JP2003200306A - Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition - Google Patents

Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition

Info

Publication number
JP2003200306A
JP2003200306A JP2001397163A