JP2005047004A - Composite high-hardness material for tool - Google Patents

Composite high-hardness material for tool Download PDF

Info

Publication number
JP2005047004A
JP2005047004A JP2004265400A JP2004265400A JP2005047004A JP 2005047004 A JP2005047004 A JP 2005047004A JP 2004265400 A JP2004265400 A JP 2004265400A JP 2004265400 A JP2004265400 A JP 2004265400A JP 2005047004 A JP2005047004 A JP 2005047004A
Authority
JP
Japan
Prior art keywords
sintered body
composite high
hardness material
powder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004265400A
Other languages
Japanese (ja)
Other versions
JP4191663B2 (en
Inventor
Akira Kukino
暁 久木野
Tetsuo Nakai
哲男 中井
Mitsuhiro Goto
光宏 後藤
Takeshi Yoshioka
剛 吉岡
Makoto Setoyama
誠 瀬戸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004265400A priority Critical patent/JP4191663B2/en
Publication of JP2005047004A publication Critical patent/JP2005047004A/en
Application granted granted Critical
Publication of JP4191663B2 publication Critical patent/JP4191663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite high-hardness material for tools having a base material consisting of a CBN sintered body containing, by volume, 20% cubic boron nitride, or a base material consisting of a diamond sintered body containing 40% diamond. <P>SOLUTION: At least one hard heat-resistant film mainly consisting of at least one kind of element selected among C, N and O, Ti and Al is deposited on a part related to at least cutting. The ideal composite high-hardness material for tools has both the high hardness and the high strength (several times higher than that of cemented carbide) of the CBN sintered body or the diamond sintered body and the excellent wear resistance of the hard and heat-resistant film, and demonstrates considerably long lifetime compared with a conventional tool when used in cutting of hardened steel, rough turning of cast iron, common grinding of cast iron with aluminum alloy, etc. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は立方晶型窒化硼素(CBN)を主成分とした焼結体(以下、CBN焼結体)またはダイヤモンドを主成分とした焼結体(ダイヤモンド焼結体)を基材とする切削工具材料の改良に関するものであり、特に、強度と耐摩耗性に優れた工具用複合材料に関するものである。   The present invention relates to a cutting tool based on a sintered body mainly composed of cubic boron nitride (CBN) (hereinafter referred to as CBN sintered body) or a sintered body mainly composed of diamond (diamond sintered body). More particularly, the present invention relates to a composite material for a tool excellent in strength and wear resistance.

CBN焼結体はダイヤモンドに次ぐ高い硬度を有する材料で、金属との反応性が低いので金属の切削工具として使用されている。CBN焼結体は結合材(焼結助剤)を用いてCBN焼結粒子を高温高圧下で焼結させて作られるが、下記の3つのタイプに大別する事ができる:
(1) CBN結晶粒子を20〜80体積%含み、結合材としてTiの炭化物、窒化物、炭窒化物を用いるもの(例、下記文献)
特開昭53−77811号公報
A CBN sintered body is a material having the second highest hardness after diamond, and is used as a metal cutting tool because of its low reactivity with metals. CBN sintered bodies are made by sintering CBN sintered particles at high temperature and high pressure using a binder (sintering aid), and can be roughly divided into the following three types:
(1) Containing 20 to 80% by volume of CBN crystal particles, and using Ti carbide, nitride, carbonitride as binder (eg, following literature)
JP 53-77811 A

(2) CBN結晶粒子を80体積%含み、結合材としてAlおよびCo金属を用いるもの(例、下記文献)
特公昭52−43846 号公報
(2) Containing 80% by volume of CBN crystal particles and using Al and Co metals as binders (eg, the following documents)
Japanese Patent Publication No.52-43846

(3) CBN結晶粒子を95体積−以上含み、結合材としてM324(ここで、Mはアルカリ土類金属)を用いるもの(例、下記文献)
特開昭59−57967 号公報
(3) Containing 95 vol-% or more of CBN crystal particles and using M 3 B 2 N 4 (where M is an alkaline earth metal) as a binder (eg, the following document)
JP 59-57967

これらのCBN焼結体は極めて高い硬度を有し、熱伝導率が高い(高温強度に優れている)ので、各種の鋼の切削工具として利用されている。例えば、タイプ(1) のCBN焼結体はビッカース硬度 3,500〜4,300 を有し、耐摩耗、耐欠損性に優れているので高硬度鋳鉄の切削等に利用されており、タイプ(3) のCBN焼結体はビッカース硬度 4,000〜4,800 を有し、熱伝導性に優れているのでボンディングツール等に利用されている。しかし、CBN焼結体には劈開性があり、耐酸化性に弱点があるため、難削材料、例えばトランスミッション用の鋼の切削では、CBN焼結体のみでは耐摩耗性が不足し、摩耗が回避できない。   Since these CBN sintered bodies have extremely high hardness and high thermal conductivity (excellent in high temperature strength), they are used as cutting tools for various steels. For example, type (1) CBN sintered body has Vickers hardness of 3,500-4,300 and is excellent in wear resistance and fracture resistance, so it is used for cutting high-hardness cast iron. Type (3) CBN The sintered body has a Vickers hardness of 4,000 to 4,800 and is excellent in thermal conductivity, and is used for bonding tools and the like. However, the CBN sintered body has a cleavage property and has a weak point in oxidation resistance. Therefore, when cutting difficult-to-cut materials such as transmission steel, the CBN sintered body alone has insufficient wear resistance and wear. It cannot be avoided.

CBN焼結体の耐摩耗性を向上させるために、CBN焼結体にTiN等の各種耐摩耗層を被覆する方法が提案されている(例、下記文献)が、これら公知のコーティングCBN工具は、耐摩耗層の硬度、耐酸化性がCBN基材と比べ著しく劣るため工具の摩耗はさけられず、未だに実用的に十分な使用寿命の長い切削工具は得られていない。
特開昭61−183,187 号公報、 特開平1−96,083号公報、 特開平1−96,084号公報
In order to improve the wear resistance of the CBN sintered body, a method of coating the CBN sintered body with various wear-resistant layers such as TiN has been proposed (for example, the following documents). Further, since the hardness and oxidation resistance of the wear-resistant layer are significantly inferior to those of the CBN base material, the wear of the tool is not avoided, and a cutting tool having a practically sufficient service life has not yet been obtained.
JP-A-61-183,187, JP-A-1-96,083, JP-A-1-96,084

特に焼入鋼等の高硬度難削材の切削においてはコーティング層の強度及び硬度の不足が致命的でコーティングによる耐摩耗性向上の効果が現れない。また超硬合金にTiN、(TiAl)N、TiCN、Al23等を被覆した工具を提案されているが切削温度が高くなると、基材内部が著しく弾塑性変形し、容易に剥離または破壊してしまい、特に焼入鋼等の高硬度難削材の切削においては利用できない。 In particular, in cutting hard hard-to-cut materials such as hardened steel, the lack of strength and hardness of the coating layer is fatal and the effect of improving the wear resistance by coating does not appear. The TiN in the cemented carbide, (TiAl) N, TiCN, when it has been proposed a tool coated with Al 2 O 3, or the like cutting temperature increases, the internal substrate is remarkably elastic-plastic deformation, easily peeled or destroyed In particular, it cannot be used for cutting hard hard-to-cut materials such as hardened steel.

ダイヤモンド焼結体はCBN焼結体に比較して高硬度であり、ダイヤモンド粒子自体が劈開面が少なくかつ一般的に欠陥も少ないことと、粒子同士が強固に結合していることから、抗折力が高く、ヤング率が高く、従って、高強度であるという特徴を有している。しかし、これらの広く市販されているダイヤモンド焼結体はダイヤモンドが耐酸化性に劣ることと、鉄系の材料の切削においては著しく耐摩耗性が低下するため、実用的な切削に利用できないという欠点がある。そのため、ダイヤモンド焼結体の優れた特性を生かし切れず、アルミ等の非鉄系硬質材料の切削に限定されているのが現状である。   The diamond sintered body is harder than the CBN sintered body, and the diamond particles themselves have few cleavage planes and generally have few defects, and the particles are firmly bonded. It has the characteristics of high strength, high Young's modulus, and high strength. However, these widely-sintered diamond sintered bodies have the disadvantage that diamond is inferior in oxidation resistance and cannot be used for practical cutting because the wear resistance is remarkably reduced in cutting of iron-based materials. There is. For this reason, the present situation is that the superior characteristics of the diamond sintered body cannot be fully utilized, and the present invention is limited to cutting of non-ferrous hard materials such as aluminum.

本発明の目的は、CBN焼結体またはダイヤモンド焼結体の高い硬度および高い強度(超硬合金に比べ数倍)と、硬質耐熱被膜の優れた耐摩耗性とを併せ持った、例えば焼入鋼切削や鋳鉄の粗切削、鋳鉄とアルミ合金との共削り等で用いた場合に、従来工具に対して著しく長い寿命を示す理想的な工具用複合高硬度材料を提供することにある。   The object of the present invention is, for example, a hardened steel having both the high hardness and high strength of a CBN sintered body or diamond sintered body (several times compared to a cemented carbide) and the excellent wear resistance of a hard heat-resistant coating. An object of the present invention is to provide an ideal composite high-hardness material for a tool that has a remarkably long life compared to conventional tools when used in cutting, rough cutting of cast iron, co-machining of cast iron and aluminum alloy, and the like.

本発明は、立方晶型窒化硼素を20体積%以上含むCBN焼結体から成る基材またはダイヤモンドを40%以上含むダイヤモンド焼結体からなる基材を有する工具用の複合高硬度材料において、C、NおよびOの中から選択される少なくとも1種の元素と、Tiと、Alとを主成分とした厚さが 0.5〜15μmの少なくとも1層の硬質耐熱被膜を少なくとも切削に関与する箇所に有することを特徴とする工具用複合高硬度材料を提供する。   The present invention relates to a composite high hardness material for a tool having a base material made of a CBN sintered body containing 20% by volume or more of cubic boron nitride or a base material made of a diamond sintered body containing 40% or more of diamond. , Having at least one hard heat-resistant film having a thickness of 0.5 to 15 μm mainly composed of at least one element selected from N and O, Ti, and Al at least in a part involved in cutting A composite high-hardness material for a tool is provided.

本発明の工具用複合高硬度材料は、優れた強度、硬度および靭性を有するCBN焼結体およびダイヤモンド焼結体に優れた硬度と耐熱性とを有する硬質耐熱被膜を密着性良く被覆することによって強度、靭性および耐摩耗性を兼ね備えた工具用複合高硬度材料となり、従来の工具に比較して著しく高寿命かつ幅広い用途に適用可能な切削性能を発揮するという効果がある。   The composite high hardness material for tools of the present invention is obtained by coating a CBN sintered body having excellent strength, hardness and toughness and a hard heat resistant coating having excellent hardness and heat resistance on a diamond sintered body with good adhesion. It becomes a composite high hardness material for tools having both strength, toughness and wear resistance, and has an effect of exhibiting cutting performance applicable to a wide range of applications with a significantly longer life than conventional tools.

[図1]は本発明の複合硬度材料の概念的な図であり、(1) は硬質耐熱被膜、(2)は基材、(3) と(4) は必要に応じて設けられる中間層と表面層である。
[図2]は本発明の複合硬度材料を製造するのに用いることができる成膜装置の一例の概念図で、(5) は真空チャンバー、(6) は回転式基材保持具に取付けられた複数個の基材を概念的に表したもの、(7) は回転式基材保持具、(8) は回転式基材保持具を取り囲んだ複数のターゲットである。
[FIG. 1] is a conceptual diagram of the composite hardness material of the present invention, (1) is a hard heat-resistant coating, (2) is a substrate, and (3) and (4) are intermediate layers provided as necessary. And the surface layer.
[FIG. 2] is a conceptual diagram of an example of a film forming apparatus that can be used to manufacture the composite hardness material of the present invention. (5) is attached to a vacuum chamber and (6) is attached to a rotary substrate holder. (7) is a rotary base material holder, and (8) is a plurality of targets surrounding the rotary base material holder.

硬質耐熱被膜(1) はイオンプレーティング法などのPVD法で作ることができる。PVD法は基材強度 (工具の場合には基材の耐摩耗性、耐欠損性) を高いレベルに維持したままその表面を処理することができる。本発明の硬質耐熱膜を作製するには、原料元素のイオン化効率が高く、反応性に富み、基材にバイアス電圧を印加することによって密着性に優れた被膜を得ることができるアーク式イオンプレーテンィグ法が最も適している。   The hard heat-resistant coating (1) can be formed by a PVD method such as an ion plating method. The PVD method can treat the surface of the substrate while maintaining the substrate strength (abrasion resistance and fracture resistance of the substrate in the case of a tool) at a high level. In order to produce the hard heat-resistant film of the present invention, the ionization efficiency of the raw material elements is high, the reactivity is high, and an arc type ion plate capable of obtaining a film having excellent adhesion by applying a bias voltage to the substrate. Tengu method is most suitable.

基材(2) と硬質耐熱被膜(1) との間には膜厚が0.05〜5μmの少なくとも1層の中間層(3) を設けるのが好ましい。この中間層(3) は周期律表4a、5aおよび6a族元素の窒化物、炭化物、酸化物並びにこれらの固溶体より成る群の中から選択される材料で作るのが好ましい。この中間層(3) は硬質耐熱被膜(1) と基材(2) との間の密着性を向上させる役目をする。また、特性が大きく異なる基材と硬質耐熱被膜との間に中間的な特性の中間層を設けることによって特性の変化を段階的に制御して、膜の残留応力を低減する効果が期待できる。   It is preferable to provide at least one intermediate layer (3) having a thickness of 0.05 to 5 μm between the substrate (2) and the hard heat-resistant coating (1). This intermediate layer (3) is preferably made of a material selected from the group consisting of nitrides, carbides, oxides and their solid solutions of the elements 4a, 5a and 6a of the periodic table. This intermediate layer (3) serves to improve the adhesion between the hard heat resistant coating (1) and the substrate (2). In addition, by providing an intermediate layer having an intermediate characteristic between a base material and a hard heat-resistant film having greatly different characteristics, an effect of reducing the residual stress of the film can be expected by controlling the change in the characteristic stepwise.

この硬質耐熱被膜(1) は下記文献に記載の方法で作ることができる。
特開平2-194,159 号公報
This hard heat-resistant coating (1) can be produced by the method described in the following document.
JP-A-2-194,159

この硬質耐熱被膜はTiN被膜と比べて硬度に優れ (TiNのHv=2,000 に対し硬質耐熱被膜のHv=2,800 )、耐酸化性に優れ(TiNの酸化開始温度が700 ℃であるのに対して硬質耐熱被膜は約 1,000℃)ているが、本発明者達は、CBN焼結体およびダイヤモンド焼結体にこの硬質耐熱被膜を被覆すると切削性能、耐摩耗性および耐欠損性が著しく向上するということを見い出した。   This hard heat-resistant coating is superior in hardness compared to TiN coating (Hv of TiN = 2,000 compared to Hv of TiN = 2,800) and excellent in oxidation resistance (as opposed to the oxidation start temperature of TiN of 700 ° C) The hard heat-resistant coating is about 1,000 ° C), but the present inventors say that the cutting performance, wear resistance and fracture resistance are remarkably improved when the CBN sintered body and diamond sintered body are coated with this hard heat-resistant coating. I found out.

すなわち、超硬合金製工具では、TiN、TiCNまたはAl23の被膜をコーティングして耐摩耗性と耐酸化性とを向上させて、寿命を延ばすことが一般に行われている。従って、cBN工具にも同様な被膜をコーティッグすることが試みられたが、十分な結果は得られていない。 That is, in a cemented carbide tool, it is common to extend the life by coating with a coating of TiN, TiCN or Al 2 O 3 to improve wear resistance and oxidation resistance. Thus, attempts have been made to coat similar coatings on cBN tools, but with insufficient results.

本発明者達は、被膜の構成元素をC、N、Oの少なくとも1種と、Tiと、Alとで構成することでcBN工具の寿命を延ばす効果が得られることを見出した(耐摩耗性、耐酸化性、耐反応性、耐チッピング性等の向上)。特に、TiXAl1-XN(x= 0.3〜0.5 )は膜特性(膜硬度、耐酸化性)、生産性に優れており、望ましい。
TiAlNは被膜は高硬度、高耐酸化性であることは知られているが、本発明者達はTiAlNが高硬度なcBNの耐摩耗性を損なわずに耐酸化性を向上させることを見出した。また、TiAlNにCを加えた膜はTiAlNより高硬度であり、Oを加えた膜は耐酸化性に優れている。
硬質耐熱被膜はその結晶構造が立方晶型であるものが特に硬度に優れ、cBN工具の耐摩耗性を損ねることがない。
The inventors of the present invention have found that an effect of extending the life of a cBN tool can be obtained by forming the constituent elements of the film with at least one of C, N, and O, Ti, and Al (wear resistance). , Oxidation resistance, reaction resistance, chipping resistance, etc.). In particular, Ti X Al 1-X N (x = 0.3 to 0.5) is desirable because it is excellent in film characteristics (film hardness, oxidation resistance) and productivity.
Although TiAlN is known to have high hardness and high oxidation resistance, the present inventors have found that TiAlN improves oxidation resistance without impairing the wear resistance of cBN having high hardness. . Moreover, the film | membrane which added C to TiAlN is higher hardness than TiAlN, and the film | membrane which added O is excellent in oxidation resistance.
A hard heat-resistant coating having a cubic crystal structure is particularly excellent in hardness and does not impair the wear resistance of the cBN tool.

薄膜の硬度は基材の硬度の影響を受けやすく、薄膜の厚みが薄くなるにつれ、その影響は顕著になり基材の硬度に近づくことが一般に知られているが、本発明者達は、現存する物質の中で最も室温における硬度および切削時の高温状態(800℃以上)での硬度が高いダイヤモンド焼結体(室温でHv=9000以上) と、次いで硬度の高いCBN焼結体(室温でHv=3000〜4500) とを基材として用いることにより、超硬合金(Hv=1800) を基材とした場合に大きな問題となっていた基材の変形を著しく抑制し、切削時の高温条件下でも硬質耐熱膜が高硬度を維持し、CBN焼結体およびダイヤモンド焼結体からなる工具の耐摩耗性を著しく向上させるということを見出した。また、イオンプレーティング法を用いて基材との密着性の優れた硬質耐熱被膜を成膜することによって切削時の硬質耐熱被膜の変形が基材との界面により拘束され、その効果によっても硬質耐熱被膜の硬度は大幅に上昇する。   It is generally known that the hardness of a thin film is easily influenced by the hardness of the base material, and as the thickness of the thin film becomes thin, the effect becomes remarkable and approaches the hardness of the base material. Diamond sintered body (Hv = 9000 or more at room temperature) having the highest hardness at room temperature and high temperature (800 ° C or higher) during cutting, followed by a CBN sintered body having high hardness (at room temperature) Hv = 3000 to 4500) as a base material, the deformation of the base material, which has been a major problem when using cemented carbide (Hv = 1800) as the base material, is remarkably suppressed, and high temperature conditions during cutting It has been found that the hard heat-resistant film maintains a high hardness even underneath and significantly improves the wear resistance of a tool made of a CBN sintered body and a diamond sintered body. Also, by forming a hard heat-resistant film with excellent adhesion to the substrate using the ion plating method, deformation of the hard heat-resistant film during cutting is constrained by the interface with the substrate, and the effect is also hard. The hardness of the heat resistant coating is significantly increased.

従って、このような硬質耐熱被膜をCBN焼結体およびダイヤモンド焼結体を基材とする工具の少なくとも切削に関与する箇所の表面上に被覆することによって、CBN焼結体およびダイヤモンド焼結体の高硬度および高強度と、硬質耐熱被膜の優れた耐熱性および耐酸化性との長所が顕在化し、耐摩耗性および耐欠損性が著しく向上し、その結果、切削性能および工具寿命が大幅に延びるという効果が得られる。   Therefore, by coating such a hard heat-resistant coating on the surface of at least a part involved in cutting of a tool based on a CBN sintered body and a diamond sintered body, the CBN sintered body and the diamond sintered body are coated. The advantages of high hardness and high strength, and excellent heat resistance and oxidation resistance of hard heat-resistant coatings become obvious, and wear resistance and fracture resistance are remarkably improved, resulting in a significant increase in cutting performance and tool life. The effect is obtained.

硬質耐熱膜は組成の異なる2種以上の化合物層を積層した構造でも、それを周期的に多数積層したものでもよい。また、硬質耐熱膜の組成が基材側から表面側にかけて組成が連続的または段階的に変化する傾斜組成にすることもできる。また、基材と中間層または硬質耐熱膜、中間層と硬質耐熱膜、硬質耐熱膜間、硬質耐熱膜と表面層との間を同様な傾斜構造にすることもできる。この傾斜構造は膜の剥離やクラックが問題となる場合に効果的である。   The hard heat-resistant film may have a structure in which two or more compound layers having different compositions are laminated, or a structure in which a large number of them are periodically laminated. Further, the composition of the hard heat-resistant film may be a gradient composition in which the composition changes continuously or stepwise from the substrate side to the surface side. Further, the same inclined structure can be formed between the base material and the intermediate layer or the hard heat resistant film, between the intermediate layer and the hard heat resistant film, between the hard heat resistant film, and between the hard heat resistant film and the surface layer. This inclined structure is effective when peeling or cracking of the film becomes a problem.

硬質耐熱被膜の全膜厚が 0.5μm未満の場合には耐摩耗性の向上がほとんど見られず、15μmを超えると硬質耐熱被膜中の残留応力の影響で基材との密着性が低下したり、高硬度基材を用いた場合の硬質耐熱被膜の高硬度化効果が薄れ、硬質耐熱被膜自体の硬度(Hv=2800)が支配的になり、十分な硬度を得られず、耐摩耗性は低下する。従って、硬質耐熱被膜全体の膜厚は 0.5〜15μmにする。   When the total film thickness of the hard heat-resistant coating is less than 0.5 μm, there is almost no improvement in wear resistance, and when it exceeds 15 μm, the adhesion to the substrate decreases due to the residual stress in the hard heat-resistant coating. The effect of increasing the hardness of the hard heat-resistant film when using a high-hardness base material is diminished, the hardness of the hard heat-resistant film itself (Hv = 2800) becomes dominant, and sufficient hardness cannot be obtained. descend. Therefore, the film thickness of the entire hard heat resistant coating is 0.5 to 15 μm.

中間層の膜厚は0.05μm未満では密着性の向上が見られず、逆に5μmを越えても密着性の向上は見られない。従って、特性および生産性の観点から中間層の膜厚は0.05〜5μmの範囲にするのが好ましい。また、硬質耐熱膜の最上層に形成できる表面層の厚さは5μm以下にするのが好ましい。5μmを越えると剥離等により耐摩耗性、耐欠損性の向上は見られなくなる。また、生産性の観点からも適当ではない。   If the thickness of the intermediate layer is less than 0.05 μm, no improvement in adhesion is observed, and conversely, if the thickness exceeds 5 μm, no improvement in adhesion is observed. Therefore, the thickness of the intermediate layer is preferably in the range of 0.05 to 5 μm from the viewpoints of characteristics and productivity. The thickness of the surface layer that can be formed on the uppermost layer of the hard heat-resistant film is preferably 5 μm or less. If it exceeds 5 μm, no improvement in wear resistance and chipping resistance is observed due to peeling or the like. Further, it is not appropriate from the viewpoint of productivity.

本発明の工具用複合材料はチップ、ドリル、エンドミル等の切削工具に加工して使用することができる。本発明の工具用複合高硬度材料から作った工具は切削性能および工具寿命が格段に向上することが確認されている。   The composite material for a tool of the present invention can be used after being processed into a cutting tool such as a tip, a drill or an end mill. It has been confirmed that the cutting performance and tool life of the tool made from the composite high hardness material for tool of the present invention are remarkably improved.

CBN焼結体基材は前記の3つのタイプのCBN焼結体の中から選択できる。好ましいCBN焼結体としては下記 (1)〜(3) のものを上げることができる。
(1) 立方晶型窒化硼素(CBN)粉末30〜90体積%と残部の結合材粉末とを超高圧焼結して得られた焼結体であって、残部の結合材が周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物並びにこれらの固溶体から成る群の中から選択される少なくとも1種と、アルミニウムおよび/またはアルミニウム化合物とからなる結合材と、不可避的不純物とであるCBN焼結体。
The CBN sintered body substrate can be selected from the above-mentioned three types of CBN sintered bodies. As preferable CBN sintered bodies, the following (1) to (3) can be raised.
(1) A sintered body obtained by ultra-high pressure sintering of cubic boron nitride (CBN) powder 30 to 90% by volume and the remaining binder powder, the remaining binder being a periodic table 4a A binder composed of at least one selected from the group consisting of nitrides, carbides, borides, oxides and solid solutions of elements 5a and 6a, and aluminum and / or aluminum compounds; A CBN sintered body which is an impurity.

タイプ(1) のCBN焼結体の中では、結合材粉末として50〜95重量%のTiC、TiN、TiCN、(TiM)C、(TiM)Nおよび(TiM)CNから成る群の中から選択される少なくとも1種(ここで、MはTiを除く周期律表4a、5aおよび6a族元素からなる群の中から選択される遷移金属)と、5〜50重量%のアルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなるCBN焼結体は耐摩耗性や強度に優れ、好ましい。   Among the CBN sintered bodies of type (1), the binder powder is selected from the group consisting of 50 to 95% by weight of TiC, TiN, TiCN, (TiM) C, (TiM) N and (TiM) CN. At least one (wherein M is a transition metal selected from the group consisting of elements 4a, 5a and 6a of the periodic table excluding Ti) and 5 to 50% by weight of aluminum and / or aluminum compound And a CBN sintered body made of unavoidable impurities is preferable because of its excellent wear resistance and strength.

(2) 立方晶型窒化硼素(CBN)粉末40〜95体積%と残部の結合材粉末とを超高圧焼結して得られた焼結体であって、残部の結合材粉末が1〜50重量%のTiNと、Co、NiおよびWCからなる群の中から選択される少なくとも1種と、アルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなるもの。 (2) A sintered body obtained by ultra-high pressure sintering of cubic boron nitride (CBN) powder 40 to 95% by volume and the remaining binder powder, the remaining binder powder being 1 to 50 What consists of at least 1 sort (s) selected from the group which consists of weight percent TiN, Co, Ni, and WC, aluminum and / or an aluminum compound, and an unavoidable impurity.

(3) 立方晶型窒化硼素(CBN)粉末90体積%と残部の結合材粉末とを超高圧焼結して得られた焼結体であって、残部結合材粉末が周期律表1a、2a族元素の硼化物と、TiNと、不可避的不純物とからなる焼結体。残部結合材は1〜50重量%のTiNを含むものが好ましい。 (3) A sintered body obtained by ultra-high pressure sintering of 90% by volume of cubic boron nitride (CBN) powder and the remaining binder powder, and the remaining binder powder is a periodic table 1a, 2a A sintered body comprising a boride of a group element, TiN, and inevitable impurities. The remaining binder preferably contains 1 to 50% by weight of TiN.

タイプ(1) のCBN焼結体自体は公知であり、その特性および製造方法は下記文献に詳細に記載されている。
特開昭53−7781号公報
The CBN sintered body of type (1) is known per se, and its characteristics and production methods are described in detail in the following documents.
Japanese Patent Laid-Open No. 53-7781

タイプ(2) のCBN焼結体は下記文献に記載の結合材にTiNを加えたものにすることができる。
特公昭52−43846 号公報
The CBN sintered body of type (2) can be obtained by adding TiN to the binder described in the following document.
Japanese Patent Publication No.52-43846

TiNを加えることによって硬質耐熱被膜との密着性がある。タイプ(3) のCBN焼結体は下記文献に記載の結合材にTiNを加えたものにすることができる。
特開昭59−57967 号公報
By adding TiN, there is adhesion with a hard heat-resistant coating. The CBN sintered body of type (3) can be obtained by adding TiN to the binder described in the following document.
JP 59-57967

タイプ(3) のCBN焼結体もTiNを加えることによって硬質耐熱膜との密着性が上がる。   Type (3) CBN sintered body also improves adhesion to the hard heat-resistant film by adding TiN.

タイプ(1) のCBN焼結体は結合材として周期律表4a、5a、6a族元素の窒化物、炭化物、硼化物、酸化物並びにこれらの固溶体から成る群の中から選択される少なくとも1種と、5〜50重量%のアルミニウムおよび/またはアルミニラウム化合物とからなり、これらが高温高圧下での焼結時にCBNと反応して硼化アルミニウム(AlB2)、窒化アルミニウム(AlN)等の化合物がCBN粒子と結合材の界面で生成し、各粒子間の結合力を高め焼結体の靭性および強度を向上させる。結合材としてTiNおよび/またはTiCを用いた場合には、TiNZおよびTiCZのZ値をそれぞれ 0.5≦z≦0.85、0.65≦z≦0.85とし、化学量論比からズラすことによって遊離チタン量を増やしてCBNを結合材の反応促進させる効果によって、AlB2、AlN、TiB2等の反応生成物により良好な摩擦特性および強度を持ったCBN焼結体を得ることができる。Z値がそれぞれ 0.5および0.65未満になると酸化反応による発熱により粉末の充填操作が困難になり、0.85を超えるとCBNと結合材の反応性は化学量論比のTiNおよびTiCを用いた場合とほとんど変わらなくなる。 The CBN sintered body of type (1) is at least one selected from the group consisting of nitrides, carbides, borides, oxides, and solid solutions of group 4a, 5a, and 6a elements as a binder. And aluminum and / or aluminium compound of 5 to 50% by weight, and these react with CBN during sintering under high temperature and high pressure to form compounds such as aluminum boride (AlB 2 ) and aluminum nitride (AlN) Is generated at the interface between the CBN particles and the binder, increasing the bonding force between the particles and improving the toughness and strength of the sintered body. When TiN and / or TiC is used as the binder, the Z values of TiN Z and TiC Z are 0.5 ≦ z ≦ 0.85 and 0.65 ≦ z ≦ 0.85, respectively, and the amount of free titanium is shifted from the stoichiometric ratio. Due to the effect of promoting the reaction of CBN by increasing CBN, a reaction product such as AlB 2 , AlN, TiB 2 can be used to obtain a CBN sintered body having better friction characteristics and strength. When the Z value is less than 0.5 and 0.65, respectively, the powder filling operation becomes difficult due to the heat generated by the oxidation reaction. When the Z value exceeds 0.85, the reactivity between CBN and the binder is almost the same as when using stoichiometric TiN and TiC. It will not change.

タイプ(1) のCBN焼結体の結合材粉末としてTiNZ(0.5≦Z≦0.85) および/またはTiCZ (0.65≦Z≦0.85) を用いた場合には、結合材中のアルミニウムおよび/またはアルミニウム化合物量が5重量%未満では、アルミニウムおよび/またはアルミニウム化合物とCBNとの反応が不十分になり、結合材によるCBNの保持力が弱くなる。逆に、40重量%を超えるとAlB2、AlN、TiB2等の反応生成物が多くなってCBNの保持力は上がるが、AlB2、AlNと比べ硬度や機械的強度に優れたCBNの相対的な含有量が低下するため耐摩耗性が著しく低下する。従って、従来はタイプ(1) のCBN焼結体を切削工具として用いる場合には、結合材粉末の組成としては60〜95重量%のTiNZ(0.5 ≦z≦0.85) および/またはTiCZ (0.65≦z≦0.85) と、 5〜40重量%のアルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなるものが最も適当であった。 When TiN Z (0.5 ≦ Z ≦ 0.85) and / or TiC Z (0.65 ≦ Z ≦ 0.85) is used as the binder powder of the CBN sintered body of type (1), aluminum in the binder and / or When the amount of the aluminum compound is less than 5% by weight, the reaction between aluminum and / or the aluminum compound and CBN becomes insufficient, and the holding power of CBN by the binder becomes weak. On the contrary, if it exceeds 40% by weight, reaction products such as AlB 2 , AlN, TiB 2 and the like increase and the retention of CBN increases, but the relative strength of CBN superior in hardness and mechanical strength compared to AlB 2 and AlN. Since the general content is reduced, the wear resistance is significantly reduced. Therefore, conventionally, when a CBN sintered body of type (1) is used as a cutting tool, the composition of the binder powder is 60 to 95% by weight of TiN Z (0.5 ≦ z ≦ 0.85) and / or TiC Z ( 0.65 ≦ z ≦ 0.85), 5 to 40% by weight of aluminum and / or aluminum compound, and unavoidable impurities are most suitable.

しかし、本発明の工具用複合高硬度材料においては、高硬度で耐酸化性に優れた硬質耐熱被膜を被覆することによって耐摩耗性の劣るCBN焼結体に優れた耐摩耗性を付与させることができるので、本発明の工具用複合高硬度材料の基材用CBN焼結体に要求される特性は高靭性で且つ高強度であることが耐摩耗性よりも重要である。換言すれば、従来では十分な靭性を備えていても耐摩耗性に欠陥があるために高硬度難削材の切削に用いられなかった、結合材粉末に多量のアルミニウムおよび/またはアルミニウム化合物を含有するCBN焼結体であっても硬質耐熱被膜を被覆することによって耐欠損性と耐摩耗性とを兼ね備えた理想的な工具用複合高硬度材料となり得ることが本発明によって明らかとなった。   However, in the composite high-hardness material for tool of the present invention, excellent wear resistance is imparted to the CBN sintered body having poor wear resistance by coating a hard heat-resistant film having high hardness and excellent oxidation resistance. Therefore, it is more important than the wear resistance that the characteristics required for the CBN sintered body for base material of the composite high hardness material for tools of the present invention are high toughness and high strength. In other words, a binder powder containing a large amount of aluminum and / or an aluminum compound, which has not been used for cutting hard-to-cut materials with high hardness due to defects in wear resistance even though it has sufficient toughness in the past. It has been clarified by the present invention that even a CBN sintered body can be an ideal composite high hardness material for tools having both fracture resistance and wear resistance by coating a hard heat resistant coating.

