JP2008132570A - Cutting tool - Google Patents

Cutting tool Download PDF

Info

Publication number
JP2008132570A
JP2008132570A JP2006321151A JP2006321151A JP2008132570A JP 2008132570 A JP2008132570 A JP 2008132570A JP 2006321151 A JP2006321151 A JP 2006321151A JP 2006321151 A JP2006321151 A JP 2006321151A JP 2008132570 A JP2008132570 A JP 2008132570A
Authority
JP
Japan
Prior art keywords
cutting
phase
cutting tool
group
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006321151A
Other languages
Japanese (ja)
Inventor
Takahiko Makino
貴彦 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2006321151A priority Critical patent/JP2008132570A/en
Publication of JP2008132570A publication Critical patent/JP2008132570A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool having long service life in cutting a hard-to-cut material. <P>SOLUTION: This cutting tool is made of a cemented carbide formed by binding a hard phase including tungsten carbide and one of the carbide, nitride, and carbonitride of group 4, 5, 6 metals to each other with a binding metal made of at least one of iron group metals. The surface of the cemented carbide has a β phase formed of the solid solution of one of the carbide, nitride, and carbonitride including at least one of Ti, Ta, Nb, and Zr and W. Since cavities are present in the β phase, the chipping and the elastic deformation of the edge of the cutting tool can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、切削工具に関し、ステンレス鋼等の難削材の切削に対して、優れた耐欠損性と耐摩耗性をもつ超硬合金、又は、該超硬合金の表面に硬質被覆層を形成してなる切削工具に関する。   The present invention relates to a cutting tool, and forms a hard coating layer on the surface of a cemented carbide having excellent fracture resistance and wear resistance, or the surface of the cemented carbide for cutting difficult-to-cut materials such as stainless steel. It is related with the cutting tool formed.

従来から、金属の切削加工に広く用いられている超硬合金として、炭化タングステンを主体とする硬質相と、コバルト等の鉄族金属の結合相からなるWC−Co系合金、もしくは上記WC−Co系に周期表第4、5、6族金属の炭化物、窒化物、炭窒化物等の固溶相を分散せしめた系を用いる技術が知られている。   Conventionally, as a cemented carbide widely used for metal cutting, a WC-Co alloy composed of a hard phase mainly composed of tungsten carbide and a binding phase of an iron group metal such as cobalt, or the above WC-Co. A technique using a system in which solid solution phases such as carbides, nitrides, and carbonitrides of Group 4, 5, and 6 metals of the periodic table are dispersed in the system is known.

これらの超硬合金は、耐摩耗性および耐欠損性に優れており、切削工具として、主に炭素鋼、合金鋼等の切削加工に利用されている。   These cemented carbides are excellent in wear resistance and fracture resistance, and are used as cutting tools mainly for cutting of carbon steel, alloy steel, and the like.

また、上記超硬合金を母材として、該母材の表面にTiの炭化物、窒化物、炭窒化物、炭窒酸化物等からなる硬質被覆層を形成する技術も知られており、鋼や鋳鉄などの連続切削や断続切削に用いられている(例えば、特許文献1または特許文献2参照)。   Further, a technique for forming a hard coating layer made of a carbide, nitride, carbonitride, carbonitride oxide, etc. of Ti on the surface of the above-mentioned cemented carbide is also known. It is used for continuous cutting and intermittent cutting of cast iron or the like (see, for example, Patent Document 1 or Patent Document 2).

しかし、近年では、ステンレス鋼、チタン合金、ニッケル基合金等の耐熱合金などの難削材の加工分野が増加し、難削材加工に適した切削工具の需要が高まっており、例えば、ステンレス鋼を切削すると、切刃部の切削温度が高くなり、熱衝撃や切削抵抗によって刃先が欠損しやすくなるといった問題点がある。   However, in recent years, the field of processing difficult-to-cut materials such as heat-resistant alloys such as stainless steel, titanium alloys, and nickel-based alloys has increased, and the demand for cutting tools suitable for difficult-to-cut materials processing has increased. For example, stainless steel When cutting is performed, there is a problem that the cutting temperature of the cutting edge becomes high, and the cutting edge tends to be damaged due to thermal shock or cutting resistance.

ここで、特許文献1および特許文献2には、母材の表面から2〜100μmの深さ領域に、断面全体の面積に対し、5〜30%の空孔が存在する多孔質帯域部分を形成する技術が開示されている。これにより、機械的、熱的強度を向上させることができる。
特開2003−048106号公報 特開2003−071612号公報
Here, in Patent Document 1 and Patent Document 2, a porous zone portion in which 5 to 30% of voids are present in the area of the entire cross section in a depth region of 2 to 100 μm from the surface of the base material is formed. Techniques to do this are disclosed. Thereby, mechanical and thermal strength can be improved.
JP 2003-048106 A JP 2003-071612 A

しかしながら、特許文献1および2に記載されているように、母材の刃先近傍における表面に空孔を多く設けると、刃先の高温時における耐欠損性および耐摩耗性が低下し、刃先が塑性変形を起こしやすくなってしまい、工具寿命が短くなる。また、空孔が炭化タングステンや結合相部に多く存在すると、発生したクラックが伝播しやすくなるため、結果的に耐欠損性が低下してしまう。   However, as described in Patent Documents 1 and 2, if many holes are provided on the surface of the base material in the vicinity of the cutting edge, chipping resistance and wear resistance at the high temperature of the cutting edge are reduced, and the cutting edge is plastically deformed. And the tool life is shortened. In addition, if there are many voids in tungsten carbide or the binder phase portion, the generated cracks are likely to propagate, resulting in a decrease in fracture resistance.

本発明は、上記問題点を解決するためになされたものであり、その目的は、高速かつ断続切削加工によって発生する塑性変形を抑えて、優れた耐摩耗性、耐欠損性を発揮することができる、長寿命な工具を提供することを目的とするものである。   The present invention has been made to solve the above problems, and its purpose is to suppress plastic deformation caused by high-speed and intermittent cutting, and to exhibit excellent wear resistance and fracture resistance. It is an object to provide a tool having a long life.

超硬合金においては、固溶体相(β相)成分(TiC,TaC,NbC,ZrC,MoCなど)を入れれば入れるほど、熱伝導性は悪化するが、高温における硬度などを維持するために、これらβ相成分を入れる必要がある。そこで出願人は、合金のβ相に空孔を設けることで、β相の熱伝導性を向上させ、ヒートクラックや被削材の拡散による耐欠損性及び耐摩耗性の低下を抑制し、性能を向上させることができることを知見した。   In cemented carbide, the more the solid solution phase (β phase) component (TiC, TaC, NbC, ZrC, MoC, etc.) is added, the worse the thermal conductivity, but in order to maintain the hardness at high temperatures, etc. It is necessary to add a β phase component. Therefore, the applicant improves the thermal conductivity of the β phase by providing pores in the β phase of the alloy, suppresses the deterioration of fracture resistance and wear resistance due to diffusion of heat cracks and work materials, performance It has been found that can be improved.

すなわち、本発明における切削工具は、炭化タングステン及び4、5、6族金属の炭化物、窒化物、炭窒化物のいずれか1種を含む硬質相を、鉄族金属の少なくとも1種からなる結合金属にて結合した超硬合金からなる基体と、前記基体の表面には、Ti、Ta、Nb、Zrの少なくとも1種と、Wとを含む炭化物、窒化物、炭窒化物の少なくとも1種の固溶体からなるβ相を有しており、前記β相内には、空孔が存在することを特徴とする。   That is, the cutting tool according to the present invention includes a hard phase containing any one of tungsten carbide and carbides, nitrides, and carbonitrides of group 4, 5, and 6 metals, and a bonded metal composed of at least one of iron group metals. And a solid solution of at least one of carbide, nitride, and carbonitride containing at least one of Ti, Ta, Nb, and Zr and W on the surface of the substrate made of a cemented carbide bonded by It has the beta phase which consists of, The void | hole exists in the said beta phase, It is characterized by the above-mentioned.

また、上記発明において、β相内に存在する空孔の存在率が、厚み方向に直交する断面における全β相の面積を100%としたとき、2〜10%であることが望ましい。   In the above invention, the abundance ratio of the vacancies existing in the β phase is desirably 2 to 10% when the area of all β phases in the cross section perpendicular to the thickness direction is 100%.

また、上記発明において、空孔の大きさが、円形に換算して直径0.1μm〜2.0μmの範囲内とすることが望ましい。   Moreover, in the said invention, it is desirable for the magnitude | size of a void | hole to be in the range of 0.1 micrometer-2.0 micrometers in diameter converted into a circle.

また、上記発明において、前記β相が少なくともZrを含んでいることが望ましい。特に、前記4,5,6族金属の含有量が前記基体の内部から表面に向かって漸次減少しており、かつ、前記Zrの含有量の前記基体の内部から表面に向かっての減少率が、その他の4,5,6族金属の含有量の減少率よりも小さいことが望ましい。   In the above invention, it is desirable that the β phase contains at least Zr. In particular, the content of the Group 4, 5, 6 metal gradually decreases from the inside of the substrate toward the surface, and the rate of decrease of the Zr content from the inside of the substrate toward the surface is It is desirable that the rate of decrease in the content of other Group 4, 5, 6 metals is smaller.

また、前記超硬合金は、WCが70〜93重量%、4,5,6族金属の炭化物、窒化物、炭窒化物が2〜15重量%及び鉄族金属が3〜15重量%の原料から形成されたものからなることが望ましい。   In addition, the cemented carbide is a raw material having a WC of 70 to 93% by weight, a group 4, 5 and 6 metal carbide, nitride, carbonitride 2 to 15% by weight and an iron group metal 3 to 15% by weight. It is desirable to consist of what was formed from.

さらに、前記基体の表面に周期表の4,5,6族金属、アルミニウム、シリコンの炭化物、窒化物、酸化物、および、それら化合物2種以上の複合化合物からなる硬質被覆層を形成してなることが望ましい。   Further, a hard coating layer made of a metal of Group 4, 5, 6 in the periodic table, aluminum, silicon carbide, nitride, oxide, and a composite compound of two or more of these compounds is formed on the surface of the substrate. It is desirable.

本発明の構成により、切削で生じる熱の伝導性を向上させるとともに、刃先が高温になる乾式切削、高速切削、高送り切削、あるいは、ステンレス鋼などの難削材の切削にも耐えうる耐欠損性を有することができる。   The structure of the present invention improves the conductivity of heat generated by cutting, and is resistant to chipping that can withstand high-temperature dry cutting, high-speed cutting, high-feed cutting, or cutting of difficult-to-cut materials such as stainless steel. Can have sex.

つまり、β相内に空孔を存在させることで、空孔が硬質相内に存在する場合に比べて破壊源になりにくくなり、耐欠損性の低下を抑えることができる。また、クラックが空孔に差し掛かると、クラックの進展を抑制、または進展方向を偏向させることができるため、工具の靭性が向上して耐欠損性を向上させることができる。   In other words, the presence of vacancies in the β phase makes it less likely to become a fracture source than when the vacancies exist in the hard phase, and it is possible to suppress a decrease in fracture resistance. Further, when the crack reaches the hole, it is possible to suppress the progress of the crack or to deflect the progress direction, so that the toughness of the tool is improved and the fracture resistance can be improved.

また、β相内に存在する空孔の存在率が、厚み方向に直交する断面における全β相の面積を100%としたとき、2〜10%であることによって、耐欠損性を低下させずに十分な熱伝導性を得ることができる。   Further, the abundance ratio of the vacancies existing in the β phase is 2 to 10% when the area of all β phases in the cross section perpendicular to the thickness direction is 100%, so that the fracture resistance is not lowered. Sufficient thermal conductivity can be obtained.

前記空孔の大きさが、円形に換算して直径0.1μm〜2.0μmの範囲内であることが、耐欠損性を低下させずに超硬合金の熱伝導性を向上させることができるため望ましい。   When the size of the pores is in a range of 0.1 μm to 2.0 μm in diameter in terms of a circle, the thermal conductivity of the cemented carbide can be improved without reducing the fracture resistance. This is desirable.

前記β相が少なくともZrを含むことによって、高温硬度や熱衝撃性を向上させることができるため望ましい。   It is desirable that the β phase contains at least Zr, so that high temperature hardness and thermal shock resistance can be improved.

前記超硬合金に含まれる4,5,6族金属の含有量が内部から表面部に向かって漸次減少し、かつ、Zrの含有量の減少率がそのほかの4,5,6族金属の含有量の減少率よりも小さくすることによって、高い耐欠損性を得ることができると共に、表面付近に残るZrによって切削中の高温時における耐摩耗性、および靭性を向上させることができるため望ましい。   The content of the Group 4, 5, 6 metal contained in the cemented carbide gradually decreases from the inside toward the surface portion, and the decrease rate of the Zr content is the content of other Group 4, 5, 6 metals. By making the amount smaller than the rate of reduction of the amount, it is desirable because high fracture resistance can be obtained, and Zr remaining in the vicinity of the surface can improve wear resistance and toughness at high temperatures during cutting.

本発明の一実施形態に係る切削工具の断面図を図1に示す。これは、切削工具をすくい面側から鏡面研磨加工を施し断面を露出させ、当該断面を走査型電子顕微鏡(SEM)にて観察したものである。   A cross-sectional view of a cutting tool according to an embodiment of the present invention is shown in FIG. In this example, the cutting tool is mirror-polished from the rake face side to expose the cross section, and the cross section is observed with a scanning electron microscope (SEM).

本発明の超硬合金は、炭化タングステン(WC)を主成分とする硬質相1と、4、5、6族元素の炭化物、窒化物、炭窒化物のいずれか1種からなる化合物層または2種以上からなる固溶体相(以下、β相と呼ぶ)2、さらに鉄族金属を主成分とする結合相、さらに不可避不純物からなる組成を持つ。   The cemented carbide of the present invention includes a hard phase 1 mainly composed of tungsten carbide (WC), a compound layer composed of any one of carbides, nitrides, and carbonitrides of Group 4, 5, and 6 elements, or 2 It has a composition comprising a solid solution phase (hereinafter referred to as β phase) 2 composed of seeds or more, a binder phase mainly composed of an iron group metal, and inevitable impurities.

なお、β相としては、例えば(W,Ti)Cや(W,Ti,Ta)Cが挙げられる。また、前記(W,Ti)Cからなるβ相を製造するための出発原料は、WとTiとの炭化物や酸化物とCの組合せ(WとTiCとC、WとTiOとC、WOとTiOとC)が考えられる。その他、(W,Ti,Ta,Nb)C等の4元固溶体からなるβ相も存在する。 Examples of the β phase include (W, Ti) C and (W, Ti, Ta) C. The starting material for producing the β phase composed of (W, Ti) C is a combination of a carbide of W and Ti or a combination of oxide and C (W and TiC and C, W and TiO 2 and C, WO 3 and TiO 2 and C). In addition, there is a β phase composed of a quaternary solid solution such as (W, Ti, Ta, Nb) C.

ここで、本発明によれば、β相内に空孔(ボイド)3が存在することを特徴とするものであって、そのような構成にすることによって、切削で生じる熱の伝導性を向上させ、刃先が高温になる乾式切削、高速切削、高送り切削、あるいは、ステンレス鋼などの難削材の切削において、優れた耐欠損性を得ることができる。   Here, according to the present invention, voids (voids) 3 exist in the β phase, and the heat conductivity generated by cutting is improved by using such a configuration. Thus, excellent chipping resistance can be obtained in dry cutting, high-speed cutting, high-feed cutting, or cutting of difficult-to-cut materials such as stainless steel.

ここで、上記空孔3とは、空孔径が0.01〜3.0μmの範囲内にあるものを指す。   Here, the said hole 3 points out what has a hole diameter in the range of 0.01-3.0 micrometers.

空孔径が0.01μm以上だと、クラックが空孔3上を進行しやすいため、クラックの偏向作用が十分に発揮されるため、耐欠損性が上昇する。また、空孔の径が3.0μm以下だと、空孔が破壊源となりにくいため、切削中に突発欠損が発生しにくく好ましい。   When the hole diameter is 0.01 μm or more, cracks are likely to advance on the holes 3, so that the crack deflection action is sufficiently exerted, and the fracture resistance is increased. Moreover, when the diameter of the holes is 3.0 μm or less, the holes are less likely to be a source of destruction, and therefore, it is preferable that no sudden defects occur during cutting.

また、空孔3の大きさが円形に換算して直径0.1μm〜2.0μmの範囲内であることが、耐欠損性を低下させずに超硬合金の熱伝導性を向上させることができるため望ましい。   In addition, if the size of the holes 3 is in a range of 0.1 μm to 2.0 μm in diameter in terms of a circle, the thermal conductivity of the cemented carbide can be improved without reducing the fracture resistance. This is desirable because it can be done.

さらに、β相内に存在する空孔の存在率が、全β相の面積を100%としたとき、2〜10%、特に2.5〜5%であることによって、耐欠損性および熱伝導性を切削加工に最適な状態にすることができる。   Further, the abundance ratio of vacancies existing in the β phase is 2 to 10%, particularly 2.5 to 5%, assuming that the area of all β phases is 100%. Can be optimized for cutting.

ここで、β相2の組成は、周期表における4,5,6族元素の炭化物、窒化物、炭窒化物から選ばれる1種以上の化合物または複合化合物からなる。例えば、Ti,Nb,Ta,Mo,Cr,V等が好適に用いられる。中でも、β相2に少なくともZr元素を含むことによって、高温硬度や耐熱衝撃性を向上させることができるため望ましい。   Here, the composition of β phase 2 is composed of one or more compounds or composite compounds selected from carbides, nitrides, and carbonitrides of Group 4, 5, and 6 elements in the periodic table. For example, Ti, Nb, Ta, Mo, Cr, V, etc. are preferably used. Among these, inclusion of at least a Zr element in the β phase 2 is desirable because high temperature hardness and thermal shock resistance can be improved.

また、超硬合金に含まれる4,5,6族金属の含有量が内部から表面部に向かって漸次減少し、かつ、Zrの含有量の減少率がそのほかの4,5,6族金属の含有量の減少率よりも小さくすることによって、高い耐欠損性を得ることができると共に、表面付近に残るZrによって切削中の高温時における耐摩耗性、および靭性を向上させることができるため望ましい。   Further, the content of the Group 4, 5, 6 metal contained in the cemented carbide gradually decreases from the inside toward the surface portion, and the decrease rate of the Zr content is the same as that of other Group 4, 5, 6 metals. By making the content smaller than the rate of decrease of the content, it is desirable because high fracture resistance can be obtained and wear resistance and toughness at high temperature during cutting can be improved by Zr remaining in the vicinity of the surface.

さらに、超硬合金をWCが70〜93重量%、特に85〜90重量%、4,5,6族金属の炭化物、窒化物、炭窒化物、つまりβ相の成分が2〜15重量%、特に5〜10重量%、鉄族金属が3〜15重量%、特に6〜12重量%からなる組成で構成することによって、ステンレス鋼等の切削において、耐摩耗性、耐欠損性が共に十分な性能を有する超硬合金製切削工具を得ることができる。   Further, the cemented carbide has a WC of 70 to 93% by weight, particularly 85 to 90% by weight, carbides, nitrides, carbonitrides of Group 4, 5, 6 metal, that is, 2 to 15% by weight of β phase component, In particular, the composition comprising 5 to 10% by weight and iron group metal of 3 to 15% by weight, particularly 6 to 12% by weight, has sufficient wear resistance and fracture resistance in cutting stainless steel and the like. A cemented carbide cutting tool having performance can be obtained.

また、超硬合金の表面に周期表における4,5,6族元素、アルミニウム、珪素、硼素から選ばれる元素の炭化物、窒化物、酸化物、およびそれらの複合化合物からなる硬質被覆層を被覆することによって、耐摩耗性、耐欠損性を向上させることができる。   Further, a hard coating layer made of carbide, nitride, oxide, or a composite compound of an element selected from Group 4, 5, 6 elements, aluminum, silicon, boron in the periodic table is coated on the surface of the cemented carbide. As a result, the wear resistance and fracture resistance can be improved.

硬質被覆層の材種としては、窒化チタン(TiN)、炭化チタン(TiC)、炭窒化チタン(TiCN)、炭窒酸化チタン(TiCNO)、酸化アルミニウム(Al2O3)、炭化ジルコニウム(ZrC)、窒化ジルコニウム(ZrN)、チタンとアルミニウムの複合窒化物(TiAlN)等があげられる。   Materials for the hard coating layer include titanium nitride (TiN), titanium carbide (TiC), titanium carbonitride (TiCN), titanium carbonitride oxide (TiCNO), aluminum oxide (Al2O3), zirconium carbide (ZrC), zirconium nitride (ZrN), composite nitride of titanium and aluminum (TiAlN), and the like.

特に、TiCN、Al2O3、TiAlNを用いることが、切削性能が特に向上するため望ましい。   In particular, it is desirable to use TiCN, Al2O3, or TiAlN because the cutting performance is particularly improved.

(製造方法)
上述した本発明の切削工具を構成する超硬合金の製造方法の一例について説明する。まず、炭化タングステン(WC)粉末に対して、金属コバルト(Co)粉末を5.0〜15.0質量%と、β相を形成するための化合物粉末として、炭化ニオブ粉末を0.8〜4.5質量%、炭化タンタル粉末を0.5〜1.5質量%、他のβ相を形成するための化合物粉末を14.0質量%以下の比率で調合する。このとき、B1型固溶相を形成するための化合物原料粉末である炭化ニオブ粉末の平均粒径を0.4〜0.7μmとする。
(Production method)
An example of the manufacturing method of the cemented carbide which comprises the cutting tool of this invention mentioned above is demonstrated. First, the metal cobalt (Co) powder is 5.0 to 15.0 mass% with respect to the tungsten carbide (WC) powder, and the niobium carbide powder is 0.8 to 4 as a compound powder for forming the β phase. 0.5% by mass, 0.5% by mass to 1.5% by mass of tantalum carbide powder, and 14.0% by mass or less of the compound powder for forming the β phase. At this time, the average particle diameter of the niobium carbide powder that is the compound raw material powder for forming the B1-type solid solution phase is set to 0.4 to 0.7 μm.

そして、調合した粉末に溶媒を加えて、所定時間混合・粉砕してスラリーとした後、このスラリーにバインダを添加してさらに混合し、スプレードライヤー等を用いてスラリーを乾燥しながら混合粉末の造粒を行う。このとき、粉砕は、アセトン、メタノール、イソプロピルアルコール、水等を溶媒として使用する湿式粉砕が望ましい。   Then, a solvent is added to the prepared powder and mixed and pulverized for a predetermined time to obtain a slurry. Then, a binder is added to the slurry and further mixed, and a mixed powder is produced while drying the slurry using a spray dryer or the like. Do the grain. At this time, the pulverization is preferably wet pulverization using acetone, methanol, isopropyl alcohol, water or the like as a solvent.

粉砕によって所定の粒度が得られたら、TiC,NbC、ZrC、TaC、MoC等の金属炭化物を添加し、攪拌混合する。これら金属炭化物は、粉砕しないため、WC原料よりも粒度の小さいものを使用するほうが望ましい。この攪拌混合されたスラリーを乾燥造粒し、顆粒を作製する。   When a predetermined particle size is obtained by pulverization, a metal carbide such as TiC, NbC, ZrC, TaC, or MoC is added and mixed with stirring. Since these metal carbides are not pulverized, it is desirable to use those having a particle size smaller than that of the WC raw material. This stirred and mixed slurry is dried and granulated to produce granules.

上記方法で混合〜造粒の行程を行うと、WCやCoは粉砕されているため粉砕時に新しい粒子の断面が形成され、非常に活性に富む状態となっている。一方、TiC等の後添加の成分は、粉砕せずに攪拌混合しただけであるので、粒子自体が活性に富まない。よって、上記、温度で焼成した際、β相のみに空孔を存在させることができる。   When the process of mixing to granulation is performed by the above method, since WC and Co are pulverized, a new particle cross section is formed at the time of pulverization, and the state is very active. On the other hand, since the post-added component such as TiC is merely stirred and mixed without being pulverized, the particles themselves are not rich in activity. Therefore, when fired at the above temperature, vacancies can be present only in the β phase.

その後、所定の形状に成形し、焼成を行う。焼成温度は、β相に微細空孔が存在するように、1350〜1500度の焼成温度で焼成することが望ましい。   Thereafter, it is molded into a predetermined shape and fired. The firing temperature is desirably fired at a firing temperature of 1350 to 1500 degrees so that fine pores exist in the β phase.

そして、作製された超硬合金について、所望によって超硬合金の表面を研磨加工し、切刃部にホーニング加工を施す。   And about the produced cemented carbide alloy, the surface of a cemented carbide alloy is grind | polished as needed, and a honing process is given to a cutting blade part.

さらに、所望によって、超硬合金の表面に化学気相蒸着(CVD)法や、物理気相蒸着(PVD)法によって、公知の硬質被覆層を成膜して切削工具としてもよい。   Furthermore, if desired, a known hard coating layer may be formed on the surface of the cemented carbide by a chemical vapor deposition (CVD) method or a physical vapor deposition (PVD) method to form a cutting tool.

(実施例)
表1に記載された組成で粉末を混合し、さらに、パラフィン等の成形助剤を添加し、数時間攪拌して乾燥造粒し、顆粒を得た。
(Example)
Powders were mixed with the composition described in Table 1, and further molding aids such as paraffin were added, stirred for several hours, and dried and granulated to obtain granules.

このとき、試料No.1〜6においては、WCとCoのみを溶媒にメタノールを使用した湿式混合によって混合した後、TiC、ZrC、TaC、NbC、Mo2C3、TiN粉末を添加して攪拌し、スプレードライヤーを用いて造粒することで顆粒を得た。   At this time, sample no. In 1-6, after mixing only WC and Co by wet mixing using methanol as solvent, add TiC, ZrC, TaC, NbC, Mo2C3, TiN powder, stir, and granulate using spray dryer Granules were obtained.

また、試料No.7〜9においては、全ての原料を湿式混合によって混合し、スプレードライヤーにて造粒して顆粒を得た。   Sample No. In Nos. 7 to 9, all raw materials were mixed by wet mixing and granulated with a spray dryer to obtain granules.

次に顆粒を用い、一軸プレス成形によってCNMG120408の形状へ成形し、表1に記載の焼成温度にて焼成した。

Figure 2008132570
Next, the granules were formed into a shape of CNMG120408 by uniaxial press molding and fired at the firing temperature shown in Table 1.
Figure 2008132570

焼成後、バリを除去し、厚み補正および刃先ホーニングを行なった後、化学蒸着法にてTiN、TiCN、Al2O3、TiNの順に成膜を行って切削工具を作製した。   After firing, burrs were removed, thickness correction and blade edge honing were performed, and then a film was formed in the order of TiN, TiCN, Al2O3, and TiN by a chemical vapor deposition method to produce a cutting tool.

そして、作製した試料のすくい面を表面から500μmの深さまで研削加工し、ダイヤモンドペーストで鏡面ラップ加工を行い、切削工具の厚み方向と直交する断面を露出させた後、走査型電子顕微鏡の二次電子像によって断面を3000倍で観察し、β相内の空孔の有無の確認、空孔の面積率、大きさを測定した。   Then, the rake face of the prepared sample is ground from the surface to a depth of 500 μm, mirror lapping is performed with diamond paste, a cross section perpendicular to the thickness direction of the cutting tool is exposed, and then the secondary of the scanning electron microscope The cross section was observed with an electron image at a magnification of 3000, and the presence or absence of vacancies in the β phase was confirmed, and the area ratio and size of the vacancies were measured.

空孔の面積率、直径については、ルーゼックス画像解析装置を用いて円形に換算した上で測定した。   The hole area ratio and diameter were measured after being converted into a circle using a Luzex image analyzer.

また、エネルギー分散分光分析(EDS)を用いてβ相の組成を分析した。また、超硬合金表面と表面から500μm内部までのZrとその他4,5,6族元素の含有率を先分析にて測定した。   In addition, the composition of the β phase was analyzed using energy dispersive spectroscopy (EDS). Further, the content of Zr and other Group 4, 5, 6 elements from the surface of the cemented carbide and from the surface to the inside of 500 μm were measured by the previous analysis.

作製した試料を用いて、切削試験を以下の条件にて行った。   A cutting test was performed under the following conditions using the prepared sample.

(耐摩耗試験)
切削方法:旋削
被削材 :SCM435 丸棒
切削速度:V=250m/min
送り :f=0.3mm/rev
切込み :d=2.0mm
切削状態:湿式
切削時間:10分
評価項目:10分切削後の逃げ面(側面)の単純摩耗幅Vbと最大摩耗幅Vbmax
(耐欠損試験)
切削方法:旋削
被削材 :SCM440 4本溝入り丸棒
切削速度:V=200m/min
送り :f=0.2mm/rev
切込み :d=1.0mm
切削状態:湿式
評価項目:欠損に至る衝撃回数
衝撃回数1000回時点で顕微鏡にて切刃の状態を観察
上記測定結果を表2に示す。

Figure 2008132570
(Abrasion resistance test)
Cutting method: Turning work material: SCM435 Round bar cutting speed: V = 250 m / min
Feeding: f = 0.3mm / rev
Cutting depth: d = 2.0mm
Cutting state: wet cutting time: 10 minutes Evaluation item: flank (side) simple wear width Vb and maximum wear width Vbmax after 10 minutes cutting
(Defect resistance test)
Cutting method: Turning work material: SCM440 Round groove with four grooves Cutting speed: V = 200 m / min
Feeding: f = 0.2mm / rev
Cutting depth: d = 1.0 mm
Cutting condition: Wet evaluation item: Number of impacts leading to breakage
The state of the cutting edge was observed with a microscope when the number of impacts was 1000. The measurement results are shown in Table 2.
Figure 2008132570

表1および2に示すように、β相内に空孔が存在しない試料No.7〜9では、刃先にチッピングによる突発欠損や、急激な摩耗の進行、および刃先の塑性変形によって工具寿命が短いものであった。   As shown in Tables 1 and 2, sample no. In Nos. 7 to 9, the tool life was short due to sudden chipping of the cutting edge due to chipping, rapid progress of wear, and plastic deformation of the cutting edge.

これに対して、β相内に空孔を存在させた本発明の範囲内である試料No.1〜6では、刃先にチッピングが発生せず、刃先の塑性変形も見られなかった。   On the other hand, the sample No. which is within the scope of the present invention in which vacancies exist in the β phase. In Nos. 1 to 6, no chipping occurred at the cutting edge, and no plastic deformation of the cutting edge was observed.

なお、実施例においては、切削工具のすくい面の表面から500μmの深さまで研削加工し、切削工具の厚み方向と直交する断面を露出させて、任意の箇所を空孔の面積率、大きさを測定したが、厚み方向を直交する断面であれば特に限定されない。また、前記断面において複数の任意の箇所を測定する場合は、平均値が全β相の面積を100%としたとき、空孔の面積が2〜10%の範囲内であれば、本発明の中でも特に耐欠損性および熱伝導性を切削加工に最適な状態にすることができる。
In addition, in an Example, it grinds to the depth of 500 micrometers from the surface of the rake face of a cutting tool, the cross section orthogonal to the thickness direction of a cutting tool is exposed, and the area ratio and magnitude | size of a void | hole are made into arbitrary places. Although it measured, if it is a cross section orthogonal to the thickness direction, it will not specifically limit. Further, when measuring a plurality of arbitrary locations in the cross section, the average value of the present invention is as long as the area of the pores is in the range of 2 to 10% when the area of all β phases is 100%. In particular, the chipping resistance and the thermal conductivity can be optimized for cutting.

本発明の一実施例に係る切削工具の断面における走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph in the section of the cutting tool concerning one example of the present invention.

符号の説明Explanation of symbols

1:硬質相
2:β相
3:ボイド
1: Hard phase 2: β phase 3: Void

Claims (7)

炭化タングステン及び4、5、6族金属の炭化物、窒化物、炭窒化物のいずれか1種を含む硬質相を、鉄族金属の少なくとも1種からなる結合金属にて結合した超硬合金からなる切削工具であって、
前記超硬合金の表面には、Ti、Ta、Nb、Zrの少なくとも1種と、Wとを含む炭化物、窒化物、炭窒化物の少なくとも1種の固溶体からなるβ相を有しており、
前記β相内には、空孔が存在することを特徴とする切削工具。
Tungsten carbide and a cemented carbide in which a hard phase containing any one of carbides, nitrides and carbonitrides of Group 4, 5, and 6 metals is bonded with a bonding metal consisting of at least one of iron group metals. A cutting tool,
The surface of the cemented carbide has a β phase composed of a solid solution of at least one of Ti, Ta, Nb, and Zr and at least one of carbide, nitride, and carbonitride containing W,
A cutting tool characterized in that pores exist in the β phase.
β相内に存在する空孔の存在率が、厚み方向に直交する断面における全β相の面積を100%としたとき、2〜10%であることを特徴とする請求項1に記載の切削工具。 2. The cutting according to claim 1, wherein the abundance ratio of vacancies existing in the β phase is 2 to 10% when the area of all β phases in a cross section perpendicular to the thickness direction is 100%. tool. 前記空孔の大きさが、円形に換算して直径0.1μm〜2.0μmの範囲内であることを特徴とする請求項1又は請求項2に記載の切削工具。 3. The cutting tool according to claim 1, wherein a size of the hole is in a range of a diameter of 0.1 μm to 2.0 μm in terms of a circle. 前記β相が少なくともZrを含むことを特徴とする請求項1乃至3のいずれかに記載の切削工具。 The cutting tool according to any one of claims 1 to 3, wherein the β phase contains at least Zr. 前記4,5,6族金属の含有量が前記基体の内部から表面に向かって漸次減少しており、かつ、
前記Zrの含有量の前記超硬合金の内部から表面に向かっての減少率が、その他の4,5,6族金属の含有量の減少率よりも小さいことを特徴とする請求項4に記載の切削工具。
The content of the Group 4, 5, 6 metal gradually decreases from the inside of the substrate toward the surface; and
5. The reduction rate of the content of the Zr from the inside to the surface of the cemented carbide is smaller than the reduction rate of the content of other Group 4, 5, 6 metals. Cutting tools.
前記超硬合金は、WCが70〜93重量%、4,5,6族金属の炭化物、窒化物、炭窒化物が2〜15重量%及び鉄族金属が3〜15重量%の原料から形成されたものであることを特徴とする請求項1乃至5のいずれかに記載の切削工具。   The cemented carbide is formed from a raw material of 70 to 93% by weight of WC, 2 to 15% by weight of carbides, nitrides and carbonitrides of Group 4, 5, 6 metals and 3 to 15% by weight of iron group metals. The cutting tool according to any one of claims 1 to 5, wherein the cutting tool is made. 前記基体の表面に周期表の4,5,6族金属、アルミニウム、シリコンの炭化物、窒化物、酸化物、および、それら化合物2種以上の複合化合物からなる硬質被覆層を形成してなることを特徴とする請求項1乃至6のいずれかに記載の切削工具。   Forming a hard coating layer comprising a metal of Group 4, 5, 6 of the periodic table, aluminum, silicon carbide, nitride, oxide, and a composite compound of two or more of these compounds on the surface of the substrate. The cutting tool according to any one of claims 1 to 6, characterized in that:
JP2006321151A 2006-11-29 2006-11-29 Cutting tool Pending JP2008132570A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006321151A JP2008132570A (en) 2006-11-29 2006-11-29 Cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006321151A JP2008132570A (en) 2006-11-29 2006-11-29 Cutting tool

Publications (1)

Publication Number Publication Date
JP2008132570A true JP2008132570A (en) 2008-06-12

Family

ID=39557776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006321151A Pending JP2008132570A (en) 2006-11-29 2006-11-29 Cutting tool

Country Status (1)

Country Link
JP (1) JP2008132570A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643740C1 (en) * 2016-12-20 2018-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for producing wear-resistant coating for cutting tool
JP2018053358A (en) * 2017-08-17 2018-04-05 住友電気工業株式会社 Method for producing cemented carbide
US10919810B2 (en) * 2017-12-27 2021-02-16 Tungaloy Corporation Cemented carbide and coated cemented carbide
CN114901846A (en) * 2020-04-15 2022-08-12 住友电工硬质合金株式会社 Cemented carbide and cutting tool comprising same
WO2023228688A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Coated tool and cutting tool
US11951550B2 (en) 2022-01-20 2024-04-09 Sumitomo Electric Industries, Ltd. Cemented carbide and tool containing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643740C1 (en) * 2016-12-20 2018-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method for producing wear-resistant coating for cutting tool
JP2018053358A (en) * 2017-08-17 2018-04-05 住友電気工業株式会社 Method for producing cemented carbide
US10919810B2 (en) * 2017-12-27 2021-02-16 Tungaloy Corporation Cemented carbide and coated cemented carbide
CN114901846A (en) * 2020-04-15 2022-08-12 住友电工硬质合金株式会社 Cemented carbide and cutting tool comprising same
US11951550B2 (en) 2022-01-20 2024-04-09 Sumitomo Electric Industries, Ltd. Cemented carbide and tool containing the same
WO2023228688A1 (en) * 2022-05-27 2023-11-30 京セラ株式会社 Coated tool and cutting tool

Similar Documents

Publication Publication Date Title
JP5454678B2 (en) Cermet and coated cermet
JP2006326729A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent high-temperature strength
JP2004050381A (en) Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2008132570A (en) Cutting tool
JP2017088917A (en) Hard metal alloy and cutting tool
JP2010234519A (en) Cermet and coated cermet
JP2007007764A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP5811954B2 (en) Substrate for cutting tool made of cemented carbide and surface-coated cutting tool using the same
JP2006289538A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP6443207B2 (en) Cemented carbide and cutting tools
JP4725773B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2003205404A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP2006289537A (en) Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of high hardness steel
JP2006224198A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material
JP4590940B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance due to hard coating layer
KR20130002964A (en) Target and hard coating film-coated cutting tool
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
JP2003175405A (en) Surface-coated cemented-carbide cutting tool having hard coating layer exhibiting excellent heat resistance
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP7216915B2 (en) Diamond-coated cemented carbide tools
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2008179859A (en) Cemented carbide and coated cemented carbide
JP2003225809A (en) Surface coated cemented carbide cutting tool superior in wear resistance in high speed cutting of hard-to-cut material
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition