JP3544632B2 - Coated cemented carbide - Google Patents

Coated cemented carbide Download PDF

Info

Publication number
JP3544632B2
JP3544632B2 JP14699899A JP14699899A JP3544632B2 JP 3544632 B2 JP3544632 B2 JP 3544632B2 JP 14699899 A JP14699899 A JP 14699899A JP 14699899 A JP14699899 A JP 14699899A JP 3544632 B2 JP3544632 B2 JP 3544632B2
Authority
JP
Japan
Prior art keywords
cemented carbide
compound
cutting
base material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14699899A
Other languages
Japanese (ja)
Other versions
JP2000336489A (en
Inventor
剛 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP14699899A priority Critical patent/JP3544632B2/en
Publication of JP2000336489A publication Critical patent/JP2000336489A/en
Application granted granted Critical
Publication of JP3544632B2 publication Critical patent/JP3544632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、切削工具等に使用される高い耐摩耗性と高い耐欠損性を兼ね備えた被覆超硬合金に関するものである。
【0002】
【従来の技術】
近年、金属部材の切削加工において高能率加工への要求が強く、切削速度が高速化している中で、超硬合金母材表面にTiCなどの硬質被覆層を蒸着した被覆超硬合金が切削工具の材質として多用されている。更に、環境への配慮から刃先冷却用の切削油を用いない乾式切削が好まれる傾向があり、これら被覆超硬合金製の切削工具に対して乾式切削などの高温切削(刃先が高温となる)における耐久性が求められている。
【0003】
このような要求に対して、旧来のWCのみを硬質相として含む超硬合金を母材とした切削工具では、乾式切削などの高温切削(刃先が高温となる)における耐久性不足という点で十分に要求に応えることができなかった。
【0004】
そのため超硬合金母材中にTiCなど4a,5a,6a族金属化合物を添加し、高温切削における耐久性を向上せしめる試みがなされている。このうちTiCやTaC等のTiやTaの化合物のみを添加したものは硬度が向上したが、靭性が不充分あるという問題があり、他方Zr,Hfの炭化物や窒化物のみを添加したものは、靭性の低下が少なく、高温下での靭性が高いという特徴を持つが、硬度が低いため耐摩耗性に難があり、前記要求に十分応えるものではなかった。
【0005】
これら超硬合金母材の欠点を解消するため、Zr及び/またはHfの化合物とTi化合物の両方を添加することが提案されている(特開平6−93473号)。この超硬合金は、Zr及び/またはHfの化合物で合金靱性の維持を図り、かつ合金硬度を不足するためTi化合物を添加し、共存させたものである。また、この超硬合金は、合金中にZr及び/またはHfの炭化物などを添加すると、Tiの炭化物などはWCと固溶しにくくなる特性を利用しており、該特性によりWC減少量が非常に少なく靭性の低下を解消できるので、Zr,Hfの炭化物や窒化物の高靭性を十分に利用できることを特徴とする。
【0006】
更に、上記超硬合金は、合金の表面から2〜100μm 以内の深さにわたって、Zr及び/またはHfの化合物の硬質相とTi化合物の硬質相が減少又は消失してなる表層領域を有しており、この表層領域を有することで合金表層領域の靭性を向上させている。
【0007】
また最近、このような超硬合金においてZr及び/またはHfの化合物の平均粒径を1μm以上10μm以下に制御することにより靭性、耐塑性変形性、耐摩耗性を向上せしめることが提案されている(特開平10−18038号)。
【0008】
【発明が解決しようとする課題】
前記Zr及び/またはHfの化合物とTi化合物の両方を添加した超硬合金により作製した切削工具は耐熱性に優れるため長時間の高速切削に耐える。しかしながら、ニアネットシェイプの技術の進歩により、部品素材の形状は益々複雑なものとなってきており、その切削加工には断続切削が多く含まれるようになってきている。また、連続切削においても、高能率加工への要求が益々強くなったことにより、切削条件を上げ、刃先温度が非常に高温となる切削加工が多く含まれるようになってきている。従って、切削工具にかかる衝撃力、衝撃回数、刃先温度は増加、上昇の一途を辿っており、このような厳しい条件での加工に対して、特に乾式切削には、超硬合金の母材にZr及び/またはHfの化合物とTi化合物の両方を添加するだけでは対応できないようになってきている。
【0009】
即ち、前述のように上記超硬合金は、Zr及び/またはHfの化合物の硬質相とTi化合物の硬質相が減少又は消失してなる表層領域を有しているが、この領域は、非常に高い温度となると塑性変形を起こしやすく、異常摩耗や欠損により切削加工の省力化、無人化の大きな障害となっている。
【0010】
また、このような超硬合金においてZr及び/またはHfの化合物の平均粒径を1μm以上10μm以下に制御することについても、上記非常に高い温度での塑性変形の問題を完全に解決するものでなく、靱性の向上の効果も見られなかった。
【0011】
そこで本発明は、このような従来技術の課題に鑑み、長時間の高速切削に耐え、且つ、厳しい条件での乾式切削にも安定的に適用することができる切削工具に最適な、被覆超硬合金を提供することを課題とする。
