JP7340622B2 - Cutting tools - Google Patents

Cutting tools Download PDF

Info

Publication number
JP7340622B2
JP7340622B2 JP2021565349A JP2021565349A JP7340622B2 JP 7340622 B2 JP7340622 B2 JP 7340622B2 JP 2021565349 A JP2021565349 A JP 2021565349A JP 2021565349 A JP2021565349 A JP 2021565349A JP 7340622 B2 JP7340622 B2 JP 7340622B2
Authority
JP
Japan
Prior art keywords
silicon nitride
phase
sintered body
maximum peak
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021565349A
Other languages
Japanese (ja)
Other versions
JPWO2021124690A1 (en
JPWO2021124690A5 (en
Inventor
達也 戸田
拓也 古橋
亮二 豊田
Original Assignee
Ntkカッティングツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntkカッティングツールズ株式会社 filed Critical Ntkカッティングツールズ株式会社
Publication of JPWO2021124690A1 publication Critical patent/JPWO2021124690A1/ja
Publication of JPWO2021124690A5 publication Critical patent/JPWO2021124690A5/ja
Application granted granted Critical
Publication of JP7340622B2 publication Critical patent/JP7340622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • C04B35/5935Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering obtained by gas pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/62635Mixing details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • C04B2235/3869Aluminium oxynitrides, e.g. AlON, sialon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/75Products with a concentration gradient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/87Grain boundary phases intentionally being absent

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Description

本発明は切削工具に関する。 The present invention relates to cutting tools.

特許文献1には、窒化珪素をマトリックスとして、窒化チタン、アルミナ、イットリアを含有する切削工具が開示されている。この切削工具は、窒化珪素のマトリックスに、熱伝導性に優れ且つ摩擦係数の少ない窒化チタンを含有させて複合化することにより、耐摩耗性が増加するという効果が得られる、と記載されている。このような切削工具は、熱が発生しやすい高速加工などの過酷な条件下にて多く使用されている。 Patent Document 1 discloses a cutting tool containing titanium nitride, alumina, and yttria using silicon nitride as a matrix. It is stated that this cutting tool has the effect of increasing wear resistance by combining a silicon nitride matrix with titanium nitride, which has excellent thermal conductivity and a low coefficient of friction. . Such cutting tools are often used under harsh conditions such as high-speed machining where heat is easily generated.

特許文献2には、β-Sialon(サイアロン)及びα-SialonからなるSialon相又はβ-SialonからなるSialon相を主相とし、焼結助剤を添加したサイアロン焼結体において、Tiの炭化物窒化物、酸化物、炭窒化物、酸窒化物より選ばれる1種以上を含む切削工具が開示されている。そして、チタン化合物は、窒化珪素と比較すると、被削材の主成分である鉄や炭素との反応性が低い為、窒化珪素中に添加することで被削材との反応を抑制することができる、と記載されている。このような切削工具は、超耐熱合金加工用材質として多く使用される。 Patent Document 2 discloses that in a sialon sintered body in which a Sialon phase consisting of β-Sialon and α-Sialon or a Sialon phase consisting of β-Sialon is the main phase and a sintering aid is added, Ti carbide nitride is used. A cutting tool containing one or more selected from compounds, oxides, carbonitrides, and oxynitrides is disclosed. Compared to silicon nitride, titanium compounds have lower reactivity with iron and carbon, which are the main components of the work material, so adding them to silicon nitride can suppress the reaction with the work material. It says that it can be done. Such cutting tools are often used as materials for machining super heat-resistant alloys.

特開2000-354901号公報Japanese Patent Application Publication No. 2000-354901 特開2005-231928号公報JP2005-231928A

近年、切削工具には高能率加工が求められており、さらなる工具寿命の延長が望まれている。工具寿命を延長するために、耐欠損性を向上する技術が検討されている。しかし、これまでに検討された技術において、例えば、湿式加工などの刃先温度が上昇しにくい加工時における耐欠損性については検討の余地がある。 In recent years, cutting tools are required to have high efficiency machining, and further extension of tool life is desired. In order to extend tool life, techniques to improve fracture resistance are being considered. However, in the technologies that have been studied so far, there is still room for consideration regarding fracture resistance during processing, such as wet processing, in which the temperature of the cutting edge is difficult to rise.

本発明は、上記実情に鑑みてなされたものであり、耐欠損性を向上することを目的とする。本発明は、以下の形態として実現することが可能である。 The present invention has been made in view of the above circumstances, and an object of the present invention is to improve fracture resistance. The present invention can be realized as the following forms.

〔1〕窒化珪素またはサイアロンからなるマトリックス相と、硬質相と、ガラス相及び結晶相が存在する粒界相と、を含む窒化珪素質焼結体からなる切削工具であって、
前記窒化珪素質焼結体は、
イットリウムを酸化物換算で5.0wt%以上15.0wt%以下含有するとともに、前記硬質相として窒化チタンを5.0wt%以上25.0wt%以下含有し、
前記窒化珪素質焼結体におけるX線回折ピークにおいて、
前記窒化珪素質焼結体の表面から1.0mmよりも深い内部領域では、2θが25°から35°の範囲にハローパターンを示し、
以下のように定義される前記マトリックス相の最大ピーク強度A、及び、前記粒界相に存在する前記結晶相の最大ピーク強度Bについて、前記最大ピーク強度Aに対する前記最大ピーク強度Bの比であるB/Aが、
前記窒化珪素質焼結体の表面から0.2mmまでの表面領域では、下記式(1)の関係を満たし、
前記窒化珪素質焼結体の前記内部領域では、下記式(2)の関係を満たす切削工具。

0.11≦B/A≦0.40 ・・・式(1)
0.00≦B/A<0.10 ・・・式(2)

最大ピーク強度Aは、前記マトリックス相が単一の種類からなる場合、その相の最大ピーク強度として求め、前記マトリックス相が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
最大ピーク強度Bは、前記粒界相に存在する前記結晶相が単一の種類からなる場合、その相の最大ピーク強度として求め、前記粒界相に存在する前記結晶相が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
[1] A cutting tool made of a silicon nitride sintered body containing a matrix phase made of silicon nitride or sialon, a hard phase, and a grain boundary phase in which a glass phase and a crystal phase exist,
The silicon nitride sintered body is
Containing yttrium in an oxide equivalent of 5.0 wt% or more and 15.0 wt% or less, and containing titanium nitride as the hard phase of 5.0 wt% or more and 25.0 wt% or less,
In the X-ray diffraction peak in the silicon nitride sintered body,
In an internal region deeper than 1.0 mm from the surface of the silicon nitride sintered body, a halo pattern is exhibited in a 2θ range of 25° to 35°,
Regarding the maximum peak intensity A of the matrix phase and the maximum peak intensity B of the crystalline phase present in the grain boundary phase, which are defined as follows, the ratio of the maximum peak intensity B to the maximum peak intensity A is B/A is
In the surface area up to 0.2 mm from the surface of the silicon nitride sintered body, the following formula (1) is satisfied,
The internal region of the silicon nitride sintered body satisfies the following equation (2).

0.11≦B/A≦0.40...Formula (1)
0.00≦B/A<0.10...Formula (2)

When the matrix phase consists of a single type, the maximum peak intensity A is determined as the maximum peak intensity of that phase, and when the matrix phase consists of multiple types, the maximum peak intensity A is determined as the sum of the maximum peak intensities of each of those phases. demand.
The maximum peak intensity B is determined as the maximum peak intensity of the crystal phase existing in the grain boundary phase when it consists of a single type, and the crystal phase existing in the grain boundary phase consists of multiple types. In this case, it is calculated as the sum of the maximum peak intensities of each of those phases.

〔2〕前記窒化珪素質焼結体の断面を観察した場合に、
前記窒化珪素質焼結体の前記表面領域では、視野全体の面積を100面積%として、前記粒界相の占める面積の割合Csが7.0面積%以上14.0面積%以下であり、
前記窒化珪素質焼結体の前記内部領域では、視野全体の面積を100面積%として、前記粒界相の占める面積の割合Ciが3.0面積%以上9.0面積%以下であり、
下記式(3)の関係を満たす〔1〕に記載の切削工具。

Cs>Ci ・・・式(3)
[2] When observing the cross section of the silicon nitride sintered body,
In the surface region of the silicon nitride sintered body, the area ratio Cs occupied by the grain boundary phase is 7.0 area % or more and 14.0 area % or less, with the area of the entire field of view being 100 area %,
In the internal region of the silicon nitride sintered body, the area ratio Ci occupied by the grain boundary phase is 3.0 area % or more and 9.0 area % or less, with the area of the entire field of view being 100 area %,
The cutting tool according to [1], which satisfies the relationship of formula (3) below.

Cs>Ci...Formula (3)

〔3〕前記窒化珪素質焼結体の断面を観察した場合に、
前記窒化珪素または前記サイアロンの粒子全体のうち、最大径が0.5μm以下である粒子の数の割合は50%以上であり、
前記窒化珪素または前記サイアロンの粒子であって最小径が0.5μm以上である粒子のうち、アスペクト比が1.5以上である粒子の数の割合は55%以上である〔1〕又は〔2〕に記載の切削工具。
[3] When observing the cross section of the silicon nitride sintered body,
Among all the particles of the silicon nitride or the Sialon, the proportion of particles having a maximum diameter of 0.5 μm or less is 50% or more,
Among the particles of the silicon nitride or the sialon and having a minimum diameter of 0.5 μm or more, the ratio of the number of particles having an aspect ratio of 1.5 or more is 55% or more [1] or [2] ] The cutting tool described in ].

〔4〕前記窒化珪素質焼結体の前記表面領域におけるX線回折ピークにおいて、2θが25°から35°の範囲にハローパターンを示さない〔1〕から〔3〕のいずれか1つに記載の切削工具。 [4] According to any one of [1] to [3], the X-ray diffraction peak in the surface region of the silicon nitride sintered body does not show a halo pattern in the range of 2θ from 25° to 35°. cutting tools.

本発明のセラミックス焼結体は、耐欠損性に優れる。
本発明のセラミックス焼結体において、粒界相の占める面積割合が特定の要件を満たす場合は、より耐欠損性に優れる。
本発明のセラミックス焼結体において、窒化珪素またはサイアロンの粒子の形態が特定の要件を満たす場合は、より耐欠損性に優れる。
本発明のセラミックス焼結体において、表面領域が特定の要件を満たす場合は、耐欠損性に加えて耐摩耗性を向上できる。
The ceramic sintered body of the present invention has excellent fracture resistance.
In the ceramic sintered body of the present invention, when the area ratio occupied by the grain boundary phase satisfies specific requirements, the ceramic sintered body has better fracture resistance.
In the ceramic sintered body of the present invention, when the morphology of silicon nitride or sialon particles satisfies specific requirements, the ceramic sintered body has better fracture resistance.
In the ceramic sintered body of the present invention, when the surface area satisfies specific requirements, wear resistance can be improved in addition to chipping resistance.

窒化珪素質焼結体に含まれる各相の状態を模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing the state of each phase contained in a silicon nitride sintered body. 切削工具を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a cutting tool. 実験例1の内部領域におけるX線回析パターンを示す図である。3 is a diagram showing an X-ray diffraction pattern in an internal region of Experimental Example 1. FIG. 粒界相に存在する結晶相が複数の種類からなる場合のX線回析パターンを模式的に示す説明図である。FIG. 2 is an explanatory diagram schematically showing an X-ray diffraction pattern when the crystal phases existing in the grain boundary phase are composed of a plurality of types. 実験例1の表面領域におけるX線回析パターンを示す図である。3 is a diagram showing an X-ray diffraction pattern in the surface region of Experimental Example 1. FIG.

以下、本発明を詳しく説明する。なお、本明細書において、数値範囲について「~」を用いた記載では、特に断りがない限り、下限値及び上限値を含むものとする。例えば、「10~20」という記載では、下限値である「10」、上限値である「20」のいずれも含むものとする。すなわち、「10~20」は、「10以上20以下」と同じ意味である。 The present invention will be explained in detail below. In this specification, descriptions using "~" for numerical ranges include the lower limit and upper limit unless otherwise specified. For example, the description "10 to 20" includes both the lower limit value of "10" and the upper limit value of "20". That is, "10 to 20" has the same meaning as "10 or more and 20 or less".

1.切削工具1
切削工具1は、窒化珪素(Si)またはサイアロン(SiAlON)からなるマトリックス相3と、硬質相4と、ガラス相11及び結晶相12が存在する粒界相10と、を含む窒化珪素質焼結体2からなる。
窒化珪素質焼結体2は、イットリウムを酸化物換算で5.0wt%以上15.0wt%以下含有するとともに、硬質相4として窒化チタンを5.0wt%以上25.0wt%以下含有する。窒化珪素質焼結体2は、窒化珪素質焼結体2におけるX線回折ピークにおいて、窒化珪素質焼結体2の表面から1.0mmよりも深い内部領域では、2θが25°から35°の範囲にハローパターンを示す。窒化珪素質焼結体2は、以下のように定義されるマトリックス相3の最大ピーク強度A、及び、粒界相10に存在する結晶相12の最大ピーク強度Bについて、最大ピーク強度Aに対する最大ピーク強度Bの比であるB/Aが、窒化珪素質焼結体2の表面から0.2mmまでの表面領域では、下記式(1)の関係を満たし、窒化珪素質焼結体2の上記内部領域では、下記式(2)の関係を満たす。

0.11≦B/A≦0.40 ・・・式(1)
0.00≦B/A<0.10 ・・・式(2)

最大ピーク強度Aは、マトリックス相3が単一の種類からなる場合、その相の最大ピーク強度として求め、マトリックス相3が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
最大ピーク強度Bは、粒界相10に存在する結晶相12が単一の種類からなる場合、その相の最大ピーク強度として求め、粒界相10に存在する結晶相12が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
1. cutting tool 1
The cutting tool 1 is made of silicon nitride containing a matrix phase 3 made of silicon nitride (Si 3 N 4 ) or sialon (SiAlON), a hard phase 4 , and a grain boundary phase 10 in which a glass phase 11 and a crystalline phase 12 are present. It consists of a quality sintered body 2.
The silicon nitride sintered body 2 contains 5.0 wt% or more of yttrium and 15.0 wt% or less in terms of oxide, and also contains titanium nitride as the hard phase 4 of 5.0 wt% or more and 25.0 wt% or less. In the silicon nitride sintered body 2, in the X-ray diffraction peak of the silicon nitride sintered body 2, 2θ is from 25° to 35° in an internal region deeper than 1.0 mm from the surface of the silicon nitride sintered body 2. A halo pattern is shown in the range of . The silicon nitride sintered body 2 has the maximum peak intensity A of the matrix phase 3 and the maximum peak intensity B of the crystal phase 12 present in the grain boundary phase 10 defined as follows. B/A, which is the ratio of peak intensity B, satisfies the relationship of the following formula (1) in the surface area up to 0.2 mm from the surface of the silicon nitride sintered body 2, and the above relationship of the silicon nitride sintered body 2 is satisfied. In the internal region, the following equation (2) is satisfied.

0.11≦B/A≦0.40...Formula (1)
0.00≦B/A<0.10...Formula (2)

If the matrix phase 3 consists of a single type, the maximum peak intensity A is determined as the maximum peak intensity of that phase, and if the matrix phase 3 consists of multiple types, the maximum peak intensity A is determined as the sum of the maximum peak intensities of each of those phases. demand.
When the crystal phase 12 present in the grain boundary phase 10 consists of a single type, the maximum peak intensity B is determined as the maximum peak intensity of that phase, and the crystal phase 12 present in the grain boundary phase 10 consists of multiple types. In this case, it is calculated as the sum of the maximum peak intensities of each of those phases.

2.窒化珪素質焼結体2
(1)窒化珪素質焼結体2の相構造
窒化珪素質焼結体2は、図1に模式的に示すように、マトリックス相3と硬質相4との間に粒界相10が存在する。マトリックス相3は、窒化珪素またはサイアロンからなる。この窒化珪素またはサイアロンは、α相、β相、ポリタイプ、およびそれらの複合相のいずれであってもよい。粒界相10には、ガラス相11と結晶相12が存在する。なお、図1は各相を概念的に示したものであり、各相の形状及び大きさを正確に示したものではない。
2. Silicon nitride sintered body 2
(1) Phase structure of the silicon nitride sintered body 2 As schematically shown in FIG. 1, the silicon nitride sintered body 2 has a grain boundary phase 10 between the matrix phase 3 and the hard phase 4. . Matrix phase 3 consists of silicon nitride or sialon. This silicon nitride or sialon may be in any of α phase, β phase, polytype, and composite phases thereof. The grain boundary phase 10 includes a glass phase 11 and a crystalline phase 12. Note that FIG. 1 conceptually shows each phase, and does not accurately show the shape and size of each phase.

(2)窒化珪素質焼結体2に含まれる成分、及び各成分の含有量
イットリウムの含有率は、緻密化した焼結体を得るという観点から、酸化物換算で5.0wt%以上である。イットリウムの含有率は、粒界相10中の結晶相12の量を抑制するという観点から、酸化物換算で15.0wt%以下である。よって、イットリウムの含有率は、酸化物換算で5.0wt%以上15.0wt%以下である。
(2) Components contained in the silicon nitride sintered body 2 and the content of each component The content of yttrium is 5.0 wt% or more in terms of oxide, from the viewpoint of obtaining a densified sintered body. . From the viewpoint of suppressing the amount of crystalline phase 12 in grain boundary phase 10, the content of yttrium is 15.0 wt% or less in terms of oxide. Therefore, the content of yttrium is 5.0 wt% or more and 15.0 wt% or less in terms of oxide.

硬質相4としての窒化チタンの含有率は、耐摩耗性を十分なものとし、窒化珪素質焼結体2の耐化学反応性を向上するという観点から、5.0wt%以上である。窒化珪素質焼結体2の耐化学反応性が向上する理由は、窒化チタンがマトリックス相3を構成する窒化珪素又はサイアロンに比して被削材との反応性が低いためである。硬質相4としての窒化チタンの含有率は、マトリックス相3を構成する粒子の成長を促進するという観点から、25.0wt%以下である。よって、硬質相4としての窒化チタンの含有率は、酸化物換算で5.0wt%以上25.0wt%以下である。 The content of titanium nitride as the hard phase 4 is 5.0 wt% or more from the viewpoint of providing sufficient wear resistance and improving the chemical reaction resistance of the silicon nitride sintered body 2. The reason why the chemical reaction resistance of the silicon nitride sintered body 2 is improved is that titanium nitride has a lower reactivity with the work material than silicon nitride or sialon that constitutes the matrix phase 3. The content of titanium nitride as the hard phase 4 is 25.0 wt% or less from the viewpoint of promoting the growth of particles constituting the matrix phase 3. Therefore, the content of titanium nitride as the hard phase 4 is 5.0 wt% or more and 25.0 wt% or less in terms of oxide.

なお、各成分の含有率(wt%)は、窒化珪素質焼結体2の重量を100wt%としたときの各成分の配合量として求めることができる。
窒化珪素質焼結体2における他の成分の含有率は特に限定されない。窒化珪素質焼結体2は、アルミニウムを酸化物換算で3.0wt%以上10.0wt%以下含有していてもよい。アルミニウムの含有率が酸化物換算で3.0wt%以上であると、被削材との反応性を抑制することが出来る。アルミニウムの含有率が酸化物換算で10.0wt%以下であると、マトリックス相が強度低下することなく、耐摩耗性を向上することができる。
窒化珪素質焼結体2が、窒化珪素またはサイアロン、イットリア(Y)、アルミナ(Al)、窒化チタン(TiN)、及び不可避不純物のみからなる場合には、窒化珪素またはサイアロンの含有率は、窒化チタン、アルミナ、イットリア、及び不可避不純物の合計(wt%)の残部となる。不可避不純物の含有率は0.1wt%以下とすることができる。
The content (wt%) of each component can be determined as the amount of each component when the weight of the silicon nitride sintered body 2 is 100 wt%.
The content of other components in the silicon nitride sintered body 2 is not particularly limited. The silicon nitride sintered body 2 may contain 3.0 wt% or more and 10.0 wt% or less of aluminum in terms of oxide. When the aluminum content is 3.0 wt% or more in terms of oxide, reactivity with the work material can be suppressed. When the aluminum content is 10.0 wt % or less in terms of oxide, the strength of the matrix phase does not decrease and the wear resistance can be improved.
When the silicon nitride sintered body 2 consists of silicon nitride or sialon, yttria (Y 2 O 3 ), alumina (Al 2 O 3 ), titanium nitride (TiN), and inevitable impurities, silicon nitride or sialon is used. The content of is the remainder of the total (wt%) of titanium nitride, alumina, yttria, and unavoidable impurities. The content of unavoidable impurities can be 0.1 wt% or less.

(3)内部領域におけるハローパターンに関する要件
窒化珪素質焼結体2は、窒化珪素質焼結体2の表面から1.0mmよりも深い内部領域では、2θが25°から35°の範囲にハローパターンを示す。この構成によれば、耐欠損性を大幅に向上することができる。その理由は定かではないが、推測される理由について後に説明する。
(3) Requirements regarding the halo pattern in the internal region In the internal region deeper than 1.0 mm from the surface of the silicon nitride sintered body 2, the silicon nitride sintered body 2 has a halo in the range of 2θ from 25° to 35°. Show a pattern. According to this configuration, fracture resistance can be significantly improved. The reason for this is not certain, but the probable reason will be explained later.

このハローパターンの有無は、X線回折パターンにおいて、2θが25°から35°の範囲にブロードを有したパターンを有しているか否かで判断する。具体的には、図3に示すように、2θが20°以下における最も強度が低い点Pと、2θが40°以上における最も強度が低い点Qを結ぶ線分PQよりも、2θが25°から35°の範囲におけるX線回折強度の最小値の方が高い値を示す場合にハローパターンを有していると判断する。すなわち、ハローパターンの有無は、2θが25°から35°の範囲において、仮想的なベースラインである線分PQより高い強度を示すブロードなパターンがあるか否かで判断する。このようなハローパターンが示されることは、窒化珪素質焼結体2の内部領域において、粒界相10にガラス相11が存在することの指標となり得る。 The presence or absence of this halo pattern is determined by whether or not the X-ray diffraction pattern has a pattern having a broad 2θ range of 25° to 35°. Specifically, as shown in FIG. 3, when 2θ is 25°, the line segment PQ connecting the point P with the lowest intensity when 2θ is 20° or less and the point Q with the lowest intensity when 2θ is 40° or more It is determined that a halo pattern is present when the minimum value of the X-ray diffraction intensity in the range from 35° to 35° is higher. That is, the presence or absence of a halo pattern is determined by whether or not there is a broad pattern that exhibits a higher intensity than line segment PQ, which is a virtual baseline, in the range of 2θ from 25° to 35°. The presence of such a halo pattern can be an indicator that the glass phase 11 is present in the grain boundary phase 10 in the internal region of the silicon nitride sintered body 2.

ハローパターンの最高強度値は、参照とするマトリックス相3のJCPDSカードにおける(h,k,l)面の標準回折強度が1.0であるピーク強度値より大きいことが好ましい。これについて、図3を参照しつつ具体的に説明する。図3に示すように、ハローパターンの最高強度値は、X線回析曲線において、結晶相のピークを除いた部分のうち最も強度が高い部分の強度であり、2θが30°付近に見られる。参照とするマトリックス相3の標準回折強度が1.0であるピークは、図3において矢印で示す2θが65°付近に見られる、窒化珪素β相(β-Si)のJCPDSカード:#00-033-1160における(102)面のピークである。これらの強度を比較すると、2θが30°付近に見られるハローパターンの最高強度値は、窒化珪素β相(β-Si)の(102)面のピーク強度より大きくなっている。なお、この(102)面のピーク強度において複数の結晶相のピークが存在する場合には、(420)面、(112)面など他の標準回折強度が1.0のピーク強度を参照とすればよい。The highest intensity value of the halo pattern is preferably larger than the peak intensity value at which the standard diffraction intensity of the (h, k, l) plane in the reference JCPDS card of matrix phase 3 is 1.0. This will be specifically explained with reference to FIG. 3. As shown in Figure 3, the highest intensity value of the halo pattern is the intensity of the highest intensity part of the X-ray diffraction curve, excluding the peak of the crystalline phase, and is observed at around 2θ of 30°. . The peak at which the standard diffraction intensity of matrix phase 3 is 1.0, which is used as a reference, is seen around 2θ of 65°, which is indicated by the arrow in FIG . This is the peak of the (102) plane in #00-033-1160. Comparing these intensities, the highest intensity value of the halo pattern seen around 2θ of 30° is greater than the peak intensity of the (102) plane of the silicon nitride β phase (β-Si 3 N 4 ). If there are multiple crystal phase peaks in the peak intensity of the (102) plane, refer to the peak intensity of other standard diffraction intensities of 1.0, such as the (420) plane and (112) plane. Bye.

なお、内部領域におけるハローパターンに関する要件を充足する切削工具1は、粒界相10を形成する材料の配合量、窒化珪素質焼結体2製造時の焼成条件等を制御することによって得ることができる。 Note that the cutting tool 1 that satisfies the requirements regarding the halo pattern in the internal region can be obtained by controlling the blending amount of the material forming the grain boundary phase 10, the firing conditions during the production of the silicon nitride sintered body 2, etc. can.

(4)マトリックス相3と粒界相10に存在する結晶相12の最大ピーク強度比に関する要件
窒化珪素質焼結体2は、マトリックス相3の最大ピーク強度Aに対する粒界相10に存在する結晶相12の最大ピーク強度Bの比であるB/Aが、上記表面領域では0.11≦B/A≦0.40の関係を満たし、窒化珪素質焼結体2の上記内部領域では0.00≦B/A<0.10の関係を満たす。この構成によれば、窒化珪素質焼結体2の耐摩耗性を確保しつつ、窒化珪素質焼結体2の耐欠損性を向上できる。その理由は定かではないが、推測される理由について後に説明する。
(4) Requirements regarding the maximum peak intensity ratio of the crystal phase 12 present in the matrix phase 3 and the grain boundary phase 10 The silicon nitride sintered body 2 has a ratio of the maximum peak intensity A of the crystal phase 12 present in the matrix phase 3 to the The ratio B/A of the maximum peak intensity B of the phase 12 satisfies the relationship 0.11≦B/A≦0.40 in the above surface region, and 0.11≦B/A≦0.40 in the above internal region of the silicon nitride sintered body 2. The relationship 00≦B/A<0.10 is satisfied. According to this configuration, the chipping resistance of the silicon nitride sintered body 2 can be improved while ensuring the wear resistance of the silicon nitride sintered body 2. The reason for this is not certain, but the probable reason will be explained later.

最大ピーク強度Aに対する最大ピーク強度Bの比であるB/Aは、次のようにして求める。最大ピーク強度Aは、図3に示すX線回析パターンのように、マトリックス相3が丸印で示される窒化珪素β相の1種類からなる場合、その相の最大ピーク強度として求める。図3に示すX線回析パターンにおいては、2θが25°から30°の間に位置するピークが窒化珪素β相の最大ピークであり、このピークの強度を最大ピーク強度Aとして特定する。マトリックス相3としては、窒化珪素α相、窒化珪素β相、サイアロンα相、サイアロンβ相、ポリタイプ12H、ポリタイプ21R、ポリタイプ15Rを例示できる。これらのマトリックス相3において、参照するJCPDSカードおよび原則として採用する最大ピークを示す結晶面は次のとおりである。窒化珪素α相は、JCPDSカード:#00-009-0250を参照し、原則として(210)面のピーク強度を最大ピーク強度として採用する。窒化珪素β相は、JCPDSカード:#00-033-1160を参照し、原則として(200)面のピーク強度を最大ピーク強度として採用する。サイアロンα相は、JCPDSカード:#00-042-0251を参照し、原則として(102)面のピーク強度を最大ピーク強度として採用する。サイアロンβ相は、JCPDSカード:#00-048-1615を参照し、原則として(200)面のピーク強度を最大ピーク強度として採用する。ポリタイプ12Hは、JCPDSカード:#00-042-0161を参照し、原則として(110)面のピーク強度を最大ピーク強度として採用する。ポリタイプ21Rは、JCPDSカード:#00-053-1012を参照し、原則として(101)面のピーク強度を最大ピーク強度として採用する。ポリタイプ15Rは、JCPDSカード:#00-042-0160を参照し、原則として(101)面のピーク強度を最大ピーク強度として採用する。 B/A, which is the ratio of maximum peak intensity B to maximum peak intensity A, is determined as follows. When the matrix phase 3 is composed of one type of silicon nitride β phase indicated by a circle as in the X-ray diffraction pattern shown in FIG. 3, the maximum peak intensity A is determined as the maximum peak intensity of that phase. In the X-ray diffraction pattern shown in FIG. 3, the peak located between 25° and 30° in 2θ is the maximum peak of the silicon nitride β phase, and the intensity of this peak is specified as the maximum peak intensity A. Examples of the matrix phase 3 include silicon nitride α phase, silicon nitride β phase, sialon α phase, sialon β phase, polytype 12H, polytype 21R, and polytype 15R. In these matrix phase 3, the JCPDS card to be referred to and the crystal plane showing the maximum peak adopted in principle are as follows. For the silicon nitride α phase, refer to JCPDS card: #00-009-0250, and in principle, the peak intensity of the (210) plane is adopted as the maximum peak intensity. For the silicon nitride β phase, refer to JCPDS card: #00-033-1160, and in principle, the peak intensity of the (200) plane is adopted as the maximum peak intensity. For the Sialon α phase, refer to JCPDS card: #00-042-0251, and in principle, the peak intensity of the (102) plane is adopted as the maximum peak intensity. For the Sialon β phase, refer to JCPDS card: #00-048-1615, and in principle, the peak intensity of the (200) plane is adopted as the maximum peak intensity. For polytype 12H, refer to JCPDS card: #00-042-0161, and in principle, the peak intensity of the (110) plane is adopted as the maximum peak intensity. For polytype 21R, refer to JCPDS card: #00-053-1012, and in principle, the peak intensity of the (101) plane is adopted as the maximum peak intensity. For polytype 15R, refer to JCPDS card: #00-042-0160, and in principle, the peak intensity of the (101) plane is adopted as the maximum peak intensity.

なお、参照とする結晶相の最大ピーク値が他結晶相のピークと重なる場合は、重複しない最も強度の高いピーク値を選定し、そのピークに対応する(h,k,l)面の標準回折強度から理論強度値を最大ピーク強度として、各ピーク強度比を算出する。具体的には、選定したピーク強度をI、そのピークに対応する(h,k,l)面の標準回折強度をIoとした場合、参照値Xは次式で表される。
X=I/Io*100
In addition, if the maximum peak value of the reference crystal phase overlaps with the peak of another crystal phase, select the peak value with the highest intensity that does not overlap, and perform the standard diffraction of the (h, k, l) plane corresponding to that peak. From the intensity, each peak intensity ratio is calculated using the theoretical intensity value as the maximum peak intensity. Specifically, when the selected peak intensity is I and the standard diffraction intensity of the (h, k, l) plane corresponding to the peak is Io, the reference value X is expressed by the following formula.
X=I/Io*100

最大ピーク強度Bは、図3のX線回析パターンのように、粒界相10に存在する結晶相12が四角印で示される他の結晶相の1種類からなる場合、その相の最大ピーク強度として求める。図3においては2θが30°から35°の間に位置するピークが粒界相10に存在する結晶相12の最大ピークであり、このピークの強度を最大ピーク強度Bとして特定する。粒界相10に存在する結晶相12としては、YSiAlON、YSiAlON、YAlSi、Y10(Si22)O、YSiONを例示できる。これらの結晶相12において、参照するJCPDSカードおよび原則として採用する最大ピークを示す結晶面は次のとおりである。YSiAlONは、JCPDSカード:#00-048-1627を参照し、原則として(102)面のピーク強度を最大ピーク強度として採用する。YSiAlONは、JCPDSカード:#00-048-1630を参照し、原則として(201)面のピーク強度を最大ピーク強度として採用する。YAlSiは、JCPDSカード:#00-043-0579を参照し、原則として(100)面のピーク強度を最大ピーク強度として採用する。Y10(Si22)Oは、JCPDSカード:#01-083-6656を参照し、原則として(211)面のピーク強度を最大ピーク強度として採用する。YSiONは、JCPDSカード:#00-048-1624を参照し、原則として(20-4)面のピーク強度を最大ピーク強度として採用する。なお、ミラー指数では、負の成分を持つ方向は、数字の上にバーを付して記載するのが通常であるが、本明細書においては便宜上数字と並列に記載する。例えば、上述のように「(20-4)」と記載する。この場合において、3つ目の「-4」は、「4」の上に「バー」を付した記載と同じ意味である。As in the X-ray diffraction pattern of FIG. 3, when the crystalline phase 12 present in the grain boundary phase 10 is composed of one type of other crystalline phases indicated by square marks, the maximum peak intensity B is the maximum peak of that phase. Obtained as strength. In FIG. 3, the peak located between 30° and 35° in 2θ is the maximum peak of the crystalline phase 12 present in the grain boundary phase 10, and the intensity of this peak is specified as the maximum peak intensity B. The crystal phases 12 existing in the grain boundary phase 10 include Y2SiAlO5N , Y4SiAlO8N , Y3AlSi2O7N2 , Y10 ( Si6O22N2 ) O2 , YSiO2N . can be exemplified. In these crystal phases 12, the JCPDS card to be referred to and the crystal plane showing the maximum peak adopted in principle are as follows. For Y 2 SiAlO 5 N, refer to JCPDS card: #00-048-1627, and in principle, the peak intensity of the (102) plane is adopted as the maximum peak intensity. For Y 4 SiAlO 8 N, refer to JCPDS card: #00-048-1630, and in principle, the peak intensity of the (201) plane is adopted as the maximum peak intensity. For Y 3 AlSi 2 O 7 N 2 , refer to JCPDS card: #00-043-0579, and in principle, the peak intensity of the (100) plane is adopted as the maximum peak intensity. For Y 10 (Si 6 O 22 N 2 ) O 2 , refer to JCPDS card: #01-083-6656, and in principle, the peak intensity of the (211) plane is adopted as the maximum peak intensity. For YSiO 2 N, refer to JCPDS card: #00-048-1624, and in principle, the peak intensity of the (20-4) plane is adopted as the maximum peak intensity. Note that in the Miller index, a direction having a negative component is usually written with a bar above the number, but in this specification, for convenience, it is written in parallel with the number. For example, as described above, it is written as "(20-4)". In this case, the third "-4" has the same meaning as a "bar" added above "4".

最大ピーク強度Bは、粒界相10に存在する結晶相12が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。この求め方について図4を参照して説明する。図4において、四角印は第1の他結晶相を示し、四角プライム印は第1の他結晶相とは異なる結晶相である第2の他結晶相を示し、四角ダブルプライム印は第1の他結晶相及び第2の他結晶相とは異なる結晶相である第3の他結晶相を示している。図4の各印において「max」と付記されたピークが、その相の最大ピークである。例えば、図4には、四角プライム印を付した第2の他結晶相のピークが2つ認められるが、最も高い強度である左側のピークが第2の他結晶相の最大ピークである。このようなX線回析パターンにおいて、最大ピーク強度Bは、四角maxが付された第1の他結晶相の最大ピーク強度と、四角プライムmaxが付された第2の他結晶相の最大ピーク強度と、四角ダブルプライムmaxが付された第3の他結晶相の最大ピーク強度の合算値として求められる。 When the crystal phases 12 present in the grain boundary phase 10 are composed of a plurality of types, the maximum peak intensity B is determined as the sum of the maximum peak intensities of each of the phases. How to obtain this will be explained with reference to FIG. 4. In FIG. 4, square marks indicate the first polycrystalline phase, square prime marks indicate a second polycrystalline phase that is different from the first polycrystalline phase, and square double prime marks represent the first polycrystalline phase. A third polycrystalline phase that is a different crystal phase from the other crystalline phases and the second polycrystalline phase is shown. The peak marked with "max" in each mark in FIG. 4 is the maximum peak of that phase. For example, in FIG. 4, two peaks of the second polycrystalline phase marked with square prime marks are recognized, and the peak on the left, which has the highest intensity, is the maximum peak of the second polycrystalline phase. In such an X-ray diffraction pattern, the maximum peak intensity B is the maximum peak intensity of the first other crystal phase marked with a square max and the maximum peak of the second other crystal phase marked with a square prime max. It is determined as the sum of the intensity and the maximum peak intensity of the third other crystal phase to which the square double prime max is attached.

粒界相10に存在する結晶相12が複数の種類からなる場合と同様にして、最大ピーク強度Aは、マトリックス相3が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。 Similarly to the case where the crystalline phase 12 existing in the grain boundary phase 10 consists of a plurality of types, when the matrix phase 3 consists of a plurality of types, the maximum peak intensity A is the sum of the maximum peak intensities of each of those phases. Find it as.

なお、マトリックス相3と粒界相10に存在する結晶相12の最大ピーク強度比に関する要件を充足する切削工具1は、粒界相10を形成する材料の配合量、窒化珪素質焼結体2製造時の焼成条件等を制御することによって得ることができる。 Note that the cutting tool 1 that satisfies the requirements regarding the maximum peak intensity ratio of the crystal phase 12 existing in the matrix phase 3 and the grain boundary phase 10 is based on the amount of the material forming the grain boundary phase 10, the silicon nitride sintered body 2 This can be obtained by controlling the firing conditions during manufacturing.

(5)粒界相10の占める面積の割合に関する要件
切削工具1は、窒化珪素質焼結体2の断面を観察した場合に、窒化珪素質焼結体2の上記表面領域では、視野全体の面積を100面積%として、粒界相10の占める面積の割合Csが7.0面積%以上14.0面積%以下であり、窒化珪素質焼結体2の上記内部領域では、視野全体の面積を100面積%として、粒界相10の占める面積の割合Ciが3.0面積%以上9.0面積%以下であり、下記式(3)の関係を満たすことが好ましい。

Cs>Ci ・・・式(3)
(5) Requirements regarding the ratio of the area occupied by the grain boundary phase 10 When the cutting tool 1 observes the cross section of the silicon nitride sintered body 2, in the above surface area of the silicon nitride sintered body 2, the entire visual field is When the area is 100 area%, the area ratio Cs occupied by the grain boundary phase 10 is 7.0 area% or more and 14.0 area% or less, and in the internal region of the silicon nitride sintered body 2, the area of the entire visual field is It is preferable that the area ratio Ci occupied by the grain boundary phase 10 is 3.0 area % or more and 9.0 area % or less, and satisfies the relationship of the following formula (3), where is 100 area %.

Cs>Ci...Formula (3)

粒界相10の占める面積の割合Cs,Ciは、次のようにして求める。窒化珪素質焼結体2の表面領域と内部領域との両方を通る断面をSEM(走査型透過電子顕微鏡)にて観察し、窒化珪素質焼結体2の上記表面領域と上記内部領域の各々について24μm×18μmの範囲のSEM画像を得る。画像処理ソフトWinrROOFを用いてSEM画像を二値化処理することによって、マトリックス相3及び硬質相4間に存在する粒界相10を識別し、粒界相10の面積を算出する。そして、視野全体の面積に対する粒界相10の占める面積の割合Cs,Ciをそれぞれ求める。
なお、窒化珪素質焼結体2の上記表面領域と上記内部領域の各々について、24μm×18μmの範囲のSEM画像を複数観察して、そのうちの少なくとも1セットのSEM画像において上記要件が満たされていればよい。
The area ratios Cs and Ci occupied by the grain boundary phase 10 are determined as follows. A cross section passing through both the surface region and the internal region of the silicon nitride sintered body 2 was observed using a SEM (scanning transmission electron microscope), and each of the surface region and the internal region of the silicon nitride sintered body 2 was observed. A SEM image of an area of 24 μm×18 μm is obtained. By binarizing the SEM image using image processing software WinrROOF, the grain boundary phase 10 existing between the matrix phase 3 and the hard phase 4 is identified, and the area of the grain boundary phase 10 is calculated. Then, the ratios Cs and Ci of the area occupied by the grain boundary phase 10 to the area of the entire visual field are determined.
In addition, a plurality of SEM images in a range of 24 μm x 18 μm were observed for each of the surface area and the internal area of the silicon nitride sintered body 2, and at least one set of the SEM images satisfied the above requirements. That's fine.

粒界相10の占める面積の割合Csは、粒界強度を向上するという観点から、7.0面積%以上が好ましい。また、粒界相10の占める面積の割合Csは、耐摩耗性を維持するという観点から、14.0面積%以下が好ましい。よって、粒界相10の占める面積の割合Csは、7.0面積%以上14.0面積%以下が好ましい。 The area ratio Cs occupied by the grain boundary phase 10 is preferably 7.0 area % or more from the viewpoint of improving grain boundary strength. Further, the area ratio Cs occupied by the grain boundary phase 10 is preferably 14.0 area % or less from the viewpoint of maintaining wear resistance. Therefore, the area ratio Cs occupied by the grain boundary phase 10 is preferably 7.0 area % or more and 14.0 area % or less.

粒界相10の占める面積の割合Ciは、窒化珪素質焼結体2の強度を維持するという観点から、3.0面積%以上が好ましい。また、粒界相10の占める面積の割合Ciは、マトリックス相3を構成する粒子の成長を促進するという観点から、9.0面積%以下が好ましい。よって、粒界相10の占める面積の割合Ciは、3.0面積%以上9.0面積%以下が好ましい。 The area ratio Ci occupied by the grain boundary phase 10 is preferably 3.0 area % or more from the viewpoint of maintaining the strength of the silicon nitride sintered body 2. Further, the area ratio Ci occupied by the grain boundary phase 10 is preferably 9.0 area % or less from the viewpoint of promoting the growth of particles constituting the matrix phase 3. Therefore, the area ratio Ci occupied by the grain boundary phase 10 is preferably 3.0 area % or more and 9.0 area % or less.

(6)窒化珪素またはサイアロンの粒子の形態に関する要件
切削工具1は、窒化珪素質焼結体2の断面を観察した場合に、窒化珪素またはサイアロンの粒子全体のうち、最大径が0.5μm以下である粒子の数の割合は50%以上であり、窒化珪素またはサイアロンの粒子であって最小径が0.5μm以上である粒子のうち、アスペクト比が1.5以上である粒子の数の割合は55%以上であることが好ましい。
(6) Requirements regarding the morphology of silicon nitride or sialon particles The cutting tool 1 has a maximum diameter of 0.5 μm or less among all silicon nitride or sialon particles when the cross section of the silicon nitride sintered body 2 is observed. The percentage of particles with an aspect ratio of 1.5 or more is 50% or more, and among the particles of silicon nitride or sialon with a minimum diameter of 0.5 μm or more, the percentage of particles with an aspect ratio of 1.5 or more is preferably 55% or more.

窒化珪素またはサイアロンの粒子の最大径及びアスペクト比は、次のようにして求める。窒化珪素質焼結体2の内部領域を通る断面をSEMにて観察し、窒化珪素質焼結体2の内部領域について24μm×18μmの範囲のSEM画像を得る。このSEM画像を画像解析処理することによって、各窒化珪素またはサイアロンの粒子の最大径Xおよび最小径Yを調べる。そして、各窒化珪素またはサイアロンの粒子のアスペクト比(X/Y)を算出する。
なお、窒化珪素質焼結体2について、24μm×18μmの範囲のSEM画像を複数観察して、そのうちの少なくとも1つのSEM画像において上記要件が満たされていればよい。
The maximum diameter and aspect ratio of silicon nitride or sialon particles are determined as follows. A cross section passing through the internal region of the silicon nitride sintered body 2 is observed using a SEM, and a SEM image of the internal region of the silicon nitride sintered body 2 in a range of 24 μm×18 μm is obtained. By subjecting this SEM image to image analysis processing, the maximum diameter X and minimum diameter Y of each silicon nitride or sialon particle are determined. Then, the aspect ratio (X/Y) of each silicon nitride or sialon particle is calculated.
Note that it is only necessary to observe a plurality of SEM images of the silicon nitride sintered body 2 in a range of 24 μm×18 μm, and the above requirements are satisfied in at least one of the SEM images.

窒化珪素またはサイアロンの粒子全体のうち、最大径が0.5μm以下である粒子の数の割合は、マトリックス相3を構成する粒子の微粒化および均質化の観点から、50%以上が好ましい。窒化珪素またはサイアロンの粒子であって最小径が0.5μm以上である粒子のうち、アスペクト比が1.5以上である粒子の数の割合は、発生したクラックを湾曲させるいわゆるディフラクション効果を奏するという観点から、55%以上が好ましく、60%以上がより好ましい。 The ratio of the number of particles having a maximum diameter of 0.5 μm or less among all silicon nitride or sialon particles is preferably 50% or more from the viewpoint of atomization and homogenization of the particles constituting the matrix phase 3. Among silicon nitride or sialon particles with a minimum diameter of 0.5 μm or more, the proportion of particles with an aspect ratio of 1.5 or more produces a so-called diffraction effect that curves the generated crack. From this viewpoint, it is preferably 55% or more, and more preferably 60% or more.

(7)表面領域におけるハローパターンに関する要件
窒化珪素質焼結体2は、表面から0.2mmまでの表面領域では、2θが25°から35°の範囲にハローパターンを示さないことが好ましい。
(7) Requirements regarding the halo pattern in the surface region The silicon nitride sintered body 2 preferably does not exhibit a halo pattern in the 2θ range of 25° to 35° in the surface region up to 0.2 mm from the surface.

なお、表面領域におけるハローパターンに関する要件を充足する切削工具1は、粒界相10を形成する材料の配合量、窒化珪素質焼結体2製造時の焼成条件等を制御することによって得ることができる。詳細な理由は定かでないが、窒化珪素質焼結体2に含まれるWCの量が多いほど窒化珪素質焼結体2表面領域が焼結されやすくなり、粒界相中の結晶相量が増加する傾向がみられる。 Note that the cutting tool 1 that satisfies the requirements regarding the halo pattern in the surface region can be obtained by controlling the blending amount of the material forming the grain boundary phase 10, the firing conditions during the production of the silicon nitride sintered body 2, etc. can. Although the detailed reason is not clear, the larger the amount of WC contained in the silicon nitride sintered body 2, the more easily the surface area of the silicon nitride sintered body 2 is sintered, and the amount of crystalline phase in the grain boundary phase increases. There is a tendency to

3.窒化珪素質焼結体2の製造方法
窒化珪素質焼結体2の製造方法は特に限定されない。窒化珪素質焼結体2の製造方法の一例を以下に示す。
3. Method for manufacturing silicon nitride sintered body 2 The method for manufacturing silicon nitride sintered body 2 is not particularly limited. An example of a method for manufacturing the silicon nitride sintered body 2 is shown below.

(1)原料
原料として次の原料粉末を使用する。
・窒化珪素粉末(Si粉末)
・酸化アルミニウム粉末(Al粉末)
・酸化イットリウム粉末(Y粉末)
・窒化チタン粉末(TiN粉末)
(1) Raw materials The following raw material powders are used as raw materials.
・Silicon nitride powder ( Si3N4 powder )
・Aluminum oxide powder ( Al2O3 powder )
・Yttrium oxide powder ( Y2O3 powder )
・Titanium nitride powder (TiN powder)

(2)焼成用粉末の作製
上述の粉末を所定の配合割合になる様に秤量する。ボールミルに秤量した粉末を入れ、アルコール(例えばエタノール)および粉砕メディアとともに混合粉砕する。得られたスラリーは湯煎乾燥にて処理し、乾燥混合粉を得る。
(2) Preparation of powder for firing The above-mentioned powders are weighed so as to have a predetermined mixing ratio. The weighed powder is placed in a ball mill, and mixed and ground with alcohol (for example, ethanol) and grinding media. The obtained slurry is dried in a hot water bath to obtain a dry mixed powder.

(3)プレス成形
得られた混合粉末をプレス成形する。プレス成形によって得られた成形体に対して、冷間等法圧加圧(cold isostatics pressing: CIP)成形により成形する。
(3) Press molding The obtained mixed powder is press molded. The molded body obtained by press molding is molded by cold isostatic pressing (CIP).

(4)焼成
冷間等法圧加圧成形によって得られた成形体を、減圧に設定された窒素雰囲気下で、所定の温度にて加熱して、脱脂処理を行う。脱脂された成形体を、窒素雰囲気下で、所定の温度にて加熱して、焼成処理を行う。焼成処理には、第1昇温と、第1昇温に引き続いて行われる第2昇温の2段階の昇温条件が設けられている。第2昇温は、第1昇温より昇温速度が速いことが好ましい。また、第2昇温は、第1昇温より雰囲気圧が大きいことが好ましい。第2昇温後、昇温した温度で所定の時間保持する。そして、所定の降温速度にて冷却処理を行い、窒化珪素質焼結体が得られる。
(4) Firing The compact obtained by cold isopressing is heated at a predetermined temperature in a nitrogen atmosphere set to reduced pressure to perform a degreasing treatment. The degreased molded body is heated at a predetermined temperature in a nitrogen atmosphere to perform a firing treatment. The firing process has two temperature raising conditions: a first temperature increase and a second temperature increase performed subsequent to the first temperature increase. It is preferable that the temperature increase rate of the second temperature increase is faster than that of the first temperature increase. Moreover, it is preferable that the atmospheric pressure in the second temperature increase is higher than that in the first temperature increase. After the second temperature increase, the increased temperature is maintained for a predetermined period of time. Then, a cooling treatment is performed at a predetermined temperature decreasing rate, and a silicon nitride sintered body is obtained.

焼結処理において、成形体は内部より表面近傍の方が焼結されやすい傾向にある。このため、焼結処理において第1昇温と第2昇温を設けることによって、ハローパターンに関する要件、及びマトリックス相3と粒界相10に存在する結晶相12の最大ピーク強度比に関する要件を充足する窒化珪素質焼結体2を好適に得ることができる。すなわち、焼結が進行する高温領域(例えば1650℃以上)となる第2昇温時には、低温領域(例えば1400℃以下)となる第1昇温時より昇温速度を上げることで窒化珪素質焼結体2の内部領域と表面領域とにおいて粒界相10におけるガラス相11および結晶相12の比率を制御することができる。第2昇温は、例えば0.15MPa~0.40MPaの加圧条件下にて行うことが好ましい。第2昇温の加圧条件が、0.15MPa以上であれば十分な焼結性を得ることができる。また、第2昇温の加圧条件が、0.40MPa以下であれば、窒化珪素質焼結体2において特に表面近傍における粒界相10量を確保して、窒化珪素質焼結体2の強度を維持することができる。 In the sintering process, the vicinity of the surface of the molded body tends to be more easily sintered than the inside. Therefore, by providing a first temperature increase and a second temperature increase in the sintering process, the requirements regarding the halo pattern and the maximum peak intensity ratio of the crystal phase 12 present in the matrix phase 3 and the grain boundary phase 10 are satisfied. A silicon nitride sintered body 2 can be suitably obtained. That is, during the second temperature rise, which is a high temperature range where sintering progresses (e.g., 1650°C or higher), the silicon nitride sintering rate is increased compared to the first temperature rise, which is a low temperature range (e.g., 1400°C or lower). The ratio of the glass phase 11 and the crystalline phase 12 in the grain boundary phase 10 can be controlled in the internal region and the surface region of the compact 2. The second temperature increase is preferably carried out under pressurized conditions of, for example, 0.15 MPa to 0.40 MPa. Sufficient sinterability can be obtained if the pressure conditions for the second temperature increase are 0.15 MPa or higher. Further, if the pressure conditions for the second temperature increase are 0.40 MPa or less, the amount of grain boundary phase in the silicon nitride sintered body 2 is ensured, especially in the vicinity of the surface, and the silicon nitride sintered body 2 is Able to maintain strength.

4.切削工具1のその他の構成
切削工具1の形状は、特に限定されない。例えば、窒化珪素質焼結体2は、切削、研削、及び研磨の少なくとも1つの加工法によって形状や表面の仕上げを行って、切削工具1とすることができる(図2参照)。もちろん、窒化珪素質焼結体2をそのまま切削工具1として用いてもよい。
4. Other configurations of cutting tool 1 The shape of cutting tool 1 is not particularly limited. For example, the silicon nitride sintered body 2 can be shaped and surface-finished by at least one of cutting, grinding, and polishing to form the cutting tool 1 (see FIG. 2). Of course, the silicon nitride sintered body 2 may be used as it is as the cutting tool 1.

切削工具1は、窒化珪素質焼結体2を基材とし、基材の表面に、チタン、クロム、及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、及び炭窒酸化物より選択される少なくとも1種の化合物からなる表面被覆層が形成されていてもよい。
表面被覆層が形成されると、切削工具1の表面硬度が増加すると共に、被削物との反応・溶着による摩耗進行が抑制される。その結果、切削工具1の耐摩耗性が向上する。
チタン、クロム、及びアルミニウムの炭化物、窒化物、酸化物、炭窒化物、炭酸化物、窒酸化物、及び炭窒酸化物より選択される少なくとも1種の化合物としては、特に限定されないが、TiN、TiAlN、TiAlCrN、AlCrNが好適な例として挙げられる。
表面被覆層の厚みは、特に限定されない。表面被覆層の厚みは、耐摩耗性の観点から、0.02μm以上30μm以下が好ましい。
The cutting tool 1 has a silicon nitride sintered body 2 as a base material, and the surface of the base material is coated with carbides, nitrides, oxides, carbonitrides, carbonates, nitrides, and oxides of titanium, chromium, and aluminum. A surface coating layer made of at least one compound selected from carbonitoxides may be formed.
When the surface coating layer is formed, the surface hardness of the cutting tool 1 increases, and the progression of wear due to reaction and welding with the workpiece is suppressed. As a result, the wear resistance of the cutting tool 1 is improved.
The at least one compound selected from carbides, nitrides, oxides, carbonitrides, carbonates, nitrides, and carbonitoxides of titanium, chromium, and aluminum includes, but is not particularly limited to, TiN, Suitable examples include TiAlN, TiAlCrN, and AlCrN.
The thickness of the surface coating layer is not particularly limited. The thickness of the surface coating layer is preferably 0.02 μm or more and 30 μm or less from the viewpoint of wear resistance.

5.耐欠損性が優れる推測理由
ここで、本開示の切削工具1が、耐欠損性の点で優れることについて、推測される理由を説明する。
窒化珪素質焼結体2は、イットリウムを酸化物換算で5.0wt%以上含有することにより、焼結性が担保される。また、窒化珪素質焼結体2は、イットリウムを酸化物換算で15.0wt%以下含有することにより、粒界相10中の結晶相12量を所定量以下に抑制できた。
窒化珪素質焼結体2は、硬質相4として窒化チタンを5.0wt%以上含有することにより、焼結性が向上して内部ポアを低減することが可能になる。さらに、この窒化チタンを5.0wt%以上含有することによって、窒化珪素質焼結体2の耐化学反応性が向上する効果が奏される。また、窒化珪素質焼結体2は、硬質相4として窒化チタンを25wt%以下含有することにより、マトリックス相3を構成する粒子の成長が窒化チタン粒子に阻害されにくくなり、マトリックス相3を構成する粒子が針状に成長できる。
さらに、窒化珪素質焼結体2は、粒界相10にガラス相11及び結晶相12が存在し、かつ、上述のようにマトリックス相3に対する粒界相10の結晶相12の量を表面領域と内部領域とで制御することによって、切削加工時に表面で発生した熱亀裂の進展を抑制できたと考えられる。これには、窒化珪素質焼結体2の内部領域において、所定量のガラス相11が存在することによって粒界強度が向上する効果が寄与すると推測される。次に、切削加工時の熱による作用について考察する。窒化珪素質焼結体2の表面領域は、被削材と切削工具1が接することにより生じる熱によって高温になりやすい。このため、窒化珪素質焼結体2の表面領域は、粒界相10においても高温強度に優れた結晶相12を多く含むことによって耐摩耗性や耐欠損性が確保されやすい。一方、窒化珪素質焼結体2の内部領域は、表面領域よりも高温となりにくい。これは、例えば耐熱合金の湿式粗加工などの熱がさほど発生しない加工において顕著である。このため、窒化珪素質焼結体2の内部領域は、粒界相10に室温から中温強度がより優れたガラス相11を多く含むことで耐欠損性の向上に寄与できると推測される。このように、本実施形態の切削工具1は、粒界相10に存在するガラス相11が、窒化珪素質焼結体2の表面領域より内部領域において多くなることによって、耐摩耗性を確保しつつ耐欠損性に優れる。このような窒化珪素質焼結体2からなる切削工具1は、長寿命化を図ることができる。
5. Estimated Reason for Superior Fracture Resistance Here, the presumed reason why the cutting tool 1 of the present disclosure is superior in fracture resistance will be explained.
The silicon nitride sintered body 2 has sinterability by containing 5.0 wt% or more of yttrium in terms of oxide. In addition, the silicon nitride sintered body 2 contained 15.0 wt % or less of yttrium in terms of oxide, thereby suppressing the amount of the crystal phase 12 in the grain boundary phase 10 to a predetermined amount or less.
By containing 5.0 wt% or more of titanium nitride as the hard phase 4, the silicon nitride sintered body 2 has improved sinterability and can reduce internal pores. Furthermore, by containing this titanium nitride in an amount of 5.0 wt% or more, the chemical reaction resistance of the silicon nitride sintered body 2 is improved. Furthermore, by containing 25 wt% or less of titanium nitride as the hard phase 4, the silicon nitride sintered body 2 makes it difficult for the growth of the particles forming the matrix phase 3 to be inhibited by the titanium nitride particles. particles can grow into needle-like shapes.
Furthermore, the silicon nitride sintered body 2 has a glass phase 11 and a crystalline phase 12 in the grain boundary phase 10, and as described above, the amount of the crystalline phase 12 in the grain boundary phase 10 with respect to the matrix phase 3 is reduced in the surface area. It is thought that the growth of thermal cracks that occurred on the surface during cutting could be suppressed by controlling the inner and outer regions. It is presumed that the effect of improving grain boundary strength due to the presence of a predetermined amount of glass phase 11 in the internal region of silicon nitride sintered body 2 contributes to this. Next, we will consider the effects of heat during cutting. The surface region of the silicon nitride sintered body 2 tends to reach a high temperature due to the heat generated by the contact between the workpiece and the cutting tool 1 . Therefore, the surface region of the silicon nitride sintered body 2 contains a large amount of the crystalline phase 12 having excellent high-temperature strength even in the grain boundary phase 10, so that wear resistance and chipping resistance are easily ensured. On the other hand, the internal region of the silicon nitride sintered body 2 is less likely to reach a high temperature than the surface region. This is noticeable in machining that does not generate much heat, such as wet rough machining of heat-resistant alloys. Therefore, it is presumed that the internal region of the silicon nitride sintered body 2 can contribute to improving the fracture resistance by including a large amount of the glass phase 11, which has superior room-temperature to medium-temperature strength, in the grain boundary phase 10. In this way, the cutting tool 1 of the present embodiment has more glass phase 11 present in the grain boundary phase 10 in the internal region than in the surface region of the silicon nitride sintered body 2, thereby ensuring wear resistance. It also has excellent fracture resistance. The cutting tool 1 made of such a silicon nitride sintered body 2 can have a long life.

上述の粒界相10の占める面積の割合に関する要件を満たす場合には、次のようにして耐欠損性が向上したと推測される。
窒化珪素質焼結体2の表面領域は、粒界相10において熱特性の優れた結晶相12の量が多いため、粒界相10の面積割合Csを適量にすることで耐摩耗性を維持できる。この際、粒界相10の面積割合Csが7.0面積%以上14面積%以下であれば、粒界強度が維持されるため、耐摩耗性と耐欠損性を両立できる。一方、窒化珪素質焼結体2の内部領域は、粒界相10において室温から中温強度に優れたガラス相11を含むことから、粒界相10の面積割合Ciを表面領域より少なくしても突発欠損には至りにくいと推測される。また、粒界相10の占める面積の割合Ciが粒界相10の占める面積の割合Csより小さい、つまり、窒化珪素質焼結体2の内部領域において表面領域よりマトリックス相3を構成する粒子の割合が多くなることで、窒化珪素質焼結体2の表面で発生した熱亀裂が内部に伝播することが抑制される。この際、粒界相10の面積割合Ciが3.0面積%以上9.0面積%以下であれば、窒化珪素質焼結体2の強度を維持しつつ、マトリックス相3を構成する粒子の成長が十分に促進される。
When the above-mentioned requirements regarding the ratio of the area occupied by the grain boundary phase 10 are satisfied, it is presumed that the fracture resistance is improved in the following manner.
Since the surface area of the silicon nitride sintered body 2 has a large amount of the crystalline phase 12 having excellent thermal properties in the grain boundary phase 10, wear resistance is maintained by setting the area ratio Cs of the grain boundary phase 10 to an appropriate amount. can. At this time, if the area ratio Cs of the grain boundary phase 10 is 7.0 area % or more and 14 area % or less, the grain boundary strength is maintained, so that both wear resistance and chipping resistance can be achieved. On the other hand, since the internal region of the silicon nitride sintered body 2 contains the glass phase 11 having excellent strength at room to medium temperatures in the grain boundary phase 10, even if the area ratio Ci of the grain boundary phase 10 is smaller than that of the surface region. It is assumed that sudden loss is unlikely to occur. Further, the area ratio Ci occupied by the grain boundary phase 10 is smaller than the area ratio Cs occupied by the grain boundary phase 10, that is, the particles constituting the matrix phase 3 are smaller in the inner region of the silicon nitride sintered body 2 than in the surface region. By increasing the ratio, thermal cracks generated on the surface of the silicon nitride sintered body 2 are suppressed from propagating inside. At this time, if the area ratio Ci of the grain boundary phase 10 is 3.0 area % or more and 9.0 area % or less, the strength of the silicon nitride sintered body 2 is maintained and the particles constituting the matrix phase 3 are Growth is sufficiently promoted.

上述の窒化珪素またはサイアロンの粒子のアスペクト比に関する要件を満たす場合には、次のようにして耐欠損性が向上したと推測される。窒化珪素またはサイアロンの粒子全体のうち、最大径が0.5μm以下の粒子の割合が50%以上であることにより、マトリックス相3を構成する粒子の微粒化および均質化が図られ、微細粒子間結合サイズが減少することによって強度が向上する。また、最小径が0.5μm以上かつアスペクト比1.5以上の粒子割合が55%以上であることにより、窒化珪素質焼結体2に発生したクラックを湾曲させるいわゆるディフラクション効果が大きくなる。 When the above-mentioned requirements regarding the aspect ratio of silicon nitride or sialon particles are satisfied, it is presumed that the fracture resistance is improved in the following manner. By setting the ratio of particles with a maximum diameter of 0.5 μm or less to 50% or more of all the particles of silicon nitride or Sialon, the particles constituting the matrix phase 3 can be made fine and homogeneous, and the particles between the fine particles can be made fine and homogeneous. Strength is increased by reducing bond size. Further, when the proportion of particles having a minimum diameter of 0.5 μm or more and an aspect ratio of 1.5 or more is 55% or more, the so-called diffraction effect that curves cracks generated in the silicon nitride sintered body 2 becomes large.

上述の表面領域におけるハローパターンに関する要件を満たす場合には、次のようにして耐摩耗性が向上したと推測される。窒化珪素質焼結体2の表面領域におけるX線回折ピークにおいて、2θが25°から35°の範囲にハローパターンを示さないことにより、窒化珪素質焼結体2の表面領域において、粒界相10は高温下で軟化しやすいガラス相を含まない。したがって、窒化珪素質焼結体2の耐摩耗性がより向上し、表面領域における損傷が生じにくく、あるいは生じた損傷が進行しにくくなる。このような窒化珪素質焼結体2からなる切削工具1は、長寿命化を図ることができる。 When the above-mentioned requirements regarding the halo pattern in the surface area are satisfied, it is presumed that the wear resistance is improved in the following manner. Since the X-ray diffraction peak in the surface region of the silicon nitride sintered body 2 does not show a halo pattern in the range of 2θ from 25° to 35°, the grain boundary phase is not observed in the surface region of the silicon nitride sintered body 2. No. 10 does not contain a glass phase that easily softens at high temperatures. Therefore, the wear resistance of the silicon nitride sintered body 2 is further improved, and damage in the surface region is less likely to occur or damage that has occurred is less likely to progress. The cutting tool 1 made of such a silicon nitride sintered body 2 can have a long life.

このように本実施形態では、切削工具1の表面領域における粒界相10を結晶化させつつ、内部領域に所定量のガラス相11を存在させることによって、最も高温となる切削工具1の刃先における耐摩耗性および耐欠損性を維持しつつ内部領域における強度を向上できたと推測される。特に、超耐熱合金加工時における湿式荒加工といった、切削加工中にさほど高温とならない加工においてフレーキングといった欠損を抑えることで工具寿命を延長する効果が期待される。 In this way, in this embodiment, the grain boundary phase 10 in the surface region of the cutting tool 1 is crystallized, and a predetermined amount of the glass phase 11 is present in the internal region, thereby reducing the temperature at the cutting edge of the cutting tool 1, which is at the highest temperature. It is presumed that the strength in the internal region was improved while maintaining wear resistance and chipping resistance. In particular, it is expected to have the effect of extending tool life by suppressing defects such as flaking in machining that does not reach very high temperatures during cutting, such as wet rough machining when machining super heat-resistant alloys.

以下の実験では、実験例1~21の各窒化珪素質焼結体を作製し、これらの各窒化珪素質焼結体を加工して、実験例1~21切削工具とした。実験例1~12は実施例であり、実験例13~21は比較例である。 In the following experiments, each of the silicon nitride sintered bodies of Experimental Examples 1 to 21 was produced, and each of these silicon nitride sintered bodies was processed to obtain Experimental Examples 1 to 21 cutting tools. Experimental Examples 1 to 12 are Examples, and Experimental Examples 13 to 21 are Comparative Examples.

1.セラミックス焼結体の作製
(1)配合
各実施例及び比較例のセラミックス焼結体に用いた原料粉末の配合を表1に示す。
なお、原料粉末は、以下に示すものである。
Si粉末:平均粒径1.0μm以下
粉末:平均粒径3.0μm
Al粉末:平均粒径0.4μm
TiN粉末:平均粒径0.5μm~2.0μm
ただし、TiN粉末は0.1~2.0wt%程度のWC(炭化タングステン)を含んでいるものである。上記4種類の粉末の合計の質量を100.0wt%とすると、WCの含有率は0.1wt%に満たない。そのため、表1においてはWCの含有率を0とみなして上記4種類の粉末の配合比を記載している。
1. Preparation of Ceramic Sintered Body (1) Mixing Table 1 shows the formulation of the raw material powders used in the ceramic sintered bodies of each Example and Comparative Example.
In addition, the raw material powder is shown below.
Si 3 N 4 powder: Average particle size 1.0 μm or less Y 2 O 3 powder: Average particle size 3.0 μm
Al2O3 powder : average particle size 0.4μm
TiN powder: average particle size 0.5 μm to 2.0 μm
However, the TiN powder contains about 0.1 to 2.0 wt% of WC (tungsten carbide). If the total mass of the above four types of powder is 100.0 wt%, the content of WC is less than 0.1 wt%. Therefore, in Table 1, the blending ratios of the four types of powders are listed assuming that the WC content is 0.

Figure 0007340622000001
Figure 0007340622000001

(2)混合
上述の配合で得られた粉末を窒化珪素製内壁を有するボールミルに入れ、エタノールおよび粉砕メディアとともに混合した。粉砕メディアにはΦ6~10mmの窒化珪素系球石を使用し、約72時間粉砕混合して、混合物(スラリー)を作製した。
(2) Mixing The powder obtained with the above formulation was placed in a ball mill having an inner wall made of silicon nitride, and mixed with ethanol and grinding media. A silicon nitride-based coccule with a diameter of 6 to 10 mm was used as the grinding media, and the mixture was ground and mixed for about 72 hours to prepare a mixture (slurry).

(3)乾燥及び造粒
得られた混合物に有機系バインダを重量3.5wt%添加したものを湯煎乾燥し、目開き250μmの篩を通して混合粉末を得た。
なお、ここまでの工程は、全ての実施例及び比較例の窒化珪素質焼結体で共通している。
(3) Drying and Granulation The resulting mixture to which 3.5 wt % of organic binder was added was dried in hot water and passed through a 250 μm sieve to obtain a mixed powder.
Note that the steps up to this point are common to the silicon nitride sintered bodies of all Examples and Comparative Examples.

(4)プレス成形
上述の工程を経て得られた混合粉末を用いて、1000kgf/cmの圧力にてプレス成形した。得られた成形体に対して、1500kgf/cmの圧力でCIP成形により成形した。
(4) Press molding The mixed powder obtained through the above steps was press molded at a pressure of 1000 kgf/cm 2 . The obtained molded body was molded by CIP molding at a pressure of 1500 kgf/cm 2 .

(5)焼成
(5-1)実験例1~12の窒化珪素質焼結体
実験例1~12の窒化珪素質焼結体では、次の方法で焼成して窒化珪素質焼結体を得た。
上述によって得られた成形体を減圧に設定された窒素雰囲気下にて、800℃で、30分間、脱脂処理した。脱脂処理において、昇温速度は1.5℃/分~3.0℃/分であり、800℃まで昇温する過程で100℃~200℃ずつ段階的に30分以上の保持を行った。脱脂された成形体を窒化珪素質容器の中で、焼成処理した。具体的には、昇温速度5℃/分~10℃/分、窒素雰囲気 0.01MPa~0.10MPaにて1200℃~1400℃まで第1昇温を行い、第1昇温後、昇温速度10℃/分~20℃/分、窒素雰囲気 0.15MPa~0.40MPaにて1650℃~1850℃まで第2昇温を行った。その後、3時間~6時間の保持を行った。所定時間保持後、降温速度10℃/分~20℃/分にて冷却処理を行い、窒化珪素質焼結体を得た。
(5-2)実験例13~21の窒化珪素質焼結体
実験例13~21の窒化珪素質焼結体は、焼成を昇温速度5℃/分~10℃/分、窒素雰囲気0.01MPa~0.10MPaにて1200℃~1400℃まで昇温を行い、その後、昇温速度を保持したまま、窒素雰囲気0.10~0.15MPaにて1650℃~1850℃まで昇温を行う他は、実験例1~11の窒化珪素質焼結体と同様にして得られた。
(5) Firing (5-1) Silicon nitride sintered bodies of Experimental Examples 1 to 12 The silicon nitride sintered bodies of Experimental Examples 1 to 12 were fired in the following manner to obtain silicon nitride sintered bodies. Ta.
The molded body obtained above was degreased at 800° C. for 30 minutes in a nitrogen atmosphere set at reduced pressure. In the degreasing treatment, the temperature increase rate was 1.5°C/min to 3.0°C/min, and in the process of increasing the temperature to 800°C, the temperature was held in steps of 100°C to 200°C for 30 minutes or more. The degreased molded body was fired in a silicon nitride container. Specifically, the first temperature increase was performed from 1200 °C to 1400 °C at a temperature increase rate of 5 °C/min to 10 °C/min and a nitrogen atmosphere of 0.01 MPa to 0.10 MPa. A second temperature increase was performed from 1650° C. to 1850° C. at a rate of 10° C./min to 20° C./min and a nitrogen atmosphere of 0.15 MPa to 0.40 MPa. Thereafter, holding was performed for 3 to 6 hours. After holding for a predetermined time, cooling treatment was performed at a temperature decreasing rate of 10° C./min to 20° C./min to obtain a silicon nitride sintered body.
(5-2) Silicon nitride sintered bodies of Experimental Examples 13 to 21 The silicon nitride sintered bodies of Experimental Examples 13 to 21 were fired at a heating rate of 5°C/min to 10°C/min in a nitrogen atmosphere of 0.5°C. The temperature is raised to 1200 °C to 1400 °C at 01 MPa to 0.10 MPa, and then the temperature is raised to 1650 °C to 1850 °C in a nitrogen atmosphere of 0.10 to 0.15 MPa while maintaining the temperature increase rate. were obtained in the same manner as the silicon nitride sintered bodies of Experimental Examples 1 to 11.

(6)研磨
得られた窒化珪素質焼結体の表面を最終的な工具形状となるように研磨し、切削工具を得た。
(6) Polishing The surface of the obtained silicon nitride sintered body was polished to obtain the final tool shape to obtain a cutting tool.

2.分析
(1)X線回折分析
得られた窒化珪素質焼結体に対して研磨処理を行い、表面領域および内部領域の研磨面を作製し、それぞれの研磨面に対してX線回折測定を行った。X線源としてCuKα線を用い、出力45kV、200mAの条件で2θが10°から80°までの範囲にて測定を行った。得られたX線回折ピークに対して、結晶相の同定および上述したハローパターンの有無の判定を行った。結晶相の同定は、X線回折ピークを既知の結晶相と対比することで、結晶相の種類を同定した。同定した各結晶相の最高ピーク強度から上述したマトリックス相と粒界相に存在する結晶相の最大ピーク強度比B/Aを算出した。なお、実験例13は、焼結不良であり、X線回折分析を行わなかった。実験例1の内部領域におけるX線回折パターンを図3に示し、表面領域におけるX線回折パターンを図5に示す。図3及び図5において、横軸が回転角度(2θ)であり、縦軸がX線回折強度の平方根である。
各実験例の内部領域におけるハローパターンの有無は、表1の「内部領域におけるハローパターン」の欄に示す。各実験例におけるマトリックス相と粒界相に存在する結晶相の最大ピーク強度比B/Aは、表1の「X線強度比(B/A)」の欄に示す。「X線強度比(B/A)」の欄において、「表面」の欄は表面領域の強度比を示し、「内部」の欄は内部領域の強度比を示す。各実験例における表面領域におけるハローパターンの有無は、表1の「表面領域におけるハローパターン」の欄に示す。
2. Analysis (1) X-ray diffraction analysis The obtained silicon nitride sintered body was polished to create polished surfaces in the surface region and internal region, and X-ray diffraction measurements were performed on each polished surface. Ta. Using CuKα rays as an X-ray source, measurements were carried out in a 2θ range of 10° to 80° under conditions of an output of 45 kV and 200 mA. The obtained X-ray diffraction peak was used to identify the crystal phase and determine the presence or absence of the above-mentioned halo pattern. The type of crystal phase was identified by comparing the X-ray diffraction peak with known crystal phases. The maximum peak intensity ratio B/A of the crystal phases present in the matrix phase and the grain boundary phase described above was calculated from the maximum peak intensity of each identified crystal phase. In addition, in Experimental Example 13, sintering was defective, and X-ray diffraction analysis was not performed. The X-ray diffraction pattern in the internal region of Experimental Example 1 is shown in FIG. 3, and the X-ray diffraction pattern in the surface region is shown in FIG. In FIGS. 3 and 5, the horizontal axis is the rotation angle (2θ), and the vertical axis is the square root of the X-ray diffraction intensity.
The presence or absence of a halo pattern in the internal region of each experimental example is shown in the "Hello pattern in internal region" column of Table 1. The maximum peak intensity ratio B/A of the crystalline phase existing in the matrix phase and the grain boundary phase in each experimental example is shown in the "X-ray intensity ratio (B/A)" column of Table 1. In the "X-ray intensity ratio (B/A)" column, the "surface" column indicates the intensity ratio of the surface area, and the "interior" column indicates the intensity ratio of the internal area. The presence or absence of a halo pattern in the surface region in each experimental example is shown in the "Hello pattern in surface region" column of Table 1.

(2)SEM観察
さらに窒化珪素質焼結体の表面領域と内部領域との両方を通る断面に対して鏡面処理を行い、エッチング後、走査型電子顕微鏡による組織観察を行った。上述の実施形態に記載の方法で、粒界相の占める面積の割合Cs,Ciを算出し、窒化珪素またはサイアロンの粒子の形態を評価した。なお、実験例13は、焼結不良であり、SEM観察を行わなかった。
各実験例における粒界相の占める面積の割合Cs,Ciは、表1の「粒界相量(面積%)」の欄に示す。「粒界相量(面積%)」の欄において、「表面」の欄は表面領域の粒界相の占める面積の割合Csを示し、「内部」の欄は内部領域の粒界相の占める面積の割合Ciを示す。
各実験例における窒化珪素またはサイアロンの粒子の形態は、表1の「窒化珪素粒子形態」の欄に示す。「窒化珪素粒子形態」の欄において、「最大径0.5μm以下割合」の欄は窒化珪素またはサイアロンの粒子全体のうち、最大径が0.5μm以下である粒子の数の割合を示し、「最小径0.5μm以上アスペクト比1.5以上割合」の欄は窒化珪素またはサイアロンの粒子であって最小径が0.5μm以上である粒子のうち、アスペクト比が1.5以上である粒子の数の割合を示す。
(2) SEM Observation Further, a cross section passing through both the surface region and the internal region of the silicon nitride sintered body was mirror-finished, and after etching, the structure was observed using a scanning electron microscope. By the method described in the above-described embodiment, the area ratios Cs and Ci occupied by the grain boundary phase were calculated, and the morphology of silicon nitride or sialon particles was evaluated. In addition, in Experimental Example 13, sintering was defective, and SEM observation was not performed.
The area ratios Cs and Ci occupied by the grain boundary phase in each experimental example are shown in the "grain boundary phase amount (area %)" column of Table 1. In the "Grain boundary phase amount (area %)" column, the "Surface" column indicates the area ratio Cs occupied by the grain boundary phase in the surface region, and the "Interior" column indicates the area occupied by the grain boundary phase in the internal region. shows the ratio Ci.
The morphology of silicon nitride or sialon particles in each experimental example is shown in the "Silicon nitride particle morphology" column of Table 1. In the "Silicon nitride particle form" column, the "Percentage of maximum diameter 0.5 μm or less" column indicates the percentage of particles with a maximum diameter of 0.5 μm or less among all silicon nitride or sialon particles. The column "Ratio of minimum diameter of 0.5 μm or more and aspect ratio of 1.5 or more" indicates the proportion of silicon nitride or sialon particles with an aspect ratio of 1.5 or more among particles with a minimum diameter of 0.5 μm or more. Shows the percentage of numbers.

3.切削工具の作製
実験例1~12,14~21の窒化珪素質焼結体を、工具形状(RCGX120700T01020)に加工した。なお、実験例13は、焼結不良であり、切削工具の作製を行わなかった。
なお、表1には、上述のように窒化珪素質焼結体の原料粉末の組成(配合)が示されているが、この組成は焼成後にも変化しないから、各セラミックス焼結体の組成と同等である。そして、焼成後の各窒化珪素質焼結体を機械加工して、切削工具としているのであるから、結局、原料粉末の組成は切削工具の組成と同等である。
3. Fabrication of cutting tool The silicon nitride sintered bodies of Experimental Examples 1 to 12 and 14 to 21 were processed into a tool shape (RCGX120700T01020). In addition, in Experimental Example 13, sintering was defective, and a cutting tool was not manufactured.
Table 1 shows the composition (mixture) of the raw material powder for silicon nitride sintered bodies as described above, but since this composition does not change even after firing, the composition of each ceramic sintered body and are equivalent. Since each silicon nitride sintered body after firing is machined into a cutting tool, the composition of the raw material powder is ultimately the same as the composition of the cutting tool.

4.切削試験
(1)試験方法
各切削工具を用いて、切削試験を行った。試験条件は下記のとおりである。
加工方法:旋削加工
被削材:インコネル718 寸法φ150mm×300mm
切削速度:280m/分
送り量:0.27mm/rev
切込量:2.0mm
切削条件:湿式加工
評価:外径の端面方向への5.0mm加工を2回連続で行い、これを1サイクルとし、10サイクルを上限として切削試験を行った。工具刃先の損傷量が0.8mmを超えた場合は、工具刃先の損傷量が0.8mmとなるまでに加工可能であったサイクル数にて評価した。なお、工具刃先の損傷量が0.8mmとなるまでに欠損を生じた場合は、欠損が生じるまでのサイクル数にて評価した。
上記加工条件において、加工数、損傷量、刃先の状態を表1に示す。
4. Cutting test (1) Test method A cutting test was conducted using each cutting tool. The test conditions are as follows.
Processing method: Turning Work material: Inconel 718 Dimensions φ150mm x 300mm
Cutting speed: 280m/min Feed rate: 0.27mm/rev
Depth of cut: 2.0mm
Cutting conditions: Wet processing Evaluation: Machining of 5.0 mm in the direction of the end surface of the outer diameter was performed twice in succession, which was considered as one cycle, and a cutting test was performed with the upper limit of 10 cycles. When the amount of damage to the tool cutting edge exceeded 0.8 mm, evaluation was made based on the number of cycles that could be processed until the amount of damage to the tool cutting edge reached 0.8 mm. In addition, when a breakage occurred before the amount of damage to the tool cutting edge reached 0.8 mm, evaluation was made based on the number of cycles until the breakage occurred.
Table 1 shows the number of cuts, amount of damage, and state of the cutting edge under the above processing conditions.

(2)試験結果
試験結果を表1に示す。実験例1~12の切削工具の損傷量は、上限である10サイクルを経ても0.8mm未満(より詳しくは0.71mm以下)であった。一方で、実験例14は8サイクル目でチッピングが生じて、損傷量は0.8mm以上となった。実験例15~19,21はそれぞれ5~6サイクル目でフレーキングが生じて、損傷量は0.8mm以上となった。実験例20は7サイクル目で大きく欠損して、損傷量が測定できなかった。これらの結果から、実験例1~12の切削工具は、耐欠損性に優れ、工具寿命が長いことがわかった。
(2) Test results The test results are shown in Table 1. The amount of damage to the cutting tools of Experimental Examples 1 to 12 was less than 0.8 mm (more specifically, 0.71 mm or less) even after the upper limit of 10 cycles. On the other hand, in Experimental Example 14, chipping occurred in the 8th cycle, and the amount of damage was 0.8 mm or more. In Experimental Examples 15 to 19 and 21, flaking occurred in the 5th and 6th cycles, respectively, and the amount of damage was 0.8 mm or more. In Experimental Example 20, there was a large damage at the 7th cycle, and the amount of damage could not be measured. From these results, it was found that the cutting tools of Experimental Examples 1 to 12 had excellent fracture resistance and long tool life.

実験例1~12の切削工具のうち、上述の粒界相の占める面積の割合に関する要件と上述の窒化珪素またはサイアロンの粒子の形態に関する要件との少なくとも一方を充足する実験例1~11は、この2つの要件のいずれも充足しない実験例12より損傷量が小さかった。この結果から、実験例1~11の切削工具は、実験例12よりもさらに耐欠損性に優れることがわかった。 Among the cutting tools of Experimental Examples 1 to 12, Experimental Examples 1 to 11 satisfy at least one of the requirements regarding the ratio of the area occupied by the grain boundary phase described above and the requirements regarding the morphology of the silicon nitride or sialon particles described above. The amount of damage was smaller than in Experimental Example 12, which did not satisfy either of these two requirements. From this result, it was found that the cutting tools of Experimental Examples 1 to 11 had even better fracture resistance than Experimental Example 12.

実験例1~11の切削工具のうち、上述の粒界相の占める面積の割合に関する要件と上述の窒化珪素またはサイアロンの粒子の形態に関する要件との両方を充足する実験例1~9は、この2つの要件の一方のみを充足しない実験例10,11より損傷量が小さくなる傾向がみられた。この結果から、実験例1~9の切削工具は、実験例10,11よりもさらに耐欠損性に優れることが示唆された。 Among the cutting tools of Experimental Examples 1 to 11, Experimental Examples 1 to 9 that satisfy both the above-mentioned requirements regarding the area ratio occupied by the grain boundary phase and the above-mentioned requirements regarding the morphology of silicon nitride or sialon particles are as follows. There was a tendency for the amount of damage to be smaller than in Experimental Examples 10 and 11, which did not satisfy only one of the two requirements. This result suggested that the cutting tools of Experimental Examples 1 to 9 had even better fracture resistance than Experimental Examples 10 and 11.

実験例1~9の切削工具のうち、上述の表面領域のハローパターンに関する要件を充足する実験例1~8、は、上述の表面領域のハローパターンに関する要件を充足しない実験例9より損傷量が小さくなる傾向がみられた。この結果から、実験例1~8の切削工具は、実験例9よりもさらに耐摩耗性に優れることによって、長寿命化したことが示唆された。なお、実験例9の表面領域にハローパターンが確認されたのは、製造に用いたTiN粉末に含まれるWCの量が少なかったからだと推察される。 Among the cutting tools of Experimental Examples 1 to 9, Experimental Examples 1 to 8, which satisfied the requirements regarding the halo pattern in the surface area described above, had a greater amount of damage than Experimental Example 9, which did not satisfy the requirements regarding the halo pattern in the surface area. There was a tendency for it to become smaller. This result suggested that the cutting tools of Experimental Examples 1 to 8 had even better wear resistance than Experimental Example 9, and thus had a longer life. Note that the reason why a halo pattern was observed in the surface area of Experimental Example 9 is presumed to be because the amount of WC contained in the TiN powder used for manufacturing was small.

本発明は上記で詳述した実施形態に限定されず、本発明の請求項に示した範囲で様々な変形又は変更が可能である。 The present invention is not limited to the embodiments detailed above, and various modifications and changes can be made within the scope of the claims of the present invention.

1 …切削工具
2 …窒化珪素質焼結体
3 …マトリックス相
4 …硬質相
10 …粒界相
11 …ガラス相
12 …結晶相
1 ... Cutting tool 2 ... Silicon nitride sintered body 3 ... Matrix phase 4 ... Hard phase 10 ... Grain boundary phase 11 ... Glass phase 12 ... Crystal phase

Claims (1)

窒化珪素またはサイアロンからなるマトリックス相と、硬質相と、ガラス相及び結晶相が存在する粒界相と、を含む窒化珪素質焼結体からなる切削工具であって、
前記窒化珪素質焼結体は、
イットリウムを酸化物換算で5.0wt%以上15.0wt%以下含有するとともに、前記硬質相として窒化チタンを5.0wt%以上25.0wt%以下含有し、
前記窒化珪素質焼結体におけるX線回折ピークにおいて、
前記窒化珪素質焼結体の表面から1.0mmよりも深い内部領域では、2θが25°から35°の範囲にハローパターンを示し、
以下のように定義される前記マトリックス相の最大ピーク強度A、及び、前記粒界相に存在する前記結晶相の最大ピーク強度Bについて、前記最大ピーク強度Aに対する前記最大ピーク強度Bの比であるB/Aが、
前記窒化珪素質焼結体の表面から0.2mmまでの表面領域では、下記式(1)の関係を満たし、
前記窒化珪素質焼結体の前記内部領域では、下記式(2)の関係を満たし、
前記窒化珪素質焼結体の断面を観察した場合に、
前記窒化珪素または前記サイアロンの粒子全体のうち、最大径が0.5μm以下である粒子の数の割合は50%以上であり、
前記窒化珪素または前記サイアロンの粒子であって最小径が0.5μm以上である粒子のうち、アスペクト比が1.5以上である粒子の数の割合は55%以上である切削工具。

0.11≦B/A≦0.40 ・・・式(1)
0.00≦B/A<0.10 ・・・式(2)

最大ピーク強度Aは、前記マトリックス相が単一の種類からなる場合、その相の最大ピーク強度として求め、前記マトリックス相が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
最大ピーク強度Bは、前記粒界相に存在する前記結晶相が単一の種類からなる場合、その相の最大ピーク強度として求め、前記粒界相に存在する前記結晶相が複数の種類からなる場合、それらの相の各々の最大ピーク強度の和として求める。
A cutting tool made of a silicon nitride sintered body containing a matrix phase made of silicon nitride or sialon, a hard phase, and a grain boundary phase in which a glass phase and a crystal phase exist,
The silicon nitride sintered body is
Containing yttrium in an oxide equivalent of 5.0 wt% or more and 15.0 wt% or less, and containing titanium nitride as the hard phase of 5.0 wt% or more and 25.0 wt% or less,
In the X-ray diffraction peak in the silicon nitride sintered body,
In an internal region deeper than 1.0 mm from the surface of the silicon nitride sintered body, a halo pattern is exhibited in a 2θ range of 25° to 35°,
Regarding the maximum peak intensity A of the matrix phase and the maximum peak intensity B of the crystalline phase present in the grain boundary phase, which are defined as follows, the ratio of the maximum peak intensity B to the maximum peak intensity A is B/A is
In the surface area up to 0.2 mm from the surface of the silicon nitride sintered body, the following formula (1) is satisfied,
The internal region of the silicon nitride sintered body satisfies the relationship of formula (2) below,
When observing the cross section of the silicon nitride sintered body,
Among all the particles of the silicon nitride or the Sialon, the proportion of particles having a maximum diameter of 0.5 μm or less is 50% or more,
A cutting tool, wherein among the silicon nitride or sialon particles having a minimum diameter of 0.5 μm or more, the number of particles having an aspect ratio of 1.5 or more is 55% or more.

0.11≦B/A≦0.40...Formula (1)
0.00≦B/A<0.10...Formula (2)

When the matrix phase consists of a single type, the maximum peak intensity A is determined as the maximum peak intensity of that phase, and when the matrix phase consists of multiple types, the maximum peak intensity A is determined as the sum of the maximum peak intensities of each of those phases. demand.
The maximum peak intensity B is determined as the maximum peak intensity of the crystal phase existing in the grain boundary phase when it consists of a single type, and the crystal phase existing in the grain boundary phase consists of multiple types. In this case, it is calculated as the sum of the maximum peak intensities of each of those phases.
JP2021565349A 2019-12-20 2020-10-28 Cutting tools Active JP7340622B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019230148 2019-12-20
JP2019230148 2019-12-20
PCT/JP2020/040346 WO2021124690A1 (en) 2019-12-20 2020-10-28 Cutting tool

Publications (3)

Publication Number Publication Date
JPWO2021124690A1 JPWO2021124690A1 (en) 2021-06-24
JPWO2021124690A5 JPWO2021124690A5 (en) 2022-05-18
JP7340622B2 true JP7340622B2 (en) 2023-09-07

Family

ID=76477197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021565349A Active JP7340622B2 (en) 2019-12-20 2020-10-28 Cutting tools

Country Status (5)

Country Link
US (1) US20230018290A1 (en)
EP (1) EP4079429A4 (en)
JP (1) JP7340622B2 (en)
CN (1) CN114929649B (en)
WO (1) WO2021124690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354901A (en) 1999-04-05 2000-12-26 Ngk Spark Plug Co Ltd Cutting tool and its manufacture
WO2014104112A1 (en) 2012-12-25 2014-07-03 京セラ株式会社 Silicon nitride-based sintered object and cutting tool
WO2014126178A1 (en) 2013-02-13 2014-08-21 京セラ株式会社 Cutting tool
JP2017172015A (en) 2016-03-24 2017-09-28 Jx金属株式会社 Titanium nitride sputtering target
CN108455990A (en) 2018-04-17 2018-08-28 南京理工大学 A kind of silicon nitride matrix composite ceramic material and its SPS preparation processes

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2521690B2 (en) * 1987-02-12 1996-08-07 日立金属株式会社 Ceramic heater and method for producing the same
JP2719941B2 (en) * 1988-11-24 1998-02-25 日本特殊陶業株式会社 Silicon nitride sintered body
US5316856A (en) * 1988-12-03 1994-05-31 Ngk Spark Plug Co., Ltd. Silicon nitride base sintered body
JP3266200B2 (en) * 1989-01-12 2002-03-18 日本特殊陶業株式会社 Silicon nitride based sintered body
JP2731242B2 (en) * 1989-05-29 1998-03-25 本田技研工業株式会社 High strength and high toughness ceramic body
DE19704910C2 (en) * 1997-02-10 2000-07-06 Bayer Ag Liquid-phase sintered, electrically conductive and oxidation-resistant ceramic material, a process for its production and its use
KR20010020687A (en) * 1999-04-05 2001-03-15 오카무라 가네오 Cutting Tool and Method of Manufacturing the Same
JP4744704B2 (en) * 2000-03-16 2011-08-10 株式会社東芝 Method for manufacturing wear-resistant member
JP5624067B2 (en) * 2000-05-09 2014-11-12 日本特殊陶業株式会社 Silicon nitride sintered body
JP4342975B2 (en) 2004-02-18 2009-10-14 日本特殊陶業株式会社 Sialon quality tools, cutting inserts, and cutting tools
US20080119349A1 (en) * 2004-12-22 2008-05-22 Ngk Spark Plug Co., Ltd. Sialon Insert and Cutting Tool Equipped Therewith
JP5447844B2 (en) * 2010-03-19 2014-03-19 三菱マテリアル株式会社 High toughness cubic boron nitride based ultra high pressure sintered material and cutting tool
JP5629843B1 (en) * 2013-12-27 2014-11-26 日本特殊陶業株式会社 Sialon sintered body and cutting insert
WO2016052468A1 (en) * 2014-09-29 2016-04-07 日本特殊陶業株式会社 Sialon sintered body and cutting insert

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354901A (en) 1999-04-05 2000-12-26 Ngk Spark Plug Co Ltd Cutting tool and its manufacture
WO2014104112A1 (en) 2012-12-25 2014-07-03 京セラ株式会社 Silicon nitride-based sintered object and cutting tool
WO2014126178A1 (en) 2013-02-13 2014-08-21 京セラ株式会社 Cutting tool
JP2017172015A (en) 2016-03-24 2017-09-28 Jx金属株式会社 Titanium nitride sputtering target
CN108455990A (en) 2018-04-17 2018-08-28 南京理工大学 A kind of silicon nitride matrix composite ceramic material and its SPS preparation processes

Also Published As

Publication number Publication date
CN114929649A (en) 2022-08-19
EP4079429A1 (en) 2022-10-26
JPWO2021124690A1 (en) 2021-06-24
CN114929649B (en) 2022-12-27
US20230018290A1 (en) 2023-01-19
WO2021124690A1 (en) 2021-06-24
EP4079429A4 (en) 2024-01-24

Similar Documents

Publication Publication Date Title
JP6032387B1 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
JP5527937B2 (en) Silicon nitride sintered body
JP5527949B2 (en) Silicon nitride sintered body
JP5340028B2 (en) Cutting tools
KR20170039225A (en) Sintered body and cutting tool including same
JP5677638B1 (en) Cutting tools
US7629281B2 (en) Ceramic material and cutting tools made thereof
JP4894770B2 (en) Silicon carbide / boron nitride composite sintered body, method for producing the same, and member using the sintered body
JPWO2008026641A1 (en) Aluminum oxide based composite sintered body and cutting insert
JP5685523B2 (en) Sialon sintered body and cutting insert
CN103880430B (en) Methods for preparing multiphase high-strength highly-wear-resistant silicon nitride ceramic cutting tool material and tool
JP7340622B2 (en) Cutting tools
JP6075803B2 (en) Silicon nitride sintered body and cutting tool
WO2016052468A1 (en) Sialon sintered body and cutting insert
JP4434938B2 (en) Sialon insert manufacturing method
JP2008273753A (en) Boron carbide-based sintered compact and protective member
JP4335406B2 (en) Cutting tool and manufacturing method thereof
JP2015009327A (en) Cutting insert
JP5864631B2 (en) Silicon nitride sintered body
JP7451350B2 (en) End mills and friction stir welding tools
JP7556772B2 (en) Cutting Tools
JP4798821B2 (en) Cutting tool and manufacturing method thereof
JP2021155282A (en) Ceramic sintered body, and cutting tool
JP2021138558A (en) Ceramic sintered body, and cutting tool
JP2011177830A (en) Surface-coated wc-based cemented carbide cutting tool

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230301

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230316

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7340622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150