タイプ(1) のCBN焼結体では特に、残部結合材粉末が50〜80重量%のTiNZ(0.5≦z≦0.85) と、15〜50重量%のアルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなり、抗折力(JIS規格で測定)が 110Kgf/mm2以上のものと、残部結合材粉末が50〜80重量%のTiCZ(0.65≦z≦0.85)と、20〜50重量%のアルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなり、抗折力(JIS規格で規定)が105Kgf/mm2以上のものが上記の効果が顕著であり、通常のCBN焼結体工具や従来の耐摩耗性被覆を有するCBN焼結体工具では切削不可能であった高硬度焼入鋼の強断続切削においても実用レベルを十分に満たす工具寿命を実現できる。 Especially in the type (1) CBN sintered body, the remaining binder powder is inevitable with 50 to 80% by weight of TiN Z (0.5 ≦ z ≦ 0.85) and 15 to 50% by weight of aluminum and / or aluminum compound. It consists of impurities and has a bending strength (measured in accordance with JIS standards) of 110 kgf / mm 2 or more, TiC Z (0.65 ≦ z ≦ 0.85) with a balance binder powder of 50-80 wt%, and 20-50 wt. % Of aluminum and / or aluminum compound and inevitable impurities, and the above-mentioned effect is remarkable when the bending strength (specified by JIS standard) is 105 kgf / mm 2 or more. In addition, it is possible to realize a tool life sufficiently satisfying the practical level even in the hard interrupted cutting of high hardness hardened steel, which could not be cut with a CBN sintered body tool having a conventional wear resistant coating.

しかし、TiNZ(0.5≦z≦0.85) および/またはTiCZ(0.65≦z≦0.85) を結合材粉末として用いた場合、アルミニウムおよび/またはアルミニウム化合物が50重量%を超えるとCBN焼結体の硬度および強度が不十分になり、本発明の工具用複合高硬度材料用の基材としては不適当であ。 However, when TiN Z (0.5 ≦ z ≦ 0.85) and / or TiC Z (0.65 ≦ z ≦ 0.85) is used as the binder powder, if the aluminum and / or aluminum compound exceeds 50 wt%, the CBN sintered body Hardness and strength are insufficient, and it is unsuitable as a base material for the composite high hardness material for tools of the present invention.

タイプ(2) のCBN焼結体では、平均粒径が3μm以下のCBN粉末を出発材料として用いることによって抗折力 105Kgf/mm2以上のCBN焼結体を製造することができ、この高靭性のCBN焼結体を基材として硬質耐熱被膜を被覆することにより通常のCBN焼結体工具や従来の耐摩耗層被覆を有するCBN焼結体工具では切削不可能であった高硬度焼入鋼の強断続切削においても実用レベルを十分に満たす工具寿命を実現できた。 With the type (2) CBN sintered body, a CBN sintered body having a bending strength of 105 kgf / mm 2 or more can be produced by using a CBN powder having an average particle size of 3 μm or less as a starting material. High hardness hardened steel that could not be cut with a conventional CBN sintered body tool or a conventional CBN sintered body tool with a wear-resistant layer coating by coating a hard heat-resistant coating with a CBN sintered body of The tool life that satisfies the practical level can be realized even in the heavy interrupted cutting.

ダイヤモンド焼結体基材は前記の3つのタイプの中から選択できる。好ましいダイヤモンド焼結体としては下記 (1)〜(3) のものを挙げることができる:
(1) ダイヤモンドを50〜98体積%含む焼結体で、焼結体の残部が鉄族金属、WCおよび不可避不純物からなる焼結体が好ましく、鉄族金属がCoである焼結体がさらに好ましい。
The diamond sintered compact substrate can be selected from the above three types. Preferred diamond sintered bodies include the following (1) to (3):
(1) A sintered body containing 50 to 98% by volume of diamond, preferably a sintered body in which the balance of the sintered body is composed of an iron group metal, WC and inevitable impurities, and a sintered body in which the iron group metal is Co preferable.

(2) ダイヤモンドを60〜95体積%含む焼結体で、焼結体の残部が鉄族金属と、周期律表4a、5a、6a族元素の炭化物および炭窒化物の中から選択される少なくとも1種と、WCと、不可避不純物とからなる焼結体で、鉄族金属がCoで且つTiCおよびWCを含む焼結体がさらに好ましい。 (2) A sintered body containing 60 to 95% by volume of diamond, the balance of the sintered body being at least selected from iron group metals, carbides of group 4a, 5a, and 6a elements and carbonitrides More preferably, the sintered body is composed of one type, WC, and inevitable impurities, and the iron group metal is Co and includes TiC and WC.

(3) ダイヤモンドを60〜98体積%含む焼結体で、焼結体の残部が炭化珪素と、珪素と、WCと、不可避的不純物とからなる焼結体。
上記ダイヤモンド焼結体は公知のダイヤモンド焼結体の中でも特に高強度で、鉄族金属または周期律表4a、5a、6a族元素の炭化物、炭窒化物および炭化珪素、珪素の1種以上を含んでいる。これらの元素は基材と超薄膜積層膜とを強固に接合させる効果を有している。
(3) A sintered body containing 60 to 98% by volume of diamond, the balance of which is made of silicon carbide, silicon, WC, and unavoidable impurities.
The diamond sintered body has particularly high strength among the known diamond sintered bodies, and includes one or more of iron group metals or carbides, carbonitrides, silicon carbides and silicons of elements of the periodic groups 4a, 5a and 6a. It is out. These elements have the effect of firmly bonding the substrate and the ultrathin film stack.

ダイヤモンド焼結体の場合も、抗折力(JIS規格で測定)が 150Kgf/mm2 以上のダイヤモンド焼結体を基材として用い、硬質耐熱被膜を被覆することによって靭性と耐摩耗性とを兼ね備えた本発明工具用複合材料とすることができ、それによって、通常のダイヤモンド焼結体工具では切削不可能であった高硬度焼入鋼の強断続切削においても実用レベルを十分に満たす工具寿命を実現することができる。 In the case of a diamond sintered body, it has both toughness and wear resistance by using a diamond sintered body with a bending strength (measured according to JIS standards) of 150 kgf / mm 2 or more as a base material and covering it with a hard heat-resistant coating. The composite material for a tool of the present invention can also be used, and thereby a tool life sufficiently satisfying a practical level can be achieved even in a hard interrupted cutting of high hardness hardened steel, which could not be cut with a normal diamond sintered body tool. Can be realized.

以下、本発明の実施例を説明するが、本発明が下記の実施例に限定されるものではない。
実施例1
超硬合金製ピットおよびボールを用いてTiNとアルミニウムとを80:20の重量比で混合して結合材粉末を得た。次に、この結合材とcBN粉末とを体積比で40:60となるように配合し、Mo製容器に充填し、圧力50kb、温度 1,450℃で20分間焼結した。この焼結体を切削工具用のチップ(SNGN120408) の形に加工した後、[図2]に示す成膜装置を用いて、チップの切削に関与する部位に真空アーク放電によるイオンプレーティング法で硬質耐熱膜を被覆した。
Examples of the present invention will be described below, but the present invention is not limited to the following examples.
Example 1
TiN and aluminum were mixed at a weight ratio of 80:20 using cemented carbide pits and balls to obtain a binder powder. Next, this binder and cBN powder were blended in a volume ratio of 40:60, filled in a Mo container, and sintered at a pressure of 50 kb and a temperature of 1,450 ° C. for 20 minutes. After processing this sintered body into the shape of a cutting tool tip (SNGN120408), the part involved in cutting of the tip is subjected to ion plating by vacuum arc discharge using the film forming apparatus shown in FIG. A hard heat-resistant film was coated.

すなわち、[図2]に示す成膜装置内に複数個のターゲットを配置し、これらのターゲットの中心に設けた回転式基材保持具に上記チップを装着して成膜した。ターゲットとしてはTiAlターゲットを用いた。先ず、成膜装置を10-5Torrの真空度まで減圧し、Arガスを導入し、10-2Torrの雰囲気中でチップに−1,000 Vの電圧を加えて洗浄した。次に、500 ℃まで加熱し、Arガスを排気した後、反応ガスとしてN2ガスを 300cc/minの割合で導入し、チップに−200 Vの電圧を加えて、真空アーク放電によりアーク電流 100AでTiAlのターゲットを蒸発イオン化させて被覆した。膜厚は被覆時間によって制御した。また、化合物膜のTiとAlの割合はTiAl合金のTiとAlの割合で調整した。 That is, a plurality of targets were arranged in the film forming apparatus shown in FIG. 2, and the chip was mounted on a rotary base material holder provided at the center of these targets to form a film. A TiAl target was used as the target. First, the film forming apparatus was depressurized to a vacuum of 10 −5 Torr, Ar gas was introduced, and the chip was cleaned by applying a voltage of −1,000 V to the chip in an atmosphere of 10 −2 Torr. Next, after heating to 500 ° C. and exhausting Ar gas, N 2 gas was introduced as a reaction gas at a rate of 300 cc / min, a voltage of −200 V was applied to the chip, and an arc current of 100 A was applied by vacuum arc discharge. The TiAl target was coated by evaporation ionization. The film thickness was controlled by the coating time. The ratio of Ti and Al in the compound film was adjusted by the ratio of Ti and Al in the TiAl alloy.