【0012】
【課題を解決するための手段】
前記課題を解決するため、本発明の被覆超硬合金は、WCと鉄族金属からなる結合相金属と硬質相とからなる超硬合金母材の表面に被覆層を被着させた被覆超硬合金において、前記硬質相はZr及び/又はHfの酸化物、炭化物、窒化物、炭窒化物の少なくとも1種を含有する化合物から成り、かつ、該化合物の平均粒径が、超硬合金母材の表面から深さ50μmの領域は0.02〜0.5μm、150μmの深さの領域は1.0〜5.0μmであり、更に前記被覆層は、周期律表4a、5a、6a族金属の酸化物、炭化物、窒化物、ホウ化物及び酸化アルミニウムの少なくとも1種から成る単層又は多重層で構成される。
【0013】
このような構造をとる理由を以下に説明する。Zr及び/又はHfの酸化物、炭化物、窒化物、炭窒化物の少なくとも1種を含有する化合物(以下、Zr等の化合物と略称する)は、硬質相として多用される4a、5a、6a族金属を主成分とする化合物の中でも合金強度の維持の効果も最も大きい。Zr及び/又はHfは、その一部が炭化物等の形で合金中に分散し高温での合金強度を高め被覆超硬合金の耐塑性変形性を向上させている。他の一部は結合相中に固溶して結合相の耐塑性変形性を向上させている。さらに、Zr等の化合物は高温での塑性変形を防ぐ作用がある。しかしながら、これら利点の反面、Zr等の化合物の存在が超硬合金母材の硬度を低下せしめ、また、耐摩耗性を劣化せしめる傾向があることが知られている。
【0014】
本発明者は、上記のような被覆超硬合金について硬度低下や摩耗性低下の要因を調査し、鋭意研究を加えた結果、超硬合金母材の表層と内方でZr等の化合物の粒径を大きく違えることにより完成にいたったもので、その特徴は、Zr等の化合物の平均粒径が、超硬合金母材の表面から深さ50μmの領域は0.02〜0.5μm、150μmの深さの領域は1.0〜5.0μmである。
【0015】
前記Zr等の化合物の粒径について、超硬合金母材の表面から深さ50μmの領域の平均粒径を0.02〜0.5μmと微粒化するのは、微粒化により、超硬合金母材表面近傍領域での靱性を高め、耐チッピング性を向上せしめるためである。この平均粒径が0.02μm未満の場合、連続切削における耐摩耗性が劣化するとともに、断続切削でも欠損し易くなり、0.5μmより大きい場合、靱性が劣化して欠損し易くなる。他方、Zr等の化合物の粒径を、超硬合金母材の表面から深さ150μm以上の領域の平均粒径を1.0〜5.0μmと粗粒化するのは、粗粒化により耐塑性変形性が向上し、その結果、超硬合金母材表面の耐摩耗性を維持することができるためである。この平均粒径が1.0μm未満の場合、連続切削における耐摩耗性が劣化するとともに、断続切削でも欠損し易くなり、5.0μmより大きい場合、靱性が劣化して欠損し易くなる。
【0016】
尚、粒径の測定は超硬合金母材を深さ方向に1mm研削し、ダイヤモンドペーストによって研磨し鏡面状態とした後、金属顕微鏡にて写真撮影後、インタセプト法により粒径を求めた。
【0017】
またZr等の化合物の粒径が、超硬合金母材の表面から深さ50μm〜150μmの領域で0.5μm〜1.0μmとし、超硬合金の表面から内部に向かって、傾斜的に大きくなるようにすると、靱性が向上し、欠損しにくくなる。なお、本発明では、上記平均粒径の傾斜の有無に拘らず、本発明では、Zr等の化合物よりなる硬質相やその他の周期律表4a、5a、6a族金属の炭化物、窒化物、炭窒化物から硬質相が消出している領域は設けない。
【0018】
前記Zrおよび/またはHfには、予めW,Ta,Nb,V等を固溶させた炭化物、炭窒化物などの形で合金中に添加することができる。また、Zr等の化合物は、ZrとHfとが固溶したものであっても本発明の効果を妨げない。また前記Zr等の化合物について、超硬合金母材が炭化物化合物および非炭化物化合物の両方を兼備することにより、FCD450などの材料を加工する場合に特に顕著な性能となる非常に有効であることも見いだした。
【0019】
ところで、本発明はTiの炭化物、窒化物、炭窒化物を硬質層として含む可能性を妨げるものではないが、このようなTi化合物を添加した場合に、表層からZr等の化合物が消出してしまう場合があるので注意が必要である。むしろ本発明は、Ti化合物の添加を必ずしも必要としないことも一つの特徴である。例えば、出発原料をZrC(及び/またはHf),Co,WCのみとして超硬合金母材を形成しても、長時間の高温、高速切削に耐え、且つ、厳しい条件でのドライ切削にも安定的に適用することができるような、耐摩耗性および耐欠損性を兼ね備えたものとなる。
【0020】
また、本発明は超硬合金母材に、必ずしも窒素を含有させる必要がない。窒化物は、炭化物に比べ熱伝導率が高いなどの熱的特性に優れるが、本発明は窒素を含有しなくても厳しい加工条件での優れた耐摩耗性および耐欠損性を兼ね備えたものとなる。
【0021】
このような超硬合金母材の構造が形成される理由は不明だが、前記Zr等の化合物の原料を超硬合金原料に添加し、これらの原料成形体を窒素以外の不活性ガス雰囲気中、液相出現温度(約1250〜1300℃)以上で焼結することにより得られる。この製法では、炉内圧力を高くすることで表面部と内部の拡散が起こり、その結果Zr等の化合物の組織が変化し、粒径が表層と内部コアで大きく異なるのではないかと推測される。なお、粒径の制御は、昇温過程、焼結過程の雰囲気圧力を制御することで行う。
【0022】
そして、以上に示した超硬合金母材の表面に被覆層が形成される。被覆層は、周期律表4a、5a、6a族金属の酸化物、炭化物、窒化物、ホウ化物及び酸化アルミニウムの少なくとも1種から成る単層又は多重層であり、通常のCVD、PVD法により形成する。このように被覆層を形成することで、合金の耐摩耗性を確保できる。
【0023】
【実施例】
以下、本発明の具体的な実施形態およびその作用を実施例により詳細に説明する。
【0024】
(実施例1 )
原料粉末として、W,Zr,Hfの金属、炭化物、Co金属の粉末を準備し、焼結体組成が表1に示す組成となるように秤量し、この粉体を超硬合金製のボールミルで18時間混合粉砕した。
【0025】
【表1】

Figure 0003544632
【0026】
次に混合した粉体を圧力2ton/cmで加圧成形し、この成形体を液相出現温度(1250〜1300℃)以上で、アルゴン雰囲気にて焼成する。雰囲気圧は0.8Torrとした。
【0027】
このとき焼成条件によっては、表面部にZr等の化合物からなる相の存在しない層ができることがある。このときは、ブラスト処理や研磨などの機械的加工により表面部を除去することで、表面までZr等の化合物相が存在する合金焼結体とすることができる。
【0028】
得られた合金焼結体につき、超硬合金母材を深さ方向に1mm研削し、ダイヤモンドペーストによって研磨し鏡面状態とした後、金属顕微鏡にて写真撮影後、インタセプト法により平均粒径を算出した。なお、平均粒径は超硬合金母材の表面から深さ50μmの領域(表層)と、深さ50μm〜150μmの領域(中間層)と、深さ150μm以上の領域(内部コア)について求めた。これらを表1に記載する。
【0029】
また、表面から深さ50μm〜150μmの領域でZr等の化合物の平均粒径が0.5μm〜1.0μmとなっているものを、表1中、粒径が傾斜的になっているものとして粒度分布[有]として示し、そうでないものを粒度分布[無]として示す。
【0030】
さらに、通法に従い、硬質相の成分を特定し、ZrC相の有無を確認した。その結果を表1に記載する。
【0031】
なお、焼結体No.1〜4、8、9は硬質相がZrOとWCのみからなり、No.5は、これらに加えてZrCを、そしてNo.6、7はさらにHfCを含んでいた。
【0032】
これら焼結体を母材として通常のCVD法にて、内層に1μmのTiN、5μmのTiCN、外層に3μmのAl、最外層に0.5μmのTiNを被覆し、下記に示す条件で、乾式切削の連続切削試験と断続切削試験を行ない、摩耗幅の測定と、欠損の有無を確認した。
【0033】
これらの結果を表2に示す。
【0034】
[試験条件]
(連続切削試験1)
被削材 :FC250、円筒材
切削速度:450m/min
切込み :2.0mm
送り :0.5mm/rev
切削油 :なし
切削時間:30min
(連続切削試験2)
被削材 :FCD450、円筒材
切削速度:300m/min
切込み :2.0mm
送り :0.5mm/rev
切削油 :なし
切削時間:15min
(断続切削試験)
被削材 :FCD450、5mm幅溝4本入り円筒材
切削速度:100m/min
切込み :2.0mm
送り :0.5mm/rev
切削油 :なし
切削時間:10min
【0035】
【表2】
Figure 0003544632
【0036】
表2から明らかなように、前記粒度分布が有る試料No.2〜7はいずれも、連続切削試験の摩耗幅が0.30mm未満と小さく、また、断続切削試験で欠損も起こらなかったことから、良好な耐摩耗性と耐欠損性を示していた。
【0037】
この中でもZrC相を含む試料No.5〜7はFCD450を被削材とする連続切削試験2で摩耗幅が0.20mm未満という優れた耐摩耗性を示した。
【0038】
また、前記粒度分布がない試料No.1は、断続切削試験で欠損する場合もあったが、連続切削試験の摩耗幅が0.30mm未満と小さく優れた耐摩耗性を示した。
【0039】
これに対して、試料No.8、9は本発明の範囲外にある。すなわち、試料No.8は前記粒度分布がなく、かつ、超硬合金母材の表面から厚さ50μmの表層でのZr化合物の平均粒径が0.02μm未満であり、連続切削試験の摩耗幅が0.50mmもあり、また、断続切削試験で切削し易かった。また、試料No.9は前記粒度分布がなく、かつ、超硬合金母材の表面から150μmよりも内方の内部コアでのZr化合物の平均粒径が10.0μmと大きく、その結果、連続切削試験の摩耗幅は小さかったが、断続切削試験では、9割が欠損してしまった。
【0040】
【発明の効果】
叙上のように本発明の被覆超硬合金によれば、超硬合金母材の表面に被覆層を被着させた被覆超硬合金において、前記硬質相はZr及び/又はHfの酸化物、炭化物、窒化物、炭窒化物の少なくとも1種を含有する化合物から成り、かつ、該化合物の平均粒径が、超硬合金母材の表面から深さ50μmの領域は0.02〜0.5μm、150μmの深さの領域は1.0〜5.0μmとしたことにより、切削工具として使用した場合に、高温での靱性、硬度、耐塑性変形性が飛躍的に向上し、長時間の高温、高速切削に耐えるものである。また、従来では、ほとんど不可能であった厳しい条件での乾式切削にも安定的に適用することができる。
【0041】
このように本発明の被覆超硬合金によれば、金属部材の切削加工における高能率加工への要求と、刃先冷却用の切削油を用いない環境への配慮という要求に対し十二分に応えるものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a coated cemented carbide having both high wear resistance and high fracture resistance used for, for example, cutting tools.
[0002]
[Prior art]
In recent years, there has been a strong demand for high-efficiency machining in the cutting of metal members, and as cutting speeds have increased, coated cemented carbide in which a hard coating layer such as TiC has been deposited on the surface of a cemented carbide base material has become a cutting tool. It is often used as a material for Furthermore, there is a tendency that dry cutting without using cutting oil for cutting edge cooling is preferred from the viewpoint of environmental considerations, and high-temperature cutting such as dry cutting for these coated cemented carbide cutting tools (the cutting edge becomes hot). Durability is required.
[0003]
In response to such a demand, a conventional cutting tool using a cemented carbide containing only WC as a hard phase as a base material is sufficient in terms of insufficient durability in high-temperature cutting such as dry cutting (the cutting edge becomes high temperature). Could not meet the demand.
[0004]
For this reason, attempts have been made to add group 4a, 5a, 6a metal compounds such as TiC to the cemented carbide base material to improve durability in high-temperature cutting. Among them, those to which only compounds of Ti and Ta such as TiC and TaC are added have improved hardness, but have a problem of insufficient toughness. On the other hand, those to which only carbides and nitrides of Zr and Hf are added, It is characterized by a small decrease in toughness and a high toughness at high temperatures, but has a low hardness, so that it has difficulty in abrasion resistance and cannot meet the above requirements sufficiently.
[0005]
It has been proposed to add both a Zr and / or Hf compound and a Ti compound in order to solve these disadvantages of the cemented carbide base material (Japanese Patent Application Laid-Open No. Hei 6-93473). This cemented carbide is made of a compound of Zr and / or Hf to maintain the alloy toughness and to coexist with the addition of a Ti compound due to insufficient alloy hardness. Further, this cemented carbide utilizes the property that, when a carbide of Zr and / or Hf is added to the alloy, the carbide of Ti and the like hardly form a solid solution with WC. Since the reduction in toughness can be eliminated, the high toughness of carbides and nitrides of Zr and Hf can be sufficiently utilized.
[0006]
Furthermore, the cemented carbide has a surface layer region in which the hard phase of the compound of Zr and / or Hf and the hard phase of the Ti compound decrease or disappear over a depth of 2 to 100 μm from the surface of the alloy. The presence of this surface region improves the toughness of the alloy surface region.
[0007]
Recently, it has been proposed to improve the toughness, plastic deformation resistance and wear resistance by controlling the average particle size of the compound of Zr and / or Hf in such a cemented carbide to 1 μm or more and 10 μm or less. (JP-A-10-18038).
[0008]
[Problems to be solved by the invention]
A cutting tool made of a cemented carbide to which both a compound of Zr and / or Hf and a Ti compound are added has excellent heat resistance and can withstand high-speed cutting for a long time. However, due to the progress of the near net shape technology, the shape of the component material has become more and more complicated, and the cutting process has often included intermittent cutting. Also, in continuous cutting, as the demand for high-efficiency machining has increased, cutting conditions have been increased, and many cutting processes in which the edge temperature is extremely high have been included. Therefore, the impact force applied to the cutting tool, the number of impacts, and the cutting edge temperature are constantly increasing and rising. For machining under such severe conditions, especially in dry cutting, the base material of cemented carbide is used. It has become impossible to cope only by adding both a compound of Zr and / or Hf and a Ti compound.
[0009]
That is, as described above, the cemented carbide has a surface layer region in which the hard phase of the compound of Zr and / or Hf and the hard phase of the Ti compound decrease or disappear. At high temperatures, plastic deformation is apt to occur, and abnormal wear or loss is a major obstacle to labor saving and unmanned cutting.
[0010]
Controlling the average particle size of the compound of Zr and / or Hf in such a cemented carbide to 1 μm or more and 10 μm or less also completely solves the problem of plastic deformation at a very high temperature. No effect of improving toughness was observed.
[0011]
Accordingly, the present invention has been made in view of the problems of the prior art described above, and is suitable for a cutting tool that can withstand high-speed cutting for a long time and can be stably applied to dry cutting under severe conditions. It is an object to provide an alloy.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a coated cemented carbide according to the present invention is a coated cemented carbide in which a coating layer is applied to the surface of a cemented carbide base material composed of a binder phase metal composed of WC and an iron group metal and a hard phase. In the alloy, the hard phase is made of a compound containing at least one of oxides, carbides, nitrides, and carbonitrides of Zr and / or Hf, and the compound has an average particle size of a cemented carbide base material. The region having a depth of 50 μm from the surface is 0.02 to 0.5 μm, the region having a depth of 150 μm is 1.0 to 5.0 μm, and the coating layer is formed of a metal belonging to Group 4a, 5a or 6a of the periodic table. Of oxides, carbides, nitrides, borides and aluminum oxides.
[0013]
The reason for adopting such a structure will be described below. Compounds containing at least one of oxides, carbides, nitrides, and carbonitrides of Zr and / or Hf (hereinafter, abbreviated as compounds such as Zr) are group 4a, 5a, and 6a which are frequently used as hard phases. Among compounds containing metal as a main component, the effect of maintaining alloy strength is the largest. Part of Zr and / or Hf is dispersed in the alloy in the form of carbide or the like, thereby increasing the alloy strength at high temperatures and improving the plastic deformation resistance of the coated cemented carbide. Another part is dissolved in the binder phase to improve the plastic deformation resistance of the binder phase. Further, compounds such as Zr have an effect of preventing plastic deformation at high temperatures. However, on the other hand, it is known that the presence of a compound such as Zr tends to lower the hardness of the cemented carbide base material and deteriorate the wear resistance.
[0014]
The present inventor has investigated the causes of the decrease in hardness and abrasion of the coated cemented carbide as described above, and as a result of diligent research, found that particles of a compound such as Zr in the surface layer and inward of the cemented carbide base material. It was completed by a large difference in diameter, and the feature is that the average particle size of the compound such as Zr is 0.02-0.5 μm, 150 μm in the region of 50 μm depth from the surface of the cemented carbide base material. Is 1.0 to 5.0 μm.
[0015]
With respect to the particle diameter of the compound such as Zr, the average particle diameter in the region of 50 μm deep from the surface of the cemented carbide base material is reduced to 0.02 to 0.5 μm. This is because the toughness in the region near the material surface is increased and the chipping resistance is improved. When the average particle size is less than 0.02 μm, wear resistance in continuous cutting is deteriorated, and chipping is apt to occur in intermittent cutting. When it is larger than 0.5 μm, toughness is deteriorated and chipping is liable. On the other hand, the reason why the particle size of the compound such as Zr is coarsened to an average particle size of 1.0 to 5.0 μm in a region having a depth of 150 μm or more from the surface of the cemented carbide base material is that the resistance to the coarseness This is because the plastic deformability is improved, and as a result, the wear resistance of the surface of the cemented carbide base material can be maintained. When the average particle size is less than 1.0 μm, the wear resistance in continuous cutting is deteriorated, and the chip is easily broken even in intermittent cutting. When the average particle size is more than 5.0 μm, the toughness is deteriorated and the chip is easily broken.
[0016]
The particle size was measured by grinding the cemented carbide base material by 1 mm in the depth direction, polishing with a diamond paste to a mirror surface, taking a photograph with a metallographic microscope, and determining the particle size by an intercept method.
[0017]
The particle size of the compound such as Zr is set to 0.5 μm to 1.0 μm in a region having a depth of 50 μm to 150 μm from the surface of the cemented carbide base material, and gradually increases from the surface of the cemented carbide toward the inside. In such a case, the toughness is improved, and the fracture is less likely to occur. In the present invention, irrespective of the presence or absence of the gradient of the average particle diameter, in the present invention, a hard phase made of a compound such as Zr or other carbides, nitrides, and carbons of metals in the periodic table 4a, 5a, and 6a are used. There is no region where the hard phase disappears from the nitride.
[0018]
Zr and / or Hf can be added to the alloy in the form of carbide, carbonitride, or the like in which W, Ta, Nb, V, or the like is previously dissolved. In addition, even if the compound such as Zr is a solid solution of Zr and Hf, the effect of the present invention is not hindered. Also, regarding the compound such as Zr, the cemented carbide base material has both carbide compound and non-carbide compound, so that it is very effective when processing a material such as FCD450 becomes particularly remarkable. I found it.
[0019]
By the way, the present invention does not prevent the possibility of including a carbide, nitride, and carbonitride of Ti as a hard layer. However, when such a Ti compound is added, compounds such as Zr disappear from the surface layer. It is necessary to be careful as it may happen. Rather, one feature of the present invention is that addition of a Ti compound is not necessarily required. For example, even if a cemented carbide base material is formed using only ZrC (and / or Hf), Co, and WC as a starting material, it can withstand high-temperature and high-speed cutting for a long time and is stable even in dry cutting under severe conditions. It has both abrasion resistance and fracture resistance so that it can be applied in a specific manner.
[0020]
In the present invention, it is not always necessary to include nitrogen in the cemented carbide base material. Nitride is superior in thermal properties such as high thermal conductivity compared to carbide, but the present invention is said to have excellent wear resistance and fracture resistance under severe processing conditions without containing nitrogen. Become.
[0021]
The reason why the structure of such a cemented carbide base material is formed is unknown, but the material of the compound such as Zr is added to the material of the cemented carbide, and these material compacts are placed in an inert gas atmosphere other than nitrogen. It is obtained by sintering at or above the liquid phase appearance temperature (about 1250 to 1300 ° C.). In this manufacturing method, diffusion of the surface portion and the inside occurs by increasing the pressure in the furnace, and as a result, the structure of the compound such as Zr changes, and it is speculated that the particle size may differ greatly between the surface layer and the inner core. . The control of the particle size is performed by controlling the atmospheric pressure during the temperature raising process and the sintering process.
[0022]
Then, a coating layer is formed on the surface of the cemented carbide base material described above. The coating layer is a single layer or a multi-layer composed of at least one of oxides, carbides, nitrides, borides and aluminum oxides of metals of Groups 4a, 5a and 6a of the periodic table, and is formed by ordinary CVD and PVD methods. I do. By forming the coating layer in this manner, the wear resistance of the alloy can be ensured.
[0023]
【Example】
Hereinafter, specific embodiments of the present invention and the operation thereof will be described in detail with reference to examples.
[0024]
(Example 1)
Powders of W, Zr, and Hf metals, carbides, and Co metals are prepared as raw material powders, weighed so that the composition of the sintered body has the composition shown in Table 1, and then the powder is subjected to ball milling using a cemented carbide alloy. The mixture was pulverized for 18 hours.
[0025]
[Table 1]
Figure 0003544632
[0026]
Next, the mixed powder is molded under pressure at a pressure of 2 ton / cm 2 , and the molded body is fired in an argon atmosphere at a liquid phase appearance temperature (1250 to 1300 ° C.) or higher. The atmosphere pressure was set to 0.8 Torr.
[0027]
At this time, depending on the sintering conditions, a layer having no phase composed of a compound such as Zr may be formed on the surface. At this time, by removing the surface portion by mechanical processing such as blasting or polishing, an alloy sintered body in which a compound phase such as Zr exists up to the surface can be obtained.
[0028]
For the obtained sintered alloy, the cemented carbide base material was ground by 1 mm in the depth direction, polished with diamond paste to a mirror surface, photographed with a metallographic microscope, and the average particle size was calculated by the intercept method. did. The average particle size was determined for a region (surface layer) having a depth of 50 μm from the surface of the cemented carbide base material, a region having a depth of 50 μm to 150 μm (intermediate layer), and a region having a depth of 150 μm or more (inner core). . These are described in Table 1.
[0029]
Further, in the region having a depth of 50 μm to 150 μm from the surface, those having an average particle diameter of a compound such as Zr of 0.5 μm to 1.0 μm are shown in Table 1 as those having an inclined particle diameter. The particle size distribution is shown as [presence], and the others are shown as particle size distribution [absence].
[0030]
Further, the components of the hard phase were specified according to the conventional method, and the presence or absence of the ZrC phase was confirmed. Table 1 shows the results.
[0031]
The sintered body No. In Nos. 1 to 4, 8, and 9, the hard phases consisted only of ZrO and WC. No. 5 additionally contains ZrC, and No. 5 6, 7 further contained HfC.
[0032]
Using these sintered bodies as a base material, the inner layer is coated with 1 μm TiN, 5 μm TiCN, the outer layer with 3 μm Al 2 O 3 , and the outermost layer with 0.5 μm TiN by the ordinary CVD method. Then, a continuous cutting test and an intermittent cutting test of dry cutting were performed, and the wear width was measured and the presence or absence of defects was confirmed.
[0033]
Table 2 shows the results.
[0034]
[Test condition]
(Continuous cutting test 1)
Work material: FC250, cylindrical material Cutting speed: 450 m / min
Cut: 2.0mm
Feed: 0.5mm / rev
Cutting oil: None Cutting time: 30 min
(Continuous cutting test 2)
Work material: FCD450, cylindrical material cutting speed: 300 m / min
Cut: 2.0mm
Feed: 0.5mm / rev
Cutting oil: None Cutting time: 15 min
(Intermittent cutting test)
Work material: FCD450, Cylindrical material with four 5mm width grooves Cutting speed: 100m / min
Cut: 2.0mm
Feed: 0.5mm / rev
Cutting oil: None Cutting time: 10 min
[0035]
[Table 2]
Figure 0003544632
[0036]
As is clear from Table 2, Sample No. having the particle size distribution described above. In each of Nos. 2 to 7, the wear width in the continuous cutting test was as small as less than 0.30 mm, and no breakage occurred in the intermittent cutting test, indicating good wear resistance and chipping resistance.
[0037]
Among them, sample No. 1 containing the ZrC phase was used. Nos. 5 to 7 showed excellent wear resistance with a wear width of less than 0.20 mm in a continuous cutting test 2 using FCD450 as a work material.
[0038]
Sample No. having no particle size distribution was used. Sample No. 1 was sometimes broken in the intermittent cutting test, but showed a small wear width of less than 0.30 mm in the continuous cutting test and excellent wear resistance.
[0039]
On the other hand, the sample No. 8, 9 are outside the scope of the present invention. That is, the sample No. 8 has no particle size distribution, and the average particle size of the Zr compound in the surface layer having a thickness of 50 μm from the surface of the cemented carbide base material is less than 0.02 μm, and the wear width of the continuous cutting test is 0.50 mm. Yes, and it was easy to cut in the intermittent cutting test. Further, the sample No. No. 9 does not have the above-mentioned particle size distribution, and the average particle size of the Zr compound in the inner core which is inside 150 μm from the surface of the cemented carbide base material is as large as 10.0 μm. Was small, but 90% was lost in the intermittent cutting test.
[0040]
【The invention's effect】
As described above, according to the coated cemented carbide of the present invention, in a coated cemented carbide in which a coating layer is applied to the surface of a cemented carbide base material, the hard phase is an oxide of Zr and / or Hf; Carbide, nitride, and a compound containing at least one of carbonitrides, and the average particle size of the compound is 0.02 to 0.5 μm in a region at a depth of 50 μm from the surface of the cemented carbide base material. , 150 μm depth region is 1.0 to 5.0 μm, so that when used as a cutting tool, toughness, hardness and plastic deformation resistance at high temperatures are dramatically improved, , Which withstands high-speed cutting. Further, the present invention can be stably applied to dry cutting under severe conditions, which has been almost impossible in the past.
[0041]
Thus, the coated cemented carbide according to the present invention more than sufficiently meets the demand for high-efficiency machining in the cutting of metal members and the requirement for consideration for the environment without using cutting oil for cutting edge cooling. Things.

Claims (3)

WCと鉄族金属からなる結合相金属と硬質相とからなる超硬合金母材の表面に被覆層を被着させた被覆超硬合金において、前記硬質相はZr及び/又はHfの酸化物、炭化物、窒化物、炭窒化物の少なくとも1種を含有する化合物から成り、かつ、該化合物の平均粒径が、超硬合金母材の表面から深さ50μmの領域は0.02〜0.5μm、150μmの深さの領域は1.0〜5.0μmであり、更に前記被覆層は、周期律表4a、5a、6a族金属の酸化物、炭化物、窒化物、ホウ化物及び酸化アルミニウムの少なくとも1種から成る単層又は多重層で形成されていることを特徴とする被覆超硬合金。In a coated cemented carbide in which a coating layer is applied on a surface of a cemented carbide base material composed of a binder phase metal composed of WC and an iron group metal and a hard phase, the hard phase is an oxide of Zr and / or Hf; Carbide, nitride, a compound containing at least one of carbonitrides, and the average particle size of the compound is 0.02 to 0.5 μm in a region 50 μm deep from the surface of the cemented carbide base material. , A region having a depth of 150 μm is 1.0 to 5.0 μm, and the coating layer further includes at least one of oxides, carbides, nitrides, borides, and aluminum oxides of metals of the periodic table 4a, 5a, and 6a. A coated cemented carbide characterized by being formed of a single layer or multiple layers of one kind. 前記硬質相の前記化合物は、超硬合金母材の表面から深さが50μm乃至150μmの間の領域における平均粒径が0.5μm〜1.0μmであることを特徴とする請求項1記載の被覆超硬合金。2. The compound according to claim 1, wherein the compound of the hard phase has an average particle size of 0.5 μm to 1.0 μm in a region between 50 μm and 150 μm in depth from the surface of the cemented carbide base material. 3. Coated cemented carbide. 前記硬質相はその内部に少なくともZrCを含むことを特徴とする請求項1または2記載の被覆超硬合金。3. The coated cemented carbide according to claim 1, wherein the hard phase contains at least ZrC therein.
JP14699899A 1999-05-26 1999-05-26 Coated cemented carbide Expired - Fee Related JP3544632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14699899A JP3544632B2 (en) 1999-05-26 1999-05-26 Coated cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14699899A JP3544632B2 (en) 1999-05-26 1999-05-26 Coated cemented carbide

Publications (2)

Publication Number Publication Date
JP2000336489A JP2000336489A (en) 2000-12-05
JP3544632B2 true JP3544632B2 (en) 2004-07-21

Family

ID=15420286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14699899A Expired - Fee Related JP3544632B2 (en) 1999-05-26 1999-05-26 Coated cemented carbide

Country Status (1)

Country Link
JP (1) JP3544632B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120902A (en) * 2007-11-14 2009-06-04 Sumitomo Electric Ind Ltd Laminated structure type cemented carbide, its manufacturing method, and tool made of the cemented carbide

Also Published As

Publication number Publication date
JP2000336489A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
EP0569696B1 (en) Coated cemented carbide members and method of manufacturing the same
JPS6348836B2 (en)
US6140262A (en) Polycrystalline cubic boron nitride cutting tool
JP2007229821A (en) Surface-coated cutting tool
WO2010104094A1 (en) Cermet and coated cermet
JPH08209336A (en) Coated hard alloy
JPS61101482A (en) Silicon nitride cutting tool
JPH0196083A (en) Surface-coated cubic boron nitride based material sintered under superhigh pressure to be used for cutting tool
JP3544632B2 (en) Coated cemented carbide
JP2006305708A (en) Sialon throw-away tip, and cutting tool
JP2005047004A (en) Composite high-hardness material for tool
JP3235259B2 (en) Coated cemented carbide member and method of manufacturing the same
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
JP3611184B2 (en) Ceramic sintered body cutting tool for cast iron machining and coated ceramic sintered body cutting tool for cast iron machining
JPH02275763A (en) Silicon nitride-base sintered material
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2604155B2 (en) Ceramic tool with coating layer
JP3009310B2 (en) Sialon-based sintered body and its coated sintered body
JP2570354B2 (en) Surface coated ceramic members for cutting tools
JP2000038637A (en) End mill made of surface-coated cemented carbide in which substrate has high toughness
JPH06298568A (en) Whisker-reinforced sialon-based sintered compact and sintered and coated material
JP2007136653A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120416

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees