JP5527949B2 - Silicon nitride sintered body - Google Patents

Silicon nitride sintered body Download PDF

Info

Publication number
JP5527949B2
JP5527949B2 JP2008167422A JP2008167422A JP5527949B2 JP 5527949 B2 JP5527949 B2 JP 5527949B2 JP 2008167422 A JP2008167422 A JP 2008167422A JP 2008167422 A JP2008167422 A JP 2008167422A JP 5527949 B2 JP5527949 B2 JP 5527949B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
mass
terms
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008167422A
Other languages
Japanese (ja)
Other versions
JP2010006635A (en
Inventor
孝 渡邊
達行 中岡
周一 立野
宏 吉満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008167422A priority Critical patent/JP5527949B2/en
Publication of JP2010006635A publication Critical patent/JP2010006635A/en
Application granted granted Critical
Publication of JP5527949B2 publication Critical patent/JP5527949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐摩耗性が高い窒化珪素質焼結体に関する。   The present invention relates to a silicon nitride sintered body having high wear resistance.

窒化珪素質焼結体は、高硬度でかつ高温で安定であることから耐摩耗性および耐酸化性に優れており、ガスタービンやターボロータ等の熱機関用部品や切削工具として用いられている。   Silicon nitride-based sintered bodies are excellent in wear resistance and oxidation resistance due to their high hardness and stability at high temperatures, and are used as heat engine parts such as gas turbines and turbo rotors and cutting tools. .

かかる窒化珪素質焼結体において、焼結体の表面を改質して特性の向上を図ることが試みられている。例えば、特許文献1では、成形体の表面に焼結助剤成分の含有比率の高いスラリーを塗布して焼成することにより、焼結体の表面における焼結助剤成分濃度を内部より高くして、窒化珪素質焼結体の表面を平滑化したことが開示されている。また、特許文献2では、表層部の酸素量を内部の酸素量よりも少なくするとともに、内部の粒界相はあまり結晶化させずに表層部の粒界相成分を結晶化させて、肉薄では表層部のみとなって高温で有利であり、肉厚では中温域まで強度に優れた焼結体を作製できることが記載されている。さらに、特許文献3には、表面部において粒界相を結晶化させるとともに、表面部は内部に比べて窒化珪素粒子の比率を低くした窒化珪素質焼結体を切削工具として用いる開示されている。
特開平7−309664号公報 特開平6−191947号公報 特開平2−275763号公報
In such a silicon nitride sintered body, attempts have been made to improve the characteristics by modifying the surface of the sintered body. For example, in Patent Document 1, the sintering aid component concentration on the surface of the sintered body is increased from the inside by applying a slurry having a high content ratio of the sintering aid component to the surface of the molded body and firing the slurry. Further, it is disclosed that the surface of a silicon nitride-based sintered body is smoothed. Moreover, in patent document 2, while making the amount of oxygen of a surface layer part smaller than the amount of internal oxygen, the grain boundary phase component of a surface layer part is crystallized without crystallizing an internal grain boundary phase so much, It is described that only a surface layer portion is advantageous at high temperatures, and that a sintered body excellent in strength can be produced up to an intermediate temperature range in terms of thickness. Further, Patent Document 3 discloses that a silicon nitride sintered body in which the grain boundary phase is crystallized in the surface portion and the ratio of silicon nitride particles in the surface portion is lower than that in the inside is used as a cutting tool. .
JP-A-7-309664 JP-A-6-191947 Japanese Patent Laid-Open No. 2-275863

しかしながら、上記特許文献1〜3に記載の窒化珪素質焼結体のように焼結助剤成分の含有量が多い窒化珪素質焼結体では、焼結体の表面における耐摩耗性には限界があった。また、単純に焼結助剤量を減らすと焼結体の焼結性が低下して耐欠損性が低下するという問題があった。   However, the silicon nitride sintered body having a large content of the sintering aid component such as the silicon nitride sintered bodies described in Patent Documents 1 to 3 described above has a limit to the wear resistance on the surface of the sintered body. was there. Further, simply reducing the amount of the sintering aid has a problem that the sinterability of the sintered body is lowered and the fracture resistance is lowered.

そこで、本発明の目的は、耐摩耗性が高くかつ耐欠損性を改善した窒化珪素質焼結体を提供することである。   Accordingly, an object of the present invention is to provide a silicon nitride sintered body having high wear resistance and improved fracture resistance.

本発明の窒化珪素質焼結体は、窒化珪素を93質量%以上含み、RE元素酸化物をRE 換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl 換算で0〜0.6質量%、残余の酸素をシリカ(SiO )換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%の比率で含有し、焼結体の表面を含む断面研磨面をフッ酸水溶液によりエッチング処理を行った後
の前記断面研磨面の35μm×32μmの範囲の組織写真について、前記焼結体の表面を含む表面領域における空隙率が前記焼結体の内部における空隙率よりも小さいことを特徴とする。
The silicon nitride sintered material of the present invention, viewed including the silicofluoride-containing nitride than 93 wt%, 0.1 to 4.5 wt% of RE elements oxides terms of RE 2 O 3, magnesium oxide in terms of MgO 0 0.3 to 2.5% by mass, aluminum oxide in terms of Al 2 O 3 0 to 0.6% by mass, and the remaining oxygen in terms of silica (SiO 2 ) 0.1 to 4.5% by mass, periodic table The group 6 element silicide is contained in a ratio of 0 to 2% by mass , and the cross-sectional polished surface including the surface of the sintered body is etched with a hydrofluoric acid aqueous solution, and the cross-sectional polished surface is in a range of 35 μm × 32 μm. About the structure | tissue photograph, the porosity in the surface area | region containing the surface of the said sintered compact is characterized by being smaller than the porosity in the inside of the said sintered compact.

ここで、上記構成において、前記エッチング処理後の断面研磨面の組織写真について、前記表面領域における前記窒化珪素結晶の平均粒径が0.35〜0.55μmであり、かつ、該表面領域における前記窒化珪素結晶の平均粒径が前記内部における前記窒化珪素結晶の平均粒径よりも小さいことが望ましい。   Here, in the structure described above, with respect to the structure photograph of the cross-sectional polished surface after the etching treatment, an average particle diameter of the silicon nitride crystal in the surface region is 0.35 to 0.55 μm, and the surface region It is desirable that the average grain size of the silicon nitride crystal is smaller than the average grain size of the silicon nitride crystal in the interior.

