JP2003205404A - Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed - Google Patents

Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed

Info

Publication number
JP2003205404A
JP2003205404A JP2002004071A JP2002004071A JP2003205404A JP 2003205404 A JP2003205404 A JP 2003205404A JP 2002004071 A JP2002004071 A JP 2002004071A JP 2002004071 A JP2002004071 A JP 2002004071A JP 2003205404 A JP2003205404 A JP 2003205404A
Authority
JP
Japan
Prior art keywords
layer
cutting
cemented carbide
coated
wear resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002004071A
Other languages
Japanese (ja)
Other versions
JP3695396B2 (en
Inventor
Koichi Maeda
浩一 前田
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2002004071A priority Critical patent/JP3695396B2/en
Publication of JP2003205404A publication Critical patent/JP2003205404A/en
Application granted granted Critical
Publication of JP3695396B2 publication Critical patent/JP3695396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting a hardly machinable material at a high speed. <P>SOLUTION: In this surface-coated cemented carbide cutting tool, an oxidation resistant coated layer which has a mean layer thickness of 2-12 μm, satisfies the composition formula (Al<SB>1-(</SB>V<SB>+</SB>W<SB>)</SB>TiVSiW)N (where, V is 0.10-0.25, and W is 0.05-0.20 in terms of atom ratio), and consists of an Al-based composite nitride layer having a cubic crystalline structure physically vapor-deposited on a surface of a tungsten carbide-based cemented carbide base body or carbo-nitride titanium cermet base body via a crystalline history layer which has a mean layer thickness of 0.05-1 μm, satisfies the composition formula (Al<SB>1-(</SB>X<SB>+</SB>Y<SB>)</SB>TiXSiY)N (where, X is 0.35-0.60, and Y is 0.01-0.15 in terms of atom ratio), and consists of an Al-Ti composite nitride layer similarly having the cubic crystalline structure. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、耐酸化性被覆層
がすぐれた高温特性を有し、特に高い発熱を伴うステン
レス鋼や軟鋼などの難削材の高速切削加工に用いた場合
に、すぐれた耐摩耗性を発揮する表面被覆超硬合金製切
削工具(以下、被覆超硬工具という)に関するものであ
る。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、近年、炭化タングステン(以下、W
Cで示す)基超硬合金または炭窒化チタン(以下、Ti
CNで示す)基サーメットからなる基体(以下、これら
を総称して超硬基体と云う)の表面に、組成式:(Al
1-(V+W)TiVSiW)N(ただし、原子比で、Vは0.
10〜0.25、Wは0.05〜0.20を示す)を満
足するAl基複合窒化物[以下、(Al−ti−si)
Nで示す]層からなる耐酸化性被覆層を2〜12μmの
平均層厚で物理蒸着してなる被覆超硬工具が、特にステ
ンレス鋼や軟鋼などの難削材の切削加工に適した切削工
具として注目されている。 【0004】さらに、上記の被覆超硬工具が、例えば図
1に概略説明図で示される物理蒸着装置の1種であるア
ークイオンプレーティング装置に上記の超硬基体を装入
し、ヒータで装置内を、例えば雰囲気を1.3×10-3
Paの真空として、500℃の温度に加熱した状態で、
アノード電極と所定組成を有するAl−ti−si合金
がセットされたカソード電極(蒸発源)との間に、例え
ば電圧:35V、電流:90Aの条件でアーク放電を発
生させ、同時に装置内に反応ガスとして窒素ガスを導入
し、一方上記超硬基体には、例えば−200Vのバイア
ス電圧を印加した条件で、前記超硬合金基体の表面に、
上記(Al−ti−si)N層からなる耐酸化性被覆層
を蒸着することにより製造されることも知られている。 【0005】 【発明が解決しようとする課題】近年の切削加工装置の
高性能化はめざましく、一方で切削加工に対する省力化
および省エネ化、さらに低コスト化の要求は強く、これ
に伴い、切削加工は高速化の傾向にあるが、上記の従来
被覆超硬工具においては、これをステンレス鋼や軟鋼な
どの難削材の通常の条件での切削加工には問題はない
が、これを粘性の高い前記の被削材の切削加工をきわめ
て高い発熱を伴う高速切削条件で行なった場合には、耐
酸化性被覆層が十分な高温特性を具備しないことから、
切刃の摩耗進行が著しく促進されるようになり、この結
果比較的短時間で使用寿命に至るのが現状である。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、ステンレス鋼や軟鋼などの難削
材の切削加工を高速切削条件で行なった場合にも、すぐ
れた耐摩耗性を発揮する被覆超硬工具を開発すべく、特
に上記の従来被覆超硬工具を構成する耐酸化性被覆層に
着目し、研究を行った結果、(a)上記の従来被覆超硬