C、Oを含む膜の場合には、反応ガスとしてN2、C22、O2を用い、各々の流量の割合を調整してC、N、Oの割合を調整した。また、中間層、表面層を有する製品はTiAlターゲットとしてTiターゲットを加えて配置し、上記と同じ要領で順次成膜した。 In the case of a film containing C and O, N 2 , C 2 H 2 , and O 2 were used as reaction gases, and the ratios of the respective flow rates were adjusted to adjust the ratios of C, N, and O. Moreover, the product which has an intermediate | middle layer and a surface layer added and arrange | positioned Ti target as a TiAl target, and formed into a film sequentially in the same way as the above.

比較のために、従来法であるコーティング切削チップ(1−29〜32)も用意した。試料1−29〜32は通常の成膜装置を使用して真空アーク放電を用いたイオンプレーティング法で上記と同じ組成と形状の切削チップの表面にTiNおよびTiCNを単独または組合せた硬質被覆層を被覆して製造したものであり、試料1−33は通常のCVD法で上記と同じ組成と形状の切削チップの表面にTiNおよびAl23を組合せた硬質被覆層を形成して製造したものである。
〔表1〕〜〔表4〕は製品の構成と結果とをまとめたものである。
For comparison, a coating cutting tip (1-29 to 32), which is a conventional method, was also prepared. Samples 1-29 to 32 are hard coating layers in which TiN and TiCN are used alone or in combination on the surface of a cutting tip having the same composition and shape as described above by an ion plating method using vacuum arc discharge using a normal film forming apparatus. Sample 1-33 was manufactured by forming a hard coating layer combining TiN and Al 2 O 3 on the surface of a cutting tip having the same composition and shape as described above by a normal CVD method. Is.
[Table 1] to [Table 4] summarize the product configuration and results.

Figure 2005047004
Figure 2005047004

Figure 2005047004
Figure 2005047004

Figure 2005047004
Figure 2005047004

Figure 2005047004
Figure 2005047004

得られた切削チップを用い以下の切削テストを行った。
被削材としは硬度HRC63のSUJ2材の丸棒を用いた。この被削材の外周を切削速度 100m/min 、切込み0.2mm 、送り0.1mm/rev 、乾式で40分間切削して切削結果を得た。結果は〔表5〕にまとめて示してある。
The following cutting tests were performed using the obtained cutting tips.
As a work material, a round bar of SUJ2 material having a hardness of HRC63 was used. The outer periphery of this work material was cut at a cutting speed of 100 m / min, a cutting depth of 0.2 mm, a feed of 0.1 mm / rev, and dry for 40 minutes to obtain cutting results. The results are summarized in [Table 5].

Figure 2005047004
Figure 2005047004

実施例2
基材のCBN焼結体をCBN含有率(体積%)および結合材の組成(重量%)を〔表6〕〜〔表7〕に示すものに代えた。実施例1と同じ焼結方法で得られた焼結体をX線回折により分析したところ不可避的不純物としてα−Al23、WCおよびCoが検出された。
Example 2
The CBN sintered body of the substrate was replaced with the CBN content (% by volume) and the composition (% by weight) of the binder shown in Table 6 to Table 7. When the sintered body obtained by the same sintering method as in Example 1 was analyzed by X-ray diffraction, α-Al 2 O 3 , WC and Co were detected as inevitable impurities.

Figure 2005047004
Figure 2005047004

Figure 2005047004
Figure 2005047004

〔表6〕〜〔表7〕に示した各CBN焼結体を切削工具用のチップの形に加工した後、切削に関与する部位に実施例1と同じ成膜操作を行いて、真空アーク放電によるイオンプレーティング法で試料1−9と同様に中間層(TiN)を 0.5μm成膜し、硬質耐熱被膜((Ti0.3Al0.7)N)を 5.6μm成膜し、さらに、表面層(Ti(C0.50.5))を 0.2μm被覆した。 After processing each CBN sintered body shown in [Table 6] to [Table 7] into the shape of a chip for a cutting tool, the same film forming operation as that in Example 1 was performed on the part involved in the cutting, and a vacuum arc was performed. In the same manner as Sample 1-9, an intermediate layer (TiN) was formed to a thickness of 0.5 μm, a hard heat-resistant film ((Ti 0.3 Al 0.7 ) N) was formed to a thickness of 5.6 μm, and the surface layer ( Ti (C 0.5 N 0.5 )) was coated by 0.2 μm.

得られた切削チップと硬質耐熱被膜を被覆していない比較用の切削チップとを用いて以下の切削テストを行った。
結果は〔表8〕にまとめて示してある。〔表8〕に記載の欠損までの時間は外周に4箇所のU字型の溝を有するSKD11材に熱処理を行って硬度HRC56にした丸棒を被削材とし、切削速度 100m/min 、切込み 0.2mm、送り 0.1mm/rev、乾式で切削した場合に欠損するまでの時間である。
The following cutting test was performed using the obtained cutting tip and a comparative cutting tip not coated with a hard heat-resistant coating.
The results are summarized in [Table 8]. The time to defect described in [Table 8] is a round bar made of heat-treated SKD11 material with four U-shaped grooves on the outer circumference to a hardness of HRC56, and the cutting speed is 100 m / min. 0.2mm, feed 0.1mm / rev, the time until chipping occurs when dry cutting.

Figure 2005047004
Figure 2005047004

実施例3
実施例1と同様な操作を繰り返したが、本実施例ではダイヤモンド含有率および結合材残部の組成を〔表9〕に示すものに変えた。材料粉末は乳鉢を用いて混合した後に、Mo製容器に充填し、圧力55kb、温度 1,500℃で30分間焼結した。次いで、体積比で95:5となるようにTiNを配合し、乳鉢を用いて混合して原料粉末を得た。
Example 3
The same operation as in Example 1 was repeated, but in this example, the diamond content and the composition of the remaining binder were changed to those shown in [Table 9]. The material powder was mixed using a mortar, filled in a Mo container, and sintered at a pressure of 55 kb and a temperature of 1,500 ° C. for 30 minutes. Next, TiN was blended so that the volume ratio was 95: 5 and mixed using a mortar to obtain a raw material powder.

得られた原料粉末をCo板を敷いたMo製容器に充填し、圧力55kb、温度 1,450℃で20分間焼結した。この焼結体を用いて切削チップを作製し、その切削に関与する部分に実施例1と同じ成膜操作を行いて真空アーク放電によるイオンプレーティング法で試料1−9と同じ中間層(TiN)を 0.5μm成膜し、次いで、硬質耐熱被膜((Ti0.3Al0.7)N)を 5.6μm、表面層(Ti(C0.50.5))を 0.2μmそれぞれ被覆した。 The obtained raw material powder was filled in a Mo container covered with a Co plate and sintered at a pressure of 55 kb and a temperature of 1,450 ° C. for 20 minutes. Using this sintered body, a cutting tip was prepared, and the same film formation operation as in Example 1 was performed on the part involved in the cutting, and the same intermediate layer (TiN as Sample 1-9) was formed by ion plating using vacuum arc discharge. ) Was deposited to 0.5 μm, and then the hard heat-resistant coating ((Ti 0.3 Al 0.7 ) N) was coated to 5.6 μm and the surface layer (Ti (C 0.5 N 0.5 )) was coated to 0.2 μm.

次に、上記の切削チップと比較のために実施例1で用いたCBN焼結体に硬質耐熱被膜を被覆したチップと硬質耐熱被膜を被覆していないCBN焼結体チップおよび硬質耐熱被膜を被覆していないダイヤモンド焼結体チップを用いて以下の切削テストを行った。被削材はFCD600 材と16%Si−Al合金にて1:1の切削比率となる様に組合せた丸棒の外周を切削速度 200m/min、切込み 0.3mm、送り 0.2mm/rev、乾式で20分間切削した。
結果は〔表9〕にまとめて示してある。
Next, for comparison with the above-mentioned cutting tip, the CBN sintered body used in Example 1 is coated with a chip coated with a hard heat-resistant film, a CBN sintered body chip not coated with a hard heat-resistant film, and a hard heat-resistant film. The following cutting test was performed using a diamond sintered body chip that was not used. Work material is FCD600 material and 16% Si-Al alloy. Combined round rods with a cutting ratio of 1: 1, cutting speed is 200m / min, cutting depth is 0.3mm, feed is 0.2mm / rev, dry type. Cut for 20 minutes.
The results are summarized in [Table 9].

Figure 2005047004
Figure 2005047004

本発明の複合硬度材料の概念的断面図で、円の中は拡大図。It is a conceptual sectional view of the composite hardness material of the present invention, and an enlarged view in a circle. 本発明の複合硬度材料の製造装置の一例を示す概念図で、(a) は概念的断面図、(b) は概念的平面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a conceptual diagram which shows an example of the manufacturing apparatus of the composite hardness material of this invention, (a) is conceptual sectional drawing, (b) is a conceptual top view.

符号の説明Explanation of symbols

1 硬質耐熱被膜
2 基材
3 中間層
4 表面層
5 真空チャンバー
6 基材群
7 回転式基材保持具
8 ターゲット群
10 超硬合金
DESCRIPTION OF SYMBOLS 1 Hard heat-resistant coating film 2 Base material 3 Intermediate | middle layer 4 Surface layer 5 Vacuum chamber 6 Base material group 7 Rotary base material holder 8 Target group
10 Cemented carbide

Claims (20)

立方晶型窒化硼素を20体積%以上含むCBN焼結体からなる基材またはダイヤモンドを40%以上含むダイヤモンド焼結体からなる基材を有する工具用の複合高硬度材料において、
C、NおよびOの中から選択される少なくとも1種の元素と、Tiと、Alとを主成分とした少なくとも1層の硬質耐熱被膜を少なくとも切削に関与する箇所に有することを特徴とする工具用複合高硬度材料。
In a composite high hardness material for a tool having a base material made of a CBN sintered body containing 20% by volume or more of cubic boron nitride or a base material made of a diamond sintered body containing 40% or more of diamond,
A tool having at least one hard heat-resistant coating composed mainly of at least one element selected from C, N, and O, Ti, and Al at least in a part involved in cutting. Composite high hardness material.
硬質耐熱膜が立方晶型の結晶構造を有する請求項1に記載の工具用複合高硬度材料。   The composite high-hardness material for tools according to claim 1, wherein the hard heat-resistant film has a cubic crystal structure. 硬質耐熱膜が (TiXAl1-X) N (ここで、0.3 ≦X≦ 0.5)で表される組成を有する請求項1または2に記載の工具用複合高硬度材料。 The composite high-hardness material for tools according to claim 1 or 2, wherein the hard heat-resistant film has a composition represented by (Ti X Al 1-X ) N (where 0.3 ≤ X ≤ 0.5). 硬質耐熱被膜の膜厚が 0.5μm以上且つ15μm以下である請求項1〜3のいずれか一項に記載の工具用複合高硬度材料。   The composite high-hardness material for tools according to any one of claims 1 to 3, wherein the hard heat-resistant film has a thickness of 0.5 µm or more and 15 µm or less. 基材と硬質耐熱被膜との界面に膜厚が0.05μm以上且つ5μm以下の4a、5aおよび6a族元素の中から選択される少なくとも1種の元素とC、NおよびOの中から選択される少なくとも1種の元素との少なくとも1種の化合物の中間層を有する請求項1〜4のいずれか一項に記載の工具用複合高硬度材料。   At least one element selected from Group 4a, 5a, and 6a elements having a film thickness of 0.05 μm or more and 5 μm or less at the interface between the base material and the hard heat-resistant coating, and C, N, and O are selected. The composite high hardness material for tools as described in any one of Claims 1-4 which has an intermediate | middle layer of an at least 1 sort (s) of compound with an at least 1 sort (s) of element. 硬質耐熱被膜の表面に膜厚が0.05μm以上且つ5μm以下の4a、5aおよび6a族元素の中から選択される少なくとも1種の元素と、C、NおよびOの中から選択される少なくとも1種の元素とからなる少なくとも1種の化合物を有する請求項1〜5のいずれか一項に記載の工具用複合高硬度材料。   At least one element selected from the group 4a, 5a and 6a elements having a film thickness of 0.05 μm or more and 5 μm or less on the surface of the hard heat-resistant coating, and at least one selected from C, N and O The composite high hardness material for tools as described in any one of Claims 1-5 which has at least 1 type of compound which consists of these elements. 基材が立方晶型窒化硼素(CBN)粉末30〜90体積%と、残部の結合材粉末とを超高圧焼結して得られた焼結体であって、残部結合材が周期律表4a、5aおよび6a族元素の窒化物、炭化物、硼化物、酸化物並びにこれらの固溶体から成る群の中から選択される少なくとも1種と、アルミニウムおよび/またはアルミニウム化合物とからなる結合材と、不可避的不純物とである請求項1〜6のいずれか一項に記載の工具用複合高硬度材料。   The base material is a sintered body obtained by ultra-high pressure sintering of cubic boron nitride (CBN) powder 30 to 90% by volume and the remaining binder powder, and the remaining binder is a periodic table 4a. A binding material consisting of at least one selected from the group consisting of nitrides, carbides, borides, oxides and solid solutions of elements 5a and 6a and aluminum and / or aluminum compounds; It is an impurity, The composite high-hardness material for tools as described in any one of Claims 1-6. 残部結合材が、50〜95重量%のTiC、TiN、(TiM)C、(TiM)Nおよび(TiM)CN(ここで、MはTiを除く周期律表4a、5aおよび6a族元素の中から選択される遷移金属)から成る群の中から選択される少なくとも1種と、5〜50重量%のアルミニウムおよび/またはアルミニウム化合物とからなる請求項7に記載の工具用複合高硬度材料。   The remaining binder is 50 to 95% by weight of TiC, TiN, (TiM) C, (TiM) N and (TiM) CN (where M is a group of elements in the periodic table 4a, 5a and 6a excluding Ti). The composite high-hardness material for tools according to claim 7, comprising at least one selected from the group consisting of transition metals selected from the group consisting of 5 to 50% by weight of aluminum and / or aluminum compounds. 残部の結合材粉末が50〜80重量%のTiNZ(ここで0.5 ≦z≦0.85)と、15〜50重量%のアルミニウムおよび/またはアルミニウム化合物と、
不可避的不純物とからなり、抗折力(JIS規格で測定)が110Kgf/mm2以上である請求項8に記載の工具用複合高硬度材料。
The balance binder powder is 50-80 wt% TiN Z (where 0.5 ≦ z ≦ 0.85), 15-50 wt% aluminum and / or aluminum compound,
The composite high-hardness material for a tool according to claim 8, which is composed of inevitable impurities and has a bending strength (measured in accordance with JIS standards) of 110 kgf / mm 2 or more.
残部の結合材粉末が50〜80重量%のTiCZ(zは0.65≦z≦0.85)と、20〜50重量%のアルミニウムおよび/またはアルミニウム化合物と、
不可避的不純物とからなり、抗折力(JIS規格で測定)が105Kgf/mm2以上である請求項8に記載の工具用複合高硬度材料。
The remaining binder powder is 50-80 wt% TiC Z (z is 0.65 ≦ z ≦ 0.85), 20-50 wt% aluminum and / or aluminum compound,
The composite high-hardness material for a tool according to claim 8, which is composed of inevitable impurities and has a bending strength (measured in accordance with JIS standards) of 105 kgf / mm 2 or more.
基材が立方晶型窒化硼素(CBN)粉末45〜95体積%と残部の結合材粉末とを超高圧焼結して得られる焼結体であり、残部結合材粉末がCo、Ni、WC、TiN、TiCおよびこれらの固溶体から成る群の中から選択される少なくとも1種と、アルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなる請求項1〜6のいずれか一項に記載の工具用複合高硬度材料。   The base material is a sintered body obtained by ultra-high pressure sintering of cubic boron nitride (CBN) powder 45 to 95% by volume and the remaining binder powder, and the remaining binder powder is Co, Ni, WC, 7. The tool according to claim 1, comprising at least one selected from the group consisting of TiN, TiC, and solid solutions thereof, aluminum and / or an aluminum compound, and unavoidable impurities. Composite high hardness material. 残部結合材が1〜50重量%のTiNと、Co、NiおよびWCから成る群の中から選択される少なくとも1種と、アルミニウムおよび/またはアルミニウム化合物と、不可避的不純物とからなる請求項11に記載の工具用複合高硬度材料。   The balance binder comprises 1 to 50% by weight of TiN, at least one selected from the group consisting of Co, Ni and WC, aluminum and / or an aluminum compound, and unavoidable impurities. The composite high hardness material for the tool described. 平均粒径が3μm以下で抗折力(JIS規格で測定)が105gf/mm2以上である請求項11または12に記載の工具用複合高硬度材料。 13. The composite high-hardness material for a tool according to claim 11 or 12, having an average particle diameter of 3 μm or less and a bending strength (measured in accordance with JIS standards) of 105 gf / mm 2 or more. 基材が立方晶型窒化硼素(CBN)粉末90体積%と残部の結合材粉末とを超高圧処決して得られた焼結体であり、残部結合材が周期律表の1aおよび2a族元素の硼化物と、TiNと、不可避的不純物とからなる請求項1〜6のいずれか一項に記載の工具用複合高硬度材料。   The base material is a sintered body obtained by subjecting 90% by volume of cubic boron nitride (CBN) powder and the remaining binder powder to ultrahigh pressure, and the remaining binder is composed of elements 1a and 2a of the periodic table. The composite high hardness material for a tool according to any one of claims 1 to 6, comprising a boride, TiN, and inevitable impurities. 残部結合材が1〜50重量%のTiNと、周期律表1aまたは2a族元素の硼化物とを含む請求項14に記載の工具用複合高硬度材料。   15. The composite high hardness material for a tool according to claim 14, wherein the remaining binder contains 1 to 50% by weight of TiN and a boride of the periodic table 1a or 2a group element. 基材がダイヤモンド粉末50〜98体積%と、残部の結合材粉末とを超高圧焼結して得られる焼結体であり、残部の結合材粉末が鉄族金属と、WCと、不可避的不純物とからなる請求項1〜6のいずれか一項に記載の工具用複合高硬度材料。   The base material is a sintered body obtained by ultra-high pressure sintering of 50 to 98% by volume of diamond powder and the remaining binder powder, and the remaining binder powder is an iron group metal, WC, and unavoidable impurities. The composite high hardness material for tools as described in any one of Claims 1-6 consisting of these. 基材がダイヤモンド粉末60〜95体積%と、残部の結合材粉末とを超高圧焼結して得られる焼結体であり、残部の結合材粉末が鉄族金属と、周期律表4a、5aおよび6a族元素の炭化物および炭窒化物の中から選択される少なくとも1種と、WCと、不可避的不純物とからなる請求項1〜6のいずれか一項に記載の工具用複合高硬度材料。   The base material is a sintered body obtained by ultra-high pressure sintering of 60 to 95% by volume of diamond powder and the remaining binder powder, and the remaining binder powder is an iron group metal and periodic table 4a, 5a. The composite high-hardness material for tools according to any one of claims 1 to 6, comprising at least one selected from carbides and carbonitrides of group 6a elements, WC, and inevitable impurities. 残部の結合材粉末がCoと、TiCと、WCと、不可避不純物とからなる請求項17に記載の工具用複合高硬度材料。   18. The composite high hardness material for a tool according to claim 17, wherein the remaining binder powder is made of Co, TiC, WC, and inevitable impurities. 基材がダイヤモンド粉末60〜98体積%と結合材粉末とを超高圧焼結体して得られる焼結体であり、残部結合材粉末が炭化珪素と、珪素と、WCと、不可避的不純物とからなる請求項1〜6のいずれか一項に記載の材料。   The base material is a sintered body obtained by ultra-high pressure sintered body of diamond powder 60 to 98% by volume and binder powder, and the remaining binder powder is silicon carbide, silicon, WC, unavoidable impurities The material according to claim 1, comprising: 抗折力150Kgf/mm2以上である請求項16〜19のいずれか一項に記載の工具用複合高硬度材料。 The composite high-hardness material for tools according to any one of claims 16 to 19, which has a bending strength of 150 kgf / mm 2 or more.
JP2004265400A 2004-09-13 2004-09-13 Composite high hardness material for tools Expired - Lifetime JP4191663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265400A JP4191663B2 (en) 2004-09-13 2004-09-13 Composite high hardness material for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265400A JP4191663B2 (en) 2004-09-13 2004-09-13 Composite high hardness material for tools

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP28737494A Division JP3866305B2 (en) 1994-10-27 1994-10-27 Composite high hardness material for tools

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007211773A Division JP2008049475A (en) 2007-08-15 2007-08-15 Composite high-hardness material for tool

Publications (2)

Publication Number Publication Date
JP2005047004A true JP2005047004A (en) 2005-02-24
JP4191663B2 JP4191663B2 (en) 2008-12-03

Family

ID=34270254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265400A Expired - Lifetime JP4191663B2 (en) 2004-09-13 2004-09-13 Composite high hardness material for tools

Country Status (1)

Country Link
JP (1) JP4191663B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088240A (en) * 2009-10-21 2011-05-06 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material
WO2012056758A1 (en) 2010-10-28 2012-05-03 住友電工ハードメタル株式会社 Surface-coated sintered compact
WO2012070290A1 (en) 2010-11-26 2012-05-31 住友電工ハードメタル株式会社 Surface coated sintered body
CN102699363A (en) * 2010-09-15 2012-10-03 三菱综合材料株式会社 Cbn blade excellent in finished surface roughness
JP2017508699A (en) * 2014-01-24 2017-03-30 トゥー‐シックス・インコーポレイテッド Substrate comprising a diamond layer and a composite layer comprising diamond and silicon carbide and optionally containing silicon
JPWO2017168841A1 (en) * 2016-03-30 2018-04-05 住友電工ハードメタル株式会社 Surface-coated cubic boron nitride sintered body and cutting tool provided with the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6928218B2 (en) 2015-12-25 2021-09-01 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered body tool
JP6850980B2 (en) 2016-03-07 2021-03-31 三菱マテリアル株式会社 Surface-coated cubic boron nitride sintered body tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088240A (en) * 2009-10-21 2011-05-06 Mitsubishi Materials Corp Cutting tool made of surface-coated cubic boron nitride based ultra-high pressure sintered material
CN102699363A (en) * 2010-09-15 2012-10-03 三菱综合材料株式会社 Cbn blade excellent in finished surface roughness
WO2012056758A1 (en) 2010-10-28 2012-05-03 住友電工ハードメタル株式会社 Surface-coated sintered compact
US8871340B2 (en) 2010-10-28 2014-10-28 Sumitomo Electric Hardmetal Corp. Surface-coated sintered body
WO2012070290A1 (en) 2010-11-26 2012-05-31 住友電工ハードメタル株式会社 Surface coated sintered body
US9056437B2 (en) 2010-11-26 2015-06-16 Sumitomo Electric Hardmetal Corp. Surface-coated sintered body
JP2017508699A (en) * 2014-01-24 2017-03-30 トゥー‐シックス・インコーポレイテッド Substrate comprising a diamond layer and a composite layer comprising diamond and silicon carbide and optionally containing silicon
KR20180122051A (en) * 2014-01-24 2018-11-09 투-식스 인코포레이티드 Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon
KR102198330B1 (en) 2014-01-24 2021-01-05 투-식스 인코포레이티드 Substrate including a diamond layer and a composite layer of diamond and silicon carbide, and, optionally, silicon
JPWO2017168841A1 (en) * 2016-03-30 2018-04-05 住友電工ハードメタル株式会社 Surface-coated cubic boron nitride sintered body and cutting tool provided with the same

Also Published As

Publication number Publication date
JP4191663B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP3866305B2 (en) Composite high hardness material for tools
JP3996809B2 (en) Coated cutting tool
JP4927559B2 (en) Cubic boron nitride sintered body and cutting tool using the same
JP5614460B2 (en) cBN sintered body tool and coated cBN sintered body tool
JP2005271190A (en) Surface coated cutting tool
JPWO2010150335A1 (en) Coated cubic boron nitride sintered body tool
JP3743984B2 (en) Composite high hardness material for tools
KR20090094062A (en) Hard coating having excellent wear resistance and oxidation resistance and target for forming the same, and hard coating having excellent high-temperature lubricating ability and wear resistance and target for forming the same
JP3719731B2 (en) Coated cutting tool / Coated wear-resistant tool
JP3374599B2 (en) Hard wear-resistant composite coated cutting tool
JP2004100004A (en) Coated cemented carbide and production method therefor
JP4191663B2 (en) Composite high hardness material for tools
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JP2008049475A (en) Composite high-hardness material for tool
JPH10237650A (en) Wc base cemented carbide and its production
JPH10245287A (en) Hard layer-coated high pressure phase boron nitride sinter compact for cutting tool
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JPS644989B2 (en)
JP2005212048A (en) Ceramics and cutting tool using the same
JP2010029980A (en) Cutting tool
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP2001114562A (en) Sintered ceramic part and coated sintered ceramic part
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JP4484500B2 (en) Surface coated cutting tool
JP2007136653A (en) Surface coated cutting tool made of cubic boron nitride-base ultra-high pressure sintered material having hard coated layer exhibiting chipping resistance in high-speed heavy cutting of high-hardness steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

EXPY Cancellation because of completion of term