96g/cm未満であり、tanδが10−3を超えた。即ち、このアルミナ質焼結体は、緻密性に劣ることが判明した。 In Comparative Example 6, the alumina purity was low, the density was less than 3.96 g / cm 3 , and tan δ was more than 10 −3 . That is, it was found that this alumina-based sintered body is inferior in compactness.

また、実施例1〜7、比較例2の各試料に形成された薄膜の表面状態はボイドの平均径が5μm以下、200μm×200μm程度の範囲におけるボイドの数が100個以下(80個未満)であり、均一な膜を形成することができることが判明した。   The surface condition of the thin film formed in each sample of Examples 1 to 7 and Comparative Example 2 is that the average diameter of the voids is 5 μm or less, and the number of voids is 100 or less (less than 80) in the range of about 200 μm × 200 μm. It turned out that a uniform film can be formed.

(実験2)
次に、表2に示すように、純度99.8wt%〜99.9wt%、メディアン径2μm以下のアルミナ粉末に、PVAを加えて原料粉末を調製する。そして、この原料粉末を16時間以上、攪拌、混合し、スラリーを得た。そして、この原料スラリーを造粒し、その造粒粉を成形型内に充填し、成形圧力1.5tonにてCIP成形を行った。
更に、この成形体を大気雰囲気下での脱脂工程を経て、水素雰囲気中1800℃にて焼成することにより、実施例9,11,13,15の各試料を作成した。また、この成形体を大気雰囲気下での脱脂工程を経て、水素雰囲気中1900℃にて焼成することにより、実施例8,10,12,14の各試料を作製した。
なお、表2に示すように、焼結体のSi,Naの各含有量が本発明の範囲になるようにSiO、NaOを添加し、更にMgをMgO換算した含有量割合が、前記SiO換算した含有量に対し、0.9以上4.1以下となるようにMgOを添加し、また、焼結体の密度が本発明の範囲になるようにアルミナ粉末のメディアン径を変化させた。
(Experiment 2)
Next, as shown in Table 2, PVA is added to alumina powder having a purity of 99.8 wt% to 99.9 wt% and a median diameter of 2 μm or less to prepare a raw material powder. And this raw material powder was stirred and mixed for 16 hours or more, and the slurry was obtained. And this raw material slurry was granulated, the granulated powder was filled in the shaping | molding die, and CIP shaping | molding was performed with the shaping | molding pressure of 1.5 tons.
Furthermore, the molded body was subjected to a degreasing process under an air atmosphere, and fired at 1800 ° C. in a hydrogen atmosphere to prepare each sample of Examples 9, 11, 13, and 15. Each of the samples of Examples 8, 10, 12, and 14 was manufactured by firing the compact at a temperature of 1900 ° C. in a hydrogen atmosphere through a degreasing process under an air atmosphere.
In addition, as shown in Table 2, SiO 2 and Na 2 O are added so that each content of Si and Na of the sintered body falls within the range of the present invention, and further, the content ratio obtained by converting Mg into MgO is MgO is added so as to be 0.9 or more and 4.1 or less with respect to the content converted to SiO 2, and the median diameter of alumina powder is changed so that the density of the sintered body falls within the range of the present invention I did.

そして、実施例8〜15の各試料の密度、誘電正接tanδについて評価した。その結果を表2に示す。
その結果、表2の実施例8,9、12,13に示すように,焼成体の密度が3.99g/cm,4.00g/cmと、より高密度の焼成体が得られることが判明した。
And it evaluated about the density of each sample of Examples 8-15, and dielectric loss tangent tan-delta. The results are shown in Table 2.
As a result, as shown in Examples 8,9,12,13 Table 2, the density of the sintered body is 3.99 g / cm 3, and 4.00 g / cm 3, the higher density of the sintered body is obtained There was found.

また、実験1と同様に、実施例8〜15の各試料(アルミナ質焼結体)表面をRa<0.1μmになるよう鏡面研磨し、研磨面に対してエアロゾルデポジション法を用いて酸化イットリウム材料を1μmコーティングし、その薄膜表面の状態を観察した。その結果を表2に示す。
表2に示すように、実施例8〜15の各試料に形成された薄膜の表面状態はボイドの平均径が5μm以下、200μm×200μm程度の範囲におけるボイドの数が100個以下(80個未満)であり、均一な膜を形成することができることが判明した。
Further, in the same manner as in Experiment 1, the surfaces of the respective samples (alumina sintered bodies) of Examples 8 to 15 were mirror-polished to Ra <0.1 μm, and the polished surfaces were oxidized using the aerosol deposition method. The yttrium material was coated 1 μm, and the state of the thin film surface was observed. The results are shown in Table 2.
As shown in Table 2, in the surface state of the thin film formed in each sample of Examples 8 to 15, the average diameter of the voids is 5 μm or less, and the number of voids is 100 or less (about 80 or less) in the range of about 200 μm × 200 μm. ) And was found to be able to form a uniform film.

Figure 2019069889
Figure 2019069889

(実験3)
次に、表3に示すように、純度99.8wt%〜99.9wt%、メディアン径2μm以下のアルミナ粉末に、PVAを加えて原料粉末を調製する。そして、この原料粉末を16時間以上、攪拌、混合し、スラリーを得た。そして、この原料スラリーを造粒し、その造粒粉を成形型内に充填し、成形圧力1.5tonにてCIP成形を行った。
更に、この成形体を大気雰囲気下での脱脂工程を経て、水素雰囲気中1600℃にて焼成することにより、実施例16,17,18,19の各試料を作成した。
(Experiment 3)
Next, as shown in Table 3, PVA is added to alumina powder having a purity of 99.8 wt% to 99.9 wt% and a median diameter of 2 μm or less to prepare a raw material powder. And this raw material powder was stirred and mixed for 16 hours or more, and the slurry was obtained. And this raw material slurry was granulated, the granulated powder was filled in the shaping | molding die, and CIP shaping | molding was performed with the shaping | molding pressure of 1.5 tons.
Furthermore, the molded body was subjected to a degreasing process under an air atmosphere, and fired at 1600 ° C. in a hydrogen atmosphere to prepare each sample of Examples 16, 17, 18, and 19.

そして、実施例16,17,18,19の各試料の密度、アルミナ結晶粒子の平均結晶粒径、誘電正接tanδ、3点曲げ強度について評価した。その結果を表3に示す。
尚、アルミナ結晶粒子の平均結晶粒径は、サンプル断面を鏡面研磨し、サーマルエッチングを施した後、走査型電子顕微鏡(SEM)により断面写真を撮影し、画像解析により算出した。また、3点曲げ強度はJIS R 1601により、焼成体純度はICP発光分析により測定した。
その結果、表3の実施例8,16、実施例12,18に示すように,焼成体の密度が3.97g/cm以上であり、かつ曲げ強度が250MPa以上の焼成体が得られることが判明した。
Then, the density of each sample of Examples 16, 17, 18 and 19, the average crystal grain size of alumina crystal particles, the dielectric loss tangent tan δ, and the three-point bending strength were evaluated. The results are shown in Table 3.
The average crystal grain size of the alumina crystal particles was calculated by mirror image polishing of the sample cross section and thermal etching, then taking a cross-sectional photograph with a scanning electron microscope (SEM) and image analysis. Further, the three-point bending strength was measured according to JIS R 1601 and the sintered body purity was measured by ICP emission analysis.
As a result, as shown in Examples 8 and 16 and Examples 12 and 18 in Table 3, a sintered body having a density of 3.97 g / cm 3 or more and a flexural strength of 250 MPa or more can be obtained. There was found.

また、実験1と同様に、実施例16〜19の各試料(アルミナ焼結体)表面をRa<0.1μmになるよう鏡面研磨し、研磨面に対してエアロゾルデポジション法を用いて酸化イットリウム材料を1μmコーティングし、その薄膜表面の状態を観察した。その結果を表3に示す。
表3に示すように、実施例16,18の各試料に形成された薄膜の表面状態はボイドの平均径が5μm以下、100個以下(80個未満)であり、均一な膜を形成することができることが判明した。また、実施例17,19の各試料に形成された薄膜の表面状態はボイドの平均径が5μm以下、200μm×200μm程度の範囲におけるボイドの数が80個以上100個以下であり、均一な膜を形成することができることが判明した。
Further, in the same manner as in Experiment 1, the surfaces of the respective samples (alumina sintered bodies) in Examples 16 to 19 are mirror-polished to Ra <0.1 μm, and yttrium oxide is applied to the polished surface using an aerosol deposition method. The material was coated at 1 μm, and the state of the thin film surface was observed. The results are shown in Table 3.
As shown in Table 3, the surface condition of the thin film formed in each sample of Examples 16 and 18 is that the average diameter of the voids is 5 μm or less and 100 or less (less than 80), and a uniform film is formed. It turned out that it could do. The surface condition of the thin film formed on each of the samples of Examples 17 and 19 is that the average diameter of the voids is 5 μm or less, and the number of voids in the range of about 200 μm × 200 μm is 80 or more and 100 or less. It turned out that it could form.

Figure 2019069889
Figure 2019069889

(実験4)
次に、実施例18に示したアルミナ純度、メディアン径のアルミナ粉末に、PVAを加えて原料粉末を調製する。そして、この原料粉末を16時間以上、攪拌、混合し、スラリーを得た。そして、この原料スラリーを造粒し、その造粒粉を成形型内に充填し、成形圧力1.5tonにてCIP成形を行った。
更に、この成形体を大気雰囲気下での脱脂工程を経て、表4に示す条件下で焼成することにより、実施例20〜22、比較例7〜10の各試料を作製した。
(Experiment 4)
Next, PVA is added to the alumina purity and median diameter alumina powder shown in Example 18, to prepare a raw material powder. And this raw material powder was stirred and mixed for 16 hours or more, and the slurry was obtained. And this raw material slurry was granulated, the granulated powder was filled in the shaping | molding die, and CIP shaping | molding was performed with the shaping | molding pressure of 1.5 tons.
Furthermore, each of the samples of Examples 20 to 22 and Comparative Examples 7 to 10 was produced by firing the molded body under a condition shown in Table 4 through a degreasing step under an air atmosphere.

そして、実施例20〜22、比較例7〜10の各試料の密度、誘電正接tanδについて評価した。その結果を表4に示す。   And it evaluated about the density of each sample of Examples 20-22 and Comparative Examples 7-10, and dielectric loss tangent tan-delta. The results are shown in Table 4.

また、実験1と同様に、実施例20〜22、比較例7〜10の各試料(アルミナ焼結体)表面をRa<0.1μmになるよう鏡面研磨し、研磨面に対してエアロゾルデポジション法を用いて酸化イットリウム材料を1μmコーティングし、その薄膜表面の状態を観察した。その結果を表4に示す。   Further, in the same manner as in Experiment 1, the surfaces of the respective samples (alumina sintered bodies) of Examples 20 to 22 and Comparative Examples 7 to 10 are mirror-polished so that Ra <0.1 μm, and aerosol deposition is performed on the polished surface. The yttrium oxide material was coated to 1 μm using the method, and the state of the thin film surface was observed. The results are shown in Table 4.

Figure 2019069889
Figure 2019069889

実施例18〜22からわかるように、水素雰囲気中1600℃〜1900℃で焼成すると焼結体密度が3.96g/cm以上、誘電正接δが10−3未満であることが判明した。 As can be seen from Examples 18 to 22, it was found that when sintered at 1600 ° C. to 1900 ° C. in a hydrogen atmosphere, the sintered body density is 3.96 g / cm 3 or more and the dielectric loss tangent δ is less than 10 −3 .

また、表4に示すように、実施例18〜22の各試料に形成された薄膜の表面状態はボイドの平均径が5μm以下、200μm×200μm程度の範囲におけるボイドの数が100個以下(80個未満)であり、均一な膜を形成することができることが判明した。   In addition, as shown in Table 4, the surface condition of the thin film formed in each sample of Examples 18 to 22 is that the average diameter of the voids is 5 μm or less, and the number of voids is 100 or less in the range of about 200 μm × 200 μm (80 Less than 10), and it turned out that a uniform film can be formed.

本発明は半導体製造分野、液晶表示装置製造分野の製造装置等の構成部材に用いられる。例えば、プラズマ処理装置、半導体・液晶表示装置製造用エッチャー、CVD装置等に使用される部材等に好適に用いられる。また、本発明にかかるアルミナ質焼結体はそれ自体で用いても良く、あるいはまたアルミナ質焼結体を基材として、表面の全部あるいは一部に耐プラズマ性の耐食膜または耐食層を形成し、耐プラズマ部材として用いても良い。   The present invention is used for constituent members such as a manufacturing apparatus in a semiconductor manufacturing field and a liquid crystal display device manufacturing field. For example, it is suitably used for a plasma processing apparatus, an etcher for manufacturing a semiconductor / liquid crystal display apparatus, a member used for a CVD apparatus and the like. In addition, the alumina sintered body according to the present invention may be used by itself, or alternatively, using the alumina sintered body as a substrate, a plasma resistant corrosion resistant film or layer is formed on all or part of the surface. And may be used as a plasma resistant member.

Claims (6)

AlをAl換算した含有量が99.8wt%以上のアルミナ質焼結体であって、
前記アルミナ質焼結体中のSiをSiO換算した含有量が170ppm以上600ppm以下、NaをNaO換算した含有量が27ppm以下であり、
かつ前記アルミナ質焼結体密度が3.96g/cm以上であることを特徴とするアルミナ質焼結体。
It is an alumina sintered body having a content of 99.8 wt% or more of Al converted to Al 2 O 3 ,
The content of Si in the alumina sintered body in terms of SiO 2 is 170 ppm or more and 600 ppm or less, and the content of Na in terms of Na 2 O is 27 ppm or less,
And the said alumina-based sintered compact density is 3.96 g / cm < 3 > or more, The alumina-based sintered compact characterized by the above-mentioned.
MgをMgO換算した含有量割合が、前記SiO換算した含有量に対し、1.0以上4.0以下であることを特徴とする請求項1に記載のアルミナ質焼結体。 The content ratio was calculated as MgO of Mg is, the relative terms of SiO 2 was content, alumina sintered body according to claim 1, characterized in that 1.0 to 4.0. CaをCaO換算した含有量割合が、前記SiO換算した含有量に対し、3.0以下であることを特徴とした請求項1または請求項2に記載のアルミナ質焼結体。 The alumina sintered body according to claim 1 or 2 , wherein the content ratio of Ca converted to CaO is 3.0 or less with respect to the content converted to SiO2. 前記アルミナ質焼結体の平均結晶粒径が3μm以上40μm以下であることを特徴とする請求項1乃至3のいずれか1項に記載のアルミナ質焼結体。   The alumina sintered body according to any one of claims 1 to 3, wherein an average crystal grain size of the alumina sintered body is 3 μm or more and 40 μm or less. 前記アルミナ質焼結体の少なくとも一部に耐食膜または耐食層が形成されていることを特徴とする請求項1乃至請求項4のいずれか1項に記載のアルミナ質焼結体。   The corrosion resistant film or the corrosion resistant layer is formed in at least one part of the said alumina-based sintered compact, The alumina-based sintered compact of any one of the Claims 1 thru | or 4 characterized by the above-mentioned. 請求項1乃至請求項5のいずれかに記載のアルミナ質焼結体の製造方法であって、水素雰囲気中1600℃〜1900℃で焼成することを特徴とするアルミナ質焼結体の製造方法。   The method for producing an aluminous sintered body according to any one of claims 1 to 5, wherein the firing is performed in a hydrogen atmosphere at 1600 ° C to 1900 ° C.
JP2018178652A 2017-10-05 2018-09-25 Alumina sintered body and its manufacturing method Active JP7154912B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880065428.0A CN111201208B (en) 2017-10-05 2018-10-02 Alumina sintered body and method for producing same
KR1020207009705A KR102354650B1 (en) 2017-10-05 2018-10-02 Alumina sintered compact and manufacturing method thereof
PCT/JP2018/036914 WO2019069939A1 (en) 2017-10-05 2018-10-02 Alumina sintered body and manufacturing method therefor
US16/753,756 US11760694B2 (en) 2017-10-05 2018-10-02 Alumina sintered body and manufacturing method therefor
TW107135180A TWI763933B (en) 2017-10-05 2018-10-05 Alumina sintered body and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017195292 2017-10-05
JP2017195292 2017-10-05

Publications (2)

Publication Number Publication Date
JP2019069889A true JP2019069889A (en) 2019-05-09
JP7154912B2 JP7154912B2 (en) 2022-10-18

Family

ID=66440412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178652A Active JP7154912B2 (en) 2017-10-05 2018-09-25 Alumina sintered body and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7154912B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240054354A (en) 2021-10-18 2024-04-25 니혼도꾸슈도교 가부시키가이샤 Alumina sintered body, and electrostatic chuck
US11998986B2 (en) * 2021-12-28 2024-06-04 Coorstek Gk Alumina sintered body and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217946A (en) * 1992-01-31 1993-08-27 Toshiba Ceramics Co Ltd Alumina bell jar
JPH08143358A (en) * 1994-11-18 1996-06-04 Kyocera Corp Aluminous sintered compact
JPH10120461A (en) * 1996-10-14 1998-05-12 Nippon Cement Co Ltd Alumina sintered compact
JP2000072529A (en) * 1998-08-26 2000-03-07 Toshiba Ceramics Co Ltd Plasma-resistant member and plasma-treatment apparatus using the same
JP2000247728A (en) * 1999-03-04 2000-09-12 Sumikin Ceramics Kk Alumina ceramic sintered compact having excellent corrosion resistance
JP2004217478A (en) * 2003-01-15 2004-08-05 Ngk Insulators Ltd Composite sintered compact and its manufacturing method
JP2014009119A (en) * 2012-06-29 2014-01-20 Taiheiyo Cement Corp Alumina sintered compact and its production method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05217946A (en) * 1992-01-31 1993-08-27 Toshiba Ceramics Co Ltd Alumina bell jar
JPH08143358A (en) * 1994-11-18 1996-06-04 Kyocera Corp Aluminous sintered compact
JPH10120461A (en) * 1996-10-14 1998-05-12 Nippon Cement Co Ltd Alumina sintered compact
JP2000072529A (en) * 1998-08-26 2000-03-07 Toshiba Ceramics Co Ltd Plasma-resistant member and plasma-treatment apparatus using the same
JP2000247728A (en) * 1999-03-04 2000-09-12 Sumikin Ceramics Kk Alumina ceramic sintered compact having excellent corrosion resistance
JP2004217478A (en) * 2003-01-15 2004-08-05 Ngk Insulators Ltd Composite sintered compact and its manufacturing method
JP2014009119A (en) * 2012-06-29 2014-01-20 Taiheiyo Cement Corp Alumina sintered compact and its production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240054354A (en) 2021-10-18 2024-04-25 니혼도꾸슈도교 가부시키가이샤 Alumina sintered body, and electrostatic chuck
US11998986B2 (en) * 2021-12-28 2024-06-04 Coorstek Gk Alumina sintered body and method for manufacturing the same

Also Published As

Publication number Publication date
JP7154912B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN106029948B (en) Method for forming ceramic coating with improved plasma resistance and ceramic coating formed thereby
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
JP5819816B2 (en) Corrosion resistant member for semiconductor manufacturing equipment and method for manufacturing the same
KR20020077163A (en) Plasma resistant member
TWI546415B (en) Thermal spray powder and coating containing rare earth element and member with the coating
US11473181B2 (en) Yittrium granular powder for thermal spray and thermal spray coating produced using the same
JP4688307B2 (en) Plasma-resistant member for semiconductor manufacturing equipment
KR102266655B1 (en) The method of producing thermal spray coating using the yittrium powder and the yittrium coating produced by the mothod
JP2020511388A (en) Sintered ceramic protective layer formed by hot pressing
JP7154912B2 (en) Alumina sintered body and its manufacturing method
TWI763933B (en) Alumina sintered body and method for producing the same
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP7231367B2 (en) Alumina sintered body
JP2002037683A (en) Plasma resistant element and its manufacturing method
JP4601160B2 (en) Corrosion resistant material
KR102354650B1 (en) Alumina sintered compact and manufacturing method thereof
JP2015147722A (en) Laminate, method for producing laminate, and method for producing powder
JP2009029686A (en) Corrosion-resistant member, its production method, and its treatment apparatus
KR100961279B1 (en) Fabrication method of parts for the plasma processing equipments by slurry or sol processing and its parts
JP2003119087A (en) Composite coating material, laminated body, corrosion resistant member, halogen gas plasma resistant member and method for manufacturing composite coating material
KR102395660B1 (en) Powder for thermal spray and thermal spray coating using the same
JP2002293630A (en) Plasma resistant member and method of producing the same
JP4601136B2 (en) Corrosion resistant material
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
US20220285164A1 (en) Plasma Etching Apparatus Component for Manufacturing Semiconductor Comprising Composite Sintered Body and Manufacturing Method Therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221005

R150 Certificate of patent or registration of utility model

Ref document number: 7154912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350