JP2006305708A - Sialon throw-away tip, and cutting tool - Google Patents

Sialon throw-away tip, and cutting tool Download PDF

Info

Publication number
JP2006305708A
JP2006305708A JP2005134157A JP2005134157A JP2006305708A JP 2006305708 A JP2006305708 A JP 2006305708A JP 2005134157 A JP2005134157 A JP 2005134157A JP 2005134157 A JP2005134157 A JP 2005134157A JP 2006305708 A JP2006305708 A JP 2006305708A
Authority
JP
Japan
Prior art keywords
sialon
phase
throw
away tip
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005134157A
Other languages
Japanese (ja)
Inventor
Atsushi Komura
篤史 小村
Kohei Abukawa
宏平 虻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005134157A priority Critical patent/JP2006305708A/en
Priority to EP05820104A priority patent/EP1837105A4/en
Priority to CN2005800445856A priority patent/CN101087670B/en
Priority to PCT/JP2005/023589 priority patent/WO2006068220A1/en
Priority to EP11180944.8A priority patent/EP2402098B2/en
Priority to US11/793,500 priority patent/US20080119349A1/en
Publication of JP2006305708A publication Critical patent/JP2006305708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sialon throw-away tip which is excellent in wear resistance even in high-speed machining of a difficult-to-machine material, prevents a cutting edge from being damaged due to fusing thereto of a workpiece material, and has a long service life, and also to provide a cutting tool having the throw-away tip mounted thereon. <P>SOLUTION: The sialon throw-away tip is made of sialon which has a sialon phase consisting of an α sialon phase and a β sialon phase, and a grain boundary phase formed of a glass phase and/or a crystal phase. The β sialon phase is represented by a chemical formula Si<SB>6-Z</SB>Al<SB>Z</SB>O<SB>Z</SB>N<SB>8-Z</SB>, where the Z is in a value of 0.2 to 1, and an α ratio indicating the ratio of the α sialon phase in the sialon phase is in the range of 10 to 40%. The sialon contains at least one or more rare-earth elements selected from the group consisting of Sc, Y, Dy, Yb, and Lu in an amount of 2 to 5 mol% in total in terms of oxide, and the rare-earth elements of 30 to 50 mol% exist in the α sialon phase. The cutting tools is obtained by mounting the sialon throw-away tip on a holder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はサイアロン製スローアウェイチップおよび切削工具に関し、詳しくは刃先が摩耗し難く、耐欠損性に優れた寿命の長いサイアロン製スローアウェイチップおよびこれを装着した切削工具に関する。   The present invention relates to a sialon throw-away tip and a cutting tool, and more particularly, to a sialon throw-away tip having a long tool life that has a cutting edge that is less likely to wear and a cutting tool equipped with the tip.

切削用工具は図2に示す外径加工用ホルダーや図5に示すフライスカッター用ホルダーなど、ホルダーと呼ばれる支持体の先端に使い捨ての刃先であるスローアウェイチップ(インサート、刃先交換チップ、工具刃先などとも呼ぶ。)を取り付けた構造が多い。このスローアウェイチップには被削材の種類、加工工程、切削速度などによって各種の材料が使用されている。例えば、超硬合金、サーメット、セラミック、CBN、さらにはこれらの表面に被膜をコーティングした材料などがある。その中でも普通鋳鉄材(FC材という)の粗加工、特に高速加工には被覆超硬合金製や窒化珪素系セラミック製のスローアウェイチップが多く使用されている。   The cutting tool is a throwaway tip (insert, blade tip replacement tip, tool blade tip, etc.) that is a disposable blade tip at the tip of a support called a holder, such as the outer diameter processing holder shown in FIG. 2 or the milling cutter holder shown in FIG. Many structures are also attached. Various materials are used for the throw-away tip depending on the type of work material, the machining process, the cutting speed, and the like. Examples thereof include cemented carbide, cermet, ceramic, CBN, and materials having a coating film on the surface thereof. Among them, throw-away chips made of coated cemented carbide or silicon nitride ceramic are often used for roughing, particularly high-speed machining of ordinary cast iron (referred to as FC material).

一方、サイアロンは高硬度で室温から高温までの強度変化が小さく、窒化珪素に比べ化学的安定性が高いので、耐熱性および耐化学反応性が要求される熱鋼の圧延用ガイドロールやダイスやアルミニウム・ダイキャスト機械のスリーブなどの構造材料として使われている。また、強度や耐熱性が良好であることから切削工具や軸受けにも利用されている。しかし、サイアロン製切削工具は難削性である耐熱合金の粗切削加工用工具として用いられることが多く、粗加工では工具刃先の耐摩耗性についてはあまり重要視されていなかったのでこの面での改良は十分行われていなかった。   On the other hand, sialon has high hardness, small strength change from room temperature to high temperature, and high chemical stability compared to silicon nitride. Therefore, guide rolls and dies for rolling hot steel that require heat resistance and chemical resistance are required. It is used as a structural material for sleeves of aluminum die casting machines. In addition, since it has good strength and heat resistance, it is also used for cutting tools and bearings. However, sialon cutting tools are often used as rough cutting tools for heat-resistant alloys, which are difficult to cut. In rough machining, the wear resistance of the tool edge was not considered as important. There was not enough improvement.

近年、自動車の燃費向上を目的としてFC材を主とする自動車部材の軽量化が重要な課題となっており、FC材と比較して薄肉化、軽量化を図れるダクタイル鋳鉄(FCD)材の需要が増加している.従来、ダクタイル鋳鉄の加工には被覆超硬製切削工具を用い、切削速度の比較的小さい条件、例えば500m/分以下で加工されてきた。しかし、切削能率向上を目的に、例えば1000m/分程度の高速で切削加工した場合には、超硬合金の基材が切削時に発生した熱により塑性変形して損傷してしまう問題があった。また、耐熱性に優れた窒化珪素製切削工具を用いても、高速加工時には発熱により窒化珪素基材と被削材が反応して、溶着し刃先の損傷を引き起こすことにより短時間で切削不能となってしまうという問題があった。   In recent years, the weight reduction of automobile parts, mainly FC materials, has become an important issue for the purpose of improving the fuel efficiency of automobiles. The demand for ductile cast iron (FCD) materials that can be made thinner and lighter than FC materials is increasing. Is increasing. Conventionally, a ducted cast iron has been processed using a coated carbide cutting tool under a relatively low cutting speed, for example, 500 m / min or less. However, when cutting is performed at a high speed of, for example, about 1000 m / min for the purpose of improving the cutting efficiency, there has been a problem that the base material of the cemented carbide is plastically deformed and damaged by the heat generated during cutting. In addition, even if a silicon nitride cutting tool with excellent heat resistance is used, the silicon nitride base material and the work material react due to heat generation during high-speed machining, causing welding and damage to the cutting edge. There was a problem of becoming.

こうした被削材と窒化珪素基材との溶着による損傷を低減するために、窒化珪素基材を鉄や炭素との反応性が低いチタン化合物やアルミニウム化合物からなる硬質層で被覆する方法が知られている。例えば、特許文献1、特許文献2、特許文献3などには、窒化珪素基材に窒化チタンや酸化アルミニウムを被覆し、普通鋳鉄およびダクタイル鋳鉄を切削加工する事例が開示されている。被覆層の効果で被削材と工具の溶着損傷は抑制されるが、窒化珪素基材と窒化チタンや酸化アルミニウムとの熱膨張係数の違いにより被覆時に被覆層に引っ張り残留応力が生じ易く、被覆層を破壊の起点として工具刃先が欠損してしまうことがある。また、被削材と窒化珪素基材の化学反応を抑制するために、窒化珪素に窒化チタンや酸化アルミニウムを添加し基材自体の耐化学反応性を向上させる方法が知られている。窒化チタンは分散粒子として組織中に存在し、窒化珪素基材の耐化学反応性を改善できる。また、酸化アルミニウムは窒化珪素粒子中に固溶しサイアロン粒子となり、窒化珪素粒子自体の耐化学反応性を改善する。こうした方法については、例えば、特許文献4、特許文献5、特許文献6、特許文献7、特許文献8、特許文献9などに開示されている。しかし、窒化チタンや酸化アルミニウムの添加は、窒化チタンと窒化珪素粒子の熱膨張係数の相違による高温強度の低下、あるいは酸化アルミニウムの添加によるサイアロン化による粒子自体の強度低下を招き易くその性能バランスの制御が難しかった。とりわけダクタイル鋳鉄のような難削材の高速切削時に十分な寿命を発揮する工具とするには難点があった。   In order to reduce the damage caused by the welding of the work material and the silicon nitride base material, a method of coating the silicon nitride base material with a hard layer made of a titanium compound or an aluminum compound having low reactivity with iron or carbon is known. ing. For example, Patent Literature 1, Patent Literature 2, Patent Literature 3, and the like disclose examples in which a silicon nitride base material is coated with titanium nitride or aluminum oxide and normal cast iron and ductile cast iron are cut. Although the welding damage of the work material and the tool is suppressed by the effect of the coating layer, tensile residual stress tends to occur in the coating layer during coating due to the difference in thermal expansion coefficient between the silicon nitride substrate and titanium nitride or aluminum oxide. The cutting edge of the tool may be lost using the layer as a starting point for destruction. In addition, in order to suppress the chemical reaction between the work material and the silicon nitride base material, a method is known in which titanium nitride or aluminum oxide is added to silicon nitride to improve the chemical reaction resistance of the base material itself. Titanium nitride is present in the structure as dispersed particles and can improve the chemical reactivity resistance of the silicon nitride substrate. Aluminum oxide is dissolved in silicon nitride particles to form sialon particles, which improves the chemical reaction resistance of the silicon nitride particles themselves. Such methods are disclosed in, for example, Patent Literature 4, Patent Literature 5, Patent Literature 6, Patent Literature 7, Patent Literature 8, Patent Literature 9, and the like. However, the addition of titanium nitride or aluminum oxide tends to cause a decrease in high-temperature strength due to the difference in thermal expansion coefficient between titanium nitride and silicon nitride particles, or a decrease in strength of the particles themselves due to sialonization due to the addition of aluminum oxide. It was difficult to control. In particular, there is a difficulty in making a tool that exhibits a sufficient life during high-speed cutting of difficult-to-cut materials such as ductile cast iron.

US 5525134号公報US Pat. No. 5,525,134 特開2002−284589号公報JP 2002-284589 A 特開2002−192403号公報JP 2002-192403 A 特開昭62−15505号公報JP-A-62-15505 特開昭63−35594号公報JP 63-35594 A 特開平2−275763号公報Japanese Patent Laid-Open No. 2-275863 特表平8−510965号公報Japanese National Patent Publication No. 8-510965 特開平10−36174号公報JP 10-36174 A WO 02/44104(A2)号公報WO 02/44104 (A2) Publication

本発明は上述のような問題点を解決し、普通鋳鉄だけでなくダクタイル鋳鉄のような難削材料の高速切削加工においても、十分な強度を持ち、耐摩耗性に優れ、被削材が溶着し刃先の損傷を引き起こすことのない、寿命の長いサイアロン製スローアウェイチップおよびこれを装着した切削工具を提供することを目的としている。   The present invention solves the above-mentioned problems and has sufficient strength, excellent wear resistance, and welded material even in high-speed cutting of difficult-to-cut materials such as ductile cast iron as well as ordinary cast iron. It is an object of the present invention to provide a sialon throw-away tip having a long life that does not cause damage to the cutting edge and a cutting tool equipped with the throw-away tip.

本発明者らは、上述のような切削工具素材の溶着損傷から工具刃先が損傷する機構を鋭意研究し、難削材、例えばダクタイル鋳鉄等からなる被削材と工具材質の化学反応による溶着を問題のないレベルまで抑制し、かつ工具材質の強度低下を引き起こさないようにすることが工具寿命を延長させるために重要であることを見出した。ダクタイル鋳鉄等からなる被削材と切削工具刃先との溶着反応については、窒化珪素が被削材と高温、高切削圧力で接触する際に、珪素と窒素に分解しやすいことに起因していると考えられている。この窒化珪素の分解反応を抑制することが、窒化珪素系工具の溶着損傷による刃先摩耗を小さくし、工具寿命を延長させるために重要である。そのためには、特定の組成のβサイアロン相の生成と、αサイアロン相の組成と存在比率の制御とが重要であることを見出した。すなわち、本発明の課題を解決するための手段は以下のようなものである。   The present inventors have earnestly studied the mechanism of damage to the tool edge from the above-mentioned welding damage of the cutting tool material, and welded by a chemical reaction between a difficult-to-cut material such as ductile cast iron and the tool material. It has been found that it is important to extend the tool life to suppress to a problem-free level and not cause a decrease in strength of the tool material. The welding reaction between the work material made of ductile cast iron or the like and the cutting tool blade edge is caused by the fact that silicon nitride tends to decompose into silicon and nitrogen when contacting the work material at high temperature and high cutting pressure. It is believed that. Suppressing this silicon nitride decomposition reaction is important in order to reduce cutting edge wear due to welding damage of the silicon nitride-based tool and extend the tool life. For that purpose, it discovered that the production | generation of (beta) sialon phase of a specific composition and control of the composition and abundance ratio of (alpha) sialon phase were important. That is, the means for solving the problems of the present invention are as follows.

(1)αサイアロン相およびβサイアロン相からなるサイアロン相と、ガラス相および/または結晶相からなる粒界相とを持つサイアロン中の、Si6−ZAl8−Zで表されるβサイアロン相のZ値が0.2〜1であり、αサイアロン相のサイアロン相中での比率α率が10〜40%であり、サイアロン中にSc、Y、Dy、Yb、Luから選ばれる希土類元素1種以上を酸化物換算で合計2〜5モル%含有し、該希土類元素のうち30〜50モル%がαサイアロン相中に存在しているサイアロン製スローアウェイチップである。
(2)サイアロン中に硬質成分としてチタンの炭化物、窒化物および炭窒化物から選ばれる1種以上を30モル%以下含有している(1)に記載のサイアロン製スローアウェイチップである。
(3)ホルダーに(1)または(2)に記載のサイアロン製スローアウェイチップを装着した切削工具である。
(1) and the α-sialon phase and β-sialon phase consisting sialon phase, in sialon having a grain boundary phase composed of a glass phase and / or crystalline phases, represented by Si 6-Z Al Z O Z N 8-Z The β value of β sialon phase is 0.2 to 1, the ratio α ratio of α sialon phase to sialon phase is 10 to 40%, and selected from Sc, Y, Dy, Yb, and Lu in sialon This is a sialon throw-away chip that contains one or more rare earth elements in total in an amount of 2 to 5 mol% in terms of oxide, and 30 to 50 mol% of the rare earth elements are present in the α-sialon phase.
(2) The sialon throwaway tip according to (1), wherein the sialon contains 30 mol% or less of at least one selected from carbide, nitride, and carbonitride of titanium as a hard component.
(3) A cutting tool in which the sialon throwaway tip according to (1) or (2) is mounted on a holder.

本発明のスローアウェイチップは、窒化珪素にアルミニウム化合物を加えサイアロン化した、αサイアロン相およびβサイアロン相からなるサイアロン相を主相とし、焼結助剤で結合しているサイアロン焼結体製である。サイアロン焼結体中のβサイアロン相は窒化珪素と同様の微細な針状粒子が絡み合った組織で、かつ粒子自体の強度も従来の工具に使われているアルミナなどよりも高いため、工具刃先の欠損は生じ難く長寿命となる。しかし、アルミニウム化合物の固溶量が多すぎると、サイアロン相の強度が低下し、工具刃先が欠損し易くなってしまう。アルミニウム化合物添加量は被削材との反応性を抑えながら、強度低下する弊害が生じない程度に調整する必要がある。なお、アルミニウム化合物は窒化珪素内に固溶しサイアロン化しなくても、粒界相に存在することで被削材との反応抑制に寄与する効果もある。サイアロン相は窒化珪素と比較し、化学的に安定で、高温においても被削材の主成分である鉄や炭素とも反応しにくいので、アルミニウム化合物の添加量を適当に保つことによって強度と化学的安定性の両者を満足できるものにすることが重要である。具体的なアルミニウム化合物の添加量は、サイアロン焼結体中のSi6―ZAl8―Zで表されるβサイアロン相のZ値が0.2≦Z≦1となる範囲となるようにすることが必要である。Z値が0.2未満であると被削材との溶着反応が発生しやすく、充分な寿命延長効果が得られず、Z値が1を越えるとアルミニウム成分が多くなり、サイアロン化による強度低下が顕著となり、工具刃先の強度が落ち摩耗、欠損が顕著になる。なお、このZ値の測定方法は、X線回折により測定されるサイアロン焼結体中のβサイアロン相のa軸格子定数と、β窒化ケイ素のa軸格子定数(7.60442Å)の差から定法により算出する。(詳しい算出方法は例えばWO 02/44104 第28頁を参照すればよい。) The throw-away tip of the present invention is made of a sialon sintered body in which a sialon phase composed of an α sialon phase and a β sialon phase, which is obtained by adding an aluminum compound to silicon nitride and forming a sialon, is bonded with a sintering aid. is there. The β sialon phase in the sintered sialon is a structure in which fine acicular particles similar to silicon nitride are intertwined, and the strength of the particles themselves is higher than that of alumina used in conventional tools. Defects hardly occur and have a long life. However, when the amount of the aluminum compound dissolved is too large, the strength of the sialon phase is lowered, and the tool edge is likely to be damaged. The amount of the aluminum compound added needs to be adjusted to such an extent that the adverse effect of reducing the strength does not occur while suppressing the reactivity with the work material. Even if the aluminum compound is dissolved in silicon nitride and does not become sialon, it exists in the grain boundary phase, and thus has an effect of contributing to suppression of reaction with the work material. Compared to silicon nitride, the sialon phase is chemically stable and does not easily react with iron and carbon, which are the main components of the work material, even at high temperatures. It is important to satisfy both stability requirements. The addition amount of the specific aluminum compound, a range of Z values of β sialon phase represented by Si 6-Z Al Z O Z N 8-Z in sialon sintered body is 0.2 ≦ Z ≦ 1 It is necessary to be. If the Z value is less than 0.2, a welding reaction with the work material is likely to occur, and a sufficient life extension effect cannot be obtained. If the Z value exceeds 1, the aluminum component increases and the strength decreases due to sialonization. Becomes noticeable, the strength of the tool edge decreases, and wear and chipping become noticeable. The method for measuring the Z value is based on the difference between the a-axis lattice constant of the β sialon phase in the sintered sialon body measured by X-ray diffraction and the a-axis lattice constant of β silicon nitride (7.60442 ケ イ 素). Calculated by (For example, refer to page 28 of WO 02/44104 for a detailed calculation method.)

また、本発明においては、サイアロン相中のαサイアロン相の組成、およびサイアロン相中でのその存在比率を制御することが重要である。αサイアロン相は組成式M(Si,Al)12(O,N)16で表される。なお、MはMg,Ca,Sc,Y,Dy,Er,Yb,Lu等の侵入型で固溶する元素を表し、Xは0<X≦2の値である。αサイアロン相は等軸状の粒子形状であるため、βサイアロン相に較べて低靭性であるが、硬度が高い特徴を有する。このように高硬度のαサイアロン相を所定量生成させ、同時にαサイアロン相中に固溶させる元素およびその固溶量を最適化することで、βサイアロン相のみのサイアロン焼結体と較べて被削材との耐反応性および耐摩耗性を高めることが可能となる。本発明では、全サイアロン相に対するαサイアロン相の比率であるα率を10〜40%とし、αサイアロン相に固溶される希土類元素Sc、Y、Dy、Yb、Luの合計を、サイアロン焼結体全体に含まれる該希土類元素総量の30〜50モル%とすることで、サイアロン焼結体の化学的安定性が増し、サイアロンと被削材との反応を抑制することができる。また、サイアロン焼結体としては、前記希土類元素の少なくとも一種を合計で2〜5モル%含有し、そのうちの上記割合をαサイアロン相に固溶させることにより、サイアロン焼結体の焼結性を確保しながら粒界相も低減でき、粒界相に起因する機械的な摩耗損傷の抑制に対しても有効に作用する。 In the present invention, it is important to control the composition of the α sialon phase in the sialon phase and the abundance ratio in the sialon phase. The α sialon phase is represented by a composition formula M x (Si, Al) 12 (O, N) 16 . M represents an interstitial and solid solution element such as Mg, Ca, Sc, Y, Dy, Er, Yb, and Lu, and X is a value of 0 <X ≦ 2. Since the α sialon phase has an equiaxed particle shape, the α sialon phase has lower toughness than the β sialon phase, but has a feature of high hardness. In this way, a predetermined amount of high-hardness α-sialon phase is produced, and at the same time, the elements to be dissolved in the α-sialon phase and the amount of the solid solution are optimized, so that compared with a sialon sintered body having only the β-sialon phase. It becomes possible to improve the reaction resistance and wear resistance with the cutting material. In the present invention, the α ratio, which is the ratio of the α sialon phase to the total sialon phase, is 10 to 40%, and the total of the rare earth elements Sc, Y, Dy, Yb, and Lu dissolved in the α sialon phase is sialon sintered. By setting it as 30-50 mol% of this rare earth element total amount contained in the whole body, the chemical stability of a sialon sintered compact increases, and reaction with a sialon and a work material can be suppressed. Further, as the sialon sintered body, the sialon sintered body contains at least one kind of the rare earth elements in a total amount of 2 to 5 mol%, and the above-mentioned ratio is solid-solved in the α sialon phase, thereby improving the sinterability of the sialon sintered body. The grain boundary phase can also be reduced while ensuring, and this effectively works to suppress mechanical wear damage caused by the grain boundary phase.

αサイアロン相の比率α率は、X線回折におけるβサイアロン相の(101)面ピーク強度をβ1、(210)面ピーク強度をβ2、αサイアロン相の(102)面ピーク強度をα1、(210)面ピーク強度をα2とした時に、(α1+α2)/(β1+β2+α1+α2)で算出される。α率が10%未満かつ、αサイアロン相に固溶する前記希土類元素が全体の30モル%未満では、被削材との耐反応性が優れたαサイアロン相の生成が不十分となり、サイアロン焼結体としての耐反応性が低下し、被削材と工具刃先の化学反応による溶着損傷が起き易くなる。α率が40%を越えると靭性の低い等軸状のαサイアロン相が多くなるため耐欠損性が低下し好ましくない。また、前記希土類元素のαサイアロン相中への固溶量が前記希土類元素全体の50モル%を越える場合には、サイアロン焼結体の被削材に対する耐反応性は充分でも、αサイアロン粒子自身の強度が低下するため好ましくない。よって、本発明のサイアロン製スローアウェイチップにおいては、α率を10〜40%、αサイアロン相に固溶させる前記希土類元素をサイアロン焼結体全体に含まれる前記希土類元素総量2〜5モル%のうち30〜50モル%の比率とする。   The ratio α rate of the α sialon phase is defined by β1 for the (101) plane peak intensity of the β sialon phase, β2 for the (210) plane peak intensity in the X-ray diffraction, and α1 for the (102) plane peak intensity of the α sialon phase, (210 ) When the plane peak intensity is α2, (α1 + α2) / (β1 + β2 + α1 + α2) is calculated. When the α ratio is less than 10% and the rare earth element solid-dissolved in the α sialon phase is less than 30 mol% of the whole, the generation of the α sialon phase having excellent reaction resistance with the work material is insufficient, and sialon firing is performed. The reaction resistance as a bonded body is lowered, and welding damage due to a chemical reaction between the work material and the tool edge is likely to occur. When the α ratio exceeds 40%, the equiaxed α sialon phase having low toughness increases, so that the fracture resistance is lowered, which is not preferable. Further, when the solid solution amount of the rare earth element in the α sialon phase exceeds 50 mol% of the entire rare earth element, the reaction resistance of the sialon sintered body to the work material is sufficient, but the α sialon particles themselves This is not preferable because the strength of the resin decreases. Therefore, in the throwaway tip made of sialon of the present invention, the α ratio is 10 to 40%, and the rare earth element to be solid-solved in the α sialon phase is 2 to 5 mol% of the total rare earth element contained in the entire sialon sintered body. Of these, the ratio is 30 to 50 mol%.

サイアロン粒子間の粒界相は、焼結助剤、窒化珪素及び窒化珪素に不純物として含まれるシリカ成分等が焼結時に液相化して、サイアロン粒子の生成、再配列、粒成長に寄与したあと、冷却時に固化してガラス相あるいは結晶相として形成される。この粒界相は、サイアロン粒子と比較すると、低融点、低靱性かつ低硬度であるため、サイアロン焼結体の耐熱性、靱性、硬度を改善するためには少ないほうがよい。粒界相は、例えば焼結助剤の低減により減少させることができるが、焼結助剤を低減させすぎると、サイアロン相が完全に焼結できなくてサイアロン焼結体の強度を低下させる原因となる。本発明においては、希土類元素であるSc、Y、Dy、Yb、Luを焼結助剤として使用し、サイアロン焼結体の耐熱性、靱性、硬度等の改善を図っており、サイアロン焼結体に対し該希土類元素全体で酸化物換算2〜5モル%とする必要がある。   The grain boundary phase between the sialon particles is after the sintering aid, silicon nitride, and silica components contained as impurities in the silicon nitride become liquid phase during sintering, contributing to the generation, rearrangement, and grain growth of the sialon particles. It solidifies upon cooling and is formed as a glass phase or a crystalline phase. Since this grain boundary phase has a low melting point, low toughness and low hardness as compared with sialon particles, it is better to reduce the grain boundary phase in order to improve the heat resistance, toughness and hardness of the sialon sintered body. The grain boundary phase can be reduced, for example, by reducing the sintering aid. However, if the sintering aid is reduced too much, the sialon phase cannot be completely sintered and the strength of the sialon sintered body is reduced. It becomes. In the present invention, the rare earth elements Sc, Y, Dy, Yb, and Lu are used as sintering aids to improve the heat resistance, toughness, hardness, etc. of the sialon sintered body. On the other hand, the total amount of the rare earth elements needs to be 2 to 5 mol% in terms of oxide.

焼結体中の上記希土類元素の酸化物換算含有量のモル%は以下の方法で算出したものである。
(a)焼結体中の各元素(非金属元素は除く、以下同じ)の量を蛍光X線分析や化学分析などで分析し、重量比を算出する。
(b)上記の各元素を酸化物や窒化物などの化合物とみなして分子量を求める。例えばSiはSi、AlはAlおよびAlN、YはYなどとして計算する。
(c)更に(a)で算出した重量比を(b)で求めた各元素の化合物の分子量で割ることでこれを各元素の化合物のモル数とする。これらのモル数の合計を100モル%として、それぞれの化合物のモル数をモル%に換算する。
なお、簡易的な算出方法としては、焼結原料粉末は過不足なく焼結体になるものと想定して、焼結体中の含有組成ではなく、焼結体素地調製時の原料組成からモル%を求めることもできる。
The mol% of the oxide equivalent content of the rare earth element in the sintered body is calculated by the following method.
(A) The amount of each element (excluding nonmetallic elements, the same applies hereinafter) in the sintered body is analyzed by fluorescent X-ray analysis, chemical analysis, or the like, and the weight ratio is calculated.
(B) The molecular weight is determined by regarding each of the above elements as a compound such as an oxide or a nitride. For example, Si is calculated as Si 3 N 4 , Al as Al 2 O 3 and AlN, Y as Y 2 O 3 and the like.
(C) Further, the weight ratio calculated in (a) is divided by the molecular weight of the compound of each element obtained in (b) to obtain the number of moles of the compound of each element. The total number of these moles is taken as 100 mole%, and the number of moles of each compound is converted to mole%.
As a simple calculation method, it is assumed that the sintered raw material powder will be a sintered body with no excess or deficiency, and it is not the content composition in the sintered body, % Can also be obtained.

本発明のサイアロン製スローアウェイチップにおいては、硬質成分としてチタンの炭化物、窒化物および炭窒化物から選ばれる1種以上を30モル%以下、好ましくは0.1〜25モル%、さらに好ましくは1〜20モル%含有していることが望ましい。通常、このような硬質成分は焼結体中に単独で粒子分散している。上記チタン化合物はアルミナと同様に窒化珪素と比べると、被削材の主成分である鉄や炭素との反応性が低いため、焼結体中に存在することで被削材との反応性を抑制することができる。上記チタン化合物含有量が上記上限を超えると上記チタン化合物がサイアロンと比較し熱膨張係数が大きい成分であるため、切削加工時の熱の影響を受けて発生する熱クラックにより工具刃先が欠損しやすくなるため好ましくない。なお、チタン化合物が単独で粒子分散しているか否かは光学顕微鏡や電子顕微鏡で確認できる。また、チタン化合物のモル%の算出方法は上記希土類元素の酸化物換算含有量のモル%算出方法と同様である。   In the sialon throwaway tip of the present invention, at least one selected from carbide, nitride and carbonitride of titanium as a hard component is 30 mol% or less, preferably 0.1 to 25 mol%, more preferably 1 It is desirable to contain ~ 20 mol%. Usually, such a hard component is dispersed alone in the sintered body. Since the titanium compound is less reactive with iron and carbon, which are the main components of the work material, as compared with silicon nitride, as with alumina, the presence of the titanium compound in the sintered body increases the reactivity with the work material. Can be suppressed. If the titanium compound content exceeds the upper limit, the titanium compound is a component having a larger coefficient of thermal expansion than sialon, so the tool edge tends to be damaged due to thermal cracks that are generated by the influence of heat during cutting. Therefore, it is not preferable. In addition, it can be confirmed with an optical microscope or an electron microscope whether the titanium compound is dispersed alone. The method for calculating the mol% of the titanium compound is the same as the method for calculating the mol% of the rare earth element oxide content.

本発明のサイアロン製スローアウェイチップは切削工具用のホルダーに装着して高性能の切削工具として使用される。特に、ダクタイル鋳鉄などの高速粗加工を精度よく行う長寿命の切削工具用として適している。なお、本発明の切削工具は広義の切削工具であり、旋削加工、フライス加工、溝入加工などの粗加工、仕上加工などを行う工具全般を言う。   The sialon throw-away tip of the present invention is mounted on a cutting tool holder and used as a high-performance cutting tool. In particular, it is suitable for long-life cutting tools that perform high-speed roughing such as ductile cast iron with high accuracy. The cutting tool of the present invention is a cutting tool in a broad sense, and refers to all tools that perform roughing and finishing such as turning, milling, and grooving.

本発明のサイアロン製スローアウェイチップの好ましい製造方法について説明する。Si粉末およびAl粉末、AlN粉末等のサイアロンを構成する元素を含む原料粉末を、焼結助剤として希土類元素の酸化物粉末であるSc粉末、Y粉末、Dy粉末、Yb粉末、Lu粉末等のいずれかまたは数種類と混合し、好ましくは硬質成分のTiN粉末、TiC粉末、TiCN粉末のいずれかを加えて原料粉末とする。原料粉末は平均粒径5μm以下、好ましくは3μm以下、さらに好ましくは1μm以下とするとよい。これらの原料粉末は焼結後のスローアウェイチップの組成を考慮してそれぞれの比率を決めればよい。通常は、Si粉末を50〜90モル%、Al粉末を0.5〜15モル%、AlN粉末を0〜35モル%、焼結助剤を2〜5モル%、硬質成分を0〜30モル%とすればよい。調製した原料粉末をボールミルのような混合粉砕機、例えばSi製ボールを備えたSi製ポットを用いて粉末を溶解しない溶媒、例えばエタノール等を加えて10〜300時間混合してスラリーを製造する。この際、原料粉末の粒径が大きいときには粉砕時間を長くして粉砕を十分にする。 A preferred method for producing the sialon throwaway tip of the present invention will be described. Sc 2 O 3 powder, Y 2 O 3 , which is a rare earth element oxide powder, using a raw material powder containing elements constituting sialon such as Si 3 N 4 powder, Al 2 O 3 powder, and AlN powder as a sintering aid. Powder, Dy 2 O 3 powder, Yb 2 O 3 powder, Lu 2 O 3 powder, etc. or mixed with several kinds, preferably adding any of hard component TiN powder, TiC powder, TiCN powder and raw material powder And The raw material powder may have an average particle size of 5 μm or less, preferably 3 μm or less, more preferably 1 μm or less. The ratio of these raw material powders may be determined in consideration of the composition of the throw-away tip after sintering. Usually, Si 3 N 4 powder is 50 to 90 mol%, Al 2 O 3 powder is 0.5 to 15 mol%, AlN powder is 0 to 35 mol%, sintering aid is 2 to 5 mol%, and hard What is necessary is just to make a component into 0-30 mol%. The prepared raw material powder is mixed for 10 to 300 hours by adding a solvent that does not dissolve the powder, such as ethanol, for example, using a Si 3 N 4 pot equipped with a ball made of Si 3 N 4 such as a ball mill. To produce a slurry. At this time, when the particle size of the raw material powder is large, the pulverization time is lengthened to ensure sufficient pulverization.

このスラリー中に粗粒がある場合は、スラリーを200〜500メッシュ程度のふるいにかけ粗粒を除く。そしてマイクロワックス系等の有機バインダを原料粉末に対し3〜15重量%添加しスプレードライ等により造粒乾燥する。得られた造粒粉末を所望の形状にプレス成形した後に、加熱装置内において窒素等の不活性ガス雰囲気中で脱脂をする。成形は射出成形、押出し成形、鋳込み成形等を応用することもできる。成形にあたっては、後続の脱脂工程、焼結工程で成形品が収縮することを見越して成形しておく。通常、脱脂工程は400〜800℃にて30〜120分行えばよい。脱脂した成形体を1500〜1900℃、好ましくは1700〜1800℃で焼結する。一次焼結はカーボン、窒化ホウ素又は窒化珪素等のサヤ内で1〜9気圧の窒素又はAr雰囲気下にて1700〜1800℃まで昇温し1〜5時間保持すればよい。1次焼結で、充分に緻密化して焼結体が得られなかった時には、必要に応じて2次焼結を行う。2次焼結は熱間静水圧成形(HIP)によればよい。例えば、100〜2000気圧の窒素雰囲気下において1700〜1800℃で1〜5時間加熱する。このようにして得た焼結体はサイアロン焼結体であり、これを図1、図3に示すようなスローアウェイチップとしての形状に研磨加工して本発明の切削工具用のサイアロン製スローアウェイチップとすることができる。さらに、図2、図5に示すように外径加工用ホルダーやフライスカッター用ホルダーに装着することにより外径加工用切削工具やフライスカッター用切削工具とすることができる。   When coarse particles are present in the slurry, the slurry is passed through a sieve of about 200 to 500 mesh to remove the coarse particles. Then, an organic binder such as a micro wax is added in an amount of 3 to 15% by weight based on the raw material powder, and granulated and dried by spray drying or the like. The obtained granulated powder is press-molded into a desired shape, and then degreased in an inert gas atmosphere such as nitrogen in a heating apparatus. For molding, injection molding, extrusion molding, cast molding, or the like can be applied. In molding, molding is performed in anticipation of the shrinkage of the molded product in the subsequent degreasing process and sintering process. Usually, the degreasing step may be performed at 400 to 800 ° C. for 30 to 120 minutes. The degreased compact is sintered at 1500-1900 ° C, preferably 1700-1800 ° C. The primary sintering may be performed by raising the temperature to 1700 to 1800 ° C. in a nitrogen or Ar atmosphere of 1 to 9 atm in a sheath of carbon, boron nitride, silicon nitride or the like and holding it for 1 to 5 hours. When the sintered body cannot be obtained by sufficiently densifying in the primary sintering, secondary sintering is performed as necessary. Secondary sintering may be performed by hot isostatic pressing (HIP). For example, it heats at 1700-1800 degreeC for 1 to 5 hours in 100-2000 atmospheres nitrogen atmosphere. The sintered body thus obtained is a sialon sintered body, which is polished into a shape as a throw-away tip as shown in FIGS. 1 and 3 and made from sialon for the cutting tool of the present invention. It can be a chip. Furthermore, as shown in FIG. 2 and FIG. 5, it can be set as the cutting tool for outside diameter processing, or the cutting tool for milling cutter by attaching to the holder for outside diameter processing or the holder for milling cutter.

本発明のスローアウェイチップおよび切削工具は、制御された組成および焼結体構造のサイアロン製スローアウェイチップであり、高温強度、硬度、耐摩耗性に加え溶着損傷による欠損耐性をも備えており、通常の切削材はもとより、難削材の高速切削においても非常に長寿命である。その結果、難削性のダクタイル鋳鉄や耐熱合金を高速加工することが可能となり、加工費用の低減、加工効率の向上に貢献することができる。   The throw-away tip and cutting tool of the present invention are sialon throw-away tips with a controlled composition and sintered structure, and are equipped with defect resistance due to welding damage in addition to high-temperature strength, hardness, and wear resistance. It has a very long life not only for ordinary cutting materials but also for high-speed cutting of difficult-to-cut materials. As a result, difficult-to-cut ductile cast iron and heat-resistant alloys can be processed at high speed, which can contribute to reduction in processing costs and improvement in processing efficiency.

本発明のサイアロン製スローアウェイチップおよびこれを装着した切削工具の好ましい態様について、実施例として比較例と対比しながら説明する。   Preferred embodiments of the sialon throwaway tip of the present invention and a cutting tool equipped with the throwaway tip will be described as an example in comparison with a comparative example.

(1)スローアウェイチップの作製
それぞれ平均粒径1.0μm以下のαSi粉末、焼結助剤として希土類元素酸化物Sc、Y、CeO、Dy、Er、Yb、Luの粉末、さらにAl粉末、AlN粉末、TiN粉末を表1に示す割合で配合して原料粉末を調製した。次に、これらの原料粉末を内壁がSi製のポットにSi製ボールと共に入れ、エタノールを加えて24時間混合してスラリーを作製した。このスラリーを325メッシュのふるいに通し、エタノールに溶解したマイクロワックス系の有機バインダを5.0重量%添加しスプレードライで顆粒を作製した。得られた顆粒を、焼結後にISO規格でほぼSNGN120412のスローアウェイチップの形状となるようにプレス成形した。成形体を加熱装置内において1気圧の窒素雰囲気中で600℃にて60分脱脂した。脱脂した成形体の一次焼結は、窒化珪素製のサヤ内にセットし、6気圧の窒素雰囲気下にて1800℃まで昇温し120分保持した。一次焼結体内部に残留ポアを除くため、熱間静水圧成形(HIP)により二次焼結を行った。二次焼結は1000気圧の窒素雰囲気下において1700℃で120分加熱した。得られたサイアロン焼結体を研磨加工してISO規格でSNGN120412のスローアウェイチップ形状に整え切削工具用のスローアウェイチップを得た。
(1) Production of throw-away tip αSi 3 N 4 powder each having an average particle size of 1.0 μm or less, rare earth element oxides Sc 2 O 3 , Y 2 O 3 , CeO 2 , Dy 2 O 3 as a sintering aid, Er 2 O 3 , Yb 2 O 3 , Lu 2 O 3 powder, and further Al 2 O 3 powder, AlN powder, and TiN powder were blended in the proportions shown in Table 1 to prepare raw material powder. Then, these raw material powders inner wall placed with Si 3 N 4 balls to Si 3 N 4 made pot was added ethanol and mixed for 24 hours to prepare a slurry. This slurry was passed through a 325 mesh sieve, and 5.0% by weight of a microwax organic binder dissolved in ethanol was added to prepare granules by spray drying. The obtained granule was press-molded so as to have the shape of a throw-away tip of SNGN120212 according to ISO standards after sintering. The molded body was degreased for 60 minutes at 600 ° C. in a nitrogen atmosphere of 1 atm in a heating apparatus. The primary sintering of the degreased compact was set in a silicon nitride sheath, heated to 1800 ° C. in a nitrogen atmosphere of 6 atm, and held for 120 minutes. In order to remove residual pores in the primary sintered body, secondary sintering was performed by hot isostatic pressing (HIP). In the secondary sintering, heating was performed at 1700 ° C. for 120 minutes in a nitrogen atmosphere at 1000 atmospheres. The obtained sialon sintered body was polished and adjusted to a throw-away tip shape of SNGN120212 according to ISO standards to obtain a throw-away tip for a cutting tool.

(2)スローアウェイチップの性状の測定
前記スローアウェイチップの特性等の測定方法について説明する。得られた実施例および比較例のスローアウェイチップをアルキメデス法により密度測定し、理論密度で除して理論密度比を算出した。比較例1のサンプル以外は理論密度比が十分高く、焼結体中にマイクロポアが残存せず緻密化していたので性状測定を行った。Z値およびα率の測定および計算については前述の方法によった。αサイアロン粒子内のSc、Ce、Y、Dy、Er、Yb、Luの固溶量については、透過型電子顕微鏡で組織観察し付属のEDX分析器にてαサイアロンの組成分析を行い測定した。そして、添加した助剤量に対してαサイアロン粒子内に固溶した量の割合(モル)を助剤の固溶率モル%として算出した(顕微鏡観察倍率:50,000倍)。表1には、組成を変化させて作製した本発明の実施例および比較例のスローアウェイチップの組成、性状を示した。
(2) Measurement of properties of throw-away tip A method for measuring the characteristics of the throw-away tip will be described. The density of the obtained throw-away tips of Examples and Comparative Examples was measured by the Archimedes method, and the theoretical density ratio was calculated by dividing by the theoretical density. Except for the sample of Comparative Example 1, the theoretical density ratio was sufficiently high, and the micropores did not remain in the sintered body and were densified, so the properties were measured. The measurement and calculation of the Z value and the α rate were performed according to the method described above. The solid solution amount of Sc, Ce, Y, Dy, Er, Yb, and Lu in the α sialon particles was measured by observing the structure with a transmission electron microscope and analyzing the composition of α sialon with the attached EDX analyzer. Then, the ratio (mol) of the amount dissolved in the α-sialon particles with respect to the added auxiliary agent was calculated as the solid solution ratio mol% of the auxiliary agent (microscope observation magnification: 50,000 times). Table 1 shows the compositions and properties of the throw-away tips of the examples of the present invention and the comparative examples prepared by changing the composition.

(3)スローアウェイチップの切削性能の評価
上記(1)で作製した実施例及び比較例のスローアウェイチップについて、以下の性能試験を行った。結果は表1に示す。
実施例および比較例のスローアウェイチップの刃先に面取り幅を0.3mm、面取り角が25°となる面取り刃先加工を行ない、フライスカッターにセットし(図4、図5参照)、下記に示す加工条件にて切削加工を行なった。工具刃先の摩耗量(VB)が0.3mmとなるまでに加工可能であった被削材枚数にて評価した。また、VBが0.3mmとなる前に工具刃先が欠損した場合にも同様に工具寿命と判定した。
(加工条件)
被削材:JIS FCD600(ダクタイル鋳鉄、鋳肌付き):縦130mm×横700mm×厚み30mm
切削速度:1000m/min
送り速度:0.15mm/刃
切り込み深さ:2.0mm
切削油:乾式
使用カッター:φ100、1枚刃にて加工。
(3) Evaluation of cutting performance of throw-away tip The following performance test was performed on the throw-away tip of the example and the comparative example prepared in (1) above. The results are shown in Table 1.
The chamfering edge of the throwaway tip of Example and Comparative Example is chamfered with a chamfering width of 0.3 mm and a chamfering angle of 25 °, set in a milling cutter (see FIGS. 4 and 5), and processing shown below Cutting was performed under the conditions. Evaluation was made based on the number of workpieces that could be processed before the wear amount (VB) of the tool edge reached 0.3 mm. Similarly, when the tool edge was lost before VB became 0.3 mm, the tool life was also determined.
(Processing conditions)
Work material: JIS FCD600 (Ductile cast iron with cast skin): Length 130mm x width 700mm x thickness 30mm
Cutting speed: 1000 m / min
Feed rate: 0.15 mm / blade cutting depth: 2.0 mm
Cutting oil: Dry-use cutter: φ100 Processing with one blade.

Figure 2006305708
Figure 2006305708

表1に示されるように、実施例A〜Tの本発明のスローアウェイチップは、工具刃先の摩耗量(VB)が0.3mmとなるまでの被削材加工可能枚数が9枚以上と多く、かつ工具刃先の欠損も認められなかった。しかし、本発明の要件を満足しない比較例のスローアウェイチップは最高でも5枚しか切削できなかった。また、刃先欠損を起こしたり緻密化不良のスローアウェイチップもあった。   As shown in Table 1, the throw-away inserts of Examples A to T of the present invention have a large number of workable materials of 9 or more until the amount of wear (VB) of the tool edge reaches 0.3 mm. In addition, the tool edge was not damaged. However, only five of the throw-away tips of comparative examples that did not satisfy the requirements of the present invention could be cut. In addition, there was a throw-away tip that caused cutting edge failure or poor densification.

本発明のスローアウェイチップおよびこれを装着した切削工具は耐磨耗性、耐欠損性に優れた長寿命のスローアウェイチップおよび切削工具として各種材料の広義の切削加工に使用できる。   The throw-away tip of the present invention and the cutting tool equipped with the tip-away tip can be used for a wide range of cutting of various materials as a long-life throw-away tip and a cutting tool excellent in wear resistance and fracture resistance.

図1は本発明のスローアウェイチップの斜視図である。FIG. 1 is a perspective view of the throw-away tip of the present invention. 図2はホルダーに本発明のスローアウェイチップを装着した外径加工用切削工具の例である。FIG. 2 is an example of a cutting tool for outside diameter processing in which the throw-away tip of the present invention is mounted on a holder. 図3は本発明のスローアウェイチップの他の例の斜視図である。FIG. 3 is a perspective view of another example of the throw-away tip of the present invention. 図4は図3のスローアウェイチップの面取り加工を示す正面図である。FIG. 4 is a front view showing chamfering of the throw-away tip of FIG. 図5はフライスカッター用ホルダーにスローアウェイチップを装着した切削工具の平面図である。FIG. 5 is a plan view of a cutting tool in which a throw-away tip is mounted on a milling cutter holder.

符号の説明Explanation of symbols

1:スローアウェイチップ
2:外径加工用ホルダー
3:押さえ金
4:刃先
5:スローアウェイチップの面取り加工部
6:フライスカッター用ホルダー
7:フライスカッター用ホルダー本体
8:スローアウェイチップ装着用カートリッジ
9:スローアウェイチップ取付け用くさび

1: Throw-away tip 2: Holder for outer diameter processing 3: Presser foot 4: Cutting edge 5: Chamfered portion of throw-away tip 6: Holder for milling cutter 7: Holder for milling cutter 8: Cartridge 9 for throw-away tip mounting : Wedge for throwaway tip mounting

Claims (3)

αサイアロン相およびβサイアロン相からなるサイアロン相と、ガラス相および/または結晶相からなる粒界相とを持つサイアロン中の、Si6−ZAl8−Zで表されるβサイアロン相のZ値が0.2〜1であり、αサイアロン相のサイアロン相中での比率α率が10〜40%であり、サイアロン中にSc、Y、Dy、Yb、Luから選ばれる希土類元素1種以上を酸化物換算で合計2〜5モル%含有し、該希土類元素のうち30〜50モル%がαサイアロン相中に存在しているサイアロン製スローアウェイチップ。 β sialon represented by Si 6-Z Al Z O Z N 8-Z in a sialon having a sialon phase composed of an α sialon phase and a β sialon phase and a grain boundary phase composed of a glass phase and / or a crystal phase. Rare earth element selected from Sc, Y, Dy, Yb, and Lu in the sialon, wherein the Z value of the phase is 0.2 to 1, the ratio α ratio of the α sialon phase in the sialon phase is 10 to 40% A sialon throw-away tip containing one or more kinds in total in an amount of 2 to 5 mol% in terms of oxide, and 30 to 50 mol% of the rare earth element is present in the α sialon phase. サイアロン中に硬質成分としてチタンの炭化物、窒化物および炭窒化物から選ばれる1種以上を30モル%以下含有している請求項1に記載のサイアロン製スローアウェイチップ。   The sialon throwaway tip according to claim 1, wherein the sialon contains at least 30 mol% of one or more selected from carbides, nitrides, and carbonitrides of titanium as a hard component. ホルダーに請求項1または2に記載のサイアロン製スローアウェイチップを装着した切削工具。
A cutting tool in which the sialon throwaway tip according to claim 1 or 2 is mounted on a holder.
JP2005134157A 2004-12-22 2005-05-02 Sialon throw-away tip, and cutting tool Pending JP2006305708A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2005134157A JP2006305708A (en) 2005-05-02 2005-05-02 Sialon throw-away tip, and cutting tool
EP05820104A EP1837105A4 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith
CN2005800445856A CN101087670B (en) 2004-12-22 2005-12-22 Sialon ceramic blade and cutting tool equipped therewith
PCT/JP2005/023589 WO2006068220A1 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith
EP11180944.8A EP2402098B2 (en) 2004-12-22 2005-12-22 Sialon insert and cutting tool equipped therewith
US11/793,500 US20080119349A1 (en) 2004-12-22 2005-12-22 Sialon Insert and Cutting Tool Equipped Therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134157A JP2006305708A (en) 2005-05-02 2005-05-02 Sialon throw-away tip, and cutting tool

Publications (1)

Publication Number Publication Date
JP2006305708A true JP2006305708A (en) 2006-11-09

Family

ID=37473187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134157A Pending JP2006305708A (en) 2004-12-22 2005-05-02 Sialon throw-away tip, and cutting tool

Country Status (1)

Country Link
JP (1) JP2006305708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162883A (en) * 2006-12-27 2008-07-17 Sandvik Intellectual Property Ab Ceramic material used for operation requiring robustness and cutting tool produced therefrom
JP5721816B2 (en) * 2011-04-15 2015-05-20 株式会社アルバック Conveyance mechanism for workpieces
JP2019077576A (en) * 2017-10-23 2019-05-23 島根県 Method for improving resistance to high temperature reaction of sialon material, method for producing sialon material using the same, and sialon ceramics tool
JP2020066562A (en) * 2018-10-26 2020-04-30 国立大学法人秋田大学 WC-Si3N4-BASED COMPOSITE CERAMIC AND MANUFACTURING METHOD THEREFOR

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527434A (en) * 2000-11-28 2004-09-09 ケンナメタル インコーポレイテッド SiAlON containing ytterbium and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004527434A (en) * 2000-11-28 2004-09-09 ケンナメタル インコーポレイテッド SiAlON containing ytterbium and method for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008162883A (en) * 2006-12-27 2008-07-17 Sandvik Intellectual Property Ab Ceramic material used for operation requiring robustness and cutting tool produced therefrom
JP5721816B2 (en) * 2011-04-15 2015-05-20 株式会社アルバック Conveyance mechanism for workpieces
JP2019077576A (en) * 2017-10-23 2019-05-23 島根県 Method for improving resistance to high temperature reaction of sialon material, method for producing sialon material using the same, and sialon ceramics tool
JP2020066562A (en) * 2018-10-26 2020-04-30 国立大学法人秋田大学 WC-Si3N4-BASED COMPOSITE CERAMIC AND MANUFACTURING METHOD THEREFOR
JP7261949B2 (en) 2018-10-26 2023-04-21 国立大学法人秋田大学 WC-Si3N4-based composite ceramics and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2402098B2 (en) Sialon insert and cutting tool equipped therewith
JP5428118B2 (en) cBN sintered body and cBN sintered body tool
US8962505B2 (en) Sintered cubic boron nitride compact and sintered cubic boron nitride compact tool
WO2010104094A1 (en) Cermet and coated cermet
JP5677638B1 (en) Cutting tools
JP4716855B2 (en) Sialon cutting tool and tool equipped therewith
JP2006305708A (en) Sialon throw-away tip, and cutting tool
JP2008132570A (en) Cutting tool
JP6161830B2 (en) Sialon sintered body and cutting insert
JP4434938B2 (en) Sialon insert manufacturing method
JP4342975B2 (en) Sialon quality tools, cutting inserts, and cutting tools
JP2015009327A (en) Cutting insert
JP2006198761A (en) Insert made of sialon, and cutting tool having it
JP6938227B2 (en) Silicon nitride composite sintered body, cutting tool, and friction stir welding tool
JP2006193353A (en) Alumina sintered body, cutting insert, and cutting tool
JP7567611B2 (en) Ceramic-based surface-coated cutting tools
KR19980069846A (en) Titanium Carbonitride Complex Silicon Nitride Tools
JP7451350B2 (en) End mills and friction stir welding tools
JP2007130699A (en) Sialon cutting tool and tool
JP2012001383A (en) Ceramic sintered compact and cut insert
JP2006187831A (en) Cutting insert and cutting tool
JP3544632B2 (en) Coated cemented carbide
JP2001253767A (en) Alumina-based composite sintered compact, wear-resistant member and method for manufacturing the same sintered compact
JP2006137623A (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body and their manufacturing methods
JP2004167660A (en) Ceramic tool and cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110204