また、上記構成において、前記エッチング処理後の断面研磨面の組織写真について、短軸径が1μm以上でアスペクト比が5以上で観察される窒化珪素結晶の存在割合が、前記内部よりも前記表面領域において少ないことが望ましい。   Further, in the above structure, in the structure photograph of the cross-sectional polished surface after the etching treatment, the existence ratio of silicon nitride crystals observed with a minor axis diameter of 1 μm or more and an aspect ratio of 5 or more is more than the surface region than the inside. It is desirable that there be a small amount.

さらに、上記構成において、前記窒化珪素質焼結体の全体組成において、窒化珪素を94.5〜99.5質量%の比率で含有することが望ましい。
Furthermore, in the said structure, it is desirable to contain silicon nitride by the ratio of 94.5-99.5 mass% in the whole composition of the said silicon nitride sintered body.

本発明の窒化珪素質焼結体によれば、窒化珪素結晶の含有比率が高く、かつ焼結体の表面に、フッ酸水溶液によりエッチング処理を行っても空隙率が内部における空隙率よりも小さい表面領域が存在することによって、焼結体表面における硬度が高くかつ焼結体の耐欠損性を高くできる。   According to the silicon nitride sintered body of the present invention, the content ratio of silicon nitride crystals is high, and the porosity is smaller than the internal porosity even when the surface of the sintered body is etched with a hydrofluoric acid aqueous solution. The presence of the surface region can increase the hardness on the surface of the sintered body and increase the fracture resistance of the sintered body.

ここで、前記エッチング処理後の断面研磨面の組織写真について、前記表面領域における前記窒化珪素結晶の平均粒径が0.35〜0.55μmであり、かつ、該表面領域における前記窒化珪素結晶の平均粒径が前記内部における前記窒化珪素結晶の平均粒径よりも小さいことによって、焼結体の表面における靭性を高めて耐欠損性をさらに高める点で望ましい。   Here, regarding the structure photograph of the cross-sectional polished surface after the etching treatment, the average particle diameter of the silicon nitride crystal in the surface region is 0.35 to 0.55 μm, and the silicon nitride crystal in the surface region is It is desirable in that the average particle size is smaller than the average particle size of the silicon nitride crystal in the interior, thereby increasing the toughness on the surface of the sintered body and further improving the fracture resistance.

また、前記エッチング処理後の断面研磨面の組織写真について、短軸径が1μm以上でアスペクト比が5以上で観察される窒化珪素結晶の存在割合が、前記内部よりも前記表面領域において少ないことによって、表面領域における耐チッピング性が高いとともに焼結体の熱伝導率が向上して耐熱衝撃性が向上するという効果がある。   Further, in the structure photograph of the cross-sectional polished surface after the etching treatment, the existence ratio of silicon nitride crystals observed with a minor axis diameter of 1 μm or more and an aspect ratio of 5 or more is smaller in the surface region than in the interior. In addition, the chipping resistance in the surface region is high, and the thermal conductivity of the sintered body is improved and the thermal shock resistance is improved.

さらに、前記窒化珪素質焼結体の全体組成が、窒化珪素を94.5〜99.5質量%、RE元素酸化物をRE換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl換算で0〜0.6質量%、残余の酸素をシリカ(SiO)換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%からなることが、焼結体の硬度および高温強度を高めて、焼結体の耐摩耗性を高めることができる点で望ましい。特に、表面におけるマグネシウム元素の含有比率が0.1〜1.0質量%であることが、焼結体の表面における耐摩耗性を高めることができる点で望ましい。 Further, the overall composition of the silicon nitride-based sintered body is 94.5 to 99.5% by mass of silicon nitride, 0.1 to 4.5% by mass of RE element oxide in terms of RE 2 O 3 , magnesium oxide. 0.1 to 4.5 mass 0.3 to 2.5 mass% in terms of MgO, an oxide of aluminum in terms of Al 2 O 3 in 0 to 0.6 wt%, the residual oxygen in the silica (SiO 2) in terms It is desirable that the periodic table group 6 element silicide is 0 to 2% by mass in that the hardness and high-temperature strength of the sintered body can be increased and the wear resistance of the sintered body can be increased. In particular, it is desirable that the content ratio of the magnesium element on the surface is 0.1 to 1.0% by mass because the wear resistance on the surface of the sintered body can be improved.

本発明の窒化珪素質焼結体(以下、単に焼結体と略す。)について、焼結体の表面を含む断面研磨面をフッ酸水溶液によりエッチング処理を行った後の前記断面研磨面の表面領域Aにおける組織写真である図1、および内部Bにおける組織写真である図2を基に説明する。   For the silicon nitride sintered body of the present invention (hereinafter simply referred to as a sintered body), the surface of the cross-sectional polished surface after etching the cross-sectional polished surface including the surface of the sintered body with a hydrofluoric acid aqueous solution. Description will be made based on FIG. 1 which is a structure photograph in the region A and FIG. 2 which is a structure photograph in the inside B.

焼結体1は、窒化珪素結晶2を93質量%以上含んでおり、他に、RE元素化合物(ただし、REはイットリウムおよび希土類元素の少なくとも一種の元素)、マグネシウム化合物、アルミニウム化合物、シリカ(酸化シリコン)等の焼結助剤成分含んでいる。なお、窒化珪素結晶2の含有比率は、焼結体1の組成分析(ICP分析および酸素分析)によって焼結助剤成分の含有量を求めて、その残部を窒化珪素結晶2として見積もることができる。   Sintered body 1 contains 93% by mass or more of silicon nitride crystal 2, and in addition, RE element compound (wherein RE is at least one element of yttrium and rare earth elements), magnesium compound, aluminum compound, silica (oxidation) It contains a sintering aid component such as silicon. The content ratio of the silicon nitride crystal 2 can be estimated as the silicon nitride crystal 2 by determining the content of the sintering aid component by composition analysis (ICP analysis and oxygen analysis) of the sintered body 1. .

そして、本発明によれば、焼結体1の表面を含む断面研磨面をフッ酸水溶液によりエッチング処理を行った後の断面研磨面の表面領域Aにおける組織写真である図1、および内部Bにおける組織写真である図2に示すように、組織写真の焼結体1中には空隙3が形成されており、焼結体1の表面領域Aにおける空隙率が焼結体1の内部Bにおける空隙率よりも小さいことが大きな特徴である。これによって、焼結体1の表面領域Aにおける硬度が高くかつ焼結体1の耐欠損性を高くできる。   And according to this invention, in FIG. 1 which is a structure | tissue photograph in the surface area | region A of the cross-section polishing surface after etching the cross-section polishing surface containing the surface of the sintered compact 1 with hydrofluoric acid aqueous solution, and the inside B As shown in FIG. 2, which is a structure photograph, voids 3 are formed in the sintered body 1 of the structure photograph, and the porosity in the surface region A of the sintered body 1 is the void in the interior B of the sintered body 1. It is a big feature that it is smaller than the rate. Thereby, the hardness in the surface region A of the sintered body 1 is high, and the fracture resistance of the sintered body 1 can be increased.

ここで、図1の組織写真について、表面領域Aにおける窒化珪素結晶の平均粒径が0.35〜0.55μmであり、かつ、図1、2から明らかなように、表面領域Aにおける窒化珪素結晶2の平均粒径が内部Bにおける窒化珪素結晶2の平均粒径よりも小さいことによって、焼結体1の表面における靭性を高めて耐欠損性をさらに高める点で望ましい。なお、図1、2において、粒界相は窒化珪素結晶の外周の白くなっている領域に存在しており、一部はエッチング処理によって溶出している。   Here, in the structure photograph of FIG. 1, the average grain size of the silicon nitride crystal in the surface region A is 0.35 to 0.55 μm, and as is clear from FIGS. It is desirable that the average grain size of the crystal 2 is smaller than the average grain size of the silicon nitride crystal 2 in the interior B, thereby increasing the toughness on the surface of the sintered body 1 and further improving the fracture resistance. In FIGS. 1 and 2, the grain boundary phase is present in the whitened region on the outer periphery of the silicon nitride crystal, and a part is eluted by the etching process.

また、図1、2の組織写真について、短軸径が1μm以上でアスペクト比が5以上で観察される窒化珪素結晶2の存在割合が、内部Bよりも表面領域Aにおいて少ないことによって、焼結体1の熱伝導率が向上して加工部のみの温度が上昇してしまうことを防止できて耐熱衝撃性が向上するという効果がある。   In addition, in the structure photographs of FIGS. 1 and 2, the presence of the silicon nitride crystal 2 observed at a minor axis diameter of 1 μm or more and an aspect ratio of 5 or more is smaller in the surface region A than in the interior B. There is an effect that the thermal conductivity of the body 1 is improved and the temperature of only the processed portion is prevented from increasing, and the thermal shock resistance is improved.

なお、本発明における焼結体1の表面領域Aとは、焼結体1の表面から35μmの深さ領域までの範囲を指し、表面領域Aを含む空隙率が前記焼結体の内部における空隙率よりも小さい範囲は、表面から100〜500μmの深さにわたって存在することが、焼結体1の表面における耐摩耗性を維持しつつ耐欠損性を高める点で望ましい。また、内部Bとは、焼結体1の表面領域Aを含む空隙率が前記焼結体の内部における空隙率よりも小さい範囲を除く領域であり、本発明において内部Bの組織を観察する際は、焼結体1の中央部付近の厚み方向35μm×幅方向32μmの領域について測定する。
The surface area A of the sintered body 1 in the present invention refers to a range from the surface of the sintered body 1 to a depth area of 35 μm , and the porosity including the surface area A is a void inside the sintered body. It is desirable that the range smaller than the rate exists over a depth of 100 to 500 μm from the surface in terms of enhancing the fracture resistance while maintaining the wear resistance on the surface of the sintered body 1. Further, the inside B is a region excluding a range in which the porosity including the surface region A of the sintered body 1 is smaller than the porosity in the inside of the sintered body , and when observing the structure of the inside B in the present invention. is measured for a region in the thickness direction 35 [mu] m × width 32 mu m in the vicinity of the center portion of the sintered body 1.

ここで、焼結体1の全体組成は、窒化珪素を93質量%以上含み、RE元素酸化物をRE 換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl 換算で0〜0.6質量%、残余の酸素をシリカ(SiO )換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%の比率で含有するが、望ましい全体組成は、窒化珪素を94.5〜99.5質量%、RE元素酸化物をRE換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl換算で0〜0.6質量%、残余の酸素を
シリカ(SiO)換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%からなることが、焼結体1の硬度および高温強度を高めて、焼結体1の耐摩耗性を高めることができる点で望ましい。なお、RE元素化合物、マグネシウム化合物およびアルミニウム化合物は、いずれも酸化物として存在することが少量で窒化珪素同士を強固に結合できて窒化珪素結晶2の含有比率を高めることができる点で望ましい。
Here, the overall composition of the sintered body 1 includes 93% by mass or more of silicon nitride , 0.1 to 4.5% by mass of RE element oxide in terms of RE 2 O 3 , and 0.3% of magnesium oxide in terms of MgO. 3 to 2.5% by mass, 0 to 0.6% by mass of aluminum oxide in terms of Al 2 O 3 , 0.1 to 4.5% by mass of residual oxygen in terms of silica (SiO 2 ), 6th periodic table Although the group element silicide is contained in a ratio of 0 to 2% by mass, the desirable overall composition is 94.5 to 99.5% by mass of silicon nitride and 0.1 to 0.1% of RE element oxide in terms of RE 2 O 3. 4.5 wt%, magnesium oxide 0.3 to 2.5 wt% in terms of MgO, 0 to 0.6 wt% of aluminum oxide in terms of Al 2 O 3, the residual oxygen in the silica (SiO 2) in terms 0.1 to 4.5% by mass, consisting of 0 to 2% by mass of the periodic table group 6 element silicide, It is desirable in that the hardness and high-temperature strength of the sintered body 1 can be increased to increase the wear resistance of the sintered body 1. Note that the RE element compound, the magnesium compound, and the aluminum compound are all preferably present as oxides in that the silicon nitride crystal 2 can be firmly bonded with a small amount and the content ratio of the silicon nitride crystal 2 can be increased.

さらに、RE元素酸化物の含有量は、焼結体1の緻密化のために、RE換算で0.5〜4.5質量%であること、さらに1〜2.5質量%であることが望ましい。酸化マグネシウムの含有量は、焼結助剤の液相生成温度の低温化によって焼結体1をより低温で緻密化させるために、MgO換算で0.35〜2.0質量%であること、さらに0.4〜1.0質量%であることが望ましい。酸化アルミニウムの含有量は、焼結助剤の液相生成温度の低温化、焼結体2の緻密化および耐酸化性の低下による耐摩耗性の低下を抑制するために、Al換算で0.3〜0.5質量%であることが望ましい。残余の酸素は窒化珪素の不純物として存在しシリカ(SiO)として存在しているものと考えられるが、その含有量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化を保つとともに、耐酸化性および耐摩耗性を改善した焼結体2を実現するためにSiO換算で0.1〜4.5質量%であることが望ましく、特に1.5〜2.2質量%とすることが望ましい。 Furthermore, the content of the RE element oxide is 0.5 to 4.5% by mass in terms of RE 2 O 3 and further 1 to 2.5% by mass for densification of the sintered body 1. It is desirable to be. The content of magnesium oxide is 0.35 to 2.0% by mass in terms of MgO in order to densify the sintered body 1 at a lower temperature by lowering the liquid phase generation temperature of the sintering aid, Furthermore, it is desirable that it is 0.4-1.0 mass%. The content of aluminum oxide is reduced in terms of Al 2 O 3 in order to suppress lowering of the liquid phase generation temperature of the sintering aid, densification of the sintered body 2 and lowering of wear resistance due to lowering of oxidation resistance. It is desirable that it is 0.3-0.5 mass%. The remaining oxygen is considered to be present as an impurity of silicon nitride and as silica (SiO 2 ), but its content is reduced in the liquid phase formation temperature of the sintering aid, the denseness of the sintered body In order to realize the sintered body 2 that keeps the temperature and improves the oxidation resistance and wear resistance, it is preferably 0.1 to 4.5% by mass in terms of SiO 2 , especially 1.5 to 2.%. It is desirable to set it as 2 mass%.

また、RE元素としてはランタン(La)を必須として含有すると、ランタン(La)を含まない場合に比べて焼結体を低温で緻密化できるので、焼結体中の結晶が異常粒成長することなく結晶が微粒化できる。例えば、1730〜1830℃の常圧焼成で焼結体の相対密度が99%以上で、かつ視野0.015mmで長径が大きい方から6個の窒化珪素の平均長径を10μm以下に抑制することが可能となる。その結果、焼結体の硬度と強度を向上させることができる。 In addition, when lanthanum (La) is contained as an essential element as the RE element, the sintered body can be densified at a lower temperature than when lanthanum (La) is not included, so that crystals in the sintered body grow abnormally. Crystal without atomization. For example, the average major axis of six silicon nitrides is suppressed to 10 μm or less from the larger major axis with a relative density of 99% or more and a field of view of 0.015 mm 2 by atmospheric pressure firing at 1730 to 1830 ° C. Is possible. As a result, the hardness and strength of the sintered body can be improved.

ここで、RE化合物と、マグネシウム化合物と、アルミニウム化合物と、シリカ(SiO)は粒界相を形成する。粒界相はその一部が結晶として析出した構成であっても良いが、粒界相自体の存在割合を7質量%以下、特に5質量%以下と少なくすることによって焼結体1の硬度および高温強度が高まることから、粒界相の絶対量を減らしつつ窒化珪素結晶の結合性を高めるために、粒界相は非晶質で存在することが望ましい。 Here, the RE compound, the magnesium compound, the aluminum compound, and silica (SiO 2 ) form a grain boundary phase. The grain boundary phase may have a structure in which a part of the grain boundary phase is precipitated, but the hardness of the sintered body 1 can be reduced by reducing the abundance ratio of the grain boundary phase itself to 7% by mass or less, particularly 5% by mass or less. Since the high-temperature strength is increased, it is desirable that the grain boundary phase is present in an amorphous state in order to increase the bondability of the silicon nitride crystal while reducing the absolute amount of the grain boundary phase.

なお、窒化珪素結晶2は主結晶として存在するが、窒化珪素結晶2としては、主にβ−窒化珪素結晶からなり、所望によりその一部がわずかにアルミニウムを含んでβ−サイアロンを形成したものであることが望ましい。また、β−窒化珪素結晶の一部がα−窒化珪素結晶であってもよいが、硬度および強度を高めるためにはα−窒化珪素結晶を含まないことが望ましい。   The silicon nitride crystal 2 exists as a main crystal. The silicon nitride crystal 2 is mainly composed of β-silicon nitride crystal, and if desired, a part thereof contains a little aluminum to form β-sialon. It is desirable that Further, a part of the β-silicon nitride crystal may be an α-silicon nitride crystal, but it is desirable not to include the α-silicon nitride crystal in order to increase hardness and strength.

また、周期表第6族元素珪化物は高温強度の低下を抑制することができるとともに、焼結体1の色を黒色化することができる。周期表第6族元素珪化物として、珪化クロム、珪化モリブデン、珪化タングステンを例示できるが、微細な酸化物原料を用いて焼成体1中に微細な粒子として存在させることができるという理由から珪化タングステンを用いることが望ましい。なお、この周期表第6族元素珪化物粒子は、焼結体1の粒界相に分散して存在する。   Further, the Group 6 element silicide of the periodic table can suppress a decrease in high-temperature strength and can blacken the color of the sintered body 1. Examples of the Periodic Table Group 6 element silicide include chromium silicide, molybdenum silicide, and tungsten silicide. However, tungsten silicide is used because it can be present as fine particles in the fired body 1 using a fine oxide raw material. It is desirable to use The periodic table group 6 element silicide particles are dispersed in the grain boundary phase of the sintered body 1.

次に、上述した焼結体の製造方法について説明する。   Next, the manufacturing method of the sintered body described above will be described.

まず、出発原料として、例えば、窒化珪素(Si)粉末と、RE元素の水酸化物(RE(OH))または酸化物(RE)、酸化アルミニウム(Al)、水酸化マグネシウム(Mg(OH))を準備する。また、必要に応じて、二酸化珪素(SiO)、周期表第6族元素珪化物の粉末を用意する。 First, as starting materials, for example, silicon nitride (Si 3 N 4 ) powder, hydroxide (RE (OH) 2 ) or oxide (RE 2 O 3 ), and aluminum oxide (Al 2 O 3 ) of RE element Magnesium hydroxide (Mg (OH) 2 ) is prepared. If necessary, silicon dioxide (SiO 2 ) and periodic table group 6 element silicide powders are prepared.

窒化珪素原料は、α−窒化珪素粉末、β−窒化珪素粉末、又はこれらの混合物のいずれも用いることができる。これらの粒径は、1μm以下、特に0.5μm以下であることが好ましい。窒化珪素原料中には不可避の酸素が珪素の酸化物として存在する。そこで、窒化珪素原料中に存在する酸化物がシリカ(SiO)として存在していると考えて、組成を調整する。酸素分が不足する場合にはシリカ(SiO)粉末を添加する。 As the silicon nitride raw material, any of α-silicon nitride powder, β-silicon nitride powder, or a mixture thereof can be used. These particle sizes are preferably 1 μm or less, particularly 0.5 μm or less. Inevitable oxygen exists as silicon oxide in the silicon nitride raw material. Therefore, the composition is adjusted on the assumption that the oxide present in the silicon nitride raw material is present as silica (SiO 2 ). When the oxygen content is insufficient, silica (SiO 2 ) powder is added.

RE元素の原料としては酸化物粉末を用いても良いが、例えばランタン(La)の場合には酸化ランタン(La)の吸湿性が高いため、水酸化ランタン(La(OH))のように吸水性が低く、焼成過程で酸化ランタン(La)に変化する化合物を用いることが好ましい。マグネシウム(Mg)原料としては、酸化マグネシウム(MgO)や炭酸マグネシウム(MgCO)を用いても良いが、酸化マグネシウム(MgO)は吸水性が高く、炭酸マグネシウム(MgCO)は炭酸ガスを発生してしまうので、水酸化マグネシウム(Mg(OH))のように、吸水性が低く、炭酸ガスの発生も無く、焼成過程で酸化マグネシウム(MgO)に変化する化合物を用いることが好ましい。 Oxide powder may be used as a raw material for the RE element. For example, in the case of lanthanum (La), lanthanum hydroxide (La (OH) 2 ) has high hygroscopicity because lanthanum oxide (La 2 O 3 ) has high hygroscopicity. It is preferable to use a compound having a low water absorption and changing to lanthanum oxide (La 2 O 3 ) during the firing process. Magnesium oxide (MgO) or magnesium carbonate (MgCO 3 ) may be used as the magnesium (Mg) raw material, but magnesium oxide (MgO) has high water absorption, and magnesium carbonate (MgCO 3 ) generates carbon dioxide gas. Therefore, it is preferable to use a compound such as magnesium hydroxide (Mg (OH) 2 ) that has low water absorption, does not generate carbon dioxide, and changes to magnesium oxide (MgO) during the firing process.

周期表第6族元素珪化物を形成するための原料は、周期表第6族元素の酸化物、炭化物、珪化物、窒化物等いずれでも良いが、安価で微粉末が得られやすいことから酸化物を用いることが望ましい。   The raw material for forming the periodic table group 6 element silicide may be any of the oxides, carbides, silicides, nitrides, etc. of the periodic table group 6 element, but it is oxidized because it is inexpensive and easily obtains a fine powder. It is desirable to use a product.

次に、これらの原料を秤量した混合粉末に適宜バインダや溶剤を添加して混合、粉砕し、スプレードライ法等により乾燥、造粒する。そして、この造粒粉末をプレス成形により任意の形状に成形する。本発明によれば、プレス成形する際の成形圧は、120MPa以上の成形圧にする必要がある。このように高い成形圧で成形することにより、成形体の表面と内部との密度差ができて、焼成後においても表面と内部の差を存在させることができる。   Next, a binder or a solvent is appropriately added to the mixed powder obtained by weighing these raw materials, mixed and pulverized, and dried and granulated by a spray drying method or the like. And this granulated powder is shape | molded by press molding in arbitrary shapes. According to the present invention, the molding pressure during press molding needs to be a molding pressure of 120 MPa or more. By molding at such a high molding pressure, a density difference between the surface and the inside of the molded body can be produced, and a difference between the surface and the inside can exist even after firing.

その後、例えば窒素雰囲気中で、常圧焼成法、ガス圧力焼成法、ホットプレス法等により1650〜1830℃の温度で焼成する。   Thereafter, firing is performed at a temperature of 1650 to 1830 ° C. by a normal pressure firing method, a gas pressure firing method, a hot press method, or the like, for example, in a nitrogen atmosphere.

この焼成の具体的な条件は、上記成形体を窒化珪素質焼結体製の焼成鉢に入れるとともに、この焼成鉢の中にSiおよびMg成分を入れて焼成鉢の蓋を密封状態がさほど高くない状態で閉めて焼成炉内にセットする。そして、焼成炉内を1気圧の窒素で置換した後、5〜15℃/分で昇温を開始し、1400〜1500℃の温度範囲における昇温速度を1〜5℃/分に変更した後、1500℃から焼成温度の1730〜1830℃までの昇温速度は再度5〜15℃/分に変更する。そして、焼成温度の1730〜1830℃で5〜10時間保持して、冷却する条件とする。また、焼成中はガス抜きしたり窒素ガスを追加で導入したりして炉内の雰囲気が窒素1気圧に保たれるように調整する。これによって、マグネシウムは表面において適度に揮発するとともにRE元素は揮発しない状態となり、焼結体を緻密化させるとともに所定の表面と内部の組織の焼結体が得られる。   The specific conditions for this firing are that the molded body is placed in a firing bowl made of a silicon nitride sintered body, and Si and Mg components are placed in the firing bowl so that the sealing state of the firing bowl is so high. Close and set in the firing furnace. Then, after replacing the inside of the firing furnace with 1 atm of nitrogen, the temperature increase was started at 5 to 15 ° C./min, and the temperature increase rate in the temperature range of 1400 to 1500 ° C. was changed to 1 to 5 ° C./min. The heating rate from 1500 ° C. to the firing temperature of 1730 to 1830 ° C. is changed again to 5 to 15 ° C./min. And it is set as the conditions which hold | maintain at the baking temperature of 1730-1830 degreeC for 5 to 10 hours, and cool. Further, during the firing, the atmosphere in the furnace is adjusted to be maintained at 1 atm of nitrogen by degassing or additionally introducing nitrogen gas. As a result, magnesium volatilizes moderately on the surface and RE element does not volatilize, densifying the sintered body and obtaining a sintered body having a predetermined surface and internal structure.

なお、焼成鉢中に成形体とともに入れるSiおよびMg成分は、Si粉末、SiO粉末、Si粉末、MgO粉末、Mg(OH)粉末の状態で入れる方法が挙げられ、これらの粉末を成形体の周囲に置いたり、成形体の下面に敷き詰めたり、成形体自体を上記粉末中に埋めた状態で焼成することにより、焼成雰囲気中にSiOガスとMgOガスが生成して焼結を促進する方法が挙げられる。 Incidentally, Si and Mg components put together molded body during the firing bowl, Si powder, SiO 2 powder, Si 3 N 4 powder, MgO powder, include a method of putting in Mg (OH) 2 powder state, these powders Is placed around the molded body, spread on the lower surface of the molded body, or fired in a state where the molded body is embedded in the powder, thereby generating SiO gas and MgO gas in the firing atmosphere to sinter. The method of promoting is mentioned.

さらに、前述のように焼結体1の表面と内部の組織差を得るためには、元素の拡散が始まる温度域で焼結体1の内部まで充分に温度を上げておく必要があり、1400〜1500℃間の昇温速度を1〜5℃/分とすることによって可能となる。また、一旦、窒素雰囲気中で1730℃〜1830℃で焼成した後、9.8MPa〜294MPa、1500〜1700℃で熱間静水圧焼成を施すことが、緻密で、窒化珪素結晶2の異常粒成長が抑制された耐チッピング性を改善した焼結体1が得られる点で望ましい。   Further, as described above, in order to obtain a difference in structure between the surface and the inside of the sintered body 1, it is necessary to sufficiently raise the temperature to the inside of the sintered body 1 in a temperature range where element diffusion starts. It becomes possible by setting the temperature rising rate between ˜1500 ° C. to 1-5 ° C./min. In addition, after firing at 1730 ° C. to 1830 ° C. in a nitrogen atmosphere, hot isostatic firing is performed at 9.8 MPa to 294 MPa and 1500 to 1700 ° C. to obtain dense and abnormal grain growth of the silicon nitride crystal 2 This is desirable in that a sintered body 1 with improved chipping resistance with reduced resistance can be obtained.

また、上述した焼結体は、目的の性能に応じて研削加工が施されるが、本発明にて規定する表面領域が残る状態で研削加工する限りにおいては本発明の効果は失われない。そして、上記焼結体は硬度と靭性に優れることから構造部材用として適応可能であるが、特に、耐摩耗性と耐欠損性とが要求される切削工具として好適に用いられる。なお、焼結体の表面にTiNやAl、TiAlN等の硬質被覆層を施してもよい。 Moreover, although the sintered body mentioned above is ground according to the target performance, as long as it grinds in the state where the surface area | region prescribed | regulated by this invention remains, the effect of this invention is not lost. And since the said sintered compact is excellent in hardness and toughness, it can be adapted for structural members, but it is particularly suitably used as a cutting tool that requires wear resistance and fracture resistance. It may be subjected to hard coating layer of TiN and Al 2 O 3, TiAlN or the like on the surface of the sintered body.

出発原料として、平均粒径0.3μmの窒化珪素(Si)粉末と、平均粒径1.2μmのRE元素化合物(水酸化ランタン(La(OH))、酸化イットリウム(Y)、酸化イッテリビウム(Yb)、酸化エルビウム(Er)、酸化セリウム(Ce)のいずれか)粉末と、平均粒径0.7μmの酸化アルミニウム(Al)粉末と、平均粒径2.5μmの水酸化マグネシウム(Mg(OH))粉末とを焼結体の全体組成がの割合となるように調合し、バインダと溶剤とを添加した後、アトライタミルにて70時間、粉砕、混合した。その後、乾燥して溶剤を除去して造粒粉末を作製し、この造粒粉末を表1に示す成形圧でSNGN120412の切削工具形状にプ
レス成形した。
As starting materials, silicon nitride (Si 3 N 4 ) powder having an average particle size of 0.3 μm, RE element compound (lanthanum hydroxide (La (OH) 2 ), yttrium oxide (Y 2 O) having an average particle size of 1.2 μm 3 ), ytterbium oxide (Yb 2 O 3 ), erbium oxide (Er 2 O 3 ), cerium oxide (Ce 2 O 3 ) powder, and aluminum oxide (Al 2 O 3 ) having an average particle size of 0.7 μm ) After preparing the powder and magnesium hydroxide (Mg (OH) 2 ) powder having an average particle diameter of 2.5 μm so that the total composition of the sintered body is the ratio shown in Table 2 , and adding the binder and the solvent Then, it was pulverized and mixed in an attritor mill for 70 hours. Thereafter, the solvent was removed by drying to prepare a granulated powder, and this granulated powder was press-molded into a SNGN120212 cutting tool shape with the molding pressure shown in Table 1.

この成形体を焼成鉢内にセットする際、Si粉末、Si粉末、SiO粉末の少なくとも1種とMg(OH)粉末との混合粉末を焼成鉢内に充填した状態でセットして蓋をし、これをカーボン製の円筒内に置いた状態で焼成炉内に載置した。そして、焼成炉内を窒素1気圧に置換して、脱脂後、1400℃まで昇温速度10℃/分で昇温し、その後を表1の条件で昇温、焼成した。なお、焼成中の雰囲気は窒素1気圧に制御した。その後、1600℃、2時間、196MPaの条件で熱間静水圧焼成(HIP)し、さらにこの焼結体の表面を0.3mm厚み研削加工(両頭加工と外周加工)して窒化珪素質焼結体を得た。 When this molded body is set in a firing pot, it is set in a state where a mixed powder of at least one of Si 3 N 4 powder, Si powder, and SiO 2 powder and Mg (OH) 2 powder is filled in the firing pot. The lid was put on and placed in a firing furnace in a state where it was placed in a carbon cylinder. Then, the inside of the firing furnace was replaced with 1 atm of nitrogen, and after degreasing, the temperature was raised to 1400 ° C. at a rate of temperature rise of 10 ° C./min. Thereafter, the temperature was raised and fired under the conditions shown in Table 1. The atmosphere during firing was controlled to 1 atm of nitrogen. Thereafter, hot isostatic pressing (HIP) is performed at 1600 ° C. for 2 hours and 196 MPa, and the surface of the sintered body is further subjected to 0.3 mm thickness grinding (double-head processing and peripheral processing) to sinter silicon nitride. Got the body.

得られた窒化珪素質焼結体について、焼結体の表面を含む断面を鏡面状態に研磨した。次に、この鏡面を含む焼結体を50℃で、濃度23vol%のフッ酸水溶液中に2.5時間浸してエッチング処理を行った後、フッ酸水溶液から引き上げて水洗い洗浄し、乾燥した。そして、このエッチングした焼結体の鏡面について、焼結体の表面領域と内部においてそれぞれ35μm×32μmの範囲で組織写真を撮り、それぞれの写真から表面領域と内部における空隙率を画像解析によって算出した。また、この組織写真を用いて、組織を構成する結晶のうち、短軸径が1μm以上でアスペクト比が5以上で観察される窒化珪素結晶の数をそれぞれ確認した。さらに、これらの結晶の平均粒径を画像解析法により求めた。さらには、この鏡面の低倍写真から表面領域の幅を特定した。なお、図1、2は試料No.1の組織写真である。   About the obtained silicon nitride sintered body, the cross section including the surface of the sintered body was polished into a mirror surface state. Next, this sintered body including the mirror surface was immersed in a hydrofluoric acid aqueous solution having a concentration of 23 vol% at 50 ° C. for 2.5 hours for etching treatment, then pulled up from the hydrofluoric acid aqueous solution, washed with water, washed and dried. And about the mirror surface of this etched sintered compact, the structure | tissue photograph was each taken in the range of 35 micrometers x 32 micrometers in the surface area | region and the inside of a sintered compact, and the porosity in the surface area | region and the inside was calculated by image analysis from each photograph. . Moreover, using this structure photograph, the number of silicon nitride crystals observed with a minor axis diameter of 1 μm or more and an aspect ratio of 5 or more among the crystals constituting the structure was confirmed. Furthermore, the average particle size of these crystals was determined by image analysis. Furthermore, the width of the surface region was specified from the low-magnification photograph of this mirror surface. 1 and 2 are sample Nos. It is a structure photograph of 1.

また、焼結体を粉状として焼結体中に含まれる各成分の含有量を算出した。結果は表2に示した。   Moreover, content of each component contained in a sintered compact was computed by making a sintered compact into a powder form. The results are shown in Table 2.

さらに、得られた窒化珪素質焼結体からなる切削工具を用いて、下記条件により切削性能を評価した。
切削方法:フライス切削
被切削材:FCD−450 ブロック材 4つ穴付き
切削速度:500m/分
送り量:0.2mm/rev
切り込み量:2.0mm
切削条件:乾式切削
評価項目:10パス加工後、切刃のフランク摩耗量とチッピング状態を顕微鏡観察により確認した。
結果は表3に示した。
Furthermore, cutting performance was evaluated under the following conditions using a cutting tool made of the obtained silicon nitride sintered body.
Cutting method: Milling material to be cut: FCD-450 Block material Cutting speed with 4 holes: 500 m / min Feed amount: 0.2 mm / rev
Cutting depth: 2.0mm
Cutting conditions: Dry cutting evaluation items: After 10 passes, the flank wear amount and chipping state of the cutting edge were confirmed by microscopic observation.
The results are shown in Table 3.

表1〜3に示した結果によれば、本発明の範囲内の試料No.1〜5はいずれも摩耗量が小さく刃先のチッピングの少ない切削性能を示した。   According to the results shown in Tables 1 to 3, sample Nos. Within the scope of the present invention. Nos. 1 to 5 all showed cutting performance with a small amount of wear and little chipping of the blade edge.

これに対して、窒化珪素の含有量が93質量%より少ない試料No.6は、耐摩耗性が悪かった。また、1400〜1500℃における昇温速度が5℃/分より速い試料No.7では、エッチング処理後の内部における空隙率が表面における空隙率よりも小さくなり、耐摩耗性が低下した。さらに、1500℃以上の温度域での昇温速度が10℃/分より遅い試料No.9ではエッチング処理後の内部における空隙率が表面における空隙率と同等に小さいものであったが、チッピングが多発して摩耗が進行しやすいものであった。また、成形圧が98MPa(1tonf/cm)の試料No.8では表面も内部と同等にエッチングされ、異常摩耗を引き起こした。 In contrast, Sample No. with a silicon nitride content of less than 93% by mass. No. 6 had poor wear resistance. Sample No. 1 having a heating rate at 1400 to 1500 ° C. faster than 5 ° C./min. In No. 7, the porosity in the interior after the etching treatment was smaller than the porosity on the surface, and the wear resistance was lowered. Furthermore, sample No. 1 whose temperature increase rate in the temperature range of 1500 ° C. or higher is slower than 10 ° C./min. In No. 9, the porosity in the interior after the etching treatment was as small as the porosity on the surface, but the chipping frequently occurred and the wear easily progressed. Further, Sample No. with a molding pressure of 98 MPa (1 tonf / cm 2 ) was used. In No. 8, the surface was etched as well as the inside, causing abnormal wear.

本発明の窒化系素質焼結体の一例について、焼結体の表面を含む断面研磨面をフッ酸水溶液によりエッチング処理を行った後の断面研磨面の表面領域Aにおける組織写真である。It is a structure | tissue photograph in the surface area | region A of the cross-section grinding | polishing surface after etching the cross-section grinding | polishing surface containing the surface of a sintered compact with a hydrofluoric acid aqueous solution about an example of the nitride-based elementary sintered body of this invention. 図1の断面研磨面の内部Bにおける組織写真である。It is a structure | tissue photograph in the inside B of the cross-section grinding | polishing surface of FIG.

符号の説明Explanation of symbols

1 窒化系素質焼結体(焼結体)
2 窒化珪素結晶
3 空隙
1 Nitride-based sintered body (sintered body)
2 Silicon nitride crystal 3 Void

Claims (4)

窒化珪素を93質量%以上含み、RE元素酸化物をRE 換算で0.1〜4.5質量%、酸化マグネシウムをMgO換算で0.3〜2.5質量%、酸化アルミニウムをAl 換算で0〜0.6質量%、残余の酸素をシリカ(SiO )換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%の比率で含有する窒化珪素質焼結体であって、該焼結体の表面を含む断面研磨面をフッ酸水溶液によりエッチング処理を行った後の前記断面研磨面の35μm×32μmの範囲の組織写真について、前記焼結体の表面を含む表面領域における空隙率が前記焼結体の内部における空隙率よりも小さいことを特徴とする窒化珪素質焼結体。 Nitride silicofluoride-containing more than 93 wt% seen including, 0.1 to 4.5 wt% of RE elements oxides terms of RE 2 O 3, 0.3 to 2.5 wt% of magnesium oxide in terms of MgO, aluminum oxide 0 to 0.6% by mass in terms of Al 2 O 3 , 0.1 to 4.5% by mass of residual oxygen in terms of silica (SiO 2 ), and 0 to 2% by mass of Group 6 element silicides in the periodic table A structure in a range of 35 μm × 32 μm of the cross-sectional polished surface after etching the cross-sectional polished surface including the surface of the sintered compact with a hydrofluoric acid aqueous solution. A silicon nitride sintered body characterized in that the porosity in a surface region including the surface of the sintered body is smaller than the porosity in the inside of the sintered body. 前記エッチング処理後の断面研磨面の組織写真について、前記表面領域における窒化珪素結晶の平均粒径が0.35〜0.55μmであり、かつ、該表面領域における前記窒化珪素結晶の平均粒径が前記内部における前記窒化珪素結晶の平均粒径よりも小さいことを特徴とする請求項1記載の窒化珪素質焼結体。   Regarding the structure photograph of the cross-sectional polished surface after the etching treatment, the average particle size of the silicon nitride crystal in the surface region is 0.35 to 0.55 μm, and the average particle size of the silicon nitride crystal in the surface region is The silicon nitride based sintered body according to claim 1, wherein the silicon nitride sintered body is smaller than an average particle diameter of the silicon nitride crystal in the inside. 前記エッチング処理後の断面研磨面の組織写真について、短軸径が1μm以上でアスペクト比が5以上で観察される窒化珪素結晶の存在割合が、前記内部よりも前記表面領域において少ないことを特徴とする請求項1または2記載の窒化珪素質焼結体。   Regarding the structure photograph of the cross-section polished surface after the etching treatment, the existence ratio of silicon nitride crystals observed at a minor axis diameter of 1 μm or more and an aspect ratio of 5 or more is smaller in the surface region than in the interior. The silicon nitride based sintered body according to claim 1 or 2. 前記窒化珪素質焼結体の全体組成において前記窒化珪素を94.5〜99.5質量%の比率で含有することを特徴とする請求項1乃至3のいずれかに記載の窒化珪素質焼結体。 The silicon nitride-based sintered body according to any one of claims 1 to 3, wherein the silicon nitride is contained in a ratio of 94.5 to 99.5 mass% in the overall composition of the silicon nitride-based sintered body. Union.
JP2008167422A 2008-06-26 2008-06-26 Silicon nitride sintered body Active JP5527949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008167422A JP5527949B2 (en) 2008-06-26 2008-06-26 Silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008167422A JP5527949B2 (en) 2008-06-26 2008-06-26 Silicon nitride sintered body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014018588A Division JP5864631B2 (en) 2014-02-03 2014-02-03 Silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JP2010006635A JP2010006635A (en) 2010-01-14
JP5527949B2 true JP5527949B2 (en) 2014-06-25

Family

ID=41587555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008167422A Active JP5527949B2 (en) 2008-06-26 2008-06-26 Silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP5527949B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527937B2 (en) * 2008-03-26 2014-06-25 京セラ株式会社 Silicon nitride sintered body
JP5864631B2 (en) * 2014-02-03 2016-02-17 京セラ株式会社 Silicon nitride sintered body
JP6346066B2 (en) * 2014-10-29 2018-06-20 京セラ株式会社 Cutting tool and manufacturing method
KR102575871B1 (en) * 2019-02-26 2023-09-07 교세라 가부시키가이샤 Inserts and cutting tools equipped therewith
WO2021172575A1 (en) * 2020-02-28 2021-09-02 京セラ株式会社 Member for optical glass production apparatus
JP7278325B2 (en) 2021-04-21 2023-05-19 株式会社Maruwa Silicon nitride sintered body
JP7339980B2 (en) * 2021-04-21 2023-09-06 株式会社Maruwa Manufacturing method of silicon nitride sintered body
JP7201734B2 (en) * 2021-04-21 2023-01-10 株式会社Maruwa Silicon nitride sintered body
JP7339979B2 (en) * 2021-04-21 2023-09-06 株式会社Maruwa Manufacturing method of silicon nitride sintered body
JP7278326B2 (en) * 2021-04-21 2023-05-19 株式会社Maruwa Manufacturing method of silicon nitride sintered body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046159A (en) * 1990-04-23 1992-01-10 Nippon Cement Co Ltd Production of silicon nitride-based ceramics sintered body
JPH06183860A (en) * 1992-12-15 1994-07-05 Toshiba Corp Multifunctional material
JP3254280B2 (en) * 1992-12-24 2002-02-04 日本特殊陶業株式会社 Silicon nitride sintered body
JP3270792B2 (en) * 1994-06-24 2002-04-02 京セラ株式会社 Method for producing silicon nitride based sintered body
JP2002012474A (en) * 2000-06-22 2002-01-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered compact and cutting tool using it
JP2002263917A (en) * 2001-03-12 2002-09-17 Ngk Spark Plug Co Ltd Silicon nitride material cutter
JP2009173508A (en) * 2007-02-23 2009-08-06 Kyocera Corp Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method
JP5527937B2 (en) * 2008-03-26 2014-06-25 京セラ株式会社 Silicon nitride sintered body
US8236411B2 (en) * 2008-03-26 2012-08-07 Kyocera Corporation Cutting tool

Also Published As

Publication number Publication date
JP2010006635A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
JP5527949B2 (en) Silicon nitride sintered body
JP5527937B2 (en) Silicon nitride sintered body
JP5060092B2 (en) Semiconductor device heat sink
JP5732037B2 (en) Wear-resistant member and method for manufacturing the same
EP2636659B1 (en) High rigidity ceramic material and method for producing same
JP5340028B2 (en) Cutting tools
JP4723127B2 (en) Alumina ceramic sintered body, method for producing the same, and cutting tool
JP5031602B2 (en) Silicon nitride sintered body, cutting tool, cutting apparatus, and cutting method
JP2008069031A (en) Silicon nitride sintered compact and method of manufacturing the same
JP5864631B2 (en) Silicon nitride sintered body
JP6075803B2 (en) Silicon nitride sintered body and cutting tool
JP5989602B2 (en) Silicon nitride sintered body, manufacturing method thereof, and rolling element for bearing
JP6321608B2 (en) Silicon nitride sintered body, method for producing the same, and rolling element for bearing
JP4070417B2 (en) Silicon nitride member, method for manufacturing the same, and cutting tool
JP2006206376A (en) Ceramic sintered compact, cutting insert and cutting tool
CN115667185A (en) Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body
JP2009173508A (en) Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method
JP2001181053A (en) Silicon nitride sintered product and method for producing the same
JP2541255B2 (en) Sialon ceramic sintered body
JP2015009327A (en) Cutting insert
JP5150064B2 (en) Method for manufacturing wear-resistant member
JP2008273753A (en) Boron carbide-based sintered compact and protective member
CN114929649B (en) Cutting tool
JP2006290709A (en) Silicon nitride material and its manufacturing method
JP3715775B2 (en) High speed cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130314

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130508

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20130827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140415

R150 Certificate of patent or registration of utility model

Ref document number: 5527949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150