JP2009173508A - Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method - Google Patents

Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method Download PDF

Info

Publication number
JP2009173508A
JP2009173508A JP2008017247A JP2008017247A JP2009173508A JP 2009173508 A JP2009173508 A JP 2009173508A JP 2008017247 A JP2008017247 A JP 2008017247A JP 2008017247 A JP2008017247 A JP 2008017247A JP 2009173508 A JP2009173508 A JP 2009173508A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
cutting
depth
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008017247A
Other languages
Japanese (ja)
Inventor
Takeo Fukutome
武郎 福留
Shuichi Tateno
周一 立野
Hiroshi Yoshimitsu
宏 吉満
Takashi Watanabe
孝 渡邊
Tatsuyuki Nakaoka
達行 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008017247A priority Critical patent/JP2009173508A/en
Publication of JP2009173508A publication Critical patent/JP2009173508A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride sintered compact where wear resistance and chipping resistance are improved, a cutting tool, a device for cutting works and a cutting method. <P>SOLUTION: The silicon nitride sintered compact has a crystal phase being mainly silicon nitride crystals and an amorphous grain boundary phase containing lanthanum, aluminum, magnesium, silicon and oxygen and existing in the grain boundary of the silicon nitride crystals. The content of magnesium in a face at a depth of 0.3 mm from the surface of the sintered compact is 1.3 mass% or less in terms of an oxide. The content of magnesium in a face at a depth of 0.3 mm from the surface of the sintered compact is less than that in a face at a depth of 1 mm from the surface of the sintered compact. The difference of the content of magnesium between in a face at a depth of 0.3 mm and in a face at a depth of 1 mm from the surface of the sintered compact is 0.5 mass% or less in terms of an oxide. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、耐摩耗性、耐チッピング性を改善した窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法に関する。   The present invention relates to a silicon nitride sintered body, a cutting tool, a cutting apparatus, and a cutting method that have improved wear resistance and chipping resistance.

エンジニアリングセラミックスとして知られている窒化珪素やサイアロンは、高強度、高温高強度、高靭性である上、耐熱性、耐熱衝撃性、耐摩耗性および耐酸化性に優れることから、特にガスタービンやターボロータ等の熱機関用部品や切削工具として応用が進められている。   Silicon nitride and sialon, known as engineering ceramics, have high strength, high temperature, high strength, and high toughness, as well as excellent heat resistance, thermal shock resistance, wear resistance, and oxidation resistance. Applications are being promoted as heat engine parts such as rotors and cutting tools.

このような部品のうち、特に切削工具では強い衝撃が加わることがあるため、耐衝撃性や耐チッピング性を改善した材料が求められている。   Among such parts, particularly in a cutting tool, a strong impact may be applied, so a material having improved impact resistance and chipping resistance is required.

これまでに、窒化珪素質焼結体の機械的、熱的特性を高めるために、窒化珪素質焼結体の粒界を、金属成分として希土類元素と珪素とアルミニウムと微量のマグネシウム、さらに酸素と窒素からなる非晶質の粒界相により構成し、それらの粒界相成分を特定の組成範囲に制御することで上記目的を達成しようとする試みがなされている(例えば、特許文献1を参照)。   To date, in order to improve the mechanical and thermal characteristics of the silicon nitride sintered body, the grain boundaries of the silicon nitride sintered body are changed to include rare earth elements, silicon, aluminum, a small amount of magnesium, and oxygen as metal components. Attempts have been made to achieve the above-mentioned object by constituting the amorphous grain boundary phase composed of nitrogen and controlling the grain boundary phase components in a specific composition range (see, for example, Patent Document 1). ).

尚、窒化珪素結晶粒子の粒界を構成する希土類元素としてイットリウムを用いたものが知られている(特許文献2参照)。
特許第3454993号公報 特許第2997899号公報
In addition, the thing using yttrium as a rare earth element which comprises the grain boundary of a silicon nitride crystal grain is known (refer to patent documents 2).
Japanese Patent No. 3454993 Japanese Patent No. 2997899

しかしながら、上記特許文献1、2に記載の窒化珪素質焼結体においては、焼結体表層と焼結体内部のマグネシウム含有量の差が大きく、これにより、焼結体の表層と内部とで特性差が生じ、未だ耐摩耗性および耐チッピング性に劣るといった問題があった。   However, in the silicon nitride-based sintered bodies described in Patent Documents 1 and 2, the difference in magnesium content between the sintered body surface layer and the inside of the sintered body is large. There was a problem that characteristic differences occurred and the wear resistance and chipping resistance were still inferior.

焼結体表層と焼結体内部とのマグネシウム含有量の差が大きくなる理由については明確ではないが、本発明者等は、焼成時にマグネシウムが揮発し、窒化珪素粉末間を外部に抜けていくため、焼結体表層と焼結体内部とのマグネシウム含有量の差が大きくなると考えている。   The reason why the difference in magnesium content between the surface layer of the sintered body and the inside of the sintered body becomes large is not clear, but the present inventors volatilize magnesium during firing and escape between the silicon nitride powders to the outside. Therefore, it is considered that the difference in magnesium content between the sintered body surface layer and the inside of the sintered body becomes large.

本発明の課題は、耐摩耗性、耐チッピング性を改善した窒化珪素質焼結体および切削工具ならびに切削加工装置、切削方法を提供することである。   An object of the present invention is to provide a silicon nitride sintered body, a cutting tool, a cutting apparatus, and a cutting method that have improved wear resistance and chipping resistance.

本発明者等は、上記課題について鋭意検討した結果、ランタンと、アルミニウムと、マグネシウムと、珪素とを組み合わせることにより、焼成時にMgOの揮発が顕著になる温度よりも低温で液相を生成させ、液相生成による再配列過程において体積収縮による開気孔の低減により、MgOが外部に抜けていくのを抑制でき、焼結体表面から深さ0.3mmの面(以下、表層ということがある)と、焼結体表面から深さ1mmの面(以下、内部ということがある)とのマグネシウム含有量の差を小さくできることを見出し、本発明に至った。   As a result of intensive studies on the above problems, the present inventors, by combining lanthanum, aluminum, magnesium, and silicon, generate a liquid phase at a temperature lower than the temperature at which MgO volatilization becomes significant during firing, Reduction of open pores due to volume shrinkage in the rearrangement process due to liquid phase generation can prevent MgO from escaping to the outside, and a surface having a depth of 0.3 mm from the surface of the sintered body (hereinafter sometimes referred to as the surface layer). And the present inventors have found that the difference in magnesium content between the sintered body surface and a surface having a depth of 1 mm (hereinafter sometimes referred to as “inside”) can be reduced.

本発明の窒化珪素質焼結体は、窒化珪素結晶を主体とする結晶相と、ランタン、アルミニウム、マグネシウム、珪素及び酸素を含み、前記窒化珪素結晶の粒界にある非晶質の粒界相とを有する窒化珪素質焼結体であって、該窒化珪素質焼結体の表面から深さ0.3mmの面におけるマグネシウム含有量が酸化物換算で1.3質量%以下であるとともに、前記窒化珪素質焼結体の表面から深さ0.3mmの面におけるマグネシウム含有量が、前記窒化珪素質焼結体の表面から深さ1mmの面におけるマグネシウム含有量よりも少なく、かつ、前記窒化珪素質焼結体の表面から深さ0.3mmの面と深さ1mmの面とのマグネシウム含有量の差が、酸化物換算で0.5質量%以下であることを特徴とする。   The silicon nitride sintered body of the present invention includes a crystal phase mainly composed of a silicon nitride crystal, and an amorphous grain boundary phase at the grain boundary of the silicon nitride crystal, containing lanthanum, aluminum, magnesium, silicon and oxygen. A magnesium content in a surface having a depth of 0.3 mm from the surface of the silicon nitride-based sintered body is 1.3% by mass or less in terms of oxide, and The magnesium content in the surface having a depth of 0.3 mm from the surface of the silicon nitride-based sintered body is less than the magnesium content in the surface having a depth of 1 mm from the surface of the silicon nitride-based sintered body, and the silicon nitride The difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the surface of the sintered material is 0.5% by mass or less in terms of oxide.

本発明の窒化珪素質焼結体では、粒界相中のMgが焼結体の深さ方向に対して従来よりも均一に存在するようになり、焼結体の表層と内部とでの特性差が生じ難くなり、耐摩耗性および耐チッピング性を向上できる。   In the silicon nitride-based sintered body of the present invention, Mg in the grain boundary phase is present more uniformly in the depth direction of the sintered body than in the past, and the characteristics in the surface layer and inside of the sintered body Differences are less likely to occur, and wear resistance and chipping resistance can be improved.

焼結体表面から深さ0.3mmの面と深さ1mmの面におけるマグネシウム含有量の差が、酸化物換算量で0.5質量%以下となる理由については明確ではないが、本発明者等は、希土類元素(第3族元素)酸化物の中でも酸化ランタンは、シリカ(SiO)との共晶温度が、他の希土類元素酸化物とシリカとの共晶温度よりも低いため、ランタンと、アルミニウムと、マグネシウムと、珪素とを組み合わせることにより、MgOの揮発が顕著になる温度よりも焼結助剤の液相化温度を低下させることが可能となり、焼成段階でMgOの揮発が顕著になる前に低温で液相を生成させ、液相生成による再配列過程において体積収縮による開気孔の低減により、低温で緻密化を開始し、MgOが揮発したとしても、MgOが外部に漏出することを抑制することができ、これにより表層と内部のマグネシウム(酸化物換算)の濃度差が小さくなり、従来よりも均質で緻密な焼結体が作製できると考えている。 Although the reason why the difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the surface of the sintered body is 0.5% by mass or less in terms of oxide is not clear, the present inventor Among the rare earth element (Group 3 element) oxides, lanthanum oxide has a lower eutectic temperature with silica (SiO 2 ) than other eutectic temperatures with other rare earth element oxides and silica. In addition, by combining aluminum, magnesium, and silicon, it becomes possible to lower the liquidus temperature of the sintering aid than the temperature at which MgO volatilization becomes significant, and MgO volatilization becomes significant at the firing stage. The liquid phase is generated at a low temperature before it becomes low, and densification starts at a low temperature due to the reduction of open pores due to volume contraction in the rearrangement process by the liquid phase generation. This Can be suppressed, believes Accordingly density difference of the surface layer and interior of magnesium (as oxide) is reduced, more homogeneous than the conventional dense sintered body can be produced.

また、本発明の窒化珪素質焼結体は、前記ランタンの酸化物換算量、前記アルミニウムの酸化物換算量および前記マグネシウムの酸化物換算量の合計が窒化珪素質焼結体の全量中3.5質量%以下であることを特徴とする。上記したように、ランタンと、アルミニウムと、マグネシウムと、珪素とを組み合わせることにより、助剤量が少ない場合であっても低温で緻密化させることができ、耐摩耗性および耐チッピング性を改善した窒化珪素質焼結体を提供することができる。   In the silicon nitride sintered body of the present invention, the sum of the lanthanum oxide equivalent, the aluminum oxide equivalent, and the magnesium oxide equivalent is 3. It is characterized by being 5% by mass or less. As described above, by combining lanthanum, aluminum, magnesium, and silicon, even when the amount of the auxiliary agent is small, it can be densified at low temperature, and wear resistance and chipping resistance are improved. A silicon nitride sintered body can be provided.

さらに、本発明の窒化珪素質焼結体は、前記窒化珪素質焼結体の表面は焼き肌面(as fired)であることを特徴とする。焼き肌面で最もMgOの揮発が激しいことが知られているが、本発明では、焼き肌面と内部のマグネシウム(酸化物換算)の濃度差を小さくすることができる。   Further, the silicon nitride sintered body of the present invention is characterized in that the surface of the silicon nitride sintered body is a fired surface (as fired). Although it is known that MgO is most volatilized on the grilled skin surface, in the present invention, the difference in concentration between the grilled skin surface and the internal magnesium (as oxide) can be reduced.

また、本発明の窒化珪素質焼結体は、前記窒化珪素質焼結体の表面から深さ0.3mmの面および前記窒化珪素質焼結体の表面から深さ1mmの面における粒界相の面積比率がそれぞれ10%以下であることを特徴とする。本発明の窒化珪素質焼結体では、焼結体中の粒界相が少ないことになり、粒界相の組成差も小さくなるため、耐チッピング性を高めることができる。   Further, the silicon nitride based sintered body of the present invention has a grain boundary phase on a surface having a depth of 0.3 mm from the surface of the silicon nitride based sintered body and a surface having a depth of 1 mm from the surface of the silicon nitride based sintered body. Each area ratio is 10% or less. In the silicon nitride-based sintered body of the present invention, the grain boundary phase in the sintered body is small, and the difference in composition of the grain boundary phase is also small, so that the chipping resistance can be improved.

本発明の切削工具は、上記の窒化珪素質焼結体からなることを特徴とする。このような切削工具では、耐摩耗性および耐チッピング性に優れ、寿命の長い切削工具を提供できる。   The cutting tool of this invention consists of said silicon nitride sintered body, It is characterized by the above-mentioned. Such a cutting tool can provide a cutting tool having excellent wear resistance and chipping resistance and a long life.

本発明の切削加工装置は、上記の切削工具と、該切削工具により加工する被切削材を保持するための保持台とを具備することを特徴とする。このような切削加工装置では、切削工具を長期間取り替えることなく切削することができる。   A cutting apparatus according to the present invention includes the above-described cutting tool and a holding table for holding a workpiece to be processed by the cutting tool. In such a cutting apparatus, cutting can be performed without replacing the cutting tool for a long period of time.

本発明の切削方法は、上記の切削工具を用いて被切削材を切削することを特徴とする。このような切削方法では、切削工具の耐摩耗性及び耐チッピング性が向上することに伴い、被切削材の寸法精度を向上できるとともに、切削工具を長期間取り替えることなく切削することができる。   The cutting method of this invention cuts a to-be-cut material using said cutting tool, It is characterized by the above-mentioned. In such a cutting method, along with improvement in wear resistance and chipping resistance of the cutting tool, it is possible to improve the dimensional accuracy of the material to be cut and to perform cutting without replacing the cutting tool for a long period of time.

本発明の窒化珪素質焼結体では、粒界相中のMgが焼結体の深さ方向に対して従来よりも均一に存在するようになり、焼結体の表層と内部とでの特性差が生じ難くなり、耐摩耗性および耐チッピング性を向上できる。   In the silicon nitride-based sintered body of the present invention, Mg in the grain boundary phase is present more uniformly in the depth direction of the sintered body than in the past, and the characteristics in the surface layer and inside of the sintered body Differences are less likely to occur, and wear resistance and chipping resistance can be improved.

本発明の切削工具では、切削工具が上記の窒化珪素質焼結体からなるため、耐摩耗性および耐チッピング性に優れ、寿命の長い切削工具を提供できる。   In the cutting tool of the present invention, since the cutting tool is made of the above-described silicon nitride sintered body, it is possible to provide a cutting tool having excellent wear resistance and chipping resistance and having a long life.

本発明の切削加工装置では、切削加工装置が上記の切削工具を具備するので、切削工具を長期間取り替えることなく切削することができる。   In the cutting apparatus of the present invention, since the cutting apparatus includes the above cutting tool, cutting can be performed without replacing the cutting tool for a long period of time.

本発明の切削方法では、上記の切削工具を用いて被切削材を切削するので、切削工具の耐摩耗性及び耐チッピング性が向上することに伴い、被切削材の寸法精度を向上できるとともに、切削工具を長期間取り替えることなく切削することができる。   In the cutting method of the present invention, since the workpiece is cut using the above-described cutting tool, the dimensional accuracy of the workpiece can be improved along with the improved wear resistance and chipping resistance of the cutting tool, Cutting can be performed without changing the cutting tool for a long time.

本実施形態の窒化珪素質焼結体は、主結晶である窒化珪素結晶と粒界相とを有する組織を有し、窒化珪素は主にβ−窒化珪素結晶相からなる。なお、このβ―窒化珪素結晶相に、わずかにアルミニウムが固溶してβ−サイアロンを形成していてもよい。窒化珪素の他に、Ti、Hf、Zr等の窒化物、炭化物、炭窒化物、W、Mo等の珪化物のうち少なくとも1種が存在する場合がある。窒化珪素結晶は、全量中に94.5質量%以上、さらには96.5質量%以上含有することが望ましい。これにより窒化珪素結晶の優れた特性を十分に発揮させることができる。   The silicon nitride sintered body of this embodiment has a structure having a silicon nitride crystal as a main crystal and a grain boundary phase, and the silicon nitride is mainly composed of a β-silicon nitride crystal phase. Note that β-sialon may be formed by slightly dissolving aluminum in the β-silicon nitride crystal phase. In addition to silicon nitride, at least one of nitrides such as Ti, Hf, and Zr, carbides, carbonitrides, and silicides such as W and Mo may exist. The silicon nitride crystal is preferably contained in the total amount of 94.5% by mass or more, more preferably 96.5% by mass or more. Thereby, the excellent characteristics of the silicon nitride crystal can be sufficiently exhibited.

[組成について]
本実施形態によれば、粒界相は、ランタン、アルミニウム、マグネシウム、珪素及び酸素を含有するものである。この粒界相を構成する元素の組成は、焼結体全量中、ランタンの酸化物(La)換算量が0.1質量%以上、アルミニウムの酸化物(Al)換算量が0.05〜0.6質量%、マグネシウムの酸化物(MgO)換算量が0.3質量%以上、酸素が2.5質量%以下であり、ランタンの酸化物換算量、アルミニウムの酸化物換算量、マグネシウムの酸化物換算量の合計が3.5質量%以下であることが望ましい。
[Composition]
According to this embodiment, the grain boundary phase contains lanthanum, aluminum, magnesium, silicon, and oxygen. The composition of the elements constituting the grain boundary phase is such that the lanthanum oxide (La 2 O 3 ) conversion amount is 0.1 mass% or more and the aluminum oxide (Al 2 O 3 ) conversion amount in the total amount of the sintered body. Is 0.05 to 0.6 mass%, magnesium oxide (MgO) equivalent is 0.3 mass% or more, oxygen is 2.5 mass% or less, lanthanum oxide equivalent, aluminum oxide The total of the conversion amount and the magnesium oxide conversion amount is preferably 3.5% by mass or less.

ランタンの酸化物換算量は、焼結体の緻密化のために、特に0.5質量%以上、さらには1質量%以上含むことが望ましい。アルミニウムの酸化物換算量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化のために、特には0.2質量%以上含み、焼結体の耐酸化性の低下による耐摩耗性の低下抑制のために、特に0.2〜0.55質量%、さらには0.3〜0.5質量%が望ましい。マグネシウムの酸化物換算量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化のために、特に0.35質量%以上、さらには0.4質量%以上含むことが望ましい。   The oxide equivalent amount of lanthanum is preferably 0.5% by mass or more, more preferably 1% by mass or more, in order to densify the sintered body. The oxide equivalent amount of aluminum contains 0.2% by mass or more particularly for the purpose of lowering the liquid phase generation temperature of the sintering aid and densifying the sintered body, and lowering the oxidation resistance of the sintered body. In particular, 0.2 to 0.55% by mass, and more preferably 0.3 to 0.5% by mass is desirable in order to suppress a decrease in wear resistance due to. The oxide equivalent amount of magnesium may include 0.35% by mass or more, more preferably 0.4% by mass or more, in order to lower the liquid phase generation temperature of the sintering aid and to densify the sintered body. desirable.

窒化珪素質焼結体に含まれる酸素量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化を保つとともに、耐酸化性および耐摩耗性を改善した窒化珪素質焼結体を実現するために2.5質量%以下が良い。特に、2.2質量%以下、さらには2質量%以下とすることが望ましい。   The amount of oxygen contained in the silicon nitride sintered body keeps the liquid phase formation temperature of the sintering aid low, keeps the sintered body dense, and improves the oxidation resistance and wear resistance. In order to realize the combined body, 2.5% by mass or less is preferable. In particular, it is desirable that the content be 2.2% by mass or less, and further 2% by mass or less.

このような組成とすることで、焼結助剤の量が少ない場合であっても窒化珪素質焼結体を低温で緻密化することができる。第3族元素酸化物の中でも酸化ランタン(La)は、シリカ(SiO)との共晶温度が、他の第3族元素(例えばエルビウム、イットリウム)酸化物とシリカとの共晶温度よりも低い。因みに酸化ランタンとシリカとの共晶温度が1625℃であるのに対し、酸化エルビウム(Er)とシリカとの共晶温度が1680℃であり、酸化イットリウム(Y)とシリカとの共晶温度が1660℃であり、酸化ランタンとシリカとの共晶温度が低い。尚、シリカは、窒化珪素原料中に含まれる。 By setting it as such a composition, even if it is a case where the quantity of a sintering auxiliary agent is small, a silicon nitride sintered compact can be densified at low temperature. Among group 3 element oxides, lanthanum oxide (La 2 O 3 ) has a eutectic temperature with silica (SiO 2 ), and other group 3 elements (eg, erbium, yttrium) oxide and silica eutectic. Lower than temperature. Incidentally, the eutectic temperature of lanthanum oxide and silica is 1625 ° C., whereas the eutectic temperature of erbium oxide (Er 2 O 3 ) and silica is 1680 ° C., and yttrium oxide (Y 2 O 3 ) and silica are mixed. Is 1660 ° C., and the eutectic temperature of lanthanum oxide and silica is low. Silica is contained in the silicon nitride raw material.

共晶温度の低い酸化ランタンとシリカとの組み合わせに対して、酸化マグネシウムおよび酸化アルミニウムをさらに加えることにより、液相生成温度を1400℃以下に低下させることが可能となる。その結果、窒化珪素が低温で緻密化を開始し、組織の微細化を達成することができる。また、窒化珪素結晶粒子の異常粒成長を抑制することができる。よって、耐摩耗性と耐チッピング性を改善した窒化珪素質焼結体となる。   By further adding magnesium oxide and aluminum oxide to the combination of lanthanum oxide having a low eutectic temperature and silica, the liquid phase generation temperature can be lowered to 1400 ° C. or lower. As a result, the silicon nitride starts to be densified at a low temperature, and the microstructure can be refined. Moreover, abnormal grain growth of silicon nitride crystal grains can be suppressed. Therefore, a silicon nitride sintered body with improved wear resistance and chipping resistance is obtained.

焼結助剤として、ランタンと珪素とアルミニウムとマグネシウムとを用いた場合には、窒化珪素結晶粒子(視野0.015mmで長径が大きい方から6個の窒化ケイ素粒子)の平均長径を10μm以下に抑制することが可能となる。その結果、耐摩耗性に加えて、耐チッピング性を向上させることができる。 When lanthanum, silicon, aluminum, and magnesium are used as sintering aids, the average major axis of silicon nitride crystal particles (six silicon nitride particles from the larger major axis with a visual field of 0.015 mm 2 ) is 10 μm or less. It becomes possible to suppress it. As a result, in addition to wear resistance, chipping resistance can be improved.

これに対し、ランタン以外の希土類元素を添加した場合には、耐チッピング性が劣るものしか得られない。   On the other hand, when rare earth elements other than lanthanum are added, only those having poor chipping resistance can be obtained.

尚、ランタンの不純物として、Ce、Pr、Nd等の他の希土類元素が、酸化物換算で合計1質量%以下含有することがある。すなわち、焼結体全量中に、ランタン以外のCe、Pr、Nd等の他の希土類元素が焼結体全量中0.03質量%以下含有することがある。ランタン以外の希土類元素を不純物として含有することがあるものの、酸化物換算量で焼結体全量中に0.03質量%程度あっても、ランタンと珪素とアルミニウムとマグネシウムとの組合せによる特性向上を十分に発揮できる。   Note that other rare earth elements such as Ce, Pr, and Nd may be contained as lanthanum impurities in total of 1% by mass or less in terms of oxides. That is, other rare earth elements such as Ce, Pr, and Nd other than lanthanum may be contained in the total amount of the sintered body in an amount of 0.03% by mass or less. Although rare earth elements other than lanthanum may be contained as impurities, even if the amount of oxide is about 0.03% by mass in the total amount of the sintered body, the combination of lanthanum, silicon, aluminum and magnesium can improve the characteristics. Can fully demonstrate.

また、本実施形態の窒化珪素質焼結体に、周期表第6族元素珪化物粒子を0.1〜2質量%の割合で含有させることで、高温強度の低下を抑制することができるとともに、窒化珪素質焼結体の耐摩耗性をさらに高めることができる。なお、この周期表第6族元素珪化物粒子は、窒化珪素質焼結体の粒界相に分散して存在している。   In addition, when the silicon nitride sintered body of the present embodiment contains the Group 6 element silicide particles of the periodic table at a ratio of 0.1 to 2% by mass, it is possible to suppress a decrease in high temperature strength. Further, the wear resistance of the silicon nitride sintered body can be further improved. The periodic table group 6 element silicide particles are present dispersed in the grain boundary phase of the silicon nitride sintered body.

また、周期表第6族元素珪化物として、珪化クロム、珪化モリブデン、珪化タングステンを例示できるが、微細な酸化物原料を用いて、焼成中に微細な粒子とできるという理由からことから珪化タングステンを用いることが望ましい。   Further, as the Group 6 element silicide of the periodic table, chromium silicide, molybdenum silicide, and tungsten silicide can be exemplified, but tungsten silicide is used for the reason that fine particles can be formed during firing using a fine oxide raw material. It is desirable to use it.

また、本実施形態の窒化珪素質焼結体は、相対密度が99%以上であることが好ましい。相対密度が99%以上になると、焼結体中にボイドがほとんどなくなり、さらに耐磨耗性が向上する。更に焼結体中にボイドがほとんどなくなることにより、フライス加工のように切削時に衝撃が加わるような加工の際、ボイドに応力が集中し、チッピングするという現象が抑制されるため耐チッピング性もよくなる。   Moreover, it is preferable that the relative density of the silicon nitride sintered body of this embodiment is 99% or more. When the relative density is 99% or more, there are almost no voids in the sintered body, and the wear resistance is further improved. Furthermore, since there are almost no voids in the sintered body, stress concentration is concentrated on the voids during chipping, such as milling, so that the chipping phenomenon is suppressed and chipping resistance is improved. .

本実施形態の窒化珪素質焼結体は、常圧焼成でも相対密度99%以上に緻密化することができるが、例えば、加圧焼成することで、結晶粒子の異常粒成長を抑制するとともに、相対密度を高くすることもできる。   The silicon nitride-based sintered body of the present embodiment can be densified to a relative density of 99% or higher even under normal pressure firing. For example, by suppressing the abnormal grain growth of crystal grains by performing pressure firing, The relative density can also be increased.

[組織について]
本実施形態の窒化珪素質焼結体は、焼結体表面から深さ0.3mmの面(以下、表層ということがある)におけるマグネシウム含有量が酸化物換算で1.3質量%以下であるとともに、焼結体表面から深さ0.3mmの面におけるマグネシウム含有量が、焼結体表面から深さ1mmの面(以下、内部ということがある)におけるマグネシウム含有量よりも少なく、かつ、焼結体表面から深さ0.3mmの面と深さ1mmの面におけるマグネシウム含有量の差が、酸化物(MgO)換算で0.5質量%以下である。
[About the organization]
In the silicon nitride-based sintered body of the present embodiment, the magnesium content in a surface (hereinafter sometimes referred to as a surface layer) having a depth of 0.3 mm from the surface of the sintered body is 1.3% by mass or less in terms of oxide. In addition, the magnesium content on the surface having a depth of 0.3 mm from the surface of the sintered body is less than the magnesium content on the surface having a depth of 1 mm from the surface of the sintered body (hereinafter sometimes referred to as the inside), and The difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the bonded surface is 0.5% by mass or less in terms of oxide (MgO).

このような構成とすることにより、粒界相中の成分が焼結体の深さ方向に対して従来よりも均一に存在するようになり、焼結体の表層と内部とで特性差が生じ難くなり、耐摩耗性および耐チッピング性を向上できる。   By adopting such a configuration, the components in the grain boundary phase exist more uniformly than in the past in the depth direction of the sintered body, resulting in a characteristic difference between the surface layer and the inside of the sintered body. It becomes difficult to improve wear resistance and chipping resistance.

焼結体表面から深さ0.3mmの面と深さ1mmの面におけるマグネシウム含有量の差が、酸化物換算量で0.5質量%以下となる理由については明確ではないが、本発明者等は、以下のように考えている。   Although the reason why the difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the surface of the sintered body is 0.5% by mass or less in terms of oxide is not clear, the present inventor Thinks as follows.

すなわち、周期表第3族元素の中でもランタンは、シリカとの共晶温度が、他の第3族元素とシリカとの共晶温度よりも低いため、焼結助剤としてランタンと、珪素と、Mgと、アルミニウムとを組み合わせて用いることにより、MgOの揮発が顕著になる温度よりも焼結助剤の液相生成温度を低下させることが可能となり、さらに焼結助剤の液相生成温度よりも少し高い温度で一定時間保持することにより、焼成段階でMgOの揮発が顕著になる前に低温で液相を十分に生成させることができる。   That is, among the Group 3 elements of the periodic table, lanthanum has a lower eutectic temperature with silica than the eutectic temperature of other Group 3 elements with silica, so that lanthanum, silicon, By using a combination of Mg and aluminum, it becomes possible to lower the liquid phase generation temperature of the sintering aid than the temperature at which MgO volatilization becomes significant, and further from the liquid phase generation temperature of the sintering aid. In addition, by maintaining at a slightly higher temperature for a certain period of time, a liquid phase can be sufficiently generated at a low temperature before MgO volatilization becomes significant in the firing stage.

これにより、液相生成による再配列過程において、体積収縮して開気孔が低減することにより、MgOが揮発したとしても、MgOが外部に漏出することを抑制することができ、これにより表層と内部のマグネシウム(酸化物換算)の濃度差が小さくなり、さらに均質で緻密な焼結体が作製できると考えている。   Thereby, in the rearrangement process by liquid phase generation, volume shrinkage and open pores are reduced, so that MgO can be prevented from leaking to the outside even if MgO is volatilized. It is believed that the difference in concentration of magnesium (as oxide) becomes smaller and a more homogeneous and dense sintered body can be produced.

表層と内部のマグネシウム含有量差は、酸化物(MgO)換算量で、0.4質量%以下であることが望ましい。   The difference in magnesium content between the surface layer and the inside is preferably 0.4% by mass or less in terms of oxide (MgO).

焼き肌面で最もMgOの揮発が激しいことが知られているが、上記構成を用いれば、焼き肌面と内部のマグネシウム(酸化物換算)の濃度差を小さくすることができる。尚、焼き肌面とは、焼成後に、研削等の加工を施していない面をいう。また、ランタンの酸化物換算量、アルミニウムの酸化物換算量およびマグネシウムの酸化物換算量の合計が3.5質量%以下である。   It is known that MgO is most volatilized on the surface of the grilled surface, but if the above configuration is used, the difference in concentration between the surface of the grilled surface and the internal magnesium (as oxide) can be reduced. In addition, a baked skin surface means the surface which has not performed processing, such as grinding, after baking. The total of the oxide equivalent of lanthanum, the oxide equivalent of aluminum, and the oxide equivalent of magnesium is 3.5% by mass or less.

本実施形態では、表層のマグネシウム含有量を酸化物換算で1.3質量%以下とすることにより、表層におけるボイドを低減でき、切削性能を向上できる。表層のマグネシウム含有量は、酸化物換算で0.3〜0.8質量%であることが望ましい。   In the present embodiment, by setting the magnesium content of the surface layer to 1.3% by mass or less in terms of oxide, voids in the surface layer can be reduced and cutting performance can be improved. The magnesium content in the surface layer is preferably 0.3 to 0.8% by mass in terms of oxide.

また、本実施形態の窒化珪素質焼結体は、相対密度が99%以上であるとともに、焼結体表面から深さ0.3mmの面および焼結体表面から深さ1mmの面における粒界相の面積比率がそれぞれ10%以下であることが望ましい。   In addition, the silicon nitride sintered body of the present embodiment has a relative density of 99% or more, and grain boundaries on a surface having a depth of 0.3 mm from the surface of the sintered body and a surface having a depth of 1 mm from the surface of the sintered body. The area ratio of the phases is preferably 10% or less.

焼結体表面から深さ0.3mmの面および焼結体表面から深さ1mmの面における粒界相の面積比率は、焼結体表面から深さ0.3mmの面および焼結体表面から深さ1mmの面をそれぞれ鏡面加工し、該鏡面加工した面を、23質量%のフッ酸と77質量%の水とからなる容器内の液に浸け、容器毎50℃に設定したウオーターバスに入れ、3時間放置して、粒界相部分をエッチングし、その面の顕微鏡写真を画像解析し、顕微鏡写真の一定面積に対する空隙の面積率を求めることにより得ることができる。   The area ratio of the grain boundary phase on the surface having a depth of 0.3 mm from the surface of the sintered body and the surface having a depth of 1 mm from the surface of the sintered body is determined from the surface having the depth of 0.3 mm from the surface of the sintered body and the surface of the sintered body. Each surface with a depth of 1 mm is mirror-finished, and the mirror-finished surface is immersed in a liquid in a container composed of 23% by mass hydrofluoric acid and 77% by mass water, and placed in a water bath set to 50 ° C. for each container. It is allowed to stand for 3 hours, and the grain boundary phase portion is etched, the micrograph of the surface is subjected to image analysis, and the area ratio of voids to a certain area of the micrograph is obtained.

焼結体表面から深さ0.3mmの面および焼結体表面から深さ1mmの面における粒界相の面積比率がそれぞれ10%以下であるため、焼結体中の粒界相が少ないことになり、粒界相の組成差も小さくなるため、耐チッピング性を高めることができる。   The area ratio of the grain boundary phase on the surface with a depth of 0.3 mm from the surface of the sintered body and the surface with a depth of 1 mm from the surface of the sintered body is 10% or less, respectively, so there are few grain boundary phases in the sintered body Thus, the compositional difference of the grain boundary phase is also reduced, so that the chipping resistance can be improved.

以上のように、ランタンと、珪素と、アルミニウムと、マグネシウムとの組み合わせによって、粒界相の液相生成温度を顕著に下げることができる。これにより、低温での焼成が可能となり、窒化珪素結晶粒子の長さ方向への異常粒成長を抑制できるとともに、組織の微細化を達成することができる。その結果、耐摩耗性と耐チッピング性を改善した窒化珪素質焼結体となる。   As described above, the liquid phase generation temperature of the grain boundary phase can be significantly lowered by the combination of lanthanum, silicon, aluminum, and magnesium. Thereby, firing at a low temperature becomes possible, abnormal grain growth in the length direction of the silicon nitride crystal grains can be suppressed, and refinement of the structure can be achieved. As a result, a silicon nitride sintered body with improved wear resistance and chipping resistance is obtained.

[製法について]
以下に、本実施形態の窒化珪素質焼結体の製造方法について説明する。まず、出発原料として、例えば、窒化珪素粉末と、ランタンの水酸化物(La(OH))、酸化アルミニウム(Al)、水酸化マグネシウム(Mg(OH))を準備する。また、必要に応じて、二酸化珪素(SiO)、周期表第6族元素珪化物の粉末を用意する。
[About manufacturing method]
Below, the manufacturing method of the silicon nitride sintered compact of this embodiment is demonstrated. First, as a starting material, for example, silicon nitride powder, lanthanum hydroxide (La (OH) 3 ), aluminum oxide (Al 2 O 3 ), and magnesium hydroxide (Mg (OH) 2 ) are prepared. Moreover, if necessary, powder of silicon dioxide (SiO 2 ) and periodic table group 6 element silicide is prepared.

窒化珪素原料は、α−窒化珪素粉末、β−窒化珪素粉末、又はこれらの混合物のいずれも用いることができる。これらの粒径は、1μm以下、特に0.5μm以下であることが好ましい。また、ランタン原料としては、酸化ランタン粉末を用いても良いが、酸化ランタンは吸湿性が高いため、水酸化ランタン等のように吸水性が低く、焼成過程で酸化ランタンとなる化合物を用いることが好ましい。ランタン原料中には、1質量%以下の他の希土類元素の不純物が存在する。   As the silicon nitride raw material, any of α-silicon nitride powder, β-silicon nitride powder, or a mixture thereof can be used. These particle sizes are preferably 1 μm or less, particularly 0.5 μm or less. As the lanthanum raw material, lanthanum oxide powder may be used. However, since lanthanum oxide has high hygroscopicity, a compound that has low water absorption and becomes lanthanum oxide in the firing process such as lanthanum hydroxide is used. preferable. In the lanthanum raw material, impurities of other rare earth elements of 1% by mass or less exist.

また、マグネシウム原料としては、酸化マグネシウムや炭酸マグネシウムを用いても良いが、酸化マグネシウムは吸水性が高く、炭酸マグネシウムは炭酸ガスを発生してしまうので、水酸化マグネシウムのように、吸水性が低く、炭酸ガスの発生も無く、焼成過程で酸化マグネシウムとなる化合物を用いることが好ましい。   Magnesium oxide or magnesium carbonate may be used as the magnesium raw material, but magnesium oxide has high water absorption, and magnesium carbonate generates carbon dioxide gas, so that water absorption is low like magnesium hydroxide. It is preferable to use a compound that does not generate carbon dioxide and becomes magnesium oxide in the firing process.

さらに、珪素原料としては、窒化珪素原料中に含まれているものを用いる。窒化珪素粉末中に含まれる酸素が、二酸化珪素して存在していると考えて、組成を調整する。珪素原料が不足する場合には、二酸化珪素粉末を添加する。   Further, as the silicon raw material, one contained in the silicon nitride raw material is used. The composition is adjusted on the assumption that oxygen contained in the silicon nitride powder exists as silicon dioxide. If the silicon raw material is insufficient, silicon dioxide powder is added.

また、アルミニウム原料としては、酸化アルミニウム粉末を用いる。   As the aluminum raw material, aluminum oxide powder is used.

また、窒化珪素質焼結体に含有させる周期表第6族元素珪化物は、珪化タングステンを用いることが望ましく、珪化タングステン原料粉末としては、タングステンの酸化物、炭化物、珪化物、窒化物等いずれでも良いが、安価で微粉末が得られやすいことから、酸化物を用いることが望ましい。このように珪化物以外の原料を用いた場合であっても、本実施形態の窒化珪素質焼結体の組成領域では、タングステンの化合物は、容易に珪化タングステンに変化させることができる。尚、タングステンの代わりに、クロム、モリブデンを用いることができる。   Moreover, it is desirable to use tungsten silicide for the periodic table group 6 element silicide contained in the silicon nitride sintered body. As tungsten silicide raw material powder, any of tungsten oxide, carbide, silicide, nitride, etc. However, it is desirable to use an oxide because it is inexpensive and easily obtains a fine powder. In this way, even when raw materials other than silicide are used, the tungsten compound can be easily changed to tungsten silicide in the composition region of the silicon nitride-based sintered body of the present embodiment. Note that chromium or molybdenum can be used instead of tungsten.

これらの原料を秤量し、ボールミル等の公知の粉砕手段を用いて混合、粉砕する。この混合粉末に適宜バインダーや溶剤を添加し、スプレードライ法等により造粒する。   These raw materials are weighed, mixed and pulverized using a known pulverizing means such as a ball mill. A binder or a solvent is appropriately added to the mixed powder, and granulated by a spray drying method or the like.

そして、所定の割合で調整した混合粉末を造粒した造粒粉末を、例えば金型プレス成形、鋳込み成形、押出成形、射出成形、冷間静水圧プレス成形等の公知の成形手段により任意の形状に成形する。得られた成形体を公知の焼成手段、例えば窒素雰囲気中での常圧焼成法、ガス圧力焼成法、ホットプレス法等により1650〜1850℃の温度で焼成した後、冷却して本実施形態の窒化珪素質焼結体を得ることができる。   Then, the granulated powder obtained by granulating the mixed powder adjusted at a predetermined ratio is formed into an arbitrary shape by a known molding means such as die press molding, casting molding, extrusion molding, injection molding, cold isostatic pressing, etc. To form. The obtained molded body is fired at a temperature of 1650 to 1850 ° C. by a known firing means, for example, a normal pressure firing method in a nitrogen atmosphere, a gas pressure firing method, a hot press method, and the like, and then cooled and cooled. A silicon nitride-based sintered body can be obtained.

そして、焼結体表面から深さ0.3mmの面におけるマグネシウム含有量が酸化物換算で1.3質量%以下であるとともに、表層におけるマグネシウム含有量が、内部におけるマグネシウム含有量よりも少なく、かつ、焼結体表面から深さ0.3mmの面と深さ1mmの面におけるマグネシウム含有量の差を、酸化物(MgO)換算で0.5質量%以下とするには、成形体を公知の焼成手段、例えば窒素雰囲気中での常圧焼成法、ガス圧力焼成法、ホットプレス法等により焼成するに際して、1325〜1375℃で所定時間保持した後、1650〜1850℃の温度で焼成し、冷却して本発明の窒化珪素質焼結体を得ることができる。   And while magnesium content in the 0.3-mm depth surface from a sintered compact surface is 1.3 mass% or less in conversion of an oxide, magnesium content in a surface layer is less than internal magnesium content, and In order to make the difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the surface of the sintered body 0.5 mass% or less in terms of oxide (MgO), a molded body is known. When firing by a firing means, for example, a normal pressure firing method in a nitrogen atmosphere, a gas pressure firing method, a hot press method, etc., hold at 1325 to 1375 ° C. for a predetermined time, then fire at a temperature of 1650 to 1850 ° C. and cool Thus, the silicon nitride sintered body of the present invention can be obtained.

焼結体表面から深さ0.3mmの面と深さ1mmの面におけるマグネシウム含有量の差が、酸化物換算量で0.5質量%以下となる理由については明確ではないが、本発明者等は、第3族元素の中でもランタンは、シリカとの共晶温度が、他の第3族元素とシリカとの共晶温度よりも低いため、MgOの揮発が顕著になる温度よりも焼結助剤の液相生成温度を低下させることが可能となり、1325〜1375℃で所定時間保持することにより、焼成段階でMgOの揮発が顕著になる前に低温で十分に液相を生成させ、液相生成による再配列過程において体積収縮による開気孔の低減により、MgOが揮発したとしても、MgOが外部に漏出することを抑制することができ、これにより表層と内部のマグネシウム(酸化物換算)の濃度差が小さくなり、従来よりも均質で緻密な焼結体が作製できると考えている。   Although the reason why the difference in magnesium content between the surface having a depth of 0.3 mm and the surface having a depth of 1 mm from the surface of the sintered body is 0.5% by mass or less in terms of oxide is not clear, the present inventor Among the Group 3 elements, lanthanum is sintered at a temperature higher than the temperature at which MgO volatilization becomes remarkable because the eutectic temperature with silica is lower than the eutectic temperature between other Group 3 elements and silica. It becomes possible to lower the liquid phase generation temperature of the auxiliary agent, and by holding it at 1325 to 1375 ° C. for a predetermined time, the liquid phase can be sufficiently generated at a low temperature before MgO volatilization becomes remarkable in the firing stage. Even if MgO volatilizes due to the reduction of open pores due to volume shrinkage in the rearrangement process due to phase formation, it is possible to suppress the leakage of MgO to the outside, and this makes it possible to reduce the surface layer and internal magnesium (as oxide) Small density difference No longer homogeneous than conventional dense sintered body is considered to be produced.

この焼成に用いる雰囲気は、窒素を主体とするもので、窒化珪素質焼結体が焼成工程で酸化しない範囲で微量の酸素を含んでいても良いことはいうまでもない。また、窒化珪素質成形体やいわゆるとも材などから蒸発するSiOやMgOなどの成分を含んでいてもよい。   It goes without saying that the atmosphere used for the firing is mainly composed of nitrogen and may contain a small amount of oxygen as long as the silicon nitride sintered body is not oxidized in the firing step. Further, it may contain a component such as SiO or MgO that evaporates from a silicon nitride-based molded body or a so-called material.

特に、積極的に窒素雰囲気中に、さらに酸素と珪素とマグネシウムとを含有させて、焼成することが望ましい。このような酸素と珪素とマグネシウムとを含有する雰囲気としては、SiOとMgOとを含有する雰囲気が挙げられる。   In particular, it is desirable to positively contain oxygen, silicon, and magnesium in a nitrogen atmosphere and fire. Examples of such an atmosphere containing oxygen, silicon, and magnesium include an atmosphere containing SiO and MgO.

焼結助剤として添加する成分の内、ランタン、アルミニウムの酸化物成分は焼成中に揮発しにくいが、マグネシウム、シリコンの酸化物成分はSiOやMgOの成分として揮発しやすい。このため、積極的に雰囲気中にSiOやMgOなどの成分を含有させて、焼成することで、焼結助剤として添加したSiOあるいは窒化珪素原料に含まれるSiOの分解が抑制され、MgOの揮発が抑制される。 Of the components added as sintering aids, lanthanum and aluminum oxide components are less likely to volatilize during firing, while magnesium and silicon oxide components are more likely to volatilize as SiO and MgO components. For this reason, by actively containing components such as SiO and MgO in the atmosphere and firing, decomposition of SiO 2 added as a sintering aid or SiO 2 contained in the silicon nitride raw material is suppressed, and MgO Volatilization is suppressed.

その結果、添加された焼結助剤が少量でも緻密な焼結体を製造することが容易となる。このような雰囲気は、例えば、SiとSiOとMgO粉末、あるいは窒化珪素粉末とMgO粉末との混合粉末を、焼成によって本実施形態の窒化珪素質焼結体となる成形体とともに焼成鉢の中に置く、敷き詰める、又は焼成によって本実施形態の窒化珪素質焼結体となる成形体の周囲に配置した後、焼成によって本実施形態の窒化珪素質焼結体となる成形体とともに焼成することでSiやMgを蒸発させて実現することができる。 As a result, it becomes easy to produce a dense sintered body even with a small amount of added sintering aid. Such an atmosphere is obtained by, for example, mixing Si, SiO 2 and MgO powder, or a mixed powder of silicon nitride powder and MgO powder in a firing pot together with a molded body that becomes the silicon nitride sintered body of the present embodiment by firing. Placed on the floor, spread or placed around the molded body that becomes the silicon nitride sintered body of the present embodiment by firing, and then fired together with the molded body that becomes the silicon nitride sintered body of the present embodiment by firing. It can be realized by evaporating Si or Mg.

更に、前述のように窒化珪素結晶粒子の粒径を小さくし、窒化珪素結晶粒子の異常粒成長を抑制するためには、低温から緻密化を開始させ、高温での粒成長を抑制することが重要であり、相対密度を上げるためには、粒成長が顕著ではない低温で緻密化を促進した上で昇温し、十分緻密化させることが重要である。一旦、窒素雰囲気中で1650℃〜1850℃で焼成した後、9.8MPa〜294MPa、1500〜1700℃で熱間静水圧焼成を施すことが望ましい。   Furthermore, as described above, in order to reduce the grain size of silicon nitride crystal particles and suppress abnormal grain growth of silicon nitride crystal grains, it is necessary to start densification from a low temperature and suppress grain growth at a high temperature. In order to increase the relative density, it is important to promote the densification at a low temperature at which grain growth is not remarkable, and then raise the temperature and sufficiently densify. It is desirable that after firing at 1650 ° C. to 1850 ° C. in a nitrogen atmosphere, hot isostatic firing is performed at 9.8 MPa to 294 MPa and 1500 to 1700 ° C.

その結果、緻密で、窒化珪素結晶粒子の異常粒成長が抑制された耐チッピング性を改善した窒化珪素質焼結体が得られる。   As a result, a dense silicon nitride sintered body with improved chipping resistance in which abnormal grain growth of silicon nitride crystal grains is suppressed can be obtained.

[切削工具について]
また、本実施形態の窒化珪素質焼結体は、工具として用いた場合には、耐摩耗性と耐チッピング性を改善した工具となり、特に、耐摩耗性と耐チッピング性とが要求される切削工具として好適に用いられる。
[About cutting tools]
In addition, when used as a tool, the silicon nitride-based sintered body of the present embodiment is a tool with improved wear resistance and chipping resistance, and in particular, cutting that requires wear resistance and chipping resistance. It is suitably used as a tool.

なお、図1に示すように、切削工具11として用いる場合には、角部に切刃13を備えた四角い板状の形態や、従来周知の形態が適用できる。   In addition, as shown in FIG. 1, when using as the cutting tool 11, the square plate-shaped form provided with the cutting blade 13 in the corner | angular part and a conventionally well-known form are applicable.

切削工具の製法は、上記窒化珪素質焼結体の製法において、成形の際に、所望の切削工具の形状に成形することで、本実施形態の窒化珪素質焼結体からなる切削工具を容易に作製することができる。また、焼成後に切削、研磨等により切削工具状に加工してもよいことは言うまでもない。さらに、本実施形態の窒化珪素質焼結体からなる切削工具の切刃の表面にTiNやTiAlN等のコーティングを施してもよい。   The manufacturing method of the cutting tool is the above-described manufacturing method of the silicon nitride sintered body. By forming the cutting tool into a desired cutting tool shape, the cutting tool made of the silicon nitride sintered body of the present embodiment can be easily obtained. Can be produced. Moreover, it cannot be overemphasized that you may process into a cutting tool shape by cutting, grinding | polishing, etc. after baking. Furthermore, a coating such as TiN or TiAlN may be applied to the surface of the cutting edge of the cutting tool made of the silicon nitride sintered body of the present embodiment.

また、上記切削工具を用いて被切削材を切削する場合には、切削工具が耐摩耗性と耐チッピング特性を改善できるため、被切削材の寸法精度が向上し、切削工具は耐久性が改善されるため、切削工具を長期間取り替えることなく切削することができ、切削工具の取替時間を少なくすることができる。   In addition, when cutting a workpiece using the above cutting tool, the cutting tool can improve wear resistance and chipping resistance, thus improving the dimensional accuracy of the workpiece and improving the durability of the cutting tool. Therefore, cutting can be performed without replacing the cutting tool for a long period of time, and the replacement time of the cutting tool can be reduced.

さらに、図示しないが、少なくとも上記切削工具と、該切削工具により加工する被切削材を保持するための保持台とを具備して切削加工装置を構成することができる。切削加工装置としては、旋盤のような旋削加工装置、マシニングセンタのようなフライス加工装置などが挙げられる。この場合には、切削工具を長期間取り替えることなく切削することができ、切削工具の取替回数が少なくなり、コストを低減できる。   Furthermore, although not shown in figure, a cutting apparatus can be comprised including at least the said cutting tool and the holding stand for hold | maintaining the to-be-cut material processed with this cutting tool. Examples of the cutting device include a turning device such as a lathe and a milling device such as a machining center. In this case, cutting can be performed without replacing the cutting tool for a long period of time, and the number of replacements of the cutting tool is reduced, thereby reducing the cost.

以下、実施例を挙げて本発明についてさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further in detail, this invention is not limited to a following example.

出発原料として、平均粒径0.3μmの窒化珪素粉末と、不純物としてCe、Pr、Ndを1質量%以下含む平均粒径1.2μmのランタン水酸化物(La(OH))、平均粒径0.7μmのアルミニウム酸化物、平均粒径2.5μmのマグネシウム水酸化物を用意した。 As starting materials, silicon nitride powder with an average particle size of 0.3 μm, lanthanum hydroxide (La (OH) 3 ) with an average particle size of 1.2 μm containing Ce, Pr, Nd as impurities in an amount of 1% by mass or less, average particles An aluminum oxide having a diameter of 0.7 μm and a magnesium hydroxide having an average particle diameter of 2.5 μm were prepared.

これらの原料粉末を用いて、バインダーと溶剤とともに調合した後、ボールミルにて72時間、粉砕、混合した。その後、乾燥して溶剤を除去して造粒粉末を作製し、この造粒粉末を98MPaの圧力でプレス成形し、切削工具形状SNGN120412用の成形体を得た。   These raw material powders were mixed together with a binder and a solvent, and then pulverized and mixed in a ball mill for 72 hours. Thereafter, the solvent was removed by drying to produce a granulated powder, and this granulated powder was press-molded at a pressure of 98 MPa to obtain a molded product for the cutting tool shape SNGN120212.

この成形体を脱脂後、1350℃で表1に示す時間(3〜6時間)保持した後、1750℃で5時間、N雰囲気で常圧の条件で焼成後、1600℃、2時間、196MPaの条件で熱間静水圧焼成(HIP)して焼結体を得た。 The molded body was degreased, held at 1350 ° C. for the time shown in Table 1 (3 to 6 hours), fired at 1750 ° C. for 5 hours, and N 2 atmosphere at normal pressure, and then 1600 ° C., 2 hours, 196 MPa. The sintered body was obtained by hot isostatic firing (HIP) under the conditions of

得られた窒化珪素質焼結体についてアルキメデス法により焼結体の密度を測定し、相対密度に換算したところ、相対密度は全試料とも100%であった。   When the density of the sintered body was measured by the Archimedes method for the obtained silicon nitride-based sintered body and converted to the relative density, the relative density was 100% for all samples.

また、得られた窒化珪素質焼結体の酸素量は、窒化珪素質焼結体を粉砕して粉状にして、赤外吸収法によって測定した。表層は最表面(焼き肌面)〜0.3mmを採取し、内部は0.3〜0.7mm部分を採取し、測定した。   Further, the oxygen content of the obtained silicon nitride sintered body was measured by an infrared absorption method after pulverizing the silicon nitride sintered body into a powder form. The outermost layer (baked skin surface) to 0.3 mm was collected as the surface layer, and the 0.3 to 0.7 mm portion was sampled and measured inside.

また、得られた窒化珪素質焼結体の表面を0.3mm及び1.0mmだけ平面研削加工し、それぞれの面について蛍光X線分析を用いて組成分析を行った。MgO、希土類元素Re、Al量、MgO濃度差(内部のMgO量−表層のMgO量)を表1に示した。算出した周期表第3族元素酸化物Re、Al3、MgOの合計量を求めた。ランタン以外の希土類元素は、酸化物換算で、全量中0.03質量%以下であった。 Further, the surface of the obtained silicon nitride-based sintered body was subjected to surface grinding by 0.3 mm and 1.0 mm, and composition analysis was performed on each surface using fluorescent X-ray analysis. Table 1 shows the amounts of MgO, rare earth elements Re 2 O 3 and Al 2 O 3 , and MgO concentration difference (internal MgO amount−surface layer MgO amount). The total amount of the calculated periodic table group 3 element oxides Re 2 O 3 , Al 2 O 3 and MgO was determined. Rare earth elements other than lanthanum were 0.03% by mass or less in the total amount in terms of oxides.

また、それぞれの面の鏡面加工を行い、該鏡面加工した面を、23質量%のフッ酸と77質量%の水とからなる容器内の液に浸け、容器毎50℃に設定したウオーターバスに入れ、3時間放置して、粒界相部分をエッチングし、その面の0.015mm視野を走査型電子顕微鏡写真(1000倍)により撮影し、その中の空隙率の割合を画像解析装置により求め、粒界相の面積比率とし、その値を表2に示した。 Each surface is mirror-finished, and the mirror-finished surface is immersed in a liquid in a container composed of 23% by mass hydrofluoric acid and 77% by mass water, and placed in a water bath set to 50 ° C. for each container. Then, leave it for 3 hours to etch the grain boundary phase part, take a 0.015 mm 2 field of view of the surface with a scanning electron micrograph (1000 times), and use the image analyzer to determine the ratio of the porosity in the field The area ratio of the grain boundary phase was determined and the value is shown in Table 2.

さらに得られた窒化珪素質焼結体を用いて、図1に示すような切削工具を製作し、被切削材:FCD−450、切削速度:500m/min、送り量:0.2mm/rev、切り込み量:2.0mm、切削時間:120secの条件で旋削試験と、被切削材:FCD−450、切削速度:500m/min、送り量:0.5mm/tooth、切り込み量:2.0mm、パス回数:10パスの条件でフライス加工試験を行った。評価は、刃先のフランク摩耗量は、旋削試験後に測長器付きの顕微鏡を用いて写真撮影し、摩耗量の平均値を測定して算出した。また、刃先のチッピングは、フライス加工試験後、顕微鏡で刃先を観察して写真撮影し、チッピング領域の面積を求めた。これらの結果を表2に示した。   Further, using the obtained silicon nitride sintered body, a cutting tool as shown in FIG. 1 is manufactured, and a workpiece: FCD-450, a cutting speed: 500 m / min, a feed amount: 0.2 mm / rev, Turning test under conditions of cutting depth: 2.0 mm, cutting time: 120 sec, material to be cut: FCD-450, cutting speed: 500 m / min, feeding amount: 0.5 mm / tooth, cutting amount: 2.0 mm, pass Number of times: Milling test was performed under the condition of 10 passes. In the evaluation, the flank wear amount of the blade edge was calculated by taking a photograph using a microscope with a length measuring device after the turning test and measuring the average value of the wear amount. Further, the chipping of the blade edge was measured by observing the blade edge with a microscope and taking a photograph after the milling test to determine the area of the chipping region. These results are shown in Table 2.

尚、試料No.12では希土類元素酸化物(Re)としてYを用い、試料No.13では希土類元素酸化物(Re)としてErを用いた。 Sample No. 12 uses Y 2 O 3 as the rare earth element oxide (Re 2 O 3 ). In No. 13, Er 2 O 3 was used as a rare earth element oxide (Re 2 O 3 ).

また、試料No.14は、MgO粉末を、成形体の周辺に配置し、成形体と同時に焼成した場合である。これらの結果も表2に記載した。

Figure 2009173508
Sample No. No. 14 is a case where MgO powder is disposed around the molded body and fired simultaneously with the molded body. These results are also shown in Table 2.
Figure 2009173508

Figure 2009173508
Figure 2009173508

表1、2に示した結果によれば、本発明の範囲内の試料No.1〜9はいずれも摩耗量が小さく刃先のチッピングの少ない切削性能を示した。これに対して、比較例の試料No.10、11は切削試験において摩耗量が増大した。また、希土類元素としてY、Erを用いた比較例の試料No.12、13は、摩耗量が多く、チッピング面積も大きいことがわかる。   According to the results shown in Tables 1 and 2, sample Nos. Within the scope of the present invention. All of Nos. 1 to 9 showed cutting performance with a small amount of wear and little chipping of the blade edge. In contrast, Sample No. Nos. 10 and 11 showed increased wear in the cutting test. In addition, comparative sample No. 1 using Y or Er as the rare earth element was used. 12 and 13 have a large amount of wear and a large chipping area.

本実施形態の切削工具の一例を示す斜視図である。It is a perspective view which shows an example of the cutting tool of this embodiment.

11・・・切削工具
13・・・切刃
11 ... Cutting tool 13 ... Cutting blade

Claims (7)

窒化珪素結晶を主体とする結晶相と、ランタン、アルミニウム、マグネシウム、珪素及び酸素を含み、前記窒化珪素結晶の粒界にある非晶質の粒界相とを有する窒化珪素質焼結体であって、該窒化珪素質焼結体の表面から深さ0.3mmの面におけるマグネシウム含有量が酸化物換算で1.3質量%以下であるとともに、前記窒化珪素質焼結体の表面から深さ0.3mmの面におけるマグネシウム含有量が、前記窒化珪素質焼結体の表面から深さ1mmの面におけるマグネシウム含有量よりも少なく、かつ、前記窒化珪素質焼結体の表面から深さ0.3mmの面と深さ1mmの面とのマグネシウム含有量の差が、酸化物換算で0.5質量%以下であることを特徴とする窒化珪素質焼結体。   A silicon nitride-based sintered body having a crystal phase mainly composed of a silicon nitride crystal and an amorphous grain boundary phase containing lanthanum, aluminum, magnesium, silicon and oxygen and present at the grain boundary of the silicon nitride crystal. In addition, the magnesium content in the plane having a depth of 0.3 mm from the surface of the silicon nitride sintered body is 1.3 mass% or less in terms of oxide, and the depth from the surface of the silicon nitride sintered body is The magnesium content in the 0.3 mm plane is less than the magnesium content in the 1 mm depth from the surface of the silicon nitride sintered body, and the depth from the surface of the silicon nitride sintered body is 0. A silicon nitride sintered body characterized in that a difference in magnesium content between a 3 mm surface and a 1 mm deep surface is 0.5% by mass or less in terms of oxide. 前記ランタンの酸化物換算量、前記アルミニウムの酸化物換算量および前記マグネシウムの酸化物換算量の合計が前記窒化珪素質焼結体の全量中3.5質量%以下であることを特徴とする請求項1記載の窒化珪素質焼結体。   The total of the oxide equivalent amount of the lanthanum, the oxide equivalent amount of the aluminum, and the oxide equivalent amount of the magnesium is 3.5% by mass or less in the total amount of the silicon nitride sintered body. Item 2. A silicon nitride sintered body according to Item 1. 前記窒化珪素質焼結体の表面は焼き肌面であることを特徴とする請求項1または2に記載の窒化珪素質焼結体。   The silicon nitride based sintered body according to claim 1 or 2, wherein the surface of the silicon nitride based sintered body is a burnt surface. 前記窒化珪素質焼結体の表面から深さ0.3mmの面および前記窒化珪素質焼結体の表面から深さ1mmの面における粒界相の面積比率がそれぞれ10%以下であることを特徴とする請求項1乃至3のうちのいずれかに記載の窒化珪素質焼結体。   The area ratio of the grain boundary phases on the surface having a depth of 0.3 mm from the surface of the silicon nitride-based sintered body and the surface having a depth of 1 mm from the surface of the silicon nitride-based sintered body is 10% or less, respectively. The silicon nitride based sintered body according to any one of claims 1 to 3. 請求項1乃至4のうちのいずれかに記載の窒化珪素質焼結体からなることを特徴とする切削工具。   A cutting tool comprising the silicon nitride sintered body according to any one of claims 1 to 4. 請求項5に記載の切削工具と、該切削工具により加工する被切削材を保持するための保持台とを具備することを特徴とする切削加工装置。   A cutting apparatus comprising: the cutting tool according to claim 5; and a holding base for holding a workpiece to be processed by the cutting tool. 請求項5に記載の切削工具を用いて被切削材を切削することを特徴とする切削方法。   A cutting method, comprising: cutting a workpiece using the cutting tool according to claim 5.
JP2008017247A 2007-02-23 2008-01-29 Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method Pending JP2009173508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008017247A JP2009173508A (en) 2007-02-23 2008-01-29 Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007043816 2007-02-23
JP2007331734 2007-12-25
JP2008017247A JP2009173508A (en) 2007-02-23 2008-01-29 Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method

Publications (1)

Publication Number Publication Date
JP2009173508A true JP2009173508A (en) 2009-08-06

Family

ID=41029037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008017247A Pending JP2009173508A (en) 2007-02-23 2008-01-29 Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method

Country Status (1)

Country Link
JP (1) JP2009173508A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234826A (en) * 2008-03-26 2009-10-15 Kyocera Corp Silicon nitride sintered compact
JP2010006635A (en) * 2008-06-26 2010-01-14 Kyocera Corp Silicon nitride sintered body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046159A (en) * 1990-04-23 1992-01-10 Nippon Cement Co Ltd Production of silicon nitride-based ceramics sintered body
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
JP2002012474A (en) * 2000-06-22 2002-01-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered compact and cutting tool using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046159A (en) * 1990-04-23 1992-01-10 Nippon Cement Co Ltd Production of silicon nitride-based ceramics sintered body
JP2000351673A (en) * 1999-06-10 2000-12-19 Hitachi Metals Ltd High heat-conductive silicon nitride-based sintered product and its production
JP2002012474A (en) * 2000-06-22 2002-01-15 Ngk Spark Plug Co Ltd Silicon nitride-based sintered compact and cutting tool using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234826A (en) * 2008-03-26 2009-10-15 Kyocera Corp Silicon nitride sintered compact
JP2010006635A (en) * 2008-06-26 2010-01-14 Kyocera Corp Silicon nitride sintered body

Similar Documents

Publication Publication Date Title
JP5527937B2 (en) Silicon nitride sintered body
JP5527949B2 (en) Silicon nitride sintered body
JP5060092B2 (en) Semiconductor device heat sink
JP4478198B2 (en) Inserts and cutting tools
JP5031602B2 (en) Silicon nitride sintered body, cutting tool, cutting apparatus, and cutting method
JP5340028B2 (en) Cutting tools
JP2013256397A (en) Rolling element and method for manufacturing the same
JP4850007B2 (en) Silicon nitride sintered body
WO2014126178A1 (en) Cutting tool
JP2855243B2 (en) Silicon nitride sintered body with excellent wear resistance
JP2009173508A (en) Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method
JP2007130700A (en) Sialon cutting tool, and tool equipped with the same
JP2006206376A (en) Ceramic sintered compact, cutting insert and cutting tool
JPH08323509A (en) Boron nitride cutting-tool and its manufacture
JP5864631B2 (en) Silicon nitride sintered body
JP2001151576A (en) Sliding member
JP2015009327A (en) Cutting insert
JP4335406B2 (en) Cutting tool and manufacturing method thereof
EP1382589B1 (en) Sintered silicon nitride, cutting tip, wear-resistant member, cutting tool, and method for producing sintered silicon nitride
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
JPH07267738A (en) Wear resistant silicon nitride sintered compact and its production
JP2008273752A (en) Boron carbide-based sintered compact and protective member
EP1967503B1 (en) Sintered product of silicon nitride, cutting tool, cutting apparatus, and cutting method
JP2006290709A (en) Silicon nitride material and its manufacturing method
JP3715775B2 (en) High speed cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529