工具を構成する(Al−ti−si)N層からなる耐酸
化性被覆層は「六方晶」の結晶構造をもつが、この結晶
構造が「六方晶」の耐酸化性被覆層を超硬基体表面に物
理蒸着形成する前に、予め組成式:(Al1- (X+Y)TiX
SiY)N(ただし、原子比で、Xは0.35〜0.6
0、Yは0.01〜0.15を示す)を満足し、この結
果「立方晶」の結晶構造をもつようになるAl−Ti系
複合窒化物[以下、(Al,Ti−si)Nで示す]層
をきわめて薄い0.05〜1μmの平均層厚で蒸着形成
しておくと、これの上に物理蒸着された、本来「六方
晶」の結晶構造を有する前記(Al−ti−si)N層
も前記(Al,Ti−si)N層による結晶履歴効果に
よってこれの結晶構造と同じ「立方晶」の結晶構造をも
つようになること。 【0007】(b)結晶構造が「立方晶」の(Al−t
i−si)N層は、同「六方晶」の(Al−ti−s
i)N層に比して高温特性(高温耐酸化性、高温強度、
および高温硬さ)にすぐれているので、前記結晶構造が
「立方晶」の(Al−ti−si)N層からなる耐酸化
性被覆層を超硬基体表面に物理蒸着してなる被覆超硬工
具は、高い発熱を伴うステンレス鋼や軟鋼などの難削材
の高速切削加工ですぐれた耐摩耗性を発揮するようにな
ること。以上(a)および(b)に示される研究結果を
得たのである。 【0008】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、0.05〜1
μmの平均層厚を有し、かつ、組成式:(Al1-(X+Y)
TiXSiY)N(ただし、原子比で、Xは0.35〜
0.60、Yは0.01〜0.15を示す)を満足する
と共に、立方晶の結晶構造を有する(Al,Ti−s
i)N層からなる結晶履歴層を介して、2〜12μmの
平均層厚を有し、かつ、組成式:(Al1-(V+W)TiV
W)N(ただし、原子比で、Vは0.10〜0.2
5、Wは0.05〜0.20を示す)を満足すると共
に、同じく立方晶の結晶構造を有する(Al−ti−s
i)N層からなる耐酸化性被覆層を物理蒸着してなる、
難削材の高速切削ですぐれた耐摩耗性を発揮する被覆超
硬工具に特徴を有するものである。 【0009】つぎに、この発明の被覆超硬工具におい
て、これを構成する結晶履歴層および耐酸化性被覆層の
組成および平均層厚を上記の通りに限定した理由を説明
する。 (a)結晶履歴層[(Al,Ti−si)N層](A
l,Ti−si)N層におけるTiは、層の結晶構造を
「立方晶」とする目的で含有するものであり、したがっ
てTiの割合がAlとSiの合量に占める割合(原子
比、以下同じ)で0.35未満では、立方晶の結晶構造
を確保することができず、一方その割合が0.60を越
えると層自体の高温硬さおよび耐熱性に低下傾向が現れ
るようになることから、その割合を0.35〜0.60
と定めた。同じくSiは層の硬さを向上させる目的で含
有するが、その割合がAlとTiの合量に占める割合で
0.01未満では所望の硬さ向上効果が得られず、一方
その割合が同じく0.15を越えると、層の結晶構造を
「立方晶」に保持することが困難になることから、その
割合を0.01〜0.15と定めた。また、その平均層
厚が0.05μm未満では、(Al−ti−si)N層
の本来有する「六方晶」の結晶構造を「立方晶」に転化
する結晶履歴効果を十分に発揮させることができず、一
方この結晶履歴効果は1μmまでの平均層厚で十分であ
ることから、その平均層厚を0.05〜1μmと定め
た。 【0010】(b)耐酸化性被覆層[(Al−ti−s
i)N層] (Al−ti−si)N層のtiは、耐酸化性にすぐれ
たAlN層の強度を向上させる目的で含有するが、その
割合がAlとSiとの合量に占める割合で0.10未満
では所望の強度向上効果が得られず、一方その割合が同
じく0.25を越えると、層の耐酸化性が急激に低下
し、特に高熱発生を伴う切削時の摩耗が促進されるよう
になることから、その割合を0.10〜0.25と定め
た。同じくSiは、層の硬さを向上させる目的で含有す
るが、その割合がAlとTiの合量に占める割合で0.
05未満では所望の硬さ向上効果が得られず、一方その
割合が同じく0.20を越えると、相対的にAlの割合
が少なくなり過ぎて耐酸化性が急激に低下するようにな
ることから、その割合を0.05〜0.20と定めた。
また、その平均層厚が2μm未満では、所望の耐摩耗性
を確保することができず、一方その平均層厚が12μm
を越えると、切刃にチッピングが発生し易くなることか
ら、その平均層厚を2〜12μmと定めた。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、ZrC粉末、V
C粉末、TaC粉末、NbC粉末、Cr3 2 粉末、T
iN粉末、TaN粉末、およびCo粉末を用意し、これ
ら原料粉末を、表1に示される配合組成に配合し、ボー
ルミルで72時間湿式混合し、乾燥した後、100MP
a の圧力で圧粉体にプレス成形し、この圧粉体を6P
aの真空中、温度:1400℃に1時間保持の条件で焼
結し、焼結後、切刃部分にR:0.05のホーニング加
工を施してISO規格・CNMG120408のチップ
形状をもったWC基超硬合金製の超硬基体A1〜A10
を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0013】ついで、これら超硬基体A1〜A10およ
びB1〜B6を、アセトン中で超音波洗浄し、乾燥した
状態で、それぞれ図1に例示される通常のアークイオン
プレーティング装置に装入し、一方カソード電極(蒸発
源)として種々の成分組成をもった(Al,Ti−s
i)合金および(Al−ti−si)合金を装着し、装
置内を排気して1.3×10-3Paの真空に保持しなが
ら、ヒーターで装置内を500℃に加熱した後、Arガ
スを装置内に導入して10PaのAr雰囲気とし、この
状態で超硬基体に−800vのバイアス電圧を印加して
超硬基体表面をArガスボンバート洗浄し、ついで装置
内に反応ガスとして窒素ガスを導入して6Paの反応雰
囲気とすると共に、前記超硬基体に印加するバイアス電
圧を−200vに下げて、前記カソード電極とアノード
電極との間にアーク放電を発生させ、もって前記超硬基
体A1〜A10およびB1〜B6のそれぞれの表面に、
表3,4に示される目標組成および目標層厚の結晶履歴
層[(Al,Ti−si)N層]および耐酸化性被覆層
[(Al−ti−si)N層]を蒸着することにより、
図2(a)に概略斜視図で、同(b)に概略縦断面図で
示される形状を有する本発明被覆超硬工具としての本発
明表面被覆超硬合金製スローアウエイチップ(以下、本
発明被覆超硬チップと云う)1〜20をそれぞれ製造し
た。また、比較の目的で、表5,6に示される通り上記
結晶履歴層[(Al,Ti−si)N層]の形成を行な
わない以外は同一の条件で従来被覆超硬工具としての従
来表面被覆超硬合金製スローアウエイチップ(以下、従
来被覆超硬チップと云う)1〜20をそれぞれ製造し
た。 【0014】つぎに、上記本発明被覆超硬チップ1〜2
0および従来被覆超硬チップ1〜20について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SUS304の丸棒、 切削速度:200m/min.、 切り込み:2mm、 送り:0.21mm/rev.、 切削時間:8分、 の条件でのステンレス鋼の乾式高速連続旋削加工試験、 被削材:JIS・SUS304の長さ方向等間隔4本縦
溝入り丸棒、 切削速度:180m/min.、 切り込み:1mm、 送り:0.17mm/rev.、 切削時間:2分、 の条件でのステンレス鋼の乾式高速断続旋削加工試験、
さらに、 被削材:JIS・S15Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:300m/min.、 切り込み:2mm、 送り:0.3mm/rev.、 切削時間:3分、 の条件での軟鋼の乾式高速断続旋削加工試験を行い、い
ずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定し
た。この測定結果を表7、8に示した。 【0015】 【表1】 【0016】 【表2】 【0017】 【表3】【0018】 【表4】 【0019】 【表5】 【0020】 【表6】 【0021】 【表7】 【0022】 【表8】 【0023】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表9に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表9に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法をもった超硬基体(エンドミル)a〜hをそれ
ぞれ製造した。 【0024】ついで、これらの超硬基体(エンドミル)
a〜hを、アセトン中で超音波洗浄し、乾燥した状態
で、同じく図1に例示される通常のアークイオンプレー
ティング装置に装入し、上記実施例1と同一の条件で、
前記超硬基体a〜hのそれぞれの表面に表10に示され
る目標組成および目標層厚をもった結晶履歴層[(A
l,Ti−si)N層]および耐酸化性被覆層[(Al
−ti−si)N層]を蒸着することにより、図3
(a)に概略正面図で、同(b)に切刃部の概略横断面
図で示される形状を有する本発明被覆超硬工具としての
本発明表面被覆超硬合金製エンドミル(以下、本発明被
覆超硬エンドミルと云う)1〜8をそれぞれ製造した。
また、比較の目的で、表11に示される通り上記結晶履
歴層[(Al,Ti−si)N層]の形成を行なわない
以外は同一の条件で従来被覆超硬工具としての従来表面
被覆超硬合金製エンドミル(以下、従来被覆超硬エンド
ミルと云う)1〜8をそれぞれ製造した。 【0025】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:35m/min.、 溝深さ(切り込み):2.5mm、 テーブル送り:130mm/分、 の条件でのステンレス鋼の湿式高速溝切削加工試験(水
溶性切削油使用)、本発明被覆超硬エンドミル4〜6お
よび従来被覆超硬エンドミル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・S15C板材、 切削速度:100m/min.、 溝深さ(切り込み):4mm、 テーブル送り:450mm/分、 の条件での軟鋼の乾式高速溝切削加工試験、本発明被覆
超硬エンドミル7,8および従来被覆超硬エンドミル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SUS304の板材、 切削速度:30m/min.、 溝深さ(切り込み):8mm、 テーブル送り:110mm/分、 の条件でのステンレス鋼の湿式高速溝切削加工試験(水
溶性切削油使用)、をそれぞれ行い、いずれの溝切削加
工試験でも切刃部先端面の直径が使用寿命の目安とされ
る0.2mm減少するまでの切削溝長を測定した。この
測定結果を表10、11にそれぞれ示した。 【0026】 【表9】 【0027】 【表10】【0028】 【表11】 【0029】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体a〜c形成用)、13mm(超硬
基体d〜f形成用)、および26mm(超硬基体g、h
形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼
結体から、研削加工にて、溝形成部の直径×長さがそれ
ぞれ4mm×13mm(超硬基体a´〜c´)、8mm
×22mm(超硬基体d´〜f´)、および16mm×
45mm(超硬基体g´、h´)の寸法をもった超硬基
体(ドリル)a´〜h´をそれぞれ製造した。 【0030】ついで、これらの超硬基体(ドリル)a´
〜h´を、アセトン中で超音波洗浄し、乾燥した状態
で、同じく図1に例示される通常のアークイオンプレー
ティング装置に装入し、上記実施例1と同一の条件で、
前記超硬基体a´〜h´のそれぞれの表面に表12に示
される目標組成および目標層厚をもった結晶履歴層
[(Al,Ti−si)N層]および耐酸化性被覆層
[(Al−ti−si)N層]を蒸着することにより、
図4(a)に概略正面図で、同(b)に溝形成部の概略
横断面図で示される形状を有する本発明被覆超硬工具と
しての本発明表面被覆超硬合金製ドリル(以下、従来被
覆超硬ドリルと云う)1〜8をそれぞれ製造した。ま
た、比較の目的で、表13に示される通り上記結晶履歴
層[(Al,Ti−si)N層]の形成を行なわない以
外は同一の条件で従来被覆超硬工具としての従来表面被
覆超硬合金製ドリル(以下、従来被覆超硬ドリルと云
う)1〜8をそれぞれ製造した。 【0031】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250mm、厚さ:8
mmのJIS・SUS304板材、 切削速度:30m/min.、 送り:0.08mm/rev、 の条件でのステンレス鋼の湿式高速穴あけ切削加工試
験、本発明被覆超硬ドリル4〜6および従来被覆超硬ド
リル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:1
6mmのJIS・SUS304の板材、 切削速度:30m/min.、 送り:0.15mm/rev、 の条件でのステンレス鋼の湿式高速穴あけ切削加工試
験、本発明被覆超硬ドリル7,8および従来被覆超硬ド
リル7,8については、 被削材:平面寸法:100mm×250mm、厚さ:3
2mmのJIS・S15Cの板材、 切削速度:80m/min.、 送り:0.30mm/rev、 の条件での軟鋼の湿式高速穴あけ切削加工試験、をそれ
ぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶
性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3
mmに至るまでの穴あけ加工数を測定した。この測定結
果を表12、13にそれぞれ示した。 【0032】 【表12】 【0033】 【表13】 【0034】なお、この結果得られた本発明被覆超硬工
具としての本発明被覆超硬チップ1〜20、本発明被覆
超硬エンドミル1〜8、および本発明被覆超硬ドリル1
〜8の結晶履歴層[(Al,Ti−si)N層]および
耐酸化性被覆層[(Al−ti−si)N層]、並びに
従来被覆超硬工具としての従来被覆超硬チップ1〜2
0、従来被覆超硬エンドミル1〜8、および従来被覆超
硬ドリル1〜8の高温耐酸化性被覆層[(Al−ti−
si)N層]の組成について、その厚さ方向中央部をオ
ージェ分光分析装置を用いて測定したところ、それぞれ
目標組成と実質的に同じ組成を示した。また、これらの
本発明被覆超硬工具、並びに従来被覆超硬工具の上記構
成層の厚さを、走査型電子顕微鏡を用いて断面測定した
ところ、いずれも目標層厚と実質的に同じ平均層厚(5
点測定の平均値)を示した。さらに、これらの本発明被
覆超硬工具、並びに従来被覆超硬工具の上記構成層の結
晶構造を透過型電子顕微鏡を用いて断面測定した結果を
表3〜6および表10〜13にそれぞれ示した。 【0035】 【発明の効果】表3〜13に示される結果から、結晶履
歴層の介在によって耐酸化性被覆層が立方晶の結晶構造
を有し、これによってすぐれた高温特性(高温耐酸化
性、高温強度、および高温硬さ)を具備するようになる
本発明被覆超硬工具は、いずれもステンレス鋼や軟鋼の
切削加工を高い発熱を伴う高速で行っても、すぐれた耐
摩耗性を発揮するのに対して、耐酸化性被覆層の結晶構
造が六方晶の従来被覆超硬工具においては、高温特性不
足が原因で摩耗進行が速く、比較的短時間で使用寿命に
至ることが明らかである。上述のように、この発明の被
覆超硬工具は、特に粘性が高く、高い発熱を伴うステン
レス鋼や軟鋼などの難削材の高速切削加工でもすぐれた
耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示
すものであるから、切削加工装置の高性能化、並びに切
削加工の省力化および省エネ化、さらに低コスト化に十
分満足に対応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxidation-resistant coating layer having excellent high-temperature characteristics, and particularly to a difficult-to-cut material such as stainless steel or mild steel which generates high heat. The present invention relates to a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance when used in high-speed cutting (hereinafter, referred to as a coated cemented carbide tool). 2. Description of the Related Art Generally, a cutting tool includes a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing of a work material such as steel or cast iron. There are drills and miniature drills used for drilling and cutting work materials, and solid type end mills used for face milling, grooving, shoulder processing, etc. of the work material. A throw-away end mill tool or the like which is freely mounted and performs cutting in the same manner as the solid type end mill is known. In recent years, tungsten carbide (hereinafter referred to as W
C) based cemented carbide or titanium carbonitride (hereinafter referred to as Ti
The composition formula: (Al) is formed on the surface of a substrate made of a base cermet (indicated by CN)
1- (V + W) Ti V Si W) N ( provided that an atomic ratio, V is 0.
Al-based composite nitride satisfying 10 to 0.25 and W represents 0.05 to 0.20 [hereinafter referred to as (Al-ti-si)
N)], a coated carbide tool formed by physical vapor deposition of an oxidation-resistant coating layer having an average layer thickness of 2 to 12 μm, which is particularly suitable for cutting difficult-to-cut materials such as stainless steel and mild steel. It is attracting attention. [0004] Further, the above coated super hard tool is prepared by charging the above super hard substrate into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. The atmosphere is, for example, 1.3 × 10 −3.
In a state of heating to a temperature of 500 ° C. as a vacuum of Pa,
An arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al-ti-si alloy having a predetermined composition is set, for example, under the conditions of a voltage: 35 V and a current: 90 A, and simultaneously reacts in the apparatus. Nitrogen gas was introduced as a gas, while the cemented carbide substrate was applied to the surface of the cemented carbide substrate under the condition that a bias voltage of, for example, -200 V was applied.
It is also known to be manufactured by depositing an oxidation-resistant coating layer consisting of the (Al-ti-si) N layer. [0005] In recent years, the performance of cutting equipment has been remarkably improved, and on the other hand, there has been a strong demand for labor saving, energy saving, and further cost reduction in the cutting work. Although there is a tendency to increase the speed, in the above-mentioned conventional coated carbide tools, there is no problem in the cutting of difficult-to-cut materials such as stainless steel and mild steel under normal conditions, but this is When the cutting of the work material is performed under high-speed cutting conditions with extremely high heat generation, since the oxidation-resistant coating layer does not have sufficient high-temperature characteristics,
At present, the progress of abrasion of the cutting blade is remarkably accelerated, and as a result, the service life of the cutting blade is relatively short. Means for Solving the Problems Accordingly, the present inventors have proposed:
From the viewpoints described above, even when cutting hard-to-cut materials such as stainless steel and mild steel under high-speed cutting conditions, in order to develop a coated carbide tool that demonstrates excellent wear resistance, in particular, the above-mentioned The inventors focused on the oxidation-resistant coating layer that forms the conventional coated carbide tool, and as a result of conducting research, (a) the oxidation resistance of the (Al-ti-si) N layer that forms the above-described conventional coated carbide tool The coating layer has a “hexagonal” crystal structure. Before forming the “hexagonal” oxidation-resistant coating layer on the surface of the superhard substrate by physical vapor deposition, the composition formula: (Al 1− ( X + Y) Ti X
Si Y ) N (where X is 0.35 to 0.6 in atomic ratio)
0 and Y represent 0.01 to 0.15), and as a result, an Al—Ti-based composite nitride [hereinafter referred to as (Al, Ti-si) N When a layer is formed by vapor deposition with an extremely thin average layer thickness of 0.05 to 1 μm, the above-mentioned (Al-ti-si) physically deposited thereon and having an originally “hexagonal” crystal structure is formed. ) The N layer also has the same “cubic” crystal structure as its crystal structure due to the crystal hysteresis effect of the (Al, Ti-si) N layer. (B) (Al-t) having a “cubic” crystal structure
The i-si) N layer has the same “hexagonal” (Al-ti-s)
i) High temperature characteristics (high temperature oxidation resistance, high temperature strength,
And high-temperature hardness), so that the oxidation-resistant coating layer composed of a (cubic) (Al-ti-si) N layer is physically vapor-deposited on the surface of the super-hard substrate. The tool must exhibit excellent wear resistance in high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel with high heat generation. The research results shown in (a) and (b) above were obtained. The present invention has been made on the basis of the above research results, and has a surface of a cemented carbide substrate of 0.05 to 1%.
having an average layer thickness of μm and a composition formula: (Al 1− (X + Y)
Ti X Si Y ) N (where X is 0.35
0.60, Y represents 0.01 to 0.15) and has a cubic crystal structure (Al, Ti-s
i) having an average layer thickness of 2 to 12 μm via a crystal history layer composed of an N layer, and having a composition formula: (Al 1− (V + W) Ti V S
i W ) N (where V is 0.10 to 0.2 in atomic ratio)
5, W represents 0.05 to 0.20) and also has a cubic crystal structure (Al-ti-s
i) physical oxidation of an oxidation-resistant coating layer composed of an N layer,
It is characterized by a coated carbide tool that exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials. Next, the reason why the composition and the average thickness of the crystal hysteresis layer and the oxidation-resistant coating layer constituting the coated carbide tool of the present invention are limited as described above will be described. (A) Crystal history layer [(Al, Ti-si) N layer] (A
The Ti in the l, Ti-si) N layer is included for the purpose of making the crystal structure of the layer “cubic”, and therefore, the ratio of Ti to the total amount of Al and Si (atomic ratio; If the ratio is less than 0.35, a cubic crystal structure cannot be secured, while if the ratio exceeds 0.60, the high-temperature hardness and heat resistance of the layer itself tend to decrease. From 0.35 to 0.60
It was decided. Similarly, Si is contained for the purpose of improving the hardness of the layer, but if the ratio is less than 0.01 in the total amount of Al and Ti, the desired effect of improving the hardness cannot be obtained. If it exceeds 0.15, it becomes difficult to maintain the crystal structure of the layer in “cubic”, so the ratio was set to 0.01 to 0.15. When the average layer thickness is less than 0.05 μm, the crystal history effect of converting the originally “hexagonal” crystal structure of the (Al-ti-si) N layer to “cubic” can be sufficiently exerted. On the other hand, since the crystal hysteresis effect requires an average layer thickness of up to 1 μm, the average layer thickness is determined to be 0.05 to 1 μm. (B) Oxidation resistant coating layer [(Al-ti-s
i) N layer] (Al-ti-si) The ti of the N layer is included for the purpose of improving the strength of the AlN layer having excellent oxidation resistance, and the proportion of the ti in the total amount of Al and Si. If the ratio is less than 0.10, the desired strength-improving effect cannot be obtained. On the other hand, if the ratio exceeds 0.25, the oxidation resistance of the layer is sharply reduced, and wear during cutting accompanied by high heat generation is accelerated. Therefore, the ratio was set to 0.10 to 0.25. Similarly, Si is contained for the purpose of improving the hardness of the layer, but the content is 0.1% in the total amount of Al and Ti.
If it is less than 0.05, the desired hardness improving effect cannot be obtained, while if its proportion exceeds 0.20, the proportion of Al becomes relatively too small and the oxidation resistance rapidly decreases. , And the ratio was determined to be 0.05 to 0.20.
If the average layer thickness is less than 2 μm, the desired wear resistance cannot be secured, while the average layer thickness is 12 μm
If the average thickness exceeds 2 mm, chipping is likely to occur on the cutting edge. Therefore, the average layer thickness is set to 2 to 12 μm. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, ZrC powder, V
C powder, TaC powder, NbC powder, Cr 3 C 2 powder, T
An iN powder, a TaN powder, and a Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried.
