JP5340028B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP5340028B2
JP5340028B2 JP2009119629A JP2009119629A JP5340028B2 JP 5340028 B2 JP5340028 B2 JP 5340028B2 JP 2009119629 A JP2009119629 A JP 2009119629A JP 2009119629 A JP2009119629 A JP 2009119629A JP 5340028 B2 JP5340028 B2 JP 5340028B2
Authority
JP
Japan
Prior art keywords
sintered body
mpa
silicon nitride
rake face
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009119629A
Other languages
Japanese (ja)
Other versions
JP2010264574A (en
Inventor
周一 立野
孝 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2009119629A priority Critical patent/JP5340028B2/en
Publication of JP2010264574A publication Critical patent/JP2010264574A/en
Application granted granted Critical
Publication of JP5340028B2 publication Critical patent/JP5340028B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、窒化珪素質焼結体からなる切削工具に関する。   The present invention relates to a cutting tool made of a silicon nitride sintered body.

窒化珪素質焼結体は、高硬度でかつ高温で安定であることから耐摩耗性および耐酸化性に優れており、切削工具として用いられている。   A silicon nitride sintered body has high hardness and is stable at high temperatures, and thus has excellent wear resistance and oxidation resistance, and is used as a cutting tool.

かかる窒化珪素質焼結体からなる切削工具において、例えば、特許文献1には、残留応力の絶対値が42〜55MPaの窒化珪素質焼結体が開示され、残留応力の絶対値を45MPa以下とすることによって、室温および高温での高強度化を達成できることが記載されている。   In such a cutting tool comprising a silicon nitride sintered body, for example, Patent Document 1 discloses a silicon nitride sintered body having an absolute value of residual stress of 42 to 55 MPa, and the absolute value of residual stress is set to 45 MPa or less. By doing so, it is described that high strength at room temperature and high temperature can be achieved.

また、特許文献2では、焼結体の表面を#140番のダイヤモンド砥石を用いて平面研削した後、砥粒径45μmのダイヤモンドディスクを用いて研磨し、さらに、Fe粉末を用いてメカノケミカル研磨を施した窒化珪素質焼結体が開示され、処理方法の違いによって、加工前に100MPaあった焼結体の残留応力を10〜40MPaに低減できたことが開示されている。 In Patent Document 2, the surface of the sintered body is surface ground using a # 140 diamond grindstone, then polished using a diamond disk having an abrasive grain size of 45 μm, and further using Fe 2 O 3 powder. A silicon nitride sintered body subjected to mechanochemical polishing is disclosed, and it is disclosed that the residual stress of the sintered body, which was 100 MPa before processing, can be reduced to 10 to 40 MPa due to a difference in processing method.

さらに、特許文献3では、窒化珪素質焼結体の表面を研削加工した後、大気中で加熱処理によって焼結体の表面に圧縮残留応力を大きくして、研削加工により低下した強度の回復を図ることができることが開示されている。   Further, in Patent Document 3, after grinding the surface of the silicon nitride-based sintered body, the compressive stress is increased on the surface of the sintered body by heat treatment in the atmosphere to recover the strength reduced by the grinding process. It is disclosed that it can be achieved.

特開平8−319166号公報JP-A-8-319166 特開平7−069736号公報JP-A-7-069736 特開平7−299708号公報JP 7-299708 A

しかしながら、上記特許文献1〜3に記載の窒化珪素質焼結体のように、焼結体の全体の残留応力を制御する方法では、切削工具として用いた際の工具性能が最適化されているとはいえなかった。   However, like the silicon nitride sintered bodies described in Patent Documents 1 to 3, the method for controlling the overall residual stress of the sintered body optimizes the tool performance when used as a cutting tool. That wasn't true.

そこで、本発明の目的は、切削工具として最適な残留応力を考慮して耐欠損性が高い窒化珪素質焼結体からなる切削工具を提供することである。   Accordingly, an object of the present invention is to provide a cutting tool made of a silicon nitride-based sintered body having high fracture resistance in consideration of the optimum residual stress as a cutting tool.

本発明の切削工具は、窒化珪素を主体として、RE元素化合物(ただし、REは希土類元素の少なくとも一種の元素)を含む窒化珪素質焼結体から構成され、すくい面と逃げ面との交差稜線部を切刃とし、隣接する2つの前記逃げ面間に位置する前記切刃にノーズを形成した切削工具において、前記すくい面のノーズにて2D法(2次元X線回折:フルデバイリングフィッティング法)で残留応力を測定した際、前記すくい面に平行でかつ該すくい面の中心から測定点に最も近いノーズに向かう方向についての残留応力σ11が圧縮応力で10MPa〜30MPa(σ11=−10MPa〜−30MPa)であり、前記すくい面に平行でかつ前記σ11方向と垂直な方向についての残留応力σ22が圧縮応力で10MPa以下(σ22=−10MPa〜0MPa)であることを特徴とする。
The cutting tool of the present invention is composed of a silicon nitride sintered body mainly composed of silicon nitride and containing an RE element compound (wherein RE is at least one element of rare earth elements), and intersecting ridge lines between a rake face and a flank face. In a cutting tool in which a part is a cutting edge and a nose is formed on the cutting edge located between two adjacent flank faces, the 2D method (two-dimensional X-ray diffraction: full Debye fitting method) ), The residual stress σ11 in the direction parallel to the rake face and from the center of the rake face toward the nose closest to the measurement point is a compressive stress of 10 MPa to 30 MPa11 = −10). is MPa ~-30MPa), the residual stress sigma 22 for parallel and the sigma 11 direction perpendicular to the rake face is 10MPa or less compressive stress (σ 22 = -10 MP Characterized in that it is a ~0MPa).

ここで、前記窒化珪素質焼結体のすくい面における算術平均粗さ(Ra)が0.2〜0.6μmであることが望ましい。   Here, it is desirable that the arithmetic average roughness (Ra) on the rake face of the silicon nitride sintered body is 0.2 to 0.6 μm.

また、前記窒化珪素質焼結体がMgを含有するとともに、すくい面の表面におけるMg濃度が焼結体全体のMg濃度に対して60〜90質量%の比率で存在することが望ましい。   Further, it is desirable that the silicon nitride sintered body contains Mg and the Mg concentration on the surface of the rake face is present in a ratio of 60 to 90% by mass with respect to the Mg concentration of the entire sintered body.

本発明の切削工具によれば、すくい面のノーズにて、すくい面に平行でかつ該すくい面の中心から測定点に最も近いノーズに向かう方向についての残留応力σ11が圧縮応力で10MPa〜30MPa(σ11=−10MPa〜−30MPa)であり、前記すくい面に平行でかつ前記σ11方向と垂直な方向についての残留応力σ22が圧縮応力で10MPa以下(σ22=−10MPa〜0MPa)であることによって、切削加工時の耐チッピング性が向上する。
According to the cutting tool of the present invention, at the nose of the rake face, the residual stress σ 11 in the direction from the center of the rake face toward the nose closest to the measurement point is 10 MPa to the compressive stress. 30 MPa (σ 11 = −10 MPa to −30 MPa), and the residual stress σ 22 in the direction parallel to the rake face and perpendicular to the σ 11 direction is 10 MPa or less (σ 22 = −10 MPa− 0 MPa), the chipping resistance during cutting is improved.

ここで、前記窒化珪素質焼結体のすくい面における算術平均粗さ(Ra)が0.2〜0.6μmであることが、耐チッピング性の点で望ましい。   Here, the arithmetic average roughness (Ra) on the rake face of the silicon nitride sintered body is preferably 0.2 to 0.6 μm from the viewpoint of chipping resistance.

また、前記窒化珪素質焼結体がMgを含有するとともに、すくい面の表面におけるMg濃度が焼結体全体のMg濃度に対して60〜90質量%の比率で存在することが、焼結体強度、耐摩耗性、耐チッピング性の点で望ましい。   In addition, the silicon nitride sintered body contains Mg, and the Mg concentration on the surface of the rake face is present at a ratio of 60 to 90% by mass with respect to the Mg concentration of the entire sintered body. Desirable in terms of strength, wear resistance, and chipping resistance.

本発明の切削工具の一例について、概略斜視図である。It is a schematic perspective view about an example of the cutting tool of this invention.

本発明の切削工具1は、窒化珪素を主体として、RE元素化合物(ただし、REは希土類元素(イットリウムおよびランタノイド元素)の少なくとも一種の元素)を含む窒化珪素質焼結体(以下、単に焼結体と略す。)からなる。   The cutting tool 1 of the present invention is a silicon nitride sintered body (hereinafter simply referred to as “sintering”) that contains silicon nitride as a main component and contains an RE element compound (wherein RE is at least one element of rare earth elements (yttrium and lanthanoid elements)). Abbreviated to body.)

そして、本発明によれば、すくい面のノーズにて、すくい面2に平行で、かつすくい面2の中心から測定点に最も近いノーズに向かう方向についての残留応力σ11が圧縮応力で10MPa〜30MPa(σ11=−10MPa〜−30MPa)であり、すくい面2に平行でかつ前記σ11方向と垂直な方向についての残留応力σ22が圧縮応力で10MPa以下(σ22=−10MPa〜0MPa)である。これによって、切削工具1の耐チッピング性が向上する。
Then, according to the present invention, at the rake face of the nose, parallel to the rake face 2 and 10 MPa residual stress sigma 11 in the direction toward the closest nose to the measurement point from the center of the rake face 2 is in compressive stress ˜30 MPa11 = −10 MPa to −30 MPa), and the residual stress σ 22 in the direction parallel to the rake face 2 and perpendicular to the σ 11 direction is 10 MPa or less (σ 22 = −10 MPa) as a compressive stress. ~ 0 MPa). Thereby, the chipping resistance of the cutting tool 1 is improved.

なお、本発明における残留応力の測定について、測定位置は、図1の斜視図に示すように、位置Pで測定する。本発明における残留応力の測定法は2D法(多軸応力測定法/フルデバイリングフィッティング法)を用いて測定する。また、残留応力の測定に用いるX線回折ピークは、2θの値が141.7°の間に現れる(323)面のピークを用いる。なお、残留応力の算出に際しては、窒化珪素のポアソン比=0.27、ヤング率=306000MPaを用いて算出する。また、X線回折測定の条件としては、鏡面加工したすくい面に、X線の線源としてCuKα線を用い、出力=45kV、110mAの条件で照射して残留応力の測定を行う。
Incidentally, the measurement of residual stress in the present invention, the measurement position, as shown in the perspective view of FIG. 1, is measured at position P. In the present invention, the residual stress is measured using a 2D method (multiaxial stress measurement method / full Debye fitting method). In addition, as the X-ray diffraction peak used for the measurement of the residual stress, the (323) plane peak that appears when the value of 2θ is 141.7 ° is used. In calculating the residual stress, the Poisson's ratio of silicon nitride = 0.27 and Young's modulus = 306000 MPa are used. Further, as conditions for X-ray diffraction measurement, residual stress is measured by irradiating a mirror-finished rake face with CuKα ray as an X-ray source and irradiating under the conditions of output = 45 kV and 110 mA.

ここで、切削工具1のすくい面2における算術平均粗さ(Ra)が0.2〜0.6μmであることが、焼結体強度、耐磨耗性、耐チッピング性の点で望ましい。   Here, the arithmetic average roughness (Ra) on the rake face 2 of the cutting tool 1 is preferably 0.2 to 0.6 μm from the viewpoint of the strength of the sintered body, wear resistance, and chipping resistance.

また、切削工具1をなす焼結体がMgを含有するとともに、すくい面2の表面におけるMg濃度が焼結体全体のMg濃度に対して60〜90質量%の比率で存在することが、焼結体強度、耐磨耗性、耐チッピング性の点で望ましい。   In addition, the sintered body forming the cutting tool 1 contains Mg, and the Mg concentration on the surface of the rake face 2 is present at a ratio of 60 to 90% by mass with respect to the Mg concentration of the entire sintered body. Desirable in terms of strength, wear resistance and chipping resistance.

ここで、本発明においては、焼結体の表面に、RE元素の含有比率は焼結体の内部における含有比率に対して5%の範囲内で一定であり、かつマグネシウム元素の含有比率は焼結体の内部の含有比率に対して5%よりも少ない表面領域が存在することが望ましい。これによって、理由は不明であるが、焼結体表面における耐摩耗性が高くかつ焼結体表面における耐欠損性が高いものとなる。なお、本発明における焼結体の内部における含有比率とは、焼結体の中央部付近の深さ50μm×幅50μmの領域について電子線マイクロアナライザ(EPMA)を用いて面分析により各元素の含有比率を測定し、この面分析を任意3ヶ所について行って平均値を取った値のことであり、焼結体の全体組成とほとんど同じ組成となる。   Here, in the present invention, the content ratio of RE element on the surface of the sintered body is constant within a range of 5% with respect to the content ratio inside the sintered body, and the content ratio of magnesium element is a sintered body. It is desirable that the surface area is less than 5% with respect to the content ratio inside the bonded body. As a result, the reason is unknown, but the wear resistance on the surface of the sintered body is high and the fracture resistance on the surface of the sintered body is high. The content ratio in the sintered body in the present invention is the content of each element by an area analysis using an electron beam microanalyzer (EPMA) in a region of depth 50 μm × width 50 μm near the center of the sintered body. It is a value obtained by measuring a ratio and performing this surface analysis for three arbitrary locations and taking an average value, which is almost the same as the overall composition of the sintered body.

また、焼結体にはアルミニウム化合物と酸素とをさらに含むとともに、前記表面領域におけるアルミニウム元素の含有比率は焼結体の内部における含有比率に対して10%の範囲内であり、かつ前記表面領域における酸素の含有比率は焼結体の内部における含有比率に対して15%の範囲内であることが望ましい。   The sintered body further includes an aluminum compound and oxygen, and the content ratio of the aluminum element in the surface region is within a range of 10% with respect to the content ratio in the sintered body, and the surface region. The content ratio of oxygen in is preferably in the range of 15% with respect to the content ratio in the sintered body.

ここで、焼結体の望ましい全体組成は、窒化珪素を94.5〜99.5質量%、RE元素酸化物をRE換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl換算で0〜0.6質量%、残余の酸素をシリカ(SiO)換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%からなることが、焼結体の硬度および高温強度を高めて、焼結体の耐摩耗性を高めることができる点で望ましい。なお、RE元素化合物、マグネシウム化合物およびアルミニウム化合物は、いずれも酸化物として存在することが少量で窒化珪素同士を強固に結合できて窒化珪素の含有比率を高めることができる点で望ましい。 Here, the desirable overall composition of the sintered body is 94.5 to 99.5% by mass of silicon nitride, 0.1 to 4.5% by mass of RE element oxide in terms of RE 2 O 3 , and magnesium oxide to MgO. 0.3 to 2.5% by mass in terms of conversion, 0 to 0.6% by mass in terms of aluminum oxide in terms of Al 2 O 3 , 0.1 to 4.5% by mass in terms of residual oxygen in terms of silica (SiO 2 ), It is desirable that the periodic table Group 6 element silicide is composed of 0 to 2% by mass in that the hardness and high-temperature strength of the sintered body can be increased and the wear resistance of the sintered body can be increased. Note that it is desirable that the RE element compound, the magnesium compound, and the aluminum compound are all present as oxides in that the silicon nitride can be firmly bonded to each other and the content ratio of silicon nitride can be increased.

さらに、RE元素酸化物の含有量は、焼結体の緻密化のために、RE換算で0.5〜4.5質量%であること、さらに1〜2.5質量%であることが望ましい。酸化マグネシウムの含有量は、焼結助剤の液相生成温度の低温化によって焼結体をより低温で緻密化させるために、MgO換算で0.35〜2.0質量%であること、さらに0.4〜1.0質量%であることが望ましい。酸化アルミニウムの含有量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化および耐酸化性の低下による耐摩耗性の低下を抑制するために、Al換算で0.2〜0.55質量%であること、さらに0.3〜0.5質量%であることが望ましい。残余の酸素は窒化珪素の不純物として存在しシリカ(SiO)として存在しているものと考えられるが、その含有量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化を保つとともに、耐酸化性および耐摩耗性を改善した焼結体を実現するためにSiO換算で0.1〜4.5質量%であることが望ましく、特に1.0〜2.5質量%、さらには1.5〜2質量%とすることが望ましい。 Furthermore, the content of the RE element oxide is 0.5 to 4.5% by mass in terms of RE 2 O 3 and further 1 to 2.5% by mass for densification of the sintered body. It is desirable. The content of magnesium oxide is 0.35 to 2.0% by mass in terms of MgO in order to densify the sintered body at a lower temperature by lowering the liquid phase generation temperature of the sintering aid, It is desirable that it is 0.4-1.0 mass%. The content of aluminum oxide is calculated in terms of Al 2 O 3 in order to suppress a decrease in wear resistance due to a decrease in the liquid phase generation temperature of the sintering aid, a densification of the sintered body, and a decrease in oxidation resistance. It is desirable that the content be 0.2 to 0.55 mass%, and further 0.3 to 0.5 mass%. The remaining oxygen is considered to be present as an impurity of silicon nitride and as silica (SiO 2 ), but its content is reduced in the liquid phase formation temperature of the sintering aid, the denseness of the sintered body In order to realize a sintered body with improved oxidation resistance and wear resistance, it is desirable that the content be 0.1 to 4.5% by mass in terms of SiO 2 , especially 1.0 to 2.5%. It is desirable to set it as the mass%, and also 1.5-2 mass%.

また、RE元素としてはランタン(La)を必須として含有すると、ランタン(La)を含まない場合に比べて焼結体を低温で緻密化できるので、焼結体中の結晶が異常粒成長することなく結晶が微粒化できる。例えば、1730〜1780℃の常圧焼成で焼結体の相対密度が99%以上で、かつ視野0.015mmで長径が大きい方から6個の窒化珪素の平均長径を10μm以下に抑制することが可能となる。その結果、焼結体の硬度と強度を向上させることができる。 In addition, when lanthanum (La) is contained as an essential element as the RE element, the sintered body can be densified at a lower temperature than when lanthanum (La) is not included, so that crystals in the sintered body grow abnormally. Crystal without atomization. For example, the average major axis of six silicon nitrides is suppressed to 10 μm or less from the larger major axis with a relative density of 99% or higher and a field of view of 0.015 mm 2 by atmospheric pressure firing at 1730 to 1780 ° C. Is possible. As a result, the hardness and strength of the sintered body can be improved.

ここで、RE化合物と、マグネシウム化合物と、アルミニウム化合物と、シリカ(SiO)は粒界相を形成する。粒界相はその一部が結晶として析出した構成であっても良いが、粒界相自体の存在割合を4質量%以下と少なくすることによって焼結体の硬度および高温強度が高まることから、粒界相の絶対量を減らしつつ窒化珪素結晶の結合性を高めるために、粒界相は非晶質で存在することが望ましい。 Here, the RE compound, the magnesium compound, the aluminum compound, and silica (SiO 2 ) form a grain boundary phase. The grain boundary phase may have a structure in which a part of the grain boundary phase is precipitated, but the hardness and high temperature strength of the sintered body are increased by reducing the existence ratio of the grain boundary phase itself to 4% by mass or less. In order to increase the bondability of the silicon nitride crystal while reducing the absolute amount of the grain boundary phase, the grain boundary phase is desirably present in an amorphous state.

なお、窒化珪素は主結晶として存在するが、窒化珪素結晶としては、主にβ−窒化珪素結晶からなり、所望によりその一部がわずかにアルミニウムを含んでβ−サイアロンを形成したものであることが望ましい。また、β−窒化珪素結晶の一部がα−窒化珪素結晶であってもよいが、硬度および強度を高めるためにはα−窒化珪素結晶を含まないことが望ましい。   Although silicon nitride exists as a main crystal, the silicon nitride crystal is mainly composed of β-silicon nitride crystal and, if desired, a part thereof contains a little aluminum to form β-sialon. Is desirable. Further, a part of the β-silicon nitride crystal may be an α-silicon nitride crystal, but it is desirable not to include the α-silicon nitride crystal in order to increase hardness and strength.

また、周期表第6族元素珪化物は高温強度の低下を抑制することができるとともに、焼結体の色を黒色化することができる。周期表第6族元素珪化物として、珪化クロム、珪化モリブデン、珪化タングステンを例示できるが、微細な酸化物原料を用いて焼成体中に微細な粒子として存在させることができるという理由から珪化タングステンを用いることが望ましい。なお、この周期表第6族元素珪化物粒子は、窒化珪素質焼結体の粒界相に分散して存在する。   Moreover, the periodic table group 6 element silicide can suppress the decrease in high-temperature strength and can blacken the color of the sintered body. Examples of the Periodic Table Group 6 element silicide include chromium silicide, molybdenum silicide, and tungsten silicide. It is desirable to use it. The periodic table group 6 element silicide particles are present dispersed in the grain boundary phase of the silicon nitride sintered body.

さらに、前記表面領域は表面から100〜500μmの深さにわたって存在することが、焼結体の表面における耐摩耗性を維持しつつ耐欠損性を高める点で望ましい。   Further, it is desirable that the surface region exists over a depth of 100 to 500 μm from the surface in terms of enhancing the fracture resistance while maintaining the wear resistance on the surface of the sintered body.

次に、上述した焼結体の製造方法について説明する。   Next, the manufacturing method of the sintered body described above will be described.

まず、出発原料として、例えば、窒化珪素(Si)粉末と、RE元素の水酸化物(RE(OH))または酸化物(RE)、酸化アルミニウム(Al)、水酸化マグネシウム(Mg(OH))を準備する。また、必要に応じて、二酸化珪素(SiO)、周期表第6族元素珪化物の粉末を用意する。 First, as starting materials, for example, silicon nitride (Si 3 N 4 ) powder, hydroxide (RE (OH) 2 ) or oxide (RE 2 O 3 ), and aluminum oxide (Al 2 O 3 ) of RE element Magnesium hydroxide (Mg (OH) 2 ) is prepared. If necessary, silicon dioxide (SiO 2 ) and periodic table group 6 element silicide powders are prepared.

窒化珪素原料は、α−窒化珪素粉末、β−窒化珪素粉末、又はこれらの混合物のいずれも用いることができる。これらの粒径は、1μm以下、特に0.5μm以下であることが好ましい。窒化珪素原料中には不可避の酸素が珪素の酸化物として存在する。そこで、窒化珪素原料中に存在する酸化物がシリカ(SiO)として存在していると考えて、組成を調整する。酸素分が不足する場合にはシリカ(SiO)粉末を添加する。 As the silicon nitride raw material, any of α-silicon nitride powder, β-silicon nitride powder, or a mixture thereof can be used. These particle sizes are preferably 1 μm or less, particularly 0.5 μm or less. Inevitable oxygen exists as silicon oxide in the silicon nitride raw material. Therefore, the composition is adjusted on the assumption that the oxide present in the silicon nitride raw material is present as silica (SiO 2 ). When the oxygen content is insufficient, silica (SiO 2 ) powder is added.

RE元素の原料としては酸化物粉末を用いても良いが、例えばランタン(La)の場合には酸化ランタン(La)の吸湿性が高いため、水酸化ランタン(La(OH))のように吸水性が低く、焼成過程で酸化ランタン(La)に変化する化合物を用いることが好ましい。マグネシウム(Mg)原料としては、酸化マグネシウム(MgO)や炭酸マグネシウム(MgCO)を用いても良いが、酸化マグネシウム(MgO)は吸水性が高く、炭酸マグネシウム(MgCO)は炭酸ガスを発生してしまうので、水酸化マグネシウム(Mg(OH))のように、吸水性が低く、炭酸ガスの発生も無く、焼成過程で酸化マグネシウム(MgO)に変化する化合物を用いることが好ましい。 Oxide powder may be used as a raw material for the RE element. For example, in the case of lanthanum (La), lanthanum hydroxide (La (OH) 2 ) has high hygroscopicity because lanthanum oxide (La 2 O 3 ) has high hygroscopicity. It is preferable to use a compound having a low water absorption and changing to lanthanum oxide (La 2 O 3 ) during the firing process. Magnesium oxide (MgO) or magnesium carbonate (MgCO 3 ) may be used as the magnesium (Mg) raw material, but magnesium oxide (MgO) has high water absorption, and magnesium carbonate (MgCO 3 ) generates carbon dioxide gas. Therefore, it is preferable to use a compound such as magnesium hydroxide (Mg (OH) 2 ) that has low water absorption, does not generate carbon dioxide, and changes to magnesium oxide (MgO) during the firing process.

周期表第6族元素珪化物を形成するための原料は、周期表第6族元素の酸化物、炭化物、珪化物、窒化物等いずれでも良いが、安価で微粉末が得られやすいことから酸化物を用いることが望ましい。   The raw material for forming the periodic table group 6 element silicide may be any of the oxides, carbides, silicides, nitrides, etc. of the periodic table group 6 element, but it is oxidized because it is inexpensive and easily obtains a fine powder. It is desirable to use a product.

次に、これらの原料を秤量した混合粉末に適宜バインダや溶剤を添加して混合、粉砕し、スプレードライ法等により乾燥、造粒する。そして、この造粒粉末を公知の成形手段により任意の形状に成形した後、例えば窒素雰囲気中で、常圧焼成法、ガス圧力焼成法、ホットプレス法等により1650〜1800℃の温度で焼成する。   Next, a binder or a solvent is appropriately added to the mixed powder obtained by weighing these raw materials, mixed and pulverized, and dried and granulated by a spray drying method or the like. And after shape | molding this granulated powder in arbitrary shapes by a well-known shaping | molding means, it bakes at the temperature of 1650-1800 degreeC by a normal-pressure baking method, a gas pressure baking method, a hot press method etc. in nitrogen atmosphere, for example. .

この焼成の具体的な条件は、上記成形体を窒化珪素質焼結体製の焼成鉢に入れるとともに、この焼成鉢の中にSiおよびMg成分を入れて焼成鉢の蓋を密封状態がさほど高くない状態で閉めて焼成炉内にセットする。そして、焼成炉内を1気圧の窒素で置換した後、5〜15℃/分で昇温を開始し、1400〜1500℃の温度範囲における昇温速度を1〜5℃/分に変更した後、1500℃から焼成温度の1650〜1800℃までの昇温速度は再度5〜15℃/分に変更する。そして、焼成温度の1650〜1800℃で5〜10時間保持して、1100℃までの降温速度を10〜50℃/分で冷却した後、室温まで冷却する条件とする。また、焼成中はガス抜きしたり窒素ガスを追加で導入したりして炉内の雰囲気が窒素1気圧に保たれるように調整する。これによって、マグネシウムは表面において適度に揮発するとともにRE元素は揮発しない状態となり、焼結体を緻密化させるとともに表面においてマグネシウムの濃度が低くかつRE元素の濃度は内部と変わらない焼結体が得られる。   The specific conditions for this firing are that the molded body is placed in a firing bowl made of a silicon nitride sintered body, and Si and Mg components are placed in the firing bowl so that the sealing state of the firing bowl is so high. Close and set in the firing furnace. Then, after replacing the inside of the firing furnace with 1 atm of nitrogen, the temperature increase was started at 5 to 15 ° C./min, and the temperature increase rate in the temperature range of 1400 to 1500 ° C. was changed to 1 to 5 ° C./min. The heating rate from 1500 ° C. to the firing temperature of 1650 to 1800 ° C. is changed again to 5 to 15 ° C./min. And it is set as the conditions which hold | maintain at 1650-1800 degreeC of a calcination temperature for 5 to 10 hours, cool down to 1100 degreeC by 10-50 degreeC / min, and then cool to room temperature. Further, during the firing, the atmosphere in the furnace is adjusted to be maintained at 1 atm of nitrogen by degassing or additionally introducing nitrogen gas. As a result, magnesium volatilizes moderately on the surface and RE element does not volatilize, densifying the sintered body, and obtaining a sintered body having a low magnesium concentration and the same RE element concentration on the surface. It is done.

なお、焼成鉢中に成形体とともに入れるSiおよびMg成分は、Si粉末、SiO粉末、Si粉末、MgCO粉末、Mg(OH)粉末の状態で入れる方法が挙げられ、これらの粉末を成形体の周囲に置いたり、成形体の下面に敷き詰めたり、成形体自体を上記粉末中に埋めた状態で焼成することにより、焼成雰囲気中にSiOガスとMgOガスが生成して焼結を促進する方法が挙げられる。 In addition, the Si and Mg components put together with the molded body in the baking pot include methods of putting in the state of Si powder, SiO 2 powder, Si 3 N 4 powder, MgCO 3 powder, Mg (OH) 2 powder, and these The powder is placed around the molded body, spread on the lower surface of the molded body, or fired in a state where the molded body is embedded in the powder, thereby generating SiO gas and MgO gas in the firing atmosphere and sintering. The method of promoting is mentioned.

さらに、前述のように焼結体表面における各元素の濃度分布を得るためには、元素の拡散が始まる温度域で焼成物の内部まで充分に温度を上げておく必要があり、1400〜1500℃間の昇温速度を1〜5℃/分とすること、および焼成温度から1100℃までの降温速度を10〜50℃/分とすることによって可能となる。また、一旦、窒素雰囲気中で1650℃〜1850℃で焼成した後、9.8MPa〜294MPa、1500〜1700℃で熱間静水圧焼成を施すことが、緻密で、窒化珪素結晶粒子の異常粒成長が抑制された耐チッピング性を改善した窒化珪素質焼結体が得られる点で望ましい。   Furthermore, in order to obtain the concentration distribution of each element on the surface of the sintered body as described above, it is necessary to sufficiently raise the temperature up to the inside of the fired product in the temperature range where the diffusion of the element begins. It becomes possible by setting the temperature rising rate between 1 to 5 ° C./min and setting the temperature decreasing rate from the firing temperature to 1100 ° C. to 10 to 50 ° C./min. In addition, after firing at 1650 ° C. to 1850 ° C. in a nitrogen atmosphere, hot isostatic firing is performed at 9.8 MPa to 294 MPa and 1500 to 1700 ° C. to form dense and abnormal grain growth of silicon nitride crystal grains This is desirable in that a silicon nitride-based sintered body with improved chipping resistance that is suppressed can be obtained.

そして、上述した焼結体には研削加工が施される。研磨加工においては、荒い砥石で切削工具1の形状に沿ったある方向(切刃稜線に並行な方向)に第1の研磨をした後、細かい砥石で切刃稜線に垂直な方向に第2の研磨をする。具体的な条件の一例は、第1の研磨に際して、弾性砥石を用いた研磨、ブラシ研磨、のいずれかにより、砥石のグレードを#100〜#300として、すくい面2の算術平均粗さ(Ra)が3μm以下となるまで研磨する。その後、弾性砥石を用いた研磨、ブラシ研磨、により、砥石のグレードを#400〜#1000として、すくい面2の算術平均粗さ(Ra)が0.1〜1μmとなるまで研磨する。これよって、切削において耐欠損性の高い切削工具1となる残留応力を方向に応じて最適とすることができる結果、工具寿命を延ばすことができる。なお、第1の研磨において発生しやすいマイクロクラック等のダメージをなくすために、第2の研磨においては、30μm以上、より好ましくは50μm以上の厚みを研磨するのが良い。   And the grinding process is given to the sintered compact mentioned above. In the polishing process, a first grinding is performed in a certain direction along the shape of the cutting tool 1 with a rough grindstone (a direction parallel to the cutting edge ridge line), and then the second grinding is performed in a direction perpendicular to the cutting edge ridge line with a fine grinding stone. Polish. An example of a specific condition is that, in the first polishing, the arithmetic average roughness (Ra) of the rake face 2 is set to # 100 to # 300 with the grade of the grindstone being either polishing using an elastic grindstone or brush polishing. ) Is polished to 3 μm or less. Then, it grind | polishes until the arithmetic mean roughness (Ra) of the rake face 2 is set to 0.1-1 micrometer by making grinding | polishing stone grade # 400- # 1000 by grinding | polishing using an elastic grindstone, and brush grinding | polishing. As a result, the residual stress that becomes the cutting tool 1 with high fracture resistance in cutting can be optimized according to the direction, and the tool life can be extended. In order to eliminate damage such as microcracks that are likely to occur in the first polishing, it is preferable to polish a thickness of 30 μm or more, more preferably 50 μm or more in the second polishing.

なお、上記焼結体の表面にTiNやAl、TiAlN等の硬質被覆層を施してもよい。 It may be subjected to hard coating layer of TiN and Al 2 O 3, TiAlN or the like on the surface of the sintered body.

出発原料として、平均粒径0.3μmの窒化珪素(Si)粉末と、平均粒径1.2μmのRE元素化合物(水酸化ランタン(La(OH))、酸化イットリウム(Y)、酸化イッテリビウム(Yb)、酸化エルビウム(Er)のいずれか)粉末と、平均粒径0.7μmの酸化アルミニウム(Al)粉末と、平均粒径2.5μmの水酸化マグネシウム(Mg(OH))粉末とを表1の割合で調合し、バインダと溶剤とを添加した後、アトライタミルにて72時間、粉砕、混合した。なお、表1にて、水酸化ランタン(La(OH))粉末および水酸化マグネシウム(Mg(OH))粉末については、焼結体中で存在する酸化物((LaおよびMgO)の換算量で表記した。 As starting materials, silicon nitride (Si 3 N 4 ) powder having an average particle size of 0.3 μm, RE element compound (lanthanum hydroxide (La (OH) 2 ), yttrium oxide (Y 2 O) having an average particle size of 1.2 μm 3 ), ytterbium oxide (Yb 2 O 3 ), erbium oxide (Er 2 O 3 ) powder, aluminum oxide (Al 2 O 3 ) powder having an average particle size of 0.7 μm, and average particle size 5 μm of magnesium hydroxide (Mg (OH) 2 ) powder was prepared in the ratio shown in Table 1, and after adding a binder and a solvent, it was pulverized and mixed in an attritor mill for 72 hours. In Table 1, for the lanthanum hydroxide (La (OH) 2 ) powder and the magnesium hydroxide (Mg (OH) 2 ) powder, oxides ((La 2 O 3 and MgO) present in the sintered body are used. ).

その後、乾燥して溶剤を除去して造粒粉末を作製し、この造粒粉末を98MPaの圧力でSNGN120412の切削工具形状にプレス成形した。   Thereafter, the solvent was removed by drying to prepare a granulated powder, and this granulated powder was press-molded into a cutting tool shape of SNGN120212 at a pressure of 98 MPa.

この成形体を焼成鉢内にセットする際、Si粉末、Si粉末、SiO粉末の少なくとも1種とMg(OH)粉末との混合粉末を用いて表1に示す状態でセットして蓋をし、これをカーボン製の円筒内に置いた状態で焼成炉内に載置した。そして、焼成炉内を窒素1気圧に置換して、脱脂後、1400℃まで昇温速度10℃/分で昇温し、その後を表1の条件で昇温、焼成、降温した。なお、焼成中の雰囲気は窒素1気圧に制御した。その後、1600℃、2時間、196MPaの条件で熱間静水圧焼成(HIP)し、さらにこの焼結体の表面を表2の条件で研削加工して切削工具を得た。 When this molded body is set in a baking pot, it is set in the state shown in Table 1 using a mixed powder of at least one of Si 3 N 4 powder, Si powder, and SiO 2 powder and Mg (OH) 2 powder. The lid was put on and placed in a firing furnace in a state where it was placed in a carbon cylinder. Then, the inside of the firing furnace was replaced with 1 atm of nitrogen, and after degreasing, the temperature was raised to 1400 ° C. at a rate of temperature rise of 10 ° C./min. The atmosphere during firing was controlled to 1 atm of nitrogen. Thereafter, hot isostatic pressing (HIP) was performed under the conditions of 1600 ° C., 2 hours, and 196 MPa, and the surface of the sintered body was ground under the conditions shown in Table 2 to obtain a cutting tool.

得られた窒化珪素質焼結体について、すくい面を0.5mm厚み研削加工して鏡面状態とした後、2D法(装置:X線回折 BrukerAXS社製 D8 DISCOVER with GADDS Super Speed、線源:CuKα、コリメータ径:0.8mmφ、測定回折線:141.7°(Si3N4(323)面))を用いて窒化珪素の残留応力を測定した。 About the obtained silicon nitride sintered body, the rake face is ground to a thickness of 0.5 mm to obtain a mirror state, and then the 2D method (apparatus: X-ray diffraction D8 DISCOVER with GADDS Super Speed, made by BrukerAXS, radiation source: CuK The residual stress of silicon nitride was measured using α , collimator diameter: 0.8 mmφ, and measurement diffraction line: 141.7 ° (Si 3 N 4 (323) plane).

また、焼結体の表面において電子線マイクロアナライザ(EPMA)測定を行い、表面領域における各成分の含有比率を測定した。また、焼結体の中央部付近の50μm深さ×50μm幅の領域の任意3ヶ所にてEPMAの面分析を行って、その含有比率の平均値を焼結体の内部における含有比率として、焼結体表面における含有比率と比較した。さらに、表面を含む焼結体の断面において組織観察を行うとともにEPMAにて各成分の含有比率の分布状態を確認し、表面領域の厚みを算出した。また、酸素量の測定については、EPMAで確認された表面領域の深さを焼結体の表面から研磨しこの領域を粉状として採取して表面領域の試料とし、また、焼結体の中央部の3mmの厚み部分を研磨によって粉状として採取して内部領域の試料とし、赤外吸収法酸素分析によってこれらの試料の酸素量を測定し、その比を算出した。結果は表2に示した。   Moreover, the electron beam microanalyzer (EPMA) measurement was performed on the surface of the sintered compact, and the content ratio of each component in the surface region was measured. In addition, the surface analysis of EPMA was performed at any three locations in the 50 μm depth × 50 μm width region near the center of the sintered body, and the average value of the content ratio was determined as the content ratio inside the sintered body. It was compared with the content ratio on the surface of the bonded body. Further, the structure was observed in the cross section of the sintered body including the surface, and the distribution state of the content ratio of each component was confirmed by EPMA, and the thickness of the surface region was calculated. Regarding the measurement of the oxygen content, the depth of the surface region confirmed by EPMA was polished from the surface of the sintered body, and this region was collected as a powder to obtain a sample of the surface region. A 3 mm thick portion was collected as a powder by polishing and used as a sample in the inner region. The amount of oxygen in these samples was measured by infrared absorption oxygen analysis, and the ratio was calculated. The results are shown in Table 2.

さらに、得られた窒化珪素質焼結体からなる切削工具を用いて、下記条件により切削性能を評価した。
被削材:FCD−450 ブロック材
切削速度:500m/分
送り量:0.2mm/rev
切り込み量:2.0mm
切削条件:乾式切削
評価項目:10パス加工後、切刃のフランク摩耗量とチッピング状態を顕微鏡観察により確認した。
結果は表3に示した。
Furthermore, cutting performance was evaluated under the following conditions using a cutting tool made of the obtained silicon nitride sintered body.
Work material: FCD-450 Block material Cutting speed: 500 m / min Feed amount: 0.2 mm / rev
Cutting depth: 2.0mm
Cutting conditions: Dry cutting evaluation items: After 10 passes, the flank wear amount and chipping state of the cutting edge were confirmed by microscopic observation.
The results are shown in Table 3.

表1〜3に示した結果によれば、本発明の範囲内の試料No.1〜5はいずれも摩耗量が小さく刃先のチッピングの少ない切削性能を示した。これに対して、本発明の範囲外の試料である試料No.6〜8は耐チッピング性が悪いものであった。   According to the results shown in Tables 1 to 3, sample Nos. Within the scope of the present invention. Nos. 1 to 5 all showed cutting performance with a small amount of wear and little chipping of the blade edge. On the other hand, sample No. which is a sample outside the scope of the present invention. 6 to 8 had poor chipping resistance.

1 工具(スローアウェイチップ)
2 すくい面
3 逃げ面
4 切刃
5 ノーズ
σ11方向
すくい面に平行でかつ、すくい面の中心から測定点に最も近いノーズに向かう方向
σ22方向
すくい面に平行でかつσ11方向に垂直な方向
1 Tool (throw away tip)
2 Rake face 3 Relief face 4 Cutting edge 5 Nose σ 11 direction Parallel to the rake face and the direction from the center of the rake face to the nose closest to the measurement point σ 22 direction Parallel to the rake face and perpendicular to the σ 11 direction direction

Claims (3)

窒化珪素を主体として、RE元素化合物(ただし、REは希土類元素の少なくとも一種の元素)を含む窒化珪素質焼結体から構成され、すくい面と逃げ面との交差稜線部を切刃とし、隣接する2つの前記逃げ面間に位置する前記切刃にノーズを形成した切削工具において、
前記すくい面のノーズにて2D法で残留応力を測定した際、前記すくい面に平行でかつ該すくい面の中心から測定点に最も近いノーズに向かう方向についての残留応力σ11が圧縮応力で10MPa〜30MPa(σ11=−10MPa〜−30MPa)であり、前記すくい面に平行でかつ前記σ11方向と垂直な方向についての残留応力σ22が圧縮応力で10MPa以下(σ22=−10MPa〜0MPa)である切削工具。
Consists of a silicon nitride-based sintered body mainly composed of silicon nitride and containing an RE element compound (wherein RE is at least one element of rare earth elements), with the crossing ridge line portion between the rake face and the flank face as a cutting edge and adjacent In a cutting tool in which a nose is formed on the cutting blade located between the two flank surfaces
When the residual stress is measured by the 2D method at the nose of the rake face, the residual stress σ 11 in the direction parallel to the rake face and from the center of the rake face toward the nose closest to the measurement point is 10 as a compressive stress. MPa to 30 MPa11 = −10 MPa to −30 MPa), and the residual stress σ 22 in the direction parallel to the rake face and perpendicular to the σ 11 direction is 10 MPa or less (σ 22 = −10 Cutting tool that is MPa to 0 MPa ).
前記窒化珪素質焼結体のすくい面における算術平均粗さ(Ra)が0.2〜0.6μmである請求項1記載の切削工具。   The cutting tool according to claim 1, wherein the arithmetic average roughness (Ra) of the rake face of the silicon nitride sintered body is 0.2 to 0.6 µm. 前記窒化珪素質焼結体がMgを含有するとともに、すくい面の表面におけるMg濃度が焼結体全体のMg濃度に対して60〜90質量%の比率で存在する請求項1または2記載の切削工具。   The cutting according to claim 1 or 2, wherein the silicon nitride sintered body contains Mg, and the Mg concentration on the surface of the rake face is in a ratio of 60 to 90 mass% with respect to the Mg concentration of the entire sintered body. tool.
JP2009119629A 2009-05-18 2009-05-18 Cutting tools Active JP5340028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119629A JP5340028B2 (en) 2009-05-18 2009-05-18 Cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119629A JP5340028B2 (en) 2009-05-18 2009-05-18 Cutting tools

Publications (2)

Publication Number Publication Date
JP2010264574A JP2010264574A (en) 2010-11-25
JP5340028B2 true JP5340028B2 (en) 2013-11-13

Family

ID=43362024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119629A Active JP5340028B2 (en) 2009-05-18 2009-05-18 Cutting tools

Country Status (1)

Country Link
JP (1) JP5340028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962589A (en) * 2013-01-24 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850400B2 (en) * 2012-02-03 2016-02-03 三菱マテリアル株式会社 Surface coated cutting tool
JP6288603B2 (en) * 2013-01-24 2018-03-07 三菱マテリアル株式会社 Surface coated cutting tool
US10086437B2 (en) 2013-02-13 2018-10-02 Kyocera Corporation Cutting tool
JP6756819B2 (en) * 2016-04-13 2020-09-16 京セラ株式会社 Cutting inserts and cutting tools
JP6521127B2 (en) * 2017-04-21 2019-05-29 株式会社タンガロイ Coated cutting tool
CN114929416A (en) * 2020-01-20 2022-08-19 京瓷株式会社 Coated cutting tool

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02256402A (en) * 1989-03-30 1990-10-17 Kyocera Corp Silicon nitride based tool material
JP2675187B2 (en) * 1990-09-28 1997-11-12 住友電気工業株式会社 Gradient silicon nitride composite material and method of manufacturing the same
JPH0740105A (en) * 1993-07-27 1995-02-10 Sumitomo Electric Ind Ltd Tool of silicon nitride-based sintered compact and manufacture thereof
JPH0720202U (en) * 1993-09-24 1995-04-11 東芝タンガロイ株式会社 Throw-away tip
JP2002047068A (en) * 2000-07-28 2002-02-12 Ngk Spark Plug Co Ltd Sintered silicon nitride and cutting tool using it and their manufacturing methods
WO2008114752A1 (en) * 2007-03-22 2008-09-25 Ngk Spark Plug Co., Ltd. Insert and cutting tool
CN101790594B (en) * 2007-07-27 2013-06-19 京瓷株式会社 Titanium-base cermet, coated cermet, and cutting tool
JP5188578B2 (en) * 2008-07-29 2013-04-24 京セラ株式会社 Cutting tools

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103962589A (en) * 2013-01-24 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool
CN103962589B (en) * 2013-01-24 2017-09-22 三菱综合材料株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2010264574A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
JP5527937B2 (en) Silicon nitride sintered body
JP5340028B2 (en) Cutting tools
JP5527949B2 (en) Silicon nitride sintered body
JP6637664B2 (en) Cubic boron nitride sintered compact cutting tool
JP5677638B1 (en) Cutting tools
JPH02145484A (en) Sintered silicon nitride
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
CN103880430B (en) Methods for preparing multiphase high-strength highly-wear-resistant silicon nitride ceramic cutting tool material and tool
JP6075803B2 (en) Silicon nitride sintered body and cutting tool
Santos et al. α-SiAlON–SiC composites obtained by gas-pressure sintering and hot-pressing
JP2007130700A (en) Sialon cutting tool, and tool equipped with the same
JP2015009327A (en) Cutting insert
JP4070417B2 (en) Silicon nitride member, method for manufacturing the same, and cutting tool
JP3550420B2 (en) Wear-resistant silicon nitride sintered body, method for producing the same, and cutting tool
JP5864631B2 (en) Silicon nitride sintered body
JP4434938B2 (en) Sialon insert manufacturing method
JP2008273753A (en) Boron carbide-based sintered compact and protective member
JP7340622B2 (en) Cutting tools
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor
JP2010173877A (en) Silicon nitride sintered compact
JP4798821B2 (en) Cutting tool and manufacturing method thereof
JP2019107768A (en) Cutting tool made by cubic crystal boron nitride sintered body
JP2006198761A (en) Insert made of sialon, and cutting tool having it
JP2003040676A (en) Silicon nitride sintered compact and its manufacturing method
JPH04331006A (en) Tool of surface-coated silicon-nitride sintered body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130806

R150 Certificate of patent or registration of utility model

Ref document number: 5340028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150