JP6075803B2 - Silicon nitride sintered body and cutting tool - Google Patents

Silicon nitride sintered body and cutting tool Download PDF

Info

Publication number
JP6075803B2
JP6075803B2 JP2014554502A JP2014554502A JP6075803B2 JP 6075803 B2 JP6075803 B2 JP 6075803B2 JP 2014554502 A JP2014554502 A JP 2014554502A JP 2014554502 A JP2014554502 A JP 2014554502A JP 6075803 B2 JP6075803 B2 JP 6075803B2
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
peak
mass
body according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014554502A
Other languages
Japanese (ja)
Other versions
JPWO2014104112A1 (en
Inventor
孝 渡邊
孝 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2014104112A1 publication Critical patent/JPWO2014104112A1/en
Application granted granted Critical
Publication of JP6075803B2 publication Critical patent/JP6075803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/448Sulphates or sulphites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は、窒化珪素質焼結体および切削工具に関する。   The present invention relates to a silicon nitride sintered body and a cutting tool.

窒化珪素質焼結体は、高硬度でかつ高温で安定であることから、耐摩耗性および耐酸化性に優れており、ガスタービンやターボロータ等の熱機関用部品や、切削工具として用いられている。   Silicon nitride-based sintered bodies have high hardness and are stable at high temperatures, so they have excellent wear resistance and oxidation resistance, and are used as heat engine parts such as gas turbines and turbo rotors, and as cutting tools. ing.

かかる窒化珪素質焼結体において、焼結体の表面を改質して特性の向上を図ることが試みられている。例えば、特許文献1では、窒化珪素質焼結体の部材表面をラマン分光分析したときに、206±10cm−1に現れるピークのピーク強度X1と、1584±20cm−1に現れるピークのピーク強度X2との比、X2/X1が0.001〜0.5であることが開示されている。また、特許文献2では、ラマン分光分析チャートにおいて、521±10cm−1に現れるSiピークのピーク強度をH、206±10cm−1に現れる窒化珪素ピークのピーク強度をHの比H/Hが、表面よりも内部で大きい窒化珪素質焼結体が開示されている。In such a silicon nitride sintered body, attempts have been made to improve the characteristics by modifying the surface of the sintered body. For example, in Patent Document 1, when Raman spectroscopic analysis is performed on a member surface of a silicon nitride sintered body, a peak intensity X1 of a peak appearing at 206 ± 10 cm −1 and a peak intensity X2 of a peak appearing at 1584 ± 20 cm −1 are obtained. It is disclosed that the ratio X2 / X1 is 0.001 to 0.5. In Patent Document 2, in the Raman spectroscopic analysis chart, the peak intensity of the Si peak appearing at 521 ± 10 cm −1 is H 1 , and the peak intensity of the silicon nitride peak appearing at 206 ± 10 cm −1 is the ratio of H 2 , H 1 / A silicon nitride sintered body in which H 2 is larger inside than the surface is disclosed.

特開2001−80978号公報JP 2001-80978 A 特開2000−143350号公報JP 2000-143350 A

しかしながら、上記特許文献1、2に記載のラマン分光分析チャートにおける206cm−1のピーク、521cm−1のピーク、1584cm−1のピークのピーク強度比を調整した窒化珪素質焼結体では、焼結体の耐欠損性が不十分であり、さらなる耐欠損性の向上が求められていた。However, the peak of 206cm -1 in the Raman spectroscopic analysis chart described in Patent Documents 1 and 2, the peak of 521 cm -1, in the silicon nitride sintered body obtained by adjusting the peak intensity ratio of a peak of 1584 cm -1, sintered The body has insufficient chipping resistance, and further improvement in chipping resistance has been demanded.

本発明の目的は、耐欠損性を改善した窒化珪素質焼結体および切削工具を提供することである。   An object of the present invention is to provide a silicon nitride sintered body and a cutting tool with improved fracture resistance.

本発明の窒化珪素質焼結体は、窒化珪素を主体とする窒化珪素質焼結体であって、ラマン分光分析チャートにおいて、521±10cm−1に現れるSiピークのピーク強度をH、206±10cm−1に現れる窒化珪素ピークのピーク強度をH、該ピーク強度の比H/HをPとしたとき、表面を含む表層領域におけるP値(P)が、0よりも大きく、かつ、内部におけるP値(P)よりも小さく、前記表面を含む断面において、JISZ8721に規定された色の表示方法における明度Vが、前記表面側に対して前記内部側で3以上小さくなっている部分を境界としたとき、該境界から前記窒化珪素質焼結体の中心に向かって前記Siピークのピーク位置が高角度側にシフトする部分を有しているものである。
The silicon nitride sintered body of the present invention is a silicon nitride sintered body mainly composed of silicon nitride, and the peak intensity of the Si peak appearing at 521 ± 10 cm −1 in the Raman spectroscopic analysis chart is H 1 , 206. When the peak intensity of the silicon nitride peak appearing at ± 10 cm −1 is H 2 and the ratio H 1 / H 2 of the peak intensity is P, the P value (P s ) in the surface layer region including the surface is larger than 0 In addition, in the cross section including the surface, which is smaller than the P value (P i ) inside, the brightness V in the color display method defined in JISZ8721 is 3 or more smaller on the inner side than the surface side. When the portion is a boundary, the Si peak has a portion where the peak position of the Si peak shifts to the high angle side from the boundary toward the center of the silicon nitride sintered body.

また、本発明の切削工具は、上記窒化珪素質焼結体を具備するものである。   Moreover, the cutting tool of this invention comprises the said silicon nitride sintered body.

本発明によれば、ラマン分光分析チャートにおいてSiピークが観察されるとともに、521±10cm−1に現れるSiピークのピーク強度をH、206±10cm−1に現れる窒化珪素ピークのピーク強度をH、該ピーク強度の比H/HをPとしたとき、内部におけるP値(P)よりもP値(P)が小さい、すなわち、表層領域ではSiピークが小さくなるかまたは検出されない。これによって、表面では硬度が高く、小さいチッピングは生成するものの耐摩耗性は高いので、粗加工のように切削面の平滑性がさほど求められない窒化珪素質焼結体の加工条件では問題なく使用を継続することができる。しかも、Siピークのピーク位置が内部側に向かって高角度側にシフトしていることによって、内部では金属Siに引っ張り応力がかかり、表面では内部に比べて金属Siに圧縮応力がかかった状態となる。すなわち、金属Siとともに存在する窒化珪素粒子には内部では圧縮応力がかかった状態となる。また、表層領域における金属Siの含有量は内部に比べて少ないので、表面における窒化珪素粒子にはさほど引張応力がかからず、耐欠損性が低下することもない。たとえ、表面で小さなチッピングが生じたとしても、これを起点として、内部では大きなクラックが進展することを抑制できる。その結果、窒化珪素質焼結体の耐欠損性が向上する。According to the present invention, the Si peak is observed in the Raman spectroscopic analysis chart, the peak intensity of the Si peak appearing at 521 ± 10 cm −1 is H 1 , and the peak intensity of the silicon nitride peak appearing at 206 ± 10 cm −1 is H 2. When the peak intensity ratio H 1 / H 2 is P, the P value (P s ) is smaller than the internal P value (P i ), that is, the Si peak is smaller or detected in the surface layer region. Not. As a result, hardness is high on the surface and small chipping is generated, but wear resistance is high, so it can be used without problems in the processing conditions of silicon nitride sintered bodies that do not require much smoothness of the cutting surface, such as rough machining. Can continue. Moreover, since the peak position of the Si peak is shifted toward the high angle side toward the inside, a tensile stress is applied to the metal Si inside, and a compressive stress is applied to the metal Si compared to the inside on the surface. Become. That is, the silicon nitride particles present together with the metal Si are in a state where compressive stress is applied inside. Further, since the content of metal Si in the surface layer region is smaller than that in the inside, the silicon nitride particles on the surface are not so much tensile stressed and the fracture resistance is not lowered. Even if small chipping occurs on the surface, it is possible to suppress the development of large cracks inside from this. As a result, the fracture resistance of the silicon nitride sintered body is improved.

本発明の窒化珪素質焼結体の一実施態様において、表面を含む断面についての顕微鏡写真である。In one embodiment of the silicon nitride sintered body of this invention, it is a microscope picture about the cross section containing the surface. 図1の窒化珪素質焼結体の0〜2000cm−1の範囲におけるラマン分光分析チャートである。2 is a Raman spectroscopic analysis chart in a range of 0 to 2000 cm −1 of the silicon nitride sintered body of FIG. 1. 図1の窒化珪素質焼結体の480〜580cm−1の範囲におけるラマン分光分析チャートである。2 is a Raman spectroscopic analysis chart in a range of 480 to 580 cm −1 of the silicon nitride sintered body of FIG. 1.

本発明の窒化珪素質焼結体(以下、単に焼結体と略す。)の一実施態様によれば、焼結体1は、窒化珪素を主体とし、RE元素(イットリウムまたは希土類元素のいずれか1種以上)、マグネシウム、アルミニウムを酸化物として含有する。本発明において、窒化珪素を主体とするとは、焼結体1中に窒化珪素が50体積%以上、特に90体積%以上存在する状態をいう。   According to one embodiment of the silicon nitride sintered body (hereinafter simply referred to as “sintered body”) of the present invention, the sintered body 1 is mainly composed of silicon nitride and includes an RE element (either yttrium or a rare earth element). 1 type or more), magnesium, and aluminum are contained as oxides. In the present invention, “mainly composed of silicon nitride” refers to a state in which silicon nitride is present in the sintered body 1 by 50 volume% or more, particularly 90 volume% or more.

本実施態様によれば、窒化珪素の結晶はβ−窒化珪素結晶相からなり、図示はしないが、焼結体1の断面を走査型電子顕微鏡にて観察した断面写真において、アスペクト比が3以上、長軸径が1〜3μmの細長結晶が窒化珪素結晶の総量に対して20面積%以上存在している。これによって、窒化珪素結晶に所定の内部応力を付与して、窒化珪素結晶とともに存在する金属Siにかかる内部応力を所定の範囲内とすることができる。   According to this embodiment, the silicon nitride crystal is composed of a β-silicon nitride crystal phase, and although not shown, in the cross-sectional photograph obtained by observing the cross section of the sintered body 1 with a scanning electron microscope, the aspect ratio is 3 or more. Further, the elongated crystals having a major axis diameter of 1 to 3 μm are present in an area of 20% by area or more based on the total amount of silicon nitride crystals. Thus, a predetermined internal stress can be applied to the silicon nitride crystal, and the internal stress applied to the metal Si existing together with the silicon nitride crystal can be set within a predetermined range.

また、本実施態様によれば、図1に示す焼結体1の表面4を含む断面についての金属顕微鏡写真に示すように、焼結体1の表面4の色は内部2に比べて明度が高くなっている。   Moreover, according to this embodiment, the color of the surface 4 of the sintered body 1 is lighter than the inside 2 as shown in the metal micrograph of the cross section including the surface 4 of the sintered body 1 shown in FIG. It is high.

焼結体1には、表面4を含む表層領域3が存在する。表層領域3は、図2、3に示す焼結体1のラマン分光分析チャートにおいて、521±10cm−1に現れるSiピークのピーク強度をH、206±10cm−1に現れる窒化珪素ピークのピーク強度をH、該ピーク強度の比H/HをPとしたとき、内部2おけるP値(P)よりも表層領域3におけるP値(P)が小さい。また、Siピークのピーク位置は、表層領域3におけるピーク位置に比べて、内部2で高角度側にシフトしている。なお、図2、3における凡例100、300...はラマン分光分析を行った位置を表し、焼結体1の表面4からの深さ(μm)である。The sintered body 1 has a surface layer region 3 including a surface 4. The surface layer region 3 is the peak of the silicon nitride peak appearing at H 1 and 206 ± 10 cm −1 in the peak intensity of the Si peak appearing at 521 ± 10 cm −1 in the Raman spectroscopic analysis chart of the sintered body 1 shown in FIGS. When the intensity is H 2 and the peak intensity ratio H 1 / H 2 is P, the P value (P s ) in the surface layer region 3 is smaller than the P value (P i ) in the interior 2. Further, the peak position of the Si peak is shifted to the high angle side in the interior 2 as compared with the peak position in the surface layer region 3. 2 and 3, the legends 100, 300. . . Represents the position where Raman spectroscopic analysis was performed, and is the depth (μm) from the surface 4 of the sintered body 1.

これによって、表層領域3では硬度が高く、小さいチッピングは生成するものの耐摩耗性は高い。そのため、粗加工のように切削面の平滑性がさほど求められない窒化珪素質焼結体1からなる切削工具の加工条件では問題なく使用を継続することができる。   Accordingly, the surface layer region 3 has high hardness and small chipping is generated, but wear resistance is high. Therefore, the use of the cutting tool made of the silicon nitride-based sintered body 1 in which the smoothness of the cutting surface is not so required as in roughing can be continued without problems.

しかも、本実施態様では、Siピークのピーク位置が、表層領域3よりも内部2のほうが高角度側にシフトしている。本実施態様では、さらに、Siピークのピーク位置が、表層領域3から内部2に向かって漸次高角度側にシフトしている。これによって、表層領域3では金属Siに圧縮応力がかかり内部2では金属Siに引っ張り応力がかかった状態となる。すなわち、金属Siとともに存在する窒化珪素粒子には内部2では圧縮応力がかかった状態となる。しかも、表層領域3では金属Siの含有量が少ないので、窒化珪素粒子にはさほど大きな引張応力はかからないので、表層領域3における耐欠損性はさほど低下することもない。また、表層領域3で小さなチッピングが生じたとしても、内部2ではクラックの進展を抑制できるために、焼結体1は、大きな欠損には至らず、焼結体1の耐欠損性は高いものである。   Moreover, in this embodiment, the peak position of the Si peak is shifted to the higher angle side in the interior 2 than in the surface layer region 3. In the present embodiment, the peak position of the Si peak is gradually shifted toward the high angle side from the surface layer region 3 toward the inside 2. As a result, compressive stress is applied to the metal Si in the surface layer region 3, and tensile stress is applied to the metal Si in the interior 2. That is, compressive stress is applied to the silicon nitride particles present together with the metal Si in the interior 2. In addition, since the metal Si content in the surface layer region 3 is small, the silicon nitride particles are not subjected to a large tensile stress, so that the fracture resistance in the surface layer region 3 does not decrease so much. Further, even if small chipping occurs in the surface layer region 3, since the progress of cracks can be suppressed in the interior 2, the sintered body 1 does not reach a large defect, and the sintered body 1 has high fracture resistance. It is.

ここで、本実施態様では、Pが2〜10であるとともに、Pが0以上2未満である。これによって、表層領域3における耐摩耗性の向上と内部2における耐欠損性の向上を両立させることができる。In the present embodiment, together with the P i are 2 to 10, less than 2 P s is 0 or more. As a result, it is possible to achieve both improvement in wear resistance in the surface layer region 3 and improvement in chipping resistance in the interior 2.

また、焼結体1には、Pの半分の値になる中間位置M(図1の焼結体では620cm−1付近)が表層領域3内に存在する。本実施態様では、中間位置Mが、表面4から100〜1000μmの深さに存在している。これによって、表層領域3における耐摩耗性と内部2における耐欠損性とのバランスを最適化させることができる。Further, the sintered body 1, a half of a value intermediate position M of P i (around 620 cm -1 in the sintered body of FIG. 1) is present in the surface region 3. In the present embodiment, the intermediate position M exists at a depth of 100 to 1000 μm from the surface 4. As a result, the balance between the wear resistance in the surface layer region 3 and the fracture resistance in the interior 2 can be optimized.

また、焼結体1を切削工具として用いる場合、切削工具の切刃、すくい面、逃げ面のいずれの位置にも、内部2おけるP値(P)よりもP値(P)が小さい表層領域3が存在しているのがよい。これによって、切削時の切刃付近の耐摩耗性および耐欠損性が高く、かつすくい面や逃げ面においても、切屑に対する耐摩耗性および耐欠損性が高い。本実施態様によれば、切刃における表層領域3の中間位置Mが、すくい面および逃げ面における中間位置Mよりも、表面から深い位置に存在する。これによって、最も大きな衝撃がかかる切刃における耐摩耗性を高くできる。本実施態様においては、切刃における中間位置Mの深さは、すくい面および逃げ面における中間位置Mの深さに対して、1.0〜3.5倍である。When the sintered body 1 is used as a cutting tool, the P value (P s ) is smaller than the P value (P i ) in the interior 2 at any position of the cutting blade, rake face, and flank face of the cutting tool. The surface layer region 3 is preferably present. As a result, the wear resistance and chipping resistance in the vicinity of the cutting edge during cutting are high, and the wear resistance and chipping resistance against chips are also high on the rake face and flank face. According to this embodiment, the intermediate position M of the surface layer region 3 in the cutting edge exists deeper from the surface than the intermediate position M in the rake face and the flank face. As a result, the wear resistance of the cutting blade to which the greatest impact is applied can be increased. In the present embodiment, the depth of the intermediate position M on the cutting edge is 1.0 to 3.5 times the depth of the intermediate position M on the rake face and the flank face.

なお、切削工具の切刃の範囲は、すくい面と逃げ面との交差稜線から500μm幅の領域と定義する。したがって、すくい面の範囲は、切削工具の主面等のすくい面の中央から切刃の終端である交差稜線から500μmの位置までに亘る領域、逃げ面の範囲は、切削工具の側面等の逃げ面の中央から切刃の終端である交差稜線から500μmの位置までに亘る領域である。   The range of the cutting edge of the cutting tool is defined as a region having a width of 500 μm from the intersecting ridge line between the rake face and the flank face. Therefore, the range of the rake face is a region extending from the center of the rake face such as the main surface of the cutting tool to the position of 500 μm from the cross ridge line that is the end of the cutting edge, and the range of the flank face is a clearance of the side face of the cutting tool. This is a region extending from the center of the surface to the position of 500 μm from the intersecting ridge line that is the end of the cutting edge.

本実施態様では、焼結体1のJISZ8721に規定された色の表示方法における明度Vが、表面4側に対して内部2側で3以上小さくなる境界Xが存在している。この境界Xは、表層領域3内に存在し、かつ中間位置M±中間位置Mの表面からの深さの20%以内の位置に存在している。つまり、Siピークのピーク強度の変化が、焼結体1の色に反映されているものと思われる。そして、焼結体1の表層領域3では明るい色調となっているので、異物や欠陥が発見しやすく、強度の信頼性の高い焼結体1となる。   In the present embodiment, there is a boundary X in which the brightness V in the color display method defined in JISZ8721 of the sintered body 1 is smaller by 3 or more on the inner 2 side than on the surface 4 side. This boundary X exists in the surface layer region 3 and exists at a position within 20% of the depth from the surface of the intermediate position M ± intermediate position M. That is, it is considered that the change in the peak intensity of the Si peak is reflected in the color of the sintered body 1. And since it is a bright color tone in the surface layer area | region 3 of the sintered compact 1, it becomes easy to find a foreign material and a defect, and becomes the sintered compact 1 with high intensity | strength reliability.

本実施態様の窒化珪素質焼結体(焼結体1)は、窒化珪素を主体とし、RE元素(イットリウムまたは希土類元素のいずれか1種以上)、マグネシウム、アルミニウムおよび酸化珪素を含有するとともに、金属Siを含有する。   The silicon nitride-based sintered body (sintered body 1) of this embodiment is mainly composed of silicon nitride, contains RE element (any one or more of yttrium or rare earth element), magnesium, aluminum, and silicon oxide. Contains metal Si.

また、焼結体1の全体組成は、窒化珪素を94.5〜99.5質量%、RE元素をRE換算で0.1〜4.5質量%、マグネシウムをMgO換算で0.3〜2.5質量%、アルミニウムをAl換算で0〜1.5質量%、珪素の一部をSiO換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%で含有する。この組成であれば、焼結体1全体としての耐摩耗性および耐欠損性を高くできる。また、本実施態様では、焼結体1の表面4におけるマグネシウム元素の含有比率が0.1〜1.0質量%である。これによって、表層領域3における焼結体の硬度および高温強度を高めて、焼結体1の耐摩耗性を高めることができる。なお、RE元素、マグネシウムおよびアルミニウムは、いずれも酸化物として存在し、珪素の一部も酸化珪素(SiO)として存在する。これによって、少量で窒化珪素同士を強固に結合できて窒化珪素の含有比率を高めることができる。The overall composition of the sintered body 1 is 94.5 to 99.5% by mass of silicon nitride, 0.1 to 4.5% by mass of RE element in terms of RE 2 O 3 , and 0.005 in terms of magnesium in terms of MgO. 3 to 2.5% by mass, aluminum is 0 to 1.5% by mass in terms of Al 2 O 3 , part of silicon is 0.1 to 4.5% by mass in terms of SiO 2 , periodic table group 6 element silicidation A thing is contained at 0-2 mass%. With this composition, the wear resistance and fracture resistance of the sintered body 1 as a whole can be increased. Moreover, in this embodiment, the content rate of the magnesium element in the surface 4 of the sintered compact 1 is 0.1-1.0 mass%. As a result, the hardness and high-temperature strength of the sintered body in the surface layer region 3 can be increased, and the wear resistance of the sintered body 1 can be increased. Note that the RE element, magnesium and aluminum all exist as oxides, and part of silicon also exists as silicon oxide (SiO 2 ). Thereby, silicon nitride can be firmly bonded with a small amount, and the content ratio of silicon nitride can be increased.

本実施態様では、RE元素の含有量は、焼結体1の緻密化のために、RE換算で0.5〜4.5質量%であり、さらに1〜2.5質量%である。マグネシウムの含有量は、焼結助剤の液相生成温度の低温化によって焼結体をより低温で緻密化させるために、MgO換算で0.35〜2.0質量%であり、さらに0.4〜1.0質量%である。In the present embodiment, the RE element content is 0.5 to 4.5% by mass in terms of RE 2 O 3 and further 1 to 2.5% by mass for densification of the sintered body 1. is there. The content of magnesium is 0.35 to 2.0% by mass in terms of MgO in order to densify the sintered body at a lower temperature by lowering the liquid phase generation temperature of the sintering aid. 4 to 1.0% by mass.

本実施態様では、アルミニウムの含有量は、焼結助剤の液相生成温度の低温化、焼結体の緻密化および耐酸化性の低下による耐摩耗性の低下を抑制するために、Al換算で0.2〜1.0質量%であり、さらに0.3〜0.8質量%である。残余の酸素は窒化珪素の不純物として存在し酸化珪素(SiO)として存在しているが、SiOとして存在する珪素の含有量は、焼結助剤の液相生成温度の低温化、焼結体1の緻密化を保つとともに、耐酸化性および耐摩耗性を改善した焼結体1を実現するためにSiO換算で0.1〜4.5質量%であり、特に1.0〜2.5質量%、さらには1.5〜2質量%である。上記窒化珪素および酸化珪素以外のSi成分として金属Siを含有するが、金属Siの含有量は、0より大きく0.5質量%以下であり、本実施態様では、X線回折測定では金属Siのピークが検出されないほど少ない含有比率である。In this embodiment, the content of aluminum is Al 2 in order to suppress a decrease in wear resistance due to a decrease in the liquid phase generation temperature of the sintering aid, a densification of the sintered body, and a decrease in oxidation resistance. It is 0.2 to 1.0% by mass in terms of O 3 , and further 0.3 to 0.8% by mass. The remaining oxygen is present as an impurity of silicon nitride and is present as silicon oxide (SiO 2 ). However, the content of silicon present as SiO 2 is reduced in the liquid phase formation temperature of the sintering aid and sintered. In order to maintain the densification of the body 1 and realize the sintered body 1 with improved oxidation resistance and wear resistance, it is 0.1 to 4.5% by mass in terms of SiO 2 , particularly 1.0 to 2 %. 0.5% by mass, and further 1.5-2% by mass. Metal Si is contained as a Si component other than the above silicon nitride and silicon oxide, but the content of metal Si is greater than 0 and 0.5% by mass or less. The content ratio is so small that no peak is detected.

また、RE元素としてはランタン(La)を必須として含有すると、ランタン(La)を含まない場合に比べて焼結体を低温で緻密化できるので、焼結体1中の結晶が異常粒成長することなく結晶を微粒化できる。例えば、1730〜1780℃の常圧焼成で焼結体1の相対密度が99%以上で、かつ視野0.015mmで長径が大きい方から6個の窒化珪素の平均長径を10μm以下に抑制することが可能となる。その結果、焼結体1の硬度と強度を向上させることができる。In addition, if lanthanum (La) is contained as an essential element as the RE element, the sintered body can be densified at a lower temperature than when lanthanum (La) is not included, so that crystals in the sintered body 1 grow abnormally. Crystals can be atomized without any problems. For example, the average major axis of the six silicon nitrides is suppressed to 10 μm or less from the larger major axis with a relative density of 99% or more and a field of view of 0.015 mm 2 by atmospheric pressure firing at 1730 to 1780 ° C. It becomes possible. As a result, the hardness and strength of the sintered body 1 can be improved.

ここで、REと、マグネシウムと、アルミニウムと、一部の珪素は基本的に酸化物として粒界相を形成する。粒界相はその一部が結晶として析出した構成であっても良いが、粒界相自体の存在割合を4質量%以下と少なくすることによって、焼結体1の硬度および高温強度が高まることから、粒界相の絶対量を減らしつつ窒化珪素結晶の結合性を高めるために、本実施態様では、粒界相は非晶質で存在する。   Here, RE, magnesium, aluminum, and part of silicon basically form a grain boundary phase as an oxide. A part of the grain boundary phase may be precipitated as crystals, but the hardness and high-temperature strength of the sintered body 1 are increased by reducing the proportion of the grain boundary phase itself to 4% by mass or less. Therefore, in order to increase the bonding property of the silicon nitride crystal while reducing the absolute amount of the grain boundary phase, in this embodiment, the grain boundary phase exists in an amorphous state.

なお、窒化珪素は主結晶として存在するが、窒化珪素結晶としては、主にβ−窒化珪素結晶からなり、所望によりその一部がアルミニウムを含んでβ−サイアロンを形成したものであってもよい。また、β−窒化珪素結晶の一部がα−窒化珪素結晶であってもよいが、硬度および強度を高めるために、本実施態様では、α−窒化珪素結晶を含まない。   Although silicon nitride exists as a main crystal, the silicon nitride crystal may be mainly composed of β-silicon nitride crystal, and if desired, a part thereof may contain aluminum to form β-sialon. . Further, a part of the β-silicon nitride crystal may be an α-silicon nitride crystal, but in this embodiment, the α-silicon nitride crystal is not included in order to increase hardness and strength.

また、周期表第6族元素珪化物は高温強度の低下を抑制することができるとともに、焼結体の色を黒色化することもできる。周期表第6族元素珪化物として、珪化クロム、珪化モリブデン、珪化タングステンを例示できるが、微細な酸化物原料を用いて焼成体中に微細な粒子として存在させることができるという理由から珪化タングステンを用いることが望ましい。なお、この周期表第6族元素珪化物粒子は、窒化珪素質焼結体の粒界相に分散して存在する。   Moreover, the periodic table group 6 element silicide can suppress the fall of high temperature intensity | strength, and can also blacken the color of a sintered compact. Examples of periodic table group 6 element silicides include chromium silicide, molybdenum silicide, and tungsten silicide, but tungsten silicide is used because it can be present as fine particles in the fired body using a fine oxide raw material. It is desirable to use it. The periodic table group 6 element silicide particles are present dispersed in the grain boundary phase of the silicon nitride sintered body.

なお、焼結体1の内部2とは、焼結体1の厚みの中央である中心におけるP値との差が0.2未満である範囲を指し、内部2よりも表面4側は表層領域3と定義する。本実施態様では、この表層領域3は表面4から100〜1500μmの深さにわたって存在する。これによって、焼結体1の表面4における耐摩耗性を維持しつつ耐欠損性を高めることができる。   In addition, the inside 2 of the sintered body 1 refers to a range in which the difference from the P value at the center which is the center of the thickness of the sintered body 1 is less than 0.2, and the surface 4 side of the inside 2 is a surface layer region. 3 is defined. In this embodiment, the surface layer region 3 exists from the surface 4 to a depth of 100 to 1500 μm. Thereby, the fracture resistance can be enhanced while maintaining the wear resistance on the surface 4 of the sintered body 1.

また、内部2における含有比率とは、焼結体1の中心を含む深さ50μm×幅50μmの領域について電子線マイクロアナライザ(EPMA)を用いて面分析により各元素の含有比率を測定し、同様に中心付近の任意2か所(合計3ヶ所)についてこの面分析を行って平均値を取った値のことであり、焼結体1の全体組成とほとんど同じ組成となる。   The content ratio in the interior 2 is the same as the content ratio of each element measured by area analysis using an electron beam microanalyzer (EPMA) in a region of 50 μm depth × 50 μm width including the center of the sintered body 1 The average value is obtained by conducting this surface analysis at two arbitrary locations near the center (total of three locations), which is almost the same as the overall composition of the sintered body 1.

さらに、本実施態様では、焼結体1の表層領域3では内部に対してマグネシウムの含有比率が漸次低くなっており、表面4におけるマグネシウムの含有比率は焼結体1の内部2における含有比率に対して70〜85%の範囲内であり、かつ表層領域3におけるRE元素の含有比率は焼結体1の内部における含有比率に対して85〜115%の範囲内である。焼結体1の表層領域3では内部2に対してマグネシウムの含有比率が漸次低くなることによって、表層領域3では焼結が進行しにくく、焼成による焼結体1の収縮量が内部2に比べて小さくなることから、焼結体1の表面4に圧縮応力が発生して、表層領域3におけるチッピングを抑制することができる。   Further, in this embodiment, the magnesium content ratio in the surface layer region 3 of the sintered body 1 is gradually lower than the inside, and the magnesium content ratio on the surface 4 is the content ratio in the interior 2 of the sintered body 1. On the other hand, the RE element content ratio in the surface layer region 3 is in the range of 70 to 85% and the content ratio in the sintered body 1 is in the range of 85 to 115%. In the surface layer region 3 of the sintered body 1, the content ratio of magnesium gradually decreases with respect to the inside 2, so that the sintering does not easily proceed in the surface layer region 3, and the shrinkage amount of the sintered body 1 due to firing is smaller than that of the inside 2. Therefore, a compressive stress is generated on the surface 4 of the sintered body 1 and chipping in the surface layer region 3 can be suppressed.

なお、本実施態様の窒化珪素質焼結体は、切削工具として好適に使用可能であるが、それ以外の耐摩耗性および耐欠損性を必要とする構造材としても好適に使用できる。   In addition, although the silicon nitride sintered body of this embodiment can be suitably used as a cutting tool, it can also be suitably used as a structural material that requires other wear resistance and fracture resistance.

また、焼結体1の表面に被覆層を設けてもよい。被覆層としては、TiC、TiN、TiCN、Al、TiAlN等が好適に使用可能である。焼結体1に接する第1層としては、TiC、TiN、TiCNのいずれかが好適である。本実施態様によれば、焼結体1の表面における金属Si量が少ないので、焼結体1に対する上記第1層の密着性がよく、切削工具は摩耗しくにい。Further, a coating layer may be provided on the surface of the sintered body 1. As the coating layer, TiC, TiN, TiCN, Al 2 O 3 , TiAlN, or the like can be suitably used. As the first layer in contact with the sintered body 1, any of TiC, TiN, and TiCN is suitable. According to this embodiment, since the amount of metal Si on the surface of the sintered body 1 is small, the adhesion of the first layer to the sintered body 1 is good, and the cutting tool is not easily worn.

(製造方法)
次に、上述した焼結体の製造方法について説明する。
(Production method)
Next, the manufacturing method of the sintered body described above will be described.

まず、出発原料として、例えば、窒化珪素(Si)粉末と、RE元素の水酸化物(RE(OH))または酸化物(RE)、酸化アルミニウム(Al)、水酸化マグネシウム(Mg(OH))を準備する。また、必要に応じて、二酸化珪素(SiO)、周期表第6族元素珪化物の粉末を用意する。First, as starting materials, for example, silicon nitride (Si 3 N 4 ) powder, hydroxide (RE (OH) 2 ) or oxide (RE 2 O 3 ), and aluminum oxide (Al 2 O 3 ) of RE element Magnesium hydroxide (Mg (OH) 2 ) is prepared. If necessary, silicon dioxide (SiO 2 ) and periodic table group 6 element silicide powders are prepared.

窒化珪素原料は、α−窒化珪素粉末、β−窒化珪素粉末、又はこれらの混合物のいずれも用いることができる。これらの粒径は、1μm以下、特に0.5μm以下であることが好ましい。窒化珪素原料中には不可避の酸素が存在する。そこで、窒化珪素原料中に存在する酸素が酸化珪素(SiO)として存在していると考えて、組成を調整する。酸素分が不足する場合には酸化珪素(SiO)粉末を添加する。As the silicon nitride raw material, any of α-silicon nitride powder, β-silicon nitride powder, or a mixture thereof can be used. These particle sizes are preferably 1 μm or less, particularly 0.5 μm or less. Inevitable oxygen exists in the silicon nitride raw material. Therefore, the composition is adjusted by considering that oxygen present in the silicon nitride raw material exists as silicon oxide (SiO 2 ). When the oxygen content is insufficient, silicon oxide (SiO 2 ) powder is added.

RE元素の原料としては酸化物粉末を用いても良いが、例えばランタン(La)の場合には酸化ランタン(La)の吸湿性が高いため、水酸化ランタン(La(OH))のように吸水性が低く、焼成過程で酸化ランタン(La)に変化する化合物を用いることが好ましい。マグネシウム(Mg)原料としては、酸化マグネシウム(MgO)や炭酸マグネシウム(MgCO)を用いても良いが、酸化マグネシウム(MgO)は吸水性が高く、炭酸マグネシウム(MgCO)は炭酸ガスを発生してしまうので、本実施態様では、水酸化マグネシウム(Mg(OH))のように、吸水性が低く、炭酸ガスの発生も無く、焼成過程で酸化マグネシウム(MgO)に変化する化合物を用いる。Oxide powder may be used as a raw material for the RE element. For example, in the case of lanthanum (La), lanthanum hydroxide (La (OH) 2 ) has high hygroscopicity because lanthanum oxide (La 2 O 3 ) has high hygroscopicity. It is preferable to use a compound having a low water absorption and changing to lanthanum oxide (La 2 O 3 ) during the firing process. Magnesium oxide (MgO) or magnesium carbonate (MgCO 3 ) may be used as the magnesium (Mg) raw material, but magnesium oxide (MgO) has high water absorption, and magnesium carbonate (MgCO 3 ) generates carbon dioxide gas. Therefore, in this embodiment, a compound that has low water absorption, does not generate carbon dioxide gas, and changes into magnesium oxide (MgO) during the firing process, such as magnesium hydroxide (Mg (OH) 2 ), is used.

周期表第6族元素珪化物を形成するための原料は、周期表第6族元素の酸化物、炭化物、珪化物、窒化物等いずれでも良いが、本実施態様では、安価で微粉末が得られやすいことから酸化物を用いる。   The raw material for forming the Group 6 element silicide of the periodic table may be any of the oxide, carbide, silicide, nitride, etc. of the Group 6 element of the periodic table, but in this embodiment, a fine powder can be obtained at low cost. Oxides are used because they are easily formed.

次に、これらの原料を秤量した混合粉末に適宜バインダや溶剤を添加して混合、粉砕し、スプレードライ法等により乾燥、造粒する。そして、この造粒粉末を公知の成形手段により任意の形状に成形した後、例えば窒素雰囲気中で、常圧焼成法、ガス圧力焼成法、ホットプレス法等により1650〜1950℃の温度で焼成する。   Next, a binder or a solvent is appropriately added to the mixed powder obtained by weighing these raw materials, mixed and pulverized, and dried and granulated by a spray drying method or the like. And after shape | molding this granulated powder in arbitrary shapes by a well-known shaping | molding means, it bakes at the temperature of 1650-1950 degreeC by a normal-pressure baking method, a gas pressure baking method, a hot press method etc. in nitrogen atmosphere, for example. .

この焼成の具体的な条件は、上記成形体を窒化珪素質焼結体製の焼成鉢に入れるとともに、この焼成鉢の中にSi成分およびMg成分を入れて焼成鉢の蓋を密封状態がさほど高くない状態で閉めて焼成炉内にセットする。なお、焼成鉢の蓋を密封状態がさほど高くない状態で閉める状態とは、焼成鉢内の雰囲気が焼成炉内の雰囲気と同じになるように、ガスが出入りできる状態を指す。そして、焼成炉内を0.1MPa(1気圧)の窒素で置換した後、5〜15℃/分で昇温を開始し、1400〜1500℃の温度範囲における昇温速度を1〜5℃/分に変更した後、1500℃から第1の焼成温度の1650〜1820℃までの昇温速度は再度5〜15℃/分に変更する。そして、ガス抜きしたり窒素ガスを追加で導入したりして炉内の雰囲気が窒素0.1MPaに保たれるように調整して、第1の焼成温度で2〜12時間保持する。次に、昇温速度5〜15℃/分で、第1の焼成温度から30℃以上高い第2の焼成温度1680〜1950℃に昇温し、炉内の雰囲気を不活性ガス0.2〜10MPaに加圧した状態で0.5〜3時間保持する。その後、1100℃までの降温速度を10〜50℃/分で冷却した後、室温まで冷却する条件とする。このとき、上記第1の焼成温度と第2の焼成温度の2段階焼成を行うことによって、焼結体の表面と内部における窒化珪素(Si)の焼結状態を最適化して、焼結体の表面と内部における耐摩耗性および耐欠損性を最適化することができる。The specific conditions for this firing are that the molded body is placed in a firing bowl made of a silicon nitride sintered body, and the Si and Mg components are placed in the firing bowl so that the lid of the firing bowl is sealed. Close in low condition and set in firing furnace. In addition, the state which closes the lid | cover of a baking pot in the state where the sealing state is not so high refers to the state where gas can go in and out so that the atmosphere in a baking pot may become the same as the atmosphere in a baking furnace. Then, after replacing the inside of the firing furnace with 0.1 MPa (1 atm) of nitrogen, temperature increase was started at 5 to 15 ° C./min, and the temperature increase rate in the temperature range of 1400 to 1500 ° C. was 1 to 5 ° C./min. After changing to minutes, the heating rate from 1500 ° C. to the first firing temperature of 1650 to 1820 ° C. is changed again to 5 to 15 ° C./min. And it adjusts so that the atmosphere in a furnace may be maintained by nitrogen 0.1MPa by degassing or introducing nitrogen gas additionally, and hold | maintains at the 1st baking temperature for 2 to 12 hours. Next, the temperature is increased from the first baking temperature to a second baking temperature of 1680 to 1950 ° C., which is 30 ° C. or higher, at a temperature rising rate of 5 to 15 ° C./min. The pressure is maintained at 10 MPa for 0.5 to 3 hours. Thereafter, the temperature is lowered to 1100 ° C. at 10 to 50 ° C./min, and then cooled to room temperature. At this time, by performing the two-stage firing of the first firing temperature and the second firing temperature, the sintered state of silicon nitride (Si 3 N 4 ) on the surface and inside of the sintered body is optimized, and the firing is performed. It is possible to optimize the wear resistance and fracture resistance on the surface and inside of the bonded body.

なお、焼成鉢中に成形体とともに入れるSiおよびMg成分は、金属Si粉末、SiO粉末、Si粉末、MgO粉末、Mg(OH)粉末の状態で入れる方法が挙げられ、これらの粉末を成形体の周囲に置いたり、成形体の下面に敷き詰めたり、成形体自体を上記粉末中に埋めた状態で焼成することにより、焼成雰囲気中にSiOガスとMgOガスが生成して、焼結体の表面と内部での焼結状態のバランスを調整する方法が挙げられる。Incidentally, Si and Mg components put together molded body during the firing bowl, a metal Si powder, SiO 2 powder, Si 3 N 4 powder, MgO powder, Mg (OH) method to put in 2 powder state and the like, these By placing the powder around the molded body, laying it on the lower surface of the molded body, or firing the molded body itself embedded in the above powder, SiO gas and MgO gas are generated in the firing atmosphere. The method of adjusting the balance of the sintered state in the surface and inside of a bonded body is mentioned.

さらに、一旦、焼成が終了した後、9.8MPa〜294MPa、1500〜1700℃で熱間静水圧焼成を施してもよく、これによって、緻密で、窒化珪素結晶粒子の異常粒成長が抑制された耐チッピング性を改善した窒化珪素質焼結体が得られる。   Further, once the firing is completed, hot isostatic firing may be performed at 9.8 MPa to 294 MPa and 1500 to 1700 ° C., thereby suppressing the abnormal growth of the silicon nitride crystal particles that are dense. A silicon nitride based sintered body with improved chipping resistance is obtained.

また、上述した焼結体は、目的の性能に応じて研削加工が施されるが、本発明にて規定する表層領域が残る状態で研削加工する限りにおいては本発明の効果は失われない。そして、上記焼結体は硬度と靭性に優れることから構造部材用として適応可能であるが、特に、耐摩耗性と耐欠損性とが要求される切削工具として好適に用いられる。なお、焼結体の表面にTiNやAl、TiAlN等の被覆層を施してもよい。Moreover, although the sintered body mentioned above is ground according to the target performance, as long as it grinds in the state where the surface layer area | region prescribed | regulated by this invention remains, the effect of this invention is not lost. And since the said sintered compact is excellent in hardness and toughness, it can be adapted for structural members, but it is particularly suitably used as a cutting tool that requires wear resistance and fracture resistance. It may be subjected to coating of TiN and Al 2 O 3, TiAlN or the like on the surface of the sintered body.

焼結体に接する被覆層として、TiC、TiN、TiCNのいずれかからなる第1層を成膜するには、上記焼結体を純水中に浸漬させて超音波洗浄した後、試料をCVD装置内にセットする。そして、真空中で800〜1050℃に加熱し、反応ガス組成として四塩化チタン(TiCl)ガスを0.5〜10体積%、窒素(N)ガスを0〜60体積%、メタン(CH)ガスを0〜20体積%、アセトニトリル(CHCN)ガスを0〜3体積%、残りが水素(H)ガスからなる混合ガスを、圧力が8〜50kPaとなるように調整してチャンバ内に導入して、成膜する。In order to form a first layer made of TiC, TiN, or TiCN as a coating layer in contact with the sintered body, the sintered body is immersed in pure water and subjected to ultrasonic cleaning, and then the sample is subjected to CVD. Set in the device. Then, heated to 800 to 1050 ° C. in vacuo, titanium tetrachloride (TiCl 4) as a reaction gas composition from 0.5 to 10% by volume gas, nitrogen (N 2) gas 0 to 60% by volume, methane (CH 4 ) Adjust a mixed gas consisting of 0 to 20% by volume of gas, 0 to 3% by volume of acetonitrile (CH 3 CN) gas, and the remaining hydrogen (H 2 ) gas so that the pressure is 8 to 50 kPa. It introduce | transduces in a chamber and forms into a film.

また、第1層の上層としてAl層を成膜するには、塩化アルミニウム(AlCl)ガスを3〜20体積%、塩化水素(HCl)ガスを0.5〜10体積%、二酸化炭素(CO)ガスを0.01〜20体積%、残りが水素(H)ガスからなる混合ガスを用い、成膜温度960〜1100℃、圧力5〜25kPaとする。この条件で成膜すれば、基本的にκ−Alが生成するが、α−Alが生成する場合もある。In order to form an Al 2 O 3 layer as an upper layer of the first layer, 3 to 20% by volume of aluminum chloride (AlCl 3 ) gas, 0.5 to 10% by volume of hydrogen chloride (HCl) gas, dioxide dioxide A mixed gas composed of 0.01 to 20% by volume of carbon (CO 2 ) gas and the remaining hydrogen (H 2 ) gas is used, and the film forming temperature is 960 to 1100 ° C. and the pressure is 5 to 25 kPa. If the film is formed under these conditions, κ-Al 2 O 3 is basically generated, but α-Al 2 O 3 may also be generated.

出発原料として、平均粒径0.3μmの窒化珪素(Si)粉末と、平均粒径1.2μmのRE元素化合物(水酸化ランタン(La(OH))、酸化イットリウム(Y)、酸化イッテリビウム(Yb)、酸化エルビウム(Er)、酸化セリウム(Ce)のいずれか)粉末と、平均粒径0.7μmの酸化アルミニウム(Al)粉末と、平均粒径2.5μmの水酸化マグネシウム(Mg(OH))粉末とを、焼結体の組成が表2となる割合で調合し、バインダと溶剤とを添加した後、アトライタミルにて72時間、粉砕、混合した。その後、乾燥して溶剤を除去して造粒粉末を作製し、この造粒粉末を98MPaの圧力でSNGN120412の切削工具形状にプレス成形した。As starting materials, silicon nitride (Si 3 N 4 ) powder having an average particle size of 0.3 μm, RE element compound (lanthanum hydroxide (La (OH) 2 ), yttrium oxide (Y 2 O) having an average particle size of 1.2 μm 3 ), ytterbium oxide (Yb 2 O 3 ), erbium oxide (Er 2 O 3 ), cerium oxide (Ce 2 O 3 ) powder, and aluminum oxide (Al 2 O 3 ) having an average particle size of 0.7 μm ) Powder and magnesium hydroxide (Mg (OH) 2 ) powder having an average particle size of 2.5 μm were prepared in a proportion such that the composition of the sintered body is as shown in Table 2, and after adding a binder and a solvent, an attritor mill And ground for 72 hours. Thereafter, the solvent was removed by drying to prepare a granulated powder, and this granulated powder was press-molded into a cutting tool shape of SNGN120212 at a pressure of 98 MPa.

この成形体を焼成鉢内にセットする際、Si粉末、金属Si粉末、SiO粉末の少なくとも1種とMg(OH)粉末との混合粉末を用いて表1に示す状態でセットして蓋をし、これをカーボン製の円筒内に置いた状態で焼成炉内に載置した。そして、焼成炉内を窒素0.1MPaに置換して、脱脂後、1400℃まで昇温速度10℃/分で昇温し、1400〜1500℃を2℃/分で昇温し、1500℃以上を10℃/分で昇温し、その後を表1の焼成1、焼成2の条件で順に焼成した。なお、焼成中の雰囲気は表1に記載の雰囲気とした。焼成1と焼成2との間の昇温速度は10℃/分とした。また、焼成後の冷却速度は20℃/分とした。この焼結体の表面を0.3mm厚み研削加工(両頭加工と外周加工)して窒化珪素質焼結体を得た。When this molded body is set in a baking pot, it is set in the state shown in Table 1 using a mixed powder of at least one of Si 3 N 4 powder, metal Si powder, and SiO 2 powder and Mg (OH) 2 powder. Then, it was covered and placed in a firing furnace in a state where it was placed in a carbon cylinder. Then, the inside of the firing furnace is replaced with 0.1 MPa of nitrogen, and after degreasing, the temperature is increased to 1400 ° C. at a rate of temperature increase of 10 ° C./min, 1400-1500 ° C. is increased at 2 ° C./min, and 1500 ° C. or higher Was heated at a rate of 10 ° C./min, and then fired in the order of firing 1 and firing 2 in Table 1. The atmosphere during firing was the atmosphere shown in Table 1. The rate of temperature increase between firing 1 and firing 2 was 10 ° C./min. The cooling rate after firing was 20 ° C./min. The surface of this sintered body was subjected to 0.3 mm thickness grinding (double-head processing and peripheral processing) to obtain a silicon nitride sintered body.

得られた窒化珪素質焼結体について焼結体の表面において電子線マイクロアナライザ(EPMA)測定を行い、表層領域における各成分の含有比率を測定し、RE元素、マグネシウム元素、アルミニウム元素の比率から、酸化物換算して表2の表層領域での含有比率として記載した。なお、SiO量の測定については、EPMAで測定された表層領域の深さまでを焼結体の表面から研磨し、この領域を粉状として採取して表層領域の試料とし、赤外吸収法酸素分析によってこれらの試料の酸素量を測定し、RE、MgO、Al等の酸化物として存在する酸素量を除いた残部の酸素をSiO換算して算出した。The obtained silicon nitride sintered body is subjected to electron beam microanalyzer (EPMA) measurement on the surface of the sintered body, the content ratio of each component in the surface layer region is measured, and the ratio of RE element, magnesium element, aluminum element is determined. In terms of oxide, the content ratio in the surface region of Table 2 is described. For the measurement of the amount of SiO 2 , the depth of the surface layer region measured by EPMA is polished from the surface of the sintered body, and this region is collected as a powder to obtain a sample of the surface layer region. The oxygen amount of these samples was measured by analysis, and the remaining oxygen excluding the oxygen amount existing as an oxide such as RE 2 O 3 , MgO, Al 2 O 3 was calculated in terms of SiO 2 .

また、焼結体の内部である中央部付近(表面から2000〜2500μm程度の深さの位置)の50μm厚さ×50μm幅の領域の任意3ヶ所にてEPMAの面分析を行って、その含有比率の平均値を焼結体の内部における含有比率とした。この焼結体の内部における含有比率を焼結体全体組成として表記し、表面における含有比率と比較し、表2に比率として記載した。なお、SiO量の測定については、焼結体の中央部の3mmの厚み部分を研磨によって粉状として採取して内部領域の試料とし、赤外吸収法酸素分析によってこれらの試料の酸素量を測定し、RE、MgO、Al等の酸化物として存在する酸素量を除いた残部の酸素をSiO換算して算出した。結果は表2に示した。In addition, the EPMA surface analysis was performed at three arbitrary locations in the 50 μm thick × 50 μm wide region near the center (position at a depth of about 2000 to 2500 μm from the surface) inside the sintered body. The average value of the ratio was taken as the content ratio inside the sintered body. The content ratio in the interior of the sintered body was expressed as the overall composition of the sintered body, compared with the content ratio on the surface, and shown in Table 2 as the ratio. Regarding the measurement of the amount of SiO 2 , a 3 mm thick portion at the center of the sintered body was collected as a powder by polishing to obtain samples in the inner region, and the oxygen content of these samples was determined by infrared absorption oxygen analysis. Measured, and the remaining oxygen excluding the amount of oxygen present as an oxide such as RE 2 O 3 , MgO, Al 2 O 3 was calculated in terms of SiO 2 . The results are shown in Table 2.

また、切削工具の断面について、下記条件でラマン分光分析を行い、
レーザーラマン分光装置HR−800
レーザー波長:514.53nm
グレーティング:600本
対物レンズ:×50
検出器:CCD
測定端数:100〜2000/cm
測定されたラマンチャートから、所定のピークについてのピーク強度比および表面から内部にかけてのピークシフトの有無を確認するとともに、表層領域の中間位置Mの深さを求めた。なお、すくい面、逃げ面における中間位置Mの深さを測定する際には、交差稜線から1000μm離れた位置にて、焼結体の表面からの深さを変えて測定して求めた。切刃における中間位置Mの深さを測定する際には、交差稜線の位置からすくい面および逃げ面と45度の角度をなす直線上について、深さを変えて測定して求めた。
In addition, for the cross section of the cutting tool, perform Raman spectroscopic analysis under the following conditions,
Laser Raman spectrometer HR-800
Laser wavelength: 514.53 nm
Grating: 600 objective lenses: × 50
Detector: CCD
Measurement fraction: 100-2000 / cm
From the measured Raman chart, the peak intensity ratio for a predetermined peak and the presence or absence of a peak shift from the surface to the inside were confirmed, and the depth of the intermediate position M in the surface layer region was determined. In addition, when measuring the depth of the intermediate position M on the rake face and the flank face, the depth from the surface of the sintered body was changed and measured at a position away from the intersecting ridge line by 1000 μm. When measuring the depth of the intermediate position M on the cutting edge, the depth was measured by changing the depth on a straight line forming an angle of 45 degrees with the rake face and the flank face from the position of the intersecting ridge line.

さらに、得られた窒化珪素質焼結体からなる切削工具を用いて、下記条件により切削性能を評価した。
被切削材:FCD−450 ブロック材(直径40mmの貫通孔が68mm間隔で並列に配置された形状)
切削速度:500m/分
送り量:0.5mm/rev
切り込み量:2.0mm
切削条件:湿式切削
評価項目:100個加工後の切刃のチッピング状態をデジタルスコープにて観察した。また、引き続き加工し、工具寿命に至るまでの加工数を確認した。
結果は表3に示した。
Furthermore, cutting performance was evaluated under the following conditions using a cutting tool made of the obtained silicon nitride sintered body.
Workpiece: FCD-450 block material (shape in which through-holes with a diameter of 40 mm are arranged in parallel at intervals of 68 mm)
Cutting speed: 500 m / min Feed amount: 0.5 mm / rev
Cutting depth: 2.0mm
Cutting condition: Wet cutting evaluation item: The chipping state of the cutting edge after processing 100 pieces was observed with a digital scope. Moreover, the number of machining until the end of the tool life was confirmed.
The results are shown in Table 3.

表1〜3に示した結果によれば、本発明の範囲内の試料No.4〜8はいずれも摩耗量が小さく刃先のチッピングの少ない耐欠損性がよい切削性能を示した。これに対して、常圧雰囲気のみで焼成した試料No.10、焼成鉢内に混合粉末を置かない試料No.11、焼成1の焼成時間が2時間よりも短い試料No.13では、いずれもPがPと同じであるか、PがPよりも大きくなった。加圧雰囲気のみで焼成した試料No.12では、Siピークのピーク位置が内部で低角度側にシフトしていた。これらの試料は、いずれも大きくチッピングし、欠損によって加工不能となった。なお、試料No.1〜3、9は本発明の範囲外である。 According to the results shown in Tables 1 to 3, sample Nos. Within the scope of the present invention. Nos. 4 to 8 all showed cutting performance with good wear resistance with a small amount of wear and little chipping of the cutting edge. On the other hand, Sample No. baked only in the normal pressure atmosphere. 10. Sample No. with no mixed powder placed in the baking pot. 11. Sample No. 1 with a firing time of firing 1 shorter than 2 hours. In either case, P i is the same as P s or P i is larger than P s . Sample No. fired only in a pressurized atmosphere. 12, the peak position of the Si peak was shifted to the low angle side inside. All of these samples were greatly chipped and became inoperable due to chipping. Sample No. 1 to 3 and 9 are outside the scope of the present invention.

なお、試料No.1、3−7、9では、いずれもラマン分光分析測定における中間位置±20%の位置で、JISZ8721に規定された色の表示方法における明度Vが、表面を含む表面側に対して内部を含む内部側で3以上小さくなる境界Xが存在していた。   Sample No. In 1, 3-7, and 9, the brightness V in the color display method defined in JISZ8721 includes the inside with respect to the surface side including the surface at the intermediate position ± 20% in the Raman spectroscopic analysis measurement. There was a boundary X that was 3 or more smaller on the inner side.

実施例1の試料No.1、10に対して、その表面に化学気相蒸着(CVD)法によって被覆層を成膜した。成膜温度が1010℃、ガス圧が30kPaで、TiCl:2.0,N:30,H:残の混合ガス組成を用いて第1層のTiN層を成膜し、成膜温度が1005℃、ガス圧が9kPaで、AlCl:1.5,HCl:2,CO:4,H:残の混合ガス組成を用いて第2層のAl層を成膜し、成膜温度が880℃、ガス圧が16kPaで、TiCl:2.0,N:33,H:残の混合ガス組成を用いて第3層のTiN層を成膜し、成膜温度が1005℃、ガス圧が9kPaで、AlCl:1.5,HCl:2,CO:4,HS:0.3,H:残の混合ガスを用いて第4層のAl層を成膜し、成膜温度が1010℃、ガス圧が15kPaで、TiCl:3.0,CH:7,H:残の混合ガス組成を用いて第5層のTiC層を成膜した。そして、被覆層の表面をすくい面側から30秒間ブラシ加工して試料No.14、15の切削工具を作製した。Sample No. 1 of Example 1 For 1 and 10, a coating layer was formed on the surface by chemical vapor deposition (CVD). The first TiN layer is formed using the remaining mixed gas composition at a film forming temperature of 1010 ° C., a gas pressure of 30 kPa, and TiCl 4 : 2.0, N 2 : 30, H 2 : Was formed at a gas pressure of 9 kPa, AlCl 3 : 1.5, HCl: 2, CO 2 : 4, H 2 : the remaining Al 2 O 3 layer was formed using the remaining mixed gas composition. The third TiN layer was formed using the remaining mixed gas composition at a film forming temperature of 880 ° C., a gas pressure of 16 kPa, and TiCl 4 : 2.0, N 2 : 33, H 2 : The temperature is 1005 ° C., the gas pressure is 9 kPa, AlCl 3 : 1.5, HCl: 2, CO 2 : 4, H 2 S: 0.3, H 2 : Al in the fourth layer using the remaining mixed gas the 2 O 3 layer was deposited, deposition temperature 1010 ° C., gas pressure at 15kPa, TiCl 4: 3.0, CH 4: 7, 2: was deposited TiC layer of the fifth layer using a mixed gas composition of the residual. Then, the surface of the coating layer was brushed for 30 seconds from the rake face side, and sample No. 14 and 15 cutting tools were produced.

得られた切削工具を用いて、下記条件で切削性能を評価した。
被切削材:FCD−450 スリーブ材
切削速度:500m/分
送り量:0.5mm/rev
切り込み量:2.0mm
切削条件:湿式切削
評価項目:100個加工後の切刃のチッピング状態をデジタルスコープにて観察した。また、引き続き加工し、切削不能に至るまでの加工数を確認した。
Using the obtained cutting tool, cutting performance was evaluated under the following conditions.
Workpiece material: FCD-450 Sleeve material Cutting speed: 500 m / min Feed amount: 0.5 mm / rev
Cutting depth: 2.0mm
Cutting condition: Wet cutting evaluation item: The chipping state of the cutting edge after processing 100 pieces was observed with a digital scope. In addition, the number of processing until the cutting was continued and the cutting became impossible was confirmed.

試料No.1の焼結体を用いた試料No.14では、100個加工後に切刃を観察したところ、被覆層の剥離は見られず、500個まで加工できた。これに対して、試料No.10の焼結体を用いた試料No.15では、100個加工後の切刃の観察において、被覆層の剥離が見られ、加工数は200個であった。   Sample No. Sample No. 1 using the sintered body of No. 1 was used. In No. 14, when the cutting edge was observed after processing 100 pieces, no peeling of the coating layer was observed, and up to 500 pieces could be processed. In contrast, sample no. Sample No. 10 using the sintered body of No. 10. In No. 15, peeling of the coating layer was observed in the observation of the cutting blade after 100 pieces were processed, and the number of processing was 200.

1 焼結体(窒化珪素質焼結体)
2 内部
3 表層領域
4 表面
1 Sintered body (silicon nitride based sintered body)
2 Inside 3 Surface region 4 Surface

Claims (10)

窒化珪素を主体とする窒化珪素質焼結体であって、ラマン分光分析チャートにおいて、521±10cm−1に現れるSiピークのピーク強度をH、206±10cm−1に現れる窒化珪素ピークのピーク強度をH、該ピーク強度の比H/HをPとしたとき、
表面を含む表層領域におけるP値(P)が、0よりも大きく、かつ、内部におけるP値(P)よりも小さく、
前記表面を含む断面において、JISZ8721に規定された色の表示方法における明度Vが、前記表面側に対して前記内部側で3以上小さくなっている部分を境界としたとき、
該境界から前記窒化珪素質焼結体の中心に向かって前記Siピークのピーク位置が高角度側にシフトする部分を有している窒化珪素質焼結体。
A silicon nitride sintered body mainly composed of silicon nitride, wherein the peak intensity of the Si peak appearing at 521 ± 10 cm −1 is H 1 and the peak of the silicon nitride peak appearing at 206 ± 10 cm −1 in the Raman spectroscopic analysis chart. When the intensity is H 2 and the peak intensity ratio H 1 / H 2 is P,
The P value (P s ) in the surface layer region including the surface is larger than 0 and smaller than the P value (P i ) inside,
In the cross section including the surface, when the brightness V in the color display method defined in JISZ8721 is a boundary that is 3 or more smaller on the inner side than the surface side,
A silicon nitride based sintered body having a portion where the peak position of the Si peak shifts to the high angle side from the boundary toward the center of the silicon nitride based sintered body.
前記Pが2〜10であるとともに、前記P が2未満である請求項1記載の窒化珪素質焼結体。 Wherein P i with is 2-10, the P s is less than 2 in a claim 1 silicon nitride sintered body according. 前記Pの半分の値になる中間位置Mが、前記表面から100〜1000μmの深さの前記表層領域内に存在する請求項1または2記載の窒化珪素質焼結体。 The P intermediate position M to be half the value of i, according to claim 1 or 2 silicon nitride sintered body according to present in the surface layer region of a depth of 100~1000μm from said surface. 前記境界が前記中間位置M±該中間位置Mの前記表面からの深さの20%以内の位置である請求項3記載の窒化珪素質焼結体。 The silicon nitride based sintered body according to claim 3, wherein the boundary is a position within 20% of a depth of the intermediate position M ± the intermediate position M from the surface. RE元素(イットリウムまたは希土類元素のいずれか1種以上)、マグネシウム、アルミニウムおよび珪素を酸化物として含有するとともに、金属Siを含有する請求項1乃至4のいずれか記載の窒化珪素質焼結体。   The silicon nitride based sintered body according to any one of claims 1 to 4, which contains RE element (any one or more of yttrium and rare earth elements), magnesium, aluminum, and silicon as oxides and metal Si. 全体組成が、窒化珪素を94.5〜99.5質量%含有するとともに、残部に、RE元素をRE換算で0.1〜4.5質量%、マグネシウムをMgO換算で0.3〜2.5質量%、アルミニウムをAl換算で0〜0.6質量%、珪素をSiO換算で0.1〜4.5質量%、周期表第6族元素珪化物を0〜2質量%含有する請求項5記載の窒化珪素質焼結体。 The total composition contains 94.5 to 99.5% by mass of silicon nitride, and in the balance, the RE element is 0.1 to 4.5% by mass in terms of RE 2 O 3 and magnesium is 0.3 in terms of MgO. ~ 2.5 mass%, aluminum is 0 to 0.6 mass% in terms of Al 2 O 3 , silicon is 0.1 to 4.5 mass% in terms of SiO 2 , and periodic table group 6 element silicide is 0 to The silicon nitride based sintered body according to claim 5, containing 2% by mass. 前記表面におけるマグネシウムの含有比率が前記内部における含有比率に対して70〜85%の範囲内であり、かつ前記表面におけるRE元素の含有比率が前記内部における含
有比率に対して85〜115%の範囲内である請求項6記載の窒化珪素質焼結体。
The magnesium content ratio on the surface is in the range of 70 to 85% with respect to the internal content ratio, and the RE element content ratio on the surface is in the range of 85 to 115% with respect to the internal content ratio. The silicon nitride based sintered body according to claim 6, wherein the silicon nitride sintered body is inside.
前記表面に被覆層を有するとともに、該被覆層のうちの前記表面に接する第1層が、TiC、TiN、TiCNのいずれかからなる請求項1乃至7のいずれか記載の窒化珪素質焼結体。   The silicon nitride-based sintered body according to any one of claims 1 to 7, wherein the first layer in contact with the surface of the coating layer is made of any one of TiC, TiN, and TiCN. . 請求項1乃至8のいずれか記載の窒化珪素質焼結体を具備する切削工具。   A cutting tool comprising the silicon nitride sintered body according to any one of claims 1 to 8. 切刃における前記表層領域の中間位置Mが、すくい面および逃げ面における前記中間位置Mよりも、表面から深い位置に存在する請求項9記載の切削工具。   The cutting tool according to claim 9, wherein an intermediate position M of the surface layer region in the cutting edge exists at a position deeper from the surface than the intermediate position M in the rake face and the flank face.
JP2014554502A 2012-12-25 2013-12-25 Silicon nitride sintered body and cutting tool Active JP6075803B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012281186 2012-12-25
JP2012281186 2012-12-25
PCT/JP2013/084701 WO2014104112A1 (en) 2012-12-25 2013-12-25 Silicon nitride-based sintered object and cutting tool

Publications (2)

Publication Number Publication Date
JPWO2014104112A1 JPWO2014104112A1 (en) 2017-01-12
JP6075803B2 true JP6075803B2 (en) 2017-02-08

Family

ID=51021190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014554502A Active JP6075803B2 (en) 2012-12-25 2013-12-25 Silicon nitride sintered body and cutting tool

Country Status (2)

Country Link
JP (1) JP6075803B2 (en)
WO (1) WO2014104112A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124690A1 (en) * 2019-12-20 2021-06-24 日本特殊陶業株式会社 Cutting tool
WO2022210533A1 (en) * 2021-03-30 2022-10-06 株式会社 東芝 Silicon nitride sintered body, wear-resistant member, and method for manufacturing silicon nitride sintered body
CN117043123A (en) 2021-03-30 2023-11-10 株式会社东芝 Silicon nitride sintered body, wear-resistant member, and method for producing silicon nitride sintered body

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143350A (en) * 1998-10-30 2000-05-23 Kyocera Corp Abrasion resistant member
JP2000247750A (en) * 1999-02-26 2000-09-12 Kyocera Corp Valve for engine
JP5153030B2 (en) * 2000-05-09 2013-02-27 日本特殊陶業株式会社 Method for producing silicon nitride sintered body
JP2003095747A (en) * 2001-09-20 2003-04-03 Ngk Spark Plug Co Ltd Sintered silicon nitride compact and circuit board obtained by using the same
JP2006105599A (en) * 2004-09-30 2006-04-20 Ngk Spark Plug Co Ltd Temperature measuring method, temperature stress measuring method, high-temperature stress time measuring method, temperature measuring instrument, temperature stress measuring instrument, and high-temperature stress time measuring instrument
JP5527937B2 (en) * 2008-03-26 2014-06-25 京セラ株式会社 Silicon nitride sintered body
JP5153968B2 (en) * 2011-04-28 2013-02-27 京セラ株式会社 Cutting tools

Also Published As

Publication number Publication date
JPWO2014104112A1 (en) 2017-01-12
WO2014104112A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5527937B2 (en) Silicon nitride sintered body
JP6032387B1 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5527949B2 (en) Silicon nitride sintered body
JP5487099B2 (en) Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
WO2006057232A1 (en) Silicon nitride based sintered compact and method for production thereof, and member for molten metal, member for hot working and member for excavation
JP5340028B2 (en) Cutting tools
JP6075803B2 (en) Silicon nitride sintered body and cutting tool
JP6575858B2 (en) Cubic boron nitride sintered body cutting tool with excellent fracture resistance
JP2018164960A (en) Coated cemented carbide tool with superior chipping resistance
JPH02145484A (en) Sintered silicon nitride
JP5677638B1 (en) Cutting tools
US20080220243A1 (en) Composition, sintered product of silicon nitride, article of manufacture, and cutting method
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JP2009078309A (en) Surface coated cutting tool
JP4070417B2 (en) Silicon nitride member, method for manufacturing the same, and cutting tool
JP5909804B1 (en) Si3N4 ceramics with low heat dissipation, and cutting edge replaceable cutting tips, end mills or wear-resistant tools using the same
JP2015009327A (en) Cutting insert
JP7340622B2 (en) Cutting tools
JP2000247748A (en) High-toughness silicon nitride-based sintered compact
JP2014122156A (en) Silicon nitride-based sintered compact
JP5275744B2 (en) Cutting insert, silicon nitride cutting tool, and method of manufacturing silicon nitride sintered body used for cutting insert
JP2009173508A (en) Silicon nitride sintered compact, cutting tool, device for cutting work and cutting method
JP2006187831A (en) Cutting insert and cutting tool
JP2022150536A (en) Ceramic base surface-coated cutting tool
EP1967503B1 (en) Sintered product of silicon nitride, cutting tool, cutting apparatus, and cutting method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170105

R150 Certificate of patent or registration of utility model

Ref document number: 6075803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150