a into a green compact at the pressure of a
sintering in a vacuum at a temperature of 1400 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.05 to form a WC having a chip shape of ISO standard CNMG120408. Substrates A1 to A10 made of base cemented carbide
Was formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to obtain a TiC having a chip shape conforming to ISO standard, CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed. Next, these super-hard substrates A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried, and each is charged into a usual arc ion plating apparatus illustrated in FIG. On the other hand, the cathode electrode (evaporation source) has various component compositions (Al, Ti-s
i) After mounting the alloy and the (Al-ti-si) alloy, evacuating the inside of the apparatus and keeping the apparatus at a vacuum of 1.3 × 10 −3 Pa, the inside of the apparatus was heated to 500 ° C. with a heater, and then Ar was heated. A gas was introduced into the apparatus to form an Ar atmosphere of 10 Pa, and under this condition, a bias voltage of -800 V was applied to the superhard substrate to clean the surface of the superhard substrate by Ar gas bombardment. To a reaction atmosphere of 6 Pa, and a bias voltage applied to the cemented carbide substrate is reduced to -200 V to generate an arc discharge between the cathode electrode and the anode electrode. To each surface of ~ A10 and B1 ~ B6,
By depositing a crystal hysteresis layer [(Al, Ti-si) N layer] and an oxidation-resistant coating layer [(Al-ti-si) N layer] having the target composition and target layer thickness shown in Tables 3 and 4. ,
FIG. 2 (a) is a schematic perspective view, and FIG. 2 (b) is a throw-away tip made of a surface-coated cemented carbide alloy of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic longitudinal sectional view (hereinafter, the present invention) 1 to 20). For the purpose of comparison, as shown in Tables 5 and 6, the conventional surface as a conventional coated carbide tool was obtained under the same conditions except that the crystal hysteresis layer [(Al, Ti-si) N layer] was not formed. Coated cemented carbide throw-away tips (hereinafter referred to as conventional coated cemented carbide tips) 1 to 20 were produced, respectively. Next, the coated carbide tips 1-2 of the present invention
0 and conventional coated carbide tips 1 to 20 were screwed to the tip of a tool steel tool with a fixing jig. Work material: JIS 304 stainless steel round bar, Cutting speed: 200 m / min . Infeed: 2 mm Feed: 0.21 mm / rev. , Cutting time: 8 minutes, Dry high-speed continuous turning test of stainless steel under the following conditions: Work material: JIS SUS304, four longitudinal grooves at equal intervals in the longitudinal direction, Cutting speed: 180 m / min. Infeed: 0.1 mm Feed: 0.17 mm / rev. , Cutting time: 2 minutes, Dry high-speed intermittent turning test of stainless steel under the following conditions:
Further, a work material: a round bar with four longitudinal grooves at equal intervals in the longitudinal direction of JIS S15C, a cutting speed: 300 m / min. Infeed: 2 mm Feed: 0.3 mm / rev. A dry high-speed intermittent turning test of mild steel was performed under the following conditions: cutting time: 3 minutes, and the flank wear width of the cutting edge was measured in each turning test. The measurement results are shown in Tables 7 and 8. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] [Table 7] [Table 8] Example 2 As raw material powder, average particle size:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0
μm of (Ti, W) C powder and 1.8 μm of Co
Powders were prepared, and each of these raw material powders was blended into the blending composition shown in Table 9, further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
Press molding at a pressure of 0 MPa into various green compacts of a predetermined shape, and pressing these green compacts in a vacuum atmosphere of 6 Pa at 7 ° C. /
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, and then sintered under the condition of furnace cooling to obtain a sample having a diameter of 8 mm, 13 mm, and 26 mm. Kinds of round bar sintered bodies for forming a cemented carbide substrate are formed, and the above three kinds of round bar sintered bodies are subjected to grinding processing in a combination shown in Table 9 to obtain a diameter x length of a cutting edge portion. Is 6mm × 1 each
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrates (end mills) a to h having a size of m were manufactured, respectively. Next, these super-hard substrates (end mills)
a to h were ultrasonically cleaned in acetone, dried and charged in a usual arc ion plating apparatus also illustrated in FIG. 1 under the same conditions as in Example 1 above.
A crystal hysteresis layer having a target composition and a target layer thickness shown in Table 10 on each surface of the carbide substrates a to h [(A
l, Ti-si) N layer] and an oxidation-resistant coating layer [(Al
-Ti-si) N layer] to obtain FIG.
(A) is a schematic front view, and (b) is an end mill made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown by a schematic cross-sectional view of a cutting edge portion (hereinafter, the present invention). (Referred to as coated carbide end mills) 1 to 8 respectively.
For the purpose of comparison, as shown in Table 11, under the same conditions except that the above-mentioned crystal hysteresis layer [(Al, Ti-si) N layer] was not formed, the conventional surface-coated ultra-hard tool as the conventional coated carbide tool was used. Hard metal end mills (hereinafter referred to as conventional coated carbide end mills) 1 to 8 were manufactured, respectively. Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SUS304 plate, Cutting speed: 35 m / min. , Groove depth (cut): 2.5 mm, Table feed: 130 mm / min, Wet high-speed groove cutting test of stainless steel (using water-soluble cutting oil) under the following conditions: coated carbide end mills 4 to 6 of the present invention and For the conventional coated carbide end mills 4 to 6, work material: plane dimension: 100 mm x 250 mm, thickness: 5
0 mm JIS S15C plate, Cutting speed: 100 m / min. , Groove depth (cut): 4 mm, Table feed: 450 mm / min, Dry high-speed groove cutting test of mild steel, coated carbide end mills 7 and 8 of the present invention and conventional coated carbide end mills 7 and 8 , Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SUS304 plate, Cutting speed: 30 m / min. , Groove depth (cut): 8 mm, Table feed: 110 mm / min, Wet stainless steel high-speed groove cutting test (using water-soluble cutting oil) under the following conditions: The cutting groove length was measured until the diameter of the tip surface of the blade portion decreased by 0.2 mm, which is a standard for the service life. The measurement results are shown in Tables 10 and 11, respectively. [Table 9] [Table 10] [Table 11] (Example 3) The diameters of 8 mm (for forming the super-hard substrates a to c), 13 mm (for forming the super-hard substrates d to f), and 26 mm (for the super-hard substrate g) produced in Example 2 described above. h
(For forming), the diameter x length of the groove forming portion was 4 mm x 13 mm (carbide substrate a ') by grinding from the three types of round rod sintered bodies. ~ C '), 8mm
× 22 mm (carbide substrate d ′ to f ′) and 16 mm ×
Carbide substrates (drills) a 'to h' each having a size of 45 mm (carbide substrates g 'and h') were manufactured. Next, these super hard substrates (drills) a '
~ H 'was ultrasonically cleaned in acetone, dried and charged in a usual arc ion plating apparatus also illustrated in FIG. 1 under the same conditions as in Example 1 above.
A crystal hysteresis layer [(Al, Ti-si) N layer] and an oxidation resistant coating layer [((Al, Ti-si) N layer] having target compositions and target layer thicknesses shown in Table 12 on the respective surfaces of the cemented carbide substrates a 'to h'. Al-ti-si) N layer],
FIG. 4 (a) is a schematic front view, and FIG. 4 (b) is a surface-coated cemented carbide drill (hereinafter, referred to as a coated cemented carbide tool) having the shape shown in the schematic cross-sectional view of the groove forming portion. Conventional coated carbide drills) 1 to 8 were manufactured respectively. For the purpose of comparison, as shown in Table 13, under the same conditions except that the above-mentioned crystal hysteresis layer [(Al, Ti-si) N layer] was not formed, the conventional surface-coated super-hard tool as the conventional coated carbide tool was used. Drills made of hard alloy (hereinafter referred to as conventional coated carbide drills) 1 to 8 were manufactured, respectively. Next, the above-described coated carbide drills 1 to 8 of the present invention will be described.
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 of the present invention and the coated carbide drills 1 to 3 of the present invention are: work material: plane dimension: 100 mm × 250 mm, thickness: 8
mm JIS SUS304 plate material, Cutting speed: 30 m / min. , Feed: 0.08 mm / rev, Wet high-speed drilling test of stainless steel under the following conditions: coated carbide drills 4 to 6 of the present invention and conventional coated carbide drills 4 to 6 : 100 mm x 250 mm, thickness: 1
6 mm JIS SUS304 plate, Cutting speed: 30 m / min. , Feed: 0.15 mm / rev, Wet high-speed drilling cutting test of stainless steel under the following conditions: For coated carbide drills 7 and 8 of the present invention and conventional coated carbide drills 7 and 8, work material: plane dimensions : 100mm x 250mm, thickness: 3
2 mm JIS S15C plate material, Cutting speed: 80 m / min. , Feed: 0.30 mm / rev, Wet high-speed drilling and cutting test of mild steel under the following conditions: In any wet high-speed drilling and cutting test (using water-soluble cutting oil), flank wear of the cutting edge at the tip 0.3 width
The number of drilling processes up to mm was measured. The measurement results are shown in Tables 12 and 13, respectively. [Table 12] [Table 13] The coated carbide tips 1-20, coated end mills 1-8, and coated drill 1 of the present invention as the coated carbide tools of the present invention obtained as a result.
To 8 (Hi, Si-N) layer and oxidation resistant coating layer ((Al-ti-si) N layer), and the conventional coated carbide tips 1 to 4 as the conventional coated carbide tool. 2
0, high-temperature oxidation-resistant coating layers of conventional coated carbide end mills 1 to 8 and conventional coated carbide drills 1 to 8 [(Al-ti-
si) N layer], the center in the thickness direction was measured using an Auger spectroscopic analyzer. As a result, each of the compositions showed substantially the same composition as the target composition. Further, when the thickness of the above-described constituent layers of the coated carbide tool of the present invention and the conventional coated carbide tool was measured in cross section using a scanning electron microscope, the average layer thickness was substantially the same as the target layer thickness. Thick (5
(Average value of point measurements). Tables 3 to 6 and Tables 10 to 13 show the results of cross-sectional measurement of the crystal structure of the above-described constituent layers of the coated carbide tool of the present invention and the conventional coated carbide tool using a transmission electron microscope. . From the results shown in Tables 3 to 13, the oxidation-resistant coating layer has a cubic crystal structure due to the interposition of the crystal hysteresis layer, and has excellent high-temperature characteristics (high-temperature oxidation resistance). , High-temperature strength, and high-temperature hardness), the coated carbide tools of the present invention exhibit excellent wear resistance even when cutting stainless steel or mild steel at high speed with high heat generation. On the other hand, in conventional coated carbide tools with a hexagonal crystal structure of the oxidation-resistant coating layer, it is clear that the wear progresses quickly due to lack of high-temperature characteristics, and the service life is relatively short. is there. As described above, the coated cemented carbide tool of the present invention exhibits excellent wear resistance even in high-speed cutting of difficult-to-cut materials such as stainless steel and mild steel, which have a particularly high viscosity and generate high heat, for a long time. Since it shows excellent cutting performance, it is possible to sufficiently satisfactorily cope with high performance of the cutting device, labor saving and energy saving of the cutting process, and further cost reduction.

【図面の簡単な説明】 【図1】アークイオンプレーティング装置の概略説明図
である。 【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。 【図3】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。 【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an arc ion plating apparatus. FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic vertical sectional view of a coated carbide tip. FIG. 3 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic transverse sectional view of the cutting blade portion. FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

フロントページの続き (72)発明者 田中 裕介 兵庫県明石市魚住町金ヶ崎西大池179番地 1 エムエムシーコベルコツ−ル株式会社 内 Fターム(参考) 3C037 CC02 CC04 CC09 CC11 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA04 BA58 BB02 BB07 BC02 BD05 EA01 Continuation of front page    (72) Inventor Yusuke Tanaka             179 Kanegasaki Nishi-Oike, Uozumi Town, Akashi City, Hyogo Prefecture             1. MMC Kobelcourt Co., Ltd.             Inside F-term (reference) 3C037 CC02 CC04 CC09 CC11                 3C046 FF03 FF05 FF10 FF13 FF16                       FF19 FF25                 4K029 AA04 BA58 BB02 BB07 BC02                       BD05 EA01

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、 0.05〜1μmの平均層厚を有し、かつ、 組成式:(Al1-(X+Y)TiXSiY)N(ただし、原子
比で、Xは0.35〜0.60、Yは0.01〜0.1
5を示す)を満足すると共に、立方晶の結晶構造を有す
るAl−Ti系複合窒化物層からなる結晶履歴層を介し
て、 2〜12μmの平均層厚を有し、かつ、 組成式:(Al1-(V+W)TiVSiW)N(ただし、原子
比で、Vは0.10〜0.25、Wは0.05〜0.2
0を示す)を満足すると共に、同じく立方晶の結晶構造
を有するAl基複合窒化物層からなる耐酸化性被覆層を
物理蒸着してなる、難削材の高速切削ですぐれた耐摩耗
性を発揮する表面被覆超硬合金製切削工具。
Claims: 1. A surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate, having an average layer thickness of 0.05 to 1 μm, and a composition formula: (Al 1 - (X + Y) Ti X Si Y) N ( provided that an atomic ratio, X is from .35 to 0.60, Y 0.01 to 0.1
5), has an average layer thickness of 2 to 12 μm via a crystal history layer composed of an Al—Ti-based composite nitride layer having a cubic crystal structure, and has a composition formula: ( Al 1- (V + W) Ti V Si W ) N (where V is 0.10 to 0.25 and W is 0.05 to 0.2 in atomic ratio)
0), and excellent wear resistance in high-speed cutting of difficult-to-cut materials formed by physical vapor deposition of an oxidation-resistant coating layer composed of an Al-based composite nitride layer also having a cubic crystal structure. A surface-coated cemented carbide cutting tool that shows off.
JP2002004071A 2002-01-11 2002-01-11 Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials Expired - Fee Related JP3695396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002004071A JP3695396B2 (en) 2002-01-11 2002-01-11 Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004071A JP3695396B2 (en) 2002-01-11 2002-01-11 Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2003205404A true JP2003205404A (en) 2003-07-22
JP3695396B2 JP3695396B2 (en) 2005-09-14

Family

ID=27643495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004071A Expired - Fee Related JP3695396B2 (en) 2002-01-11 2002-01-11 Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP3695396B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088130A (en) * 2003-09-18 2005-04-07 Nachi Fujikoshi Corp Hard film coated tool and target for hard film formation
JP2005186166A (en) * 2003-12-24 2005-07-14 Nachi Fujikoshi Corp Hard film coated tool and manufacturing method therefor
JP2007532783A (en) * 2004-04-19 2007-11-15 ピヴォット アー.エス. Hard wear-resistant coating based on aluminum nitride
JP2008073800A (en) * 2006-09-21 2008-04-03 Kobe Steel Ltd Hard film and hard film coated tool
CN105499662A (en) * 2016-01-27 2016-04-20 内蒙古科技大学 Logarithmic spiral conical section drill bit
CN111902228A (en) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
CN114173969A (en) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 Cutting tool

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088130A (en) * 2003-09-18 2005-04-07 Nachi Fujikoshi Corp Hard film coated tool and target for hard film formation
JP2005186166A (en) * 2003-12-24 2005-07-14 Nachi Fujikoshi Corp Hard film coated tool and manufacturing method therefor
JP2007532783A (en) * 2004-04-19 2007-11-15 ピヴォット アー.エス. Hard wear-resistant coating based on aluminum nitride
JP2008073800A (en) * 2006-09-21 2008-04-03 Kobe Steel Ltd Hard film and hard film coated tool
CN105499662A (en) * 2016-01-27 2016-04-20 内蒙古科技大学 Logarithmic spiral conical section drill bit
CN111902228A (en) * 2018-03-22 2020-11-06 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
CN111902228B (en) * 2018-03-22 2023-01-31 住友电工硬质合金株式会社 Surface-coated cutting tool and method for manufacturing same
CN114173969A (en) * 2019-10-10 2022-03-11 住友电工硬质合金株式会社 Cutting tool

Also Published As

Publication number Publication date
JP3695396B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
JP2003211304A (en) Surface coating cemented carbide cutting tool having hard coating layer showing excellent wear resistance at high speed cutting
JP2002239810A (en) Surface covered cemented carbide made cutting tool excellent in surface lubricity against chip
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP2003127003A (en) Cemented carbide-made cutting tool with surface clad whose rigid clad layer exerts excellent wear resistance in high velocity cutting machining
JP3695396B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP3508754B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer for excellent chip lubrication
JP3632667B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance in high-speed cutting of difficult-to-cut materials
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2002254204A (en) Surface-coated cemented carbide cutting tool having excellent surface lubricating property for chip
JP2003205405A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP2003025112A (en) Surface coated cemented carbide cutting tool excellent in surface lubricity for cutting chip
JP2002192402A (en) Surface coated-hard metal cutting tool having superior surface lubricity to chips
JP2004074378A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed cutting condition
JP2002126911A (en) Cutting tool made of surface-covered cemented carbide excellent in surface lubricity against chip
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP2002256413A (en) Cutting tool made from surface coated hard-metal superior in surface lubricity against chip
JP2003200306A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition
JP2003291005A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent chipping resistance in high-speed heavy cutting condition
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees