JP4434938B2 - Sialon insert manufacturing method - Google Patents

Sialon insert manufacturing method Download PDF

Info

Publication number
JP4434938B2
JP4434938B2 JP2004372004A JP2004372004A JP4434938B2 JP 4434938 B2 JP4434938 B2 JP 4434938B2 JP 2004372004 A JP2004372004 A JP 2004372004A JP 2004372004 A JP2004372004 A JP 2004372004A JP 4434938 B2 JP4434938 B2 JP 4434938B2
Authority
JP
Japan
Prior art keywords
sialon
insert
mol
powder
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004372004A
Other languages
Japanese (ja)
Other versions
JP2006175561A (en
Inventor
亮二 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004372004A priority Critical patent/JP4434938B2/en
Priority to US11/793,500 priority patent/US20080119349A1/en
Priority to CN2005800445856A priority patent/CN101087670B/en
Priority to PCT/JP2005/023589 priority patent/WO2006068220A1/en
Priority to EP05820104A priority patent/EP1837105A4/en
Priority to EP11180944.8A priority patent/EP2402098B2/en
Publication of JP2006175561A publication Critical patent/JP2006175561A/en
Application granted granted Critical
Publication of JP4434938B2 publication Critical patent/JP4434938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明はサイアロン製インサートおよび切削工具に関し、詳しくは刃先が摩耗し難く、耐欠損性に優れた寿命の長いサイアロン製インサートおよび切削工具に関する。   The present invention relates to a sialon insert and a cutting tool, and more particularly, to a sialon insert and a cutting tool having a long life and excellent wear resistance.

切削用工具は図2に例示する外径加工用ホルダーのように、ホルダーと呼ばれる支持体の先端に使い捨ての刃先であるインサート(スローアウェイチップ、刃先交換チップなどを言う。)を取り付けた構造が多い。このインサートには被削材の種類、加工工程、切削速度などによって各種の材料が使用されている。例えば、超硬合金、サーメット、セラミック、CBN、さらにはこれらの表面に被膜をコーティングした材料が用いられている。その中でも普通鋳鉄(FCと略称する)材の粗加工、特に高速加工には窒化珪素系セラミック製のインサートが好適とされている。   The cutting tool has a structure in which an insert (a throwaway tip, a blade tip replacement tip, etc.), which is a disposable blade tip, is attached to the tip of a support body called a holder, like an outer diameter processing holder illustrated in FIG. Many. Various materials are used for this insert depending on the type of work material, machining process, cutting speed, and the like. For example, cemented carbide, cermet, ceramic, CBN, and materials having a coating film on the surface thereof are used. Among them, an insert made of silicon nitride ceramic is suitable for rough machining of ordinary cast iron (abbreviated as FC) material, particularly high speed machining.

近年、自動車の燃費向上を目的としてFC材を主とする自動車部材の軽量化が大きな課題となっている。このような背景から、自動車部材の薄肉化、軽量化の要求が高まっており、粗加工と雖も高精度の加工が要求されるようになって来た。これらFC材の粗加工については、従来は窒化珪素製切削工具の使用が多かったが、窒化珪素自体は共有結合性の材料であり、高速加工時の高温によりシリコンと窒素に分解しやすいことが欠点であった。その分解反応は、切削加工時に窒化珪素がFC材の主要成分である鉄や炭素と高い切削圧力にて接触することで化学反応が起こり、より早く進むことになる。工具刃先の窒化珪素が分解することにより刃先が摩耗、損傷する。刃先が摩耗すると被削材の面粗度や寸法精度が悪化して、ついには工具が使用不能となり工具寿命となる。   In recent years, for the purpose of improving the fuel efficiency of automobiles, weight reduction of automobile members mainly made of FC materials has become a major issue. Against this background, demands for thinner and lighter automobile members are increasing, and high-precision machining is required for roughing and wrinkling. For rough machining of these FC materials, silicon nitride cutting tools have been used in the past, but silicon nitride itself is a covalent material and can be easily decomposed into silicon and nitrogen at high temperatures during high-speed machining. It was a drawback. The decomposition reaction proceeds faster when silicon nitride comes into contact with iron or carbon, which are the main components of the FC material, at high cutting pressure during cutting. The cutting edge is worn and damaged by the decomposition of silicon nitride at the cutting edge of the tool. When the cutting edge wears, the surface roughness and dimensional accuracy of the work material deteriorate, and the tool becomes unusable and the tool life is reached.

被削材によるインサート材料の化学反応を抑制する方法として、インサート表面に鉄と反応性の低い、チタン化合物やアルミ化合物からなる硬質層を被覆することが知られている。例えば、特許文献1には窒化チタン、炭化チタン等のチタン化合物とアルミナ等のアルミ化合物を被覆し、FC材を切削加工する事例が開示されている。さらに、被削材とインサート基材の化学反応を抑制するために、窒化チタンやアルミナを添加し、基材自体の化学反応性を抑制させる方法が知られている。この窒化チタンは、分散粒子として組織中に存在し、基材の耐化学反応性を改善する。また、アルミナは窒化珪素粒子内に固溶し窒化珪素粒子自体の耐化学反応性を改善するとされている。これらの方法は、特許文献2、特許文献3、特許文献4などに報告されている。   As a method for suppressing the chemical reaction of the insert material by the work material, it is known that the insert surface is coated with a hard layer made of a titanium compound or an aluminum compound that has low reactivity with iron. For example, Patent Document 1 discloses an example in which an FC material is cut by coating a titanium compound such as titanium nitride or titanium carbide and an aluminum compound such as alumina. Furthermore, in order to suppress the chemical reaction between the work material and the insert base material, a method is known in which titanium nitride or alumina is added to suppress the chemical reactivity of the base material itself. This titanium nitride is present in the structure as dispersed particles, and improves the chemical reaction resistance of the substrate. Alumina is considered to be dissolved in silicon nitride particles to improve the chemical resistance of the silicon nitride particles themselves. These methods are reported in Patent Document 2, Patent Document 3, Patent Document 4, and the like.

特許第3107168号公報Japanese Patent No. 3107168 特表平8−510965号公報Japanese National Patent Publication No. 8-510965 特開平10−36174号公報JP 10-36174 A 特開2004−527434号公報JP 2004-527434 A

一方、サイアロンは窒化珪素等と比較して優れた硬度と室温から高温にいたるまで高い強度を示し、化学的安定性が高い素材として知られている。そのため、耐熱性および耐化学反応性が要求される熱鋼の圧延用ガイドロールやダイス、アルミニウム・ダイキャスト機械のスリーブなどの構造材料として使われていた。また、耐摩耗性が良好であることから切削工具や軸受けにも利用が広がってきた。しかし、サイアロン製切削工具は難削性の耐熱合金等の粗切削加工に用いられる程度で、被削材の面粗度や寸法精度に影響する工具刃先の耐摩耗性についてはあまり考慮されていなかった。   On the other hand, sialon is known as a material having excellent hardness and high strength from room temperature to high temperature compared with silicon nitride and the like, and having high chemical stability. For this reason, it has been used as a structural material for hot steel rolling guide rolls and dies that require heat resistance and chemical reaction resistance, and sleeves for aluminum die casting machines. In addition, its wear resistance has been good, and its use has been extended to cutting tools and bearings. However, sialon cutting tools are only used for rough cutting of difficult-to-cut heat-resistant alloys, etc., and little consideration is given to the wear resistance of the tool edge that affects the surface roughness and dimensional accuracy of the work material. It was.

上述のような基材表面に被覆層を形成したインサートでは、被削材と切削工具基材の化学反応による磨耗は抑制されるが、被覆時に窒化珪素基材と窒化チタンやアルミナの熱膨張係数の相違により被覆層に引っ張り残留応力が生じ、被覆層を破壊の起点として工具刃先が欠損し工具寿命が低下する事がある。最近は、窒化珪素基材に窒化チタンを添加すると、窒化チタンと窒化珪素粒子の熱膨張係数の相違による耐熱衝撃性の低下を招く場合がある。窒化珪素基材へのアルミ化合物の添加による単なるサイアロン化では、粒子自体の強度が低下してしまい、とりわけ高速切削時の工具寿命を低下させてしまうことがある。また、アルミ化合物が窒化珪素粒子内に固溶せず、粒界相として残ったアルミ化合物は固溶したアルミ化合物と比べ分解反応に起因する摩耗、損傷に対しては大きな差はないが、機械的な摩耗が大きくなる場合がある。   In inserts with a coating layer on the substrate surface as described above, wear due to the chemical reaction between the work material and the cutting tool substrate is suppressed, but the thermal expansion coefficient of the silicon nitride substrate and titanium nitride or alumina during coating Due to this difference, a tensile residual stress is generated in the coating layer, and the tool edge may be lost using the coating layer as a starting point of destruction, and the tool life may be reduced. Recently, when titanium nitride is added to a silicon nitride substrate, thermal shock resistance may be lowered due to the difference in thermal expansion coefficient between titanium nitride and silicon nitride particles. The mere sialonization by adding an aluminum compound to a silicon nitride base material reduces the strength of the particles themselves, and in particular, may reduce the tool life during high-speed cutting. In addition, the aluminum compound does not dissolve in the silicon nitride particles, and the aluminum compound remaining as the grain boundary phase is not significantly different from the aluminum compound dissolved in the wear and damage caused by the decomposition reaction. Wear may increase.

本発明はこうした問題点を解決するため、材料強度を低下させることなく、被削材とインサートの化学反応による摩耗、及びアブレッシブな機械的摩耗を低減し、寿命の長いサイアロン製インサートの製造方法を提供することを目的とする。 Since the present invention is to solve such problems, without reducing the material strength, wear due to chemical reactions of the workpiece and the insert, and reducing the abrasive mechanical wear, a method of manufacturing a long-sialon-made insert preparative life The purpose is to provide.

本発明者らは、このような切削工具素材の分解反応により刃先が摩耗する機構を鋭意研究したところ、FC材と工具材質の化学反応を抑制することが工具寿命を延長させるために重要であることを見出した。また、特定のサイアロン製インサートが基材の強度を低下させることなく被削材と工具刃先の化学反応による摩耗およびアブレッシブな機械摩耗を低減し、工具寿命を改善できることを見出した。すなわち、本発明の課題を解決するための手段は以下のようなものである。   The present inventors diligently studied the mechanism by which the cutting edge wears due to such a decomposition reaction of the cutting tool material, and suppressing the chemical reaction between the FC material and the tool material is important for extending the tool life. I found out. It was also found that specific sialon inserts can reduce tool wear and abrasive wear due to chemical reaction between the work material and the tool edge and reduce tool life without reducing the strength of the substrate. That is, the means for solving the problems of the present invention are as follows.

(1)焼結体中の粒界相が5〜20%であり、
サイアロン粒子中のα−サイアロンの比率を示すα率が40%以下であり、
Si 6−Z Al 8−Z で表されるβ−サイアロンのZ値が0.2〜1.0であり、
前記焼結体中の{(β−サイアロンの実測Z値)/(焼結体組成から計算される理論Z値)}で表されるAlの固溶率Aが70%〜93%であり、
Sc、Y、Ce、Er、Dy、Yb、Luの各元素から選ばれる1種以上を前記焼結体に対して酸化物換算で3〜10モル%含有しているサイアロン製インサートの製造方法であって、
30〜95モル%の窒化珪素と、0.5〜20モル%のアルミナと、20モル%未満の窒化アルミニウムと、3〜10モル%の、前記各元素から選ばれる1種以上とを含む原料粉末を、耐火物製のサヤ内にセットして一次焼結した後に、二次焼結することを特徴とするサイアロン製インサートの製造方法である
(1) The grain boundary phase in the sintered body is 5 to 20%,
The α ratio indicating the ratio of α-sialon in the sialon particles is 40% or less,
Z value of β-sialon represented by Si 6-Z Al Z O Z N 8-Z is 0.2 to 1.0,
The solid solution ratio A of Al represented by {(actually measured Z value of β-sialon) / (theoretical Z value calculated from sintered body composition)} in the sintered body is 70% to 93%,
In the manufacturing method of the insert made from sialon which contains 3-10 mol% in conversion of oxide with respect to the said sintered compact 1 or more types chosen from each element of Sc, Y, Ce, Er, Dy, Yb, and Lu. There,
A raw material containing 30 to 95 mol% silicon nitride, 0.5 to 20 mol% alumina, less than 20 mol% aluminum nitride, and 3 to 10 mol% of one or more selected from the above elements. the powder, after the primary sintering is set to refractory made in sheath, which is characteristic and be Rusa Iaron manufactured insert manufacturing method of that secondary sintering.

本発明のサイアロン製インサートの製造方法によれば、切削刃の強度が高いだけでなく、被削材と工具基材の化学反応による分解、摩耗を抑えることができるインサートを提供できる。また、アルミニウムの固溶率を規定することは、サイアロンを切削工具として使用する際アブレッシブ摩耗に代表される機械的損傷を抑制することができ、工具寿命を大幅に改善することができる。特に、本発明のサイアロン製インサートの製造方法によれば、FC材等の切削に最適であり、粗切削加工用工具として用いても被削材の面粗度や寸法精度に影響する工具刃先の耐摩耗性に優れ、面粗度や寸法精度のよい切削加工が長時間継続できるインサートを提供できる
According to the method for producing a sialon insert of the present invention, it is possible to provide an insert that not only has a high cutting blade strength but also can suppress decomposition and wear due to a chemical reaction between the work material and the tool base material. Also, defining the solid solution ratio of aluminum can suppress mechanical damage represented by abrasive wear when using sialon as a cutting tool, and can greatly improve the tool life. In particular, according to the method for manufacturing a sialon insert of the present invention, the cutting edge of the tool blade that is most suitable for cutting FC materials and the like and that affects the surface roughness and dimensional accuracy of the work material even when used as a rough cutting tool. excellent abrasion resistance, can be provided an insert good cutting of surface roughness and dimensional accuracy can be continued for a long time.

本発明のインサートは、β−サイアロンおよびα−サイアロンからなるサイアロン相またはβ−サイアロンからなるサイアロン相を主相とし、焼結助剤を添加して焼結した焼結体である。そして、このサイアロン製のインサートは焼結体中の粒界相が5〜20%であり、サイアロン粒子中のα−サイアロンの比率を示すα率が40%以下であり、Si6−ZAl8−Zで表されるβ−サイアロンのZ値が0.2〜1.0であり、焼結体中のβ−サイアロンの実測されるZ値と焼結体組成から計算される理論Z値の比で表されるAlの固溶率A(=実測Z値/理論Z値×100)が70%以上である。 The insert according to the present invention is a sintered body obtained by sintering a sialon phase composed of β-sialon and α-sialon or a sialon phase composed of β-sialon as a main phase and adding a sintering aid. And this sialon insert has a grain boundary phase in the sintered body of 5 to 20%, an α ratio indicating the proportion of α-sialon in the sialon particles is 40% or less, and Si 6-Z Al Z The Z value of β-sialon represented by O Z N 8-Z is 0.2 to 1.0, and is calculated from the actually measured Z value of β-sialon in the sintered body and the composition of the sintered body. The Al solid solution ratio A (= measured Z value / theoretical Z value × 100) represented by the ratio of the theoretical Z value is 70% or more.

サイアロンは原料となる窒化珪素、アルミナ、窒化アルミニウム、シリカなどのSi,Al,O,Nといった構成元素を含む原料粉末に焼結助剤等を加えて焼結したものである。通常、サイアロンには組成式Si6−ZAl8−Z(0<Z≦4.2)で表されるβ-サイアロンと、組成式Mx(Si,Al)12(O,N)16(0<X≦2、MはMg,Ca,Sc,Y,Dy,Er,Yb,Lu等の侵入型で固溶する元素を示す。)で示されるα−サイアロンが焼結体中で混在している。β−サイアロンは窒化珪素同様に針状組織が絡み合った組織となるため、高靭性であり、α−サイアロンは等軸状の粒子形状であるため、低靭性ではあるが、β−サイアロンと比較して硬度が高い特徴を有する。 Sialon is obtained by sintering a raw material powder containing constituent elements such as Si, Al, O, and N such as silicon nitride, alumina, aluminum nitride, and silica as a raw material by adding a sintering aid. Usually, sialon includes β-sialon represented by a composition formula Si 6-Z Al Z O Z N 8-Z (0 <Z ≦ 4.2), and a composition formula Mx (Si, Al) 12 (O, N ) 16 (0 <X ≦ 2, M represents an interstitial and solid solution element such as Mg, Ca, Sc, Y, Dy, Er, Yb, Lu) In the sintered body, α-sialon represented by Are mixed. Since β-sialon has a structure in which needle-like structures are entangled like silicon nitride, it has high toughness, and α-sialon has an equiaxed particle shape, so it has low toughness, but compared to β-sialon. And has a high hardness.

サイアロン粒子間の粒界相は、焼結助剤、窒化珪素及び窒化珪素に不純物として含まれるシリカ成分等が焼結時に液相化して、サイアロン粒子の生成、サイアロン粒子の再配列、粒成長に寄与したあと、冷却時に固化してガラス相あるいは結晶相としてサイアロン粒界に生成するものである。この粒界相は、サイアロン粒子と比較すると、低融点かつ低靱性、低硬度であるため、サイアロン焼結体の耐熱性、靱性、硬度を改善するためには、適切な量に制御する必要がある。しかし、粒界ガラス相および粒界結晶相は、例えば焼結助剤量の低減により、減少させることができるが、5%未満まで減少させると、サイアロン焼結体の強度を低下させる原因となる。逆に20%より増やすと、前述のように粒界相はサイアロン粒子と比較すると、融点、靱性、硬度が劣る成分である為、サイアロン焼結体の耐熱性、靱性、硬度が低下してしまうことになる。その結果、アブレッシブ摩耗に代表されるような機械的損傷により寿命が短くなるため好ましくない。すなわち、粒界結晶相および粒界ガラス相の粒界相を5〜20%とすることが必要である。なお、粒界相の比率(%)は走査型電子顕微鏡(SEM)を用い、5000倍の観察倍率でサイアロン焼結体の焼肌から1mm以上内部の断面を写真撮影した後、その写真の一定領域中の粒界相部分の面積比率を画像処理ソフトにより測定することで、その一定領域全体に対する粒界相部分の面積の割合(%)として求めたものである。なお、炭化チタン等の硬質成分粒子等を含む焼結体では硬質成分粒子等は粒界層部分ではない。   The grain boundary phase between the sialon particles is a liquid phase during sintering, such as a sintering aid, silicon nitride and silica components contained as impurities in the silicon nitride, resulting in generation of sialon particles, rearrangement of sialon particles, and grain growth. After contributing, it solidifies upon cooling and forms at the sialon grain boundary as a glass phase or a crystalline phase. Since this grain boundary phase has a low melting point, low toughness, and low hardness compared to sialon particles, it must be controlled to an appropriate amount in order to improve the heat resistance, toughness, and hardness of the sialon sintered body. is there. However, the grain boundary glass phase and the grain boundary crystal phase can be reduced, for example, by reducing the amount of the sintering aid. However, if the grain boundary glass phase and the grain boundary crystal phase are reduced to less than 5%, the strength of the sialon sintered body is reduced. . On the other hand, when the content is increased from 20%, the grain boundary phase is a component inferior in melting point, toughness, and hardness as compared with sialon particles as described above, so that the heat resistance, toughness, and hardness of the sialon sintered body are lowered. It will be. As a result, the life is shortened due to mechanical damage represented by abrasive wear, which is not preferable. That is, the grain boundary phase of the grain boundary crystal phase and the grain boundary glass phase needs to be 5 to 20%. The grain boundary phase ratio (%) was measured with a scanning electron microscope (SEM), and after taking a photograph of a cross section of 1 mm or more from the burned surface of the sialon sintered body at an observation magnification of 5000 times, the photograph was constant. By measuring the area ratio of the grain boundary phase portion in the region with image processing software, it is obtained as the ratio (%) of the area of the grain boundary phase portion to the entire fixed region. In the sintered body containing hard component particles such as titanium carbide, the hard component particles are not the grain boundary layer portion.

本発明のインサートは、サイアロン粒子がβ−サイアロンであると高靭性であることにより、良好な切削性能が得られるが、一部がα−サイアロンであっても切削性能の低下は認められない。X線回折におけるβ−サイアロンの(101)面ピーク強度をβ1、(210)面ピーク強度をβ2、α−サイアロンの(102)面ピーク強度をα1、(210)面ピーク強度をα2とした時に、{(α1+α2)/(β1+β2+α1+α2)}×100で算出されるα−サイアロンの比率α率が40%までは良好な切削性能が得られた。α率が40%を越えると、靭性の低い等軸状のα−サイアロン結晶粒子が多くなるために、耐欠損性が劣ってしまい好ましくない。つまり、上述したように、α率が40%以下の場合には十分な切削性能(耐摩耗性および耐欠損性)を有しており好適である。   The insert of the present invention has high toughness when the sialon particles are β-sialon, so that good cutting performance can be obtained. However, even if some of them are α-sialon, no reduction in cutting performance is observed. When the (101) plane peak intensity of β-sialon in X-ray diffraction is β1, the (210) plane peak intensity is β2, the (102) plane peak intensity of α-sialon is α1, and the (210) plane peak intensity is α2. , {(Α1 + α2) / (β1 + β2 + α1 + α2)} × 100 A good cutting performance was obtained when the α-sialon ratio α rate was 40%. When the α ratio exceeds 40%, the number of equiaxed α-sialon crystal particles having low toughness increases, so that the fracture resistance is inferior, which is not preferable. That is, as described above, when the α rate is 40% or less, it has a sufficient cutting performance (wear resistance and fracture resistance), which is preferable.

本発明のインサートは組成式Si6−ZAl8−Zで表されるβ-サイアロンのZ値が0.2〜1.0である。通常はZ値が0〜4.2の範囲であるものがβ-サイアロンとされている。本発明のインサートはZ値(実測Z値)が0.2〜1.0の範囲にあるので、窒化珪素と比べ被削材との化学反応による分解が発生しにくく、サイアロン化による強度低下が少ない。さらに、本発明のインサートはAlの固溶率が70%以上である。これにより、粒界相へのアルミ成分の残存量が少なく、被削材とのアブレッシブ摩耗に代表される様な機械的損傷が抑制される。ここで実測Z値は、X線回折測定により測定されるサイアロン焼結体の焼肌から1mm以上内部のβ−サイアロンのa軸格子定数と、β−窒化珪素のa軸格子定数(7.60442Å)の差により算出する(算出方法は、例えばWO02/44104号公報、第28頁参照)。理論Z値は、焼結体の焼肌から1mm以上内部の蛍光X線などの化学分析などからSi、Al量(重量%)を算出し、それらの値から以下の式を用いて計算される。
理論Z=6×(Al/26.98)/{(Al/26.98)+(Si/28.09)}
なお、式中AlはAl重量%、SiはSi重量%を表す。
In the insert of the present invention, the Z value of β-sialon represented by the composition formula Si 6-Z Al Z O Z N 8-Z is 0.2 to 1.0. Usually, those having a Z value in the range of 0 to 4.2 are regarded as β-sialon. Since the insert of the present invention has a Z value (actually measured Z value) in the range of 0.2 to 1.0, it is less likely to be decomposed by a chemical reaction with the work material than silicon nitride, and the strength is reduced by sialonization. Few. Furthermore, the insert of the present invention has an Al solid solution rate of 70% or more. Thereby, the residual amount of the aluminum component in the grain boundary phase is small, and mechanical damage as typified by abrasive wear with the work material is suppressed. Here, the actually measured Z value is the a-axis lattice constant of β-sialon and the a-axis lattice constant of β-silicon nitride (7.60442Å) 1 mm or more inside the sintered surface of the sialon sintered body measured by X-ray diffraction measurement. ) (See, for example, WO02 / 44104, page 28). The theoretical Z value is calculated by calculating the Si and Al amounts (% by weight) from chemical analysis such as fluorescent X-rays inside 1 mm or more from the sintered skin of the sintered body, and using the following formula from these values. .
Theory Z = 6 × (Al / 26.98) / {(Al / 26.98) + (Si / 28.09)}
In the formula, Al represents Al wt%, and Si represents Si wt%.

本発明のインサートは実測Z値/理論Z値で表されるAlの固溶率が70%以上であることにより、粒界のアルミ成分の残存量が少なく、被削材とのアブレッシブ摩耗に代表される様な機械的損傷が抑制される。なお、Alの固溶率は焼結体焼成時の焼成温度や昇温時間、焼成雰囲気を調整したり、焼結体中の窒素と酸素の比を変化させることで、制御することが可能である。   The insert of the present invention has a Al solid solution ratio of 70% or more represented by measured Z value / theoretical Z value, so that the residual amount of aluminum component at the grain boundary is small, and is representative of abrasive wear with the work material. Such mechanical damage is suppressed. The solid solution ratio of Al can be controlled by adjusting the firing temperature, temperature rise time, firing atmosphere during firing of the sintered body, or changing the ratio of nitrogen and oxygen in the sintered body. is there.

前記サイアロン製インサートの焼結に用いる焼結助剤としては、希土類元素のSc、Y、Ce、Er、Dy、Yb、Luから選ばれる1種以上を焼結体に対し酸化物換算で0.5〜10モル%用いることが好ましい。本発明のインサートのサイアロン組織の針状化に寄与する希土類元素の種類およびその含有量を上記のように規定することによりサイアロン組織を好適なものに制御することができる。0.5モル%未満では、サイアロン組織が十分に針状化しないためサイアロン基材の強度を低下させる原因となる。逆に10モル%より多いと焼結体自体の耐熱性、靱性、硬度が低下してしまうことになる。その結果、アブレッシブ摩耗に代表される様な機械的損傷により寿命に至るため好ましくない。   As a sintering aid used for sintering the sialon insert, at least one selected from the rare earth elements Sc, Y, Ce, Er, Dy, Yb, and Lu is converted into an oxide in terms of oxide. It is preferable to use 5 to 10 mol%. By specifying the kind of rare earth element contributing to acicularization of the sialon structure of the insert of the present invention and the content thereof as described above, the sialon structure can be controlled appropriately. If it is less than 0.5 mol%, the sialon structure is not sufficiently needle-like, which causes a decrease in the strength of the sialon substrate. On the other hand, if it exceeds 10 mol%, the heat resistance, toughness, and hardness of the sintered body itself will decrease. As a result, the service life is reached by mechanical damage such as abrasive wear, which is not preferable.

なお、焼結体中の上記希土類元素の酸化物換算含有量のモル%は以下の方法で算出したものである。
(a)焼結体中の各元素(非金属元素は除く、以下同じ)の量を蛍光X線や化学分析などで分析し、重量比を算出する。
(b)上記の各元素を酸化物や窒化物などの化合物とみなして分子量を求める。例えばSiはSi、AlはAl、窒化アルミ、YはYなどとして計算する。
(c)更に(a)で算出した重量比を(b)で求めた各元素の化合物の分子量で割ることでこれをモルとする。これらのモルの合計を100としてそれぞれの化合物のモル%として算出する。
なお、簡易的な算出方法として、焼結原料粉末は過不足なく焼結体になるものと想定して、焼結体中の含有組成ではなく、素地調製時の組成からモル%を求めることもできる。
In addition, mol% of oxide equivalent content of the said rare earth element in a sintered compact is computed with the following method.
(A) The amount of each element in the sintered body (excluding nonmetallic elements, hereinafter the same) is analyzed by fluorescent X-rays, chemical analysis, etc., and the weight ratio is calculated.
(B) The molecular weight is determined by regarding each of the above elements as a compound such as an oxide or a nitride. For example, Si is calculated as Si 3 N 4 , Al as Al 2 O 3 , aluminum nitride, and Y as Y 2 O 3 .
(C) Further, the weight ratio calculated in (a) is divided by the molecular weight of the compound of each element obtained in (b) to make this a mole. The total of these moles is taken as 100 and calculated as the mole% of each compound.
As a simple calculation method, assuming that the sintering raw material powder will be a sintered body without excess or deficiency, it is also possible to obtain mol% from the composition at the time of preparing the substrate, not the contained composition in the sintered body. it can.

本発明のサイアロン製インサートにおいては、硬質成分としてチタンの炭化物、窒化物および炭窒化物から選ばれる1種以上を30モル%以下、好ましくは0.1〜25モル%さらに好ましくは1〜20モル%含有していることが望ましい。通常、このような硬質成分は焼結体中で単独で粒子分散している。上記チタン化合物はアルミナと同様に窒化珪素と比べると、被削材の主成分である鉄や炭素との反応性が低いため、焼結体中に存在することで被削材との反応性を抑制することが可能である。上記チタン化合物については焼結体中に固溶せずに単独で粒子分散している。上記チタン化合物含有量が上記上限を超えると切削性能の低下は認められなかったがサイアロンと比較し熱膨張係数が大きい成分であるため、切削加工時に発生する熱の影響を受け発生する熱クラックにより工具刃先が欠損するため好ましくない。なお、チタン化合物が単独で粒子分散しているか否かは光学顕微鏡や電子顕微鏡で確認できる。また、モル%の算出方法は上記希土類元素の酸化物換算含有量のモル%の算出方法と同様にして算出する。   In the sialon insert of the present invention, at least one selected from carbide, nitride and carbonitride of titanium as a hard component is 30 mol% or less, preferably 0.1 to 25 mol%, more preferably 1 to 20 mol. % Content is desirable. Usually, such a hard component is dispersed alone in the sintered body. Since the titanium compound is less reactive with iron and carbon, which are the main components of the work material, as compared with silicon nitride, as with alumina, the presence of the titanium compound in the sintered body increases the reactivity with the work material. It is possible to suppress. The titanium compound is not dispersed in the sintered body but is dispersed alone. If the titanium compound content exceeds the above upper limit, no reduction in cutting performance was observed, but it is a component with a larger coefficient of thermal expansion than sialon, so it is affected by heat cracks that occur due to the heat generated during cutting. This is not preferable because the tool edge is missing. In addition, it can be confirmed with an optical microscope or an electron microscope whether the titanium compound is dispersed alone. Moreover, the calculation method of mol% is computed similarly to the calculation method of mol% of the oxide conversion content of the said rare earth element.

このように本発明のインサートはスローアウェイチップとしてホルダーに装着して高性能の切削工具として使用される。特に鋳鉄などの高速粗加工を精度よく行う長寿命のインサートとして最適である。なお、本発明の切削工具は広義の切削工具であり、旋削加工、フライス加工、溝入加工などの粗加工、仕上加工などを行う工具全般を言う。   Thus, the insert of the present invention is used as a high-performance cutting tool by being mounted on a holder as a throw-away tip. In particular, it is optimal as a long-life insert that accurately performs high-speed roughing of cast iron and the like. The cutting tool of the present invention is a cutting tool in a broad sense, and refers to all tools that perform roughing and finishing such as turning, milling, and grooving.

本発明のインサートの好ましい製造方法について、以下に説明する。Si粉末およびAl粉末、AlN粉末等のサイアロンを構成する元素を含む粉末を、焼結助剤として希土類元素の酸化物粉末であるSC粉末、Y粉末、CeO粉末、Dy粉末、Er粉末、Yb粉末、Lu粉末等のいずれかと混合し、好ましくは硬質成分のTiN粉末、TiC粉末、TiCN粉末のいずれかを加えて原料粉末とする。原料粉末は平均粒径5μm以下、好ましくは3μm以下、さらに好ましくは1μm以下の粉末を用いるとよい。これらの原料粉末は焼結後のインサートの組成を考慮してそれぞれの比率を決めればよい。通常は、Si粉末を95〜30モル%、Al粉末を0.5〜20モル%、AlN粉末を0〜20モル%、焼結助剤を0.5〜10モル%、硬質成分を0〜30モル%とすればよい。調製した原料粉末をボールミルのような混合粉砕機、例えばSi製ボールを備えたSi製ポットを用いてエタノール等の粉末を溶解しない溶媒を加えて10〜300時間混合してスラリーを製造する。この際、原料粉末の粒径が大きいときには粉砕時間を長くして粉砕する。 A preferred method for producing the insert of the present invention will be described below. SC 2 O 3 powder and Y 2 O 3 powder which are oxide powders of rare earth elements as sintering aids, including powders containing elements constituting sialon such as Si 3 N 4 powder, Al 2 O 3 powder and AlN powder , CeO 2 powder, Dy 2 O 3 powder, Er 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, etc., preferably any of hard component TiN powder, TiC powder, TiCN powder To make a raw material powder. As the raw material powder, a powder having an average particle size of 5 μm or less, preferably 3 μm or less, more preferably 1 μm or less is used. The ratio of these raw material powders may be determined in consideration of the composition of the insert after sintering. Usually, the Si 3 N 4 powder is 95 to 30 mol%, the Al 2 O 3 powder is 0.5 to 20 mol%, the AlN powder is 0 to 20 mol%, and the sintering aid is 0.5 to 10 mol%. The hard component may be 0 to 30 mol%. Prepared raw material powders as a ball mill, such mixing and grinding machine, for example by mixing 10 to 300 hours by adding a solvent which does not dissolve the powder such as ethanol using a Si 3 N 4 pot having a Si 3 N 4 balls A slurry is produced. At this time, when the particle size of the raw material powder is large, the pulverization time is lengthened for pulverization.

このスラリー中に粗粒がある場合は、スラリーを200〜500メッシュ程度のふるいにかけ粗粒を除く。そしてマイクロワックス系等の有機バインダを原料粉末に対し3〜15重量%添加しスプレードライ等により造粒乾燥する。得られた造粒粉末を所望の形状にプレス成形した後に、加熱装置内において窒素等の不活性ガス雰囲気中で脱脂をする。成形は射出成形、押出し成形、鋳込み成形等を応用することもできる。脱脂は400〜800℃にて30〜120分行うことができる。脱脂した成形体を1500〜1900℃、好ましくは1700〜1800℃で焼結する。焼結は2段階で実施することが好ましく、一次焼結はカーボン、窒化ホウ素又は窒化珪素等のサヤ内で1〜9気圧の窒素又はAr雰囲気下にて1700〜1800℃まで昇温し1〜5時間保持すればよい。2次焼結は熱間静水圧成形(HIP)によればよい。例えば、100〜2000気圧の窒素雰囲気下において1700〜1800℃で1〜5時間加熱する。このようにして得た焼結体はサイアロン焼結体であり、これを図1に示すようなインサートとしての形状に研磨加工して本発明の切削工具用のスローアウェイチップとすることができる。さらに、図2に示すようにホルダーに装着することにより切削工具とすることができる。   When coarse particles are present in the slurry, the slurry is passed through a sieve of about 200 to 500 mesh to remove the coarse particles. Then, an organic binder such as a micro wax is added in an amount of 3 to 15% by weight based on the raw material powder, and granulated and dried by spray drying or the like. The obtained granulated powder is press-molded into a desired shape, and then degreased in an inert gas atmosphere such as nitrogen in a heating apparatus. For molding, injection molding, extrusion molding, cast molding, or the like can be applied. Degreasing can be performed at 400 to 800 ° C. for 30 to 120 minutes. The degreased compact is sintered at 1500-1900 ° C, preferably 1700-1800 ° C. Sintering is preferably carried out in two stages, and the primary sintering is carried out in a sheath of carbon, boron nitride, silicon nitride or the like and heated to 1700-1800 ° C. in a nitrogen or Ar atmosphere of 1-9 atm. What is necessary is just to hold | maintain for 5 hours. Secondary sintering may be performed by hot isostatic pressing (HIP). For example, it heats at 1700-1800 degreeC for 1 to 5 hours in 100-2000 atmospheres nitrogen atmosphere. The sintered body thus obtained is a sialon sintered body, which can be polished into a shape as an insert as shown in FIG. 1 to obtain a throw-away tip for a cutting tool of the present invention. Furthermore, it can be set as a cutting tool by attaching to a holder as shown in FIG.

(1)インサートの作製
平均粒径1.0μm以下のα−Si粉末および焼結助剤として平均粒径1.0μm以下の、Sc粉末、Y粉末、CeOに粉末、Dy粉末、Er粉末、Yb粉末、Lu粉末を、さらにAl粉末、AlN粉末、TiN粉末、TiC粉末、TiCN粉末を表1に示す割合で配合して原料粉末を調製した。次に、この原料粉末をそれぞれ内壁がSi製のポットとSi製ボールを用いて、エタノールを加えて96時間混合してスラリーを作製した。このスラリーを325メッシュのふるいに通し、エタノールに溶解したマイクロワックス系の有機バインダを5.0重量%添加しスプレードライで顆粒を作製した。得られた顆粒を図1に示すISO規格でSNGN120408のインサートの形状にプレス成形した後に、加熱装置内において1気圧の窒素雰囲気中で600℃にて60分脱脂を行った。脱脂した成形体の一次焼結は、カーボン製、窒化ホウ素製又は窒化珪素製のサヤ内にセットし、1〜9気圧の窒素雰囲気下にて1700〜1800℃まで昇温し120分保持した。最後に、熱間静水圧成形(HIP)により2次焼結を行った。2次焼結は1000気圧の窒素雰囲気下において1700〜1800℃で180分加熱した。得られたサイアロン焼結体を研磨加工してISO規格でSNGN120408形状に整え切削工具用のインサートを得た。表1に組成または焼成温度を変化させて作製した本発明の実施例および比較例のインサートの性状および切削性能を示した。焼結体中の成分の組成は原料組成からモル%を算出する方法により求めた。
(1) Production of inserts α-Si 3 N 4 powder having an average particle size of 1.0 μm or less and Sc 2 O 3 powder, Y 2 O 3 powder, CeO having an average particle size of 1.0 μm or less as a sintering aid Table 1 shows the powder, Dy 2 O 3 powder, Er 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, and further Al 2 O 3 powder, AlN powder, TiN powder, TiC powder, and TiCN powder. The raw material powder was prepared by blending at a ratio. Next, the raw material powder of each inner wall with a Si 3 N 4 made of pods and Si 3 N 4 balls and ethanol and mixed for 96 hours by adding to prepare a slurry. This slurry was passed through a 325 mesh sieve, and 5.0% by weight of a microwax organic binder dissolved in ethanol was added to prepare granules by spray drying. The obtained granule was press-molded into the shape of an SNGN120408 insert according to the ISO standard shown in FIG. 1, and then degreased in a heating apparatus at 600 ° C. for 60 minutes in a nitrogen atmosphere. The primary sintering of the degreased molded body was set in a sheath made of carbon, boron nitride or silicon nitride, heated to 1700-1800 ° C. in a nitrogen atmosphere of 1-9 atm, and held for 120 minutes. Finally, secondary sintering was performed by hot isostatic pressing (HIP). In the secondary sintering, heating was performed at 1700 to 1800 ° C. for 180 minutes in a 1000 atmosphere nitrogen atmosphere. The obtained sialon sintered body was polished and adjusted to the SNGN120408 shape according to ISO standards to obtain an insert for a cutting tool. Table 1 shows the properties and cutting performance of the inserts of Examples and Comparative Examples of the present invention produced by changing the composition or firing temperature. The composition of the components in the sintered body was determined by a method of calculating mol% from the raw material composition.

(2)インサートの性状の測定方法
前記インサートの特性等の測定方法について説明する。得られた実施例および比較例のインサートをアルキメデス法により密度測定し、理論密度で除して理論密度比を算出した。すべてのサンプルは理論密度比が十分高く、焼結体中にマイクロポアが残存せず緻密化していた。また、粒界相の面積%、実測Z値測定および計算、理論Z値および固溶率の計算、α率の測定および計算については前述の方法にて求めた。
(2) Method for measuring properties of insert A method for measuring the properties of the insert will be described. The density of the obtained inserts of Examples and Comparative Examples was measured by the Archimedes method, and divided by the theoretical density to calculate the theoretical density ratio. All the samples had a sufficiently high theoretical density ratio, and the micropores did not remain in the sintered body and were densified. Further, area% of grain boundary phase, actual measurement Z value measurement and calculation, calculation of theoretical Z value and solid solution ratio, and measurement and calculation of α ratio were obtained by the above-described methods.

(3)切削性能の評価方法
上記(1)で作製した実施例及び比較例のインサートについて、以下の性能試験を行った。結果は表1に示す。
・切削距離
インサート形状:SNGN120408、チャンファー0.2mm、被削材:鋳鉄(FC200)、切削速度:500mm/min、切り込み:0.3mm、送り速度:0.3mm/分及び乾式の条件下で切削後、前逃げ面の最大VB摩耗量(VBmax)が0.3mmに達した時点での切削距離を算出した。
(3) Evaluation method of cutting performance The following performance tests were performed on the inserts of the examples and comparative examples prepared in (1) above. The results are shown in Table 1.
Cutting distance Insert shape: SNGN120408, chamfer 0.2 mm, work material: cast iron (FC200), cutting speed: 500 mm / min, cutting depth: 0.3 mm, feed rate: 0.3 mm / min, and dry conditions After cutting, the cutting distance when the maximum VB wear amount (VBmax) of the front flank reached 0.3 mm was calculated.

・境界摩耗量
インサート形状:SNGN120408、チャンファー0.2mm、被削材:側面に鋳砂の残った鋳鉄(FC200)、切削速度:300mm/min、切り込み:1.5mm、送り速度:0.2mm/分及び乾式の条件下でフランク最大摩耗量を測定し、境界摩耗量(単位:mm)とした。
Boundary wear amount Insert shape: SNGN120408, chamfer 0.2 mm, work material: cast iron with cast sand remaining on the side (FC200), cutting speed: 300 mm / min, cutting depth: 1.5 mm, feed rate: 0.2 mm Per minute and dry conditions, the maximum flank wear amount was measured and used as the boundary wear amount (unit: mm).

・耐欠損性
インサート形状:SNGN120408、チャンファー0.085mm、被削材:鋳鉄(FC200)、切削速度:150mm/min、切り込み:2.0mm、送り速度:0.6mm/revからスタートし、各加工パス毎に0.05mm/revずつ増やす評価方法で、乾式の条件下にて欠損に至る送り速度により評価した。
・ Fracture resistance Insert shape: SNGN120408, chamfer 0.085 mm, work material: cast iron (FC200), cutting speed: 150 mm / min, cutting depth: 2.0 mm, feed speed: 0.6 mm / rev The evaluation method was increased by 0.05 mm / rev for each processing pass, and the evaluation was performed based on the feed rate leading to the defect under dry conditions.

Figure 0004434938
Figure 0004434938


表1に示す様に、本発明の実施例のインサートは工具刃先の切削距離が長い上に、境界摩耗量が少なく、耐欠損性にも優れている。それに対して、比較例のインサートは切削距離、境界摩耗量および耐欠損性のいずれかが劣り好ましくない。   As shown in Table 1, the insert of the embodiment of the present invention has a long cutting distance of the tool blade edge, a small amount of boundary wear, and excellent fracture resistance. On the other hand, the insert of the comparative example is not preferable because any one of the cutting distance, the boundary wear amount and the fracture resistance is inferior.

本発明のインサートおよびこれを備えた切削工具は耐磨耗性、耐欠損性に優れた長寿命のインサートおよび切削工具として各種材料の加工に使用できる。   The insert of the present invention and a cutting tool provided with the insert can be used for processing various materials as a long-life insert and cutting tool having excellent wear resistance and fracture resistance.

図1はインサート(スローアウェイチップ)の例である。FIG. 1 shows an example of an insert (a throw-away tip). 図2はホルダーにインサートを取り付けた切削工具の例である。FIG. 2 shows an example of a cutting tool in which an insert is attached to a holder.

符号の説明Explanation of symbols

1:インサート(スローアウェイチップ) 2:ホルダー 3:押さえ金 1: Insert (throw away tip) 2: Holder 3: Presser foot

Claims (1)

焼結体中の粒界相が5〜20%であり、
サイアロン粒子中のα−サイアロンの比率を示すα率が40%以下であり、
Si 6−Z Al 8−Z で表されるβ−サイアロンのZ値が0.2〜1.0であり、
前記焼結体中の{(β−サイアロンの実測Z値)/(焼結体組成から計算される理論Z値)}で表されるAlの固溶率Aが70%〜93%であり、
Sc、Y、Ce、Er、Dy、Yb、Luの各元素から選ばれる1種以上を前記焼結体に対して酸化物換算で3〜10モル%含有しているサイアロン製インサートの製造方法であって、
30〜95モル%の窒化珪素と、0.5〜20モル%のアルミナと、20モル%未満の窒化アルミニウムと、3〜10モル%の、前記各元素から選ばれる1種以上とを含む原料粉末を、耐火物製のサヤ内にセットして一次焼結した後に、二次焼結することを特徴とするサイアロン製インサートの製造方法。
The grain boundary phase in the sintered body is 5 to 20%,
The α ratio indicating the ratio of α-sialon in the sialon particles is 40% or less,
Z value of β-sialon represented by Si 6-Z Al Z O Z N 8-Z is 0.2 to 1.0,
The solid solution ratio A of Al represented by {(actually measured Z value of β-sialon) / (theoretical Z value calculated from sintered body composition)} in the sintered body is 70% to 93%,
In the manufacturing method of the insert made from sialon which contains 3-10 mol% in conversion of oxide with respect to the said sintered compact 1 or more types chosen from each element of Sc, Y, Ce, Er, Dy, Yb, and Lu. There,
A raw material containing 30 to 95 mol% silicon nitride, 0.5 to 20 mol% alumina, less than 20 mol% aluminum nitride, and 3 to 10 mol% of one or more selected from the above elements. the powder, after the primary sintering is set to refractory made in sheath, features and be Rusa Iaron made manufacturing method of the insert to secondary sintering.
JP2004372004A 2004-12-22 2004-12-22 Sialon insert manufacturing method Active JP4434938B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2004372004A JP4434938B2 (en) 2004-12-22 2004-12-22 Sialon insert manufacturing method
US11/793,500 US20080119349A1 (en) 2004-12-22 2005-12-22 Sialon Insert and Cutting Tool Equipped Therewith
CN2005800445856A CN101087670B (en) 2004-12-22 2005-12-22 Sialon ceramic blade and cutting tool equipped therewith
PCT/JP2005/023589 WO2006068220A1 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith
EP05820104A EP1837105A4 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith
EP11180944.8A EP2402098B2 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004372004A JP4434938B2 (en) 2004-12-22 2004-12-22 Sialon insert manufacturing method

Publications (2)

Publication Number Publication Date
JP2006175561A JP2006175561A (en) 2006-07-06
JP4434938B2 true JP4434938B2 (en) 2010-03-17

Family

ID=36730144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004372004A Active JP4434938B2 (en) 2004-12-22 2004-12-22 Sialon insert manufacturing method

Country Status (1)

Country Link
JP (1) JP4434938B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330086B1 (en) * 2009-02-09 2009-09-09 株式会社テクネス Method for producing non-oxide ceramic products
CN102348662B (en) 2009-03-13 2013-11-06 日本特殊陶业株式会社 Sialon sintered body and cutting insert
KR101470781B1 (en) * 2010-12-02 2014-12-08 니혼도꾸슈도교 가부시키가이샤 Ceramic heater element, ceramic heater, and glow plug
JP6683887B2 (en) 2017-09-27 2020-04-22 日本特殊陶業株式会社 Ceramics sintered body, insert, cutting tool, and friction stir welding tool

Also Published As

Publication number Publication date
JP2006175561A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
EP2402098B2 (en) Sialon insert and cutting tool equipped therewith
JP5428118B2 (en) cBN sintered body and cBN sintered body tool
EP1359130A1 (en) Cubic boron nitride sintered body and cutting tool
JP5677638B1 (en) Cutting tools
JP5340028B2 (en) Cutting tools
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JP2008162883A (en) Ceramic material used for operation requiring robustness and cutting tool produced therefrom
JP4434938B2 (en) Sialon insert manufacturing method
JP2006305708A (en) Sialon throw-away tip, and cutting tool
JP6161830B2 (en) Sialon sintered body and cutting insert
JP2004026555A (en) Cubic boron nitride-containing sintered compact and method for producing the same
JP4342975B2 (en) Sialon quality tools, cutting inserts, and cutting tools
JP2006198761A (en) Insert made of sialon, and cutting tool having it
JP2015009327A (en) Cutting insert
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP7451350B2 (en) End mills and friction stir welding tools
JP2005212048A (en) Ceramics and cutting tool using the same
JP2007130699A (en) Sialon cutting tool and tool
JP6938227B2 (en) Silicon nitride composite sintered body, cutting tool, and friction stir welding tool
JP2001322009A (en) Alumina ceramic cutting tool and manufacturing method therefor
JP4798821B2 (en) Cutting tool and manufacturing method thereof
JP2879943B2 (en) Cast iron cutting method
JP2020169117A (en) Cutting tool, and ceramic-sintered body
JP2004167660A (en) Ceramic tool and cutting tool
JPH0764640B2 (en) Method of manufacturing silicon nitride sintered body for cutting tool

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

R150 Certificate of patent or registration of utility model

Ref document number: 4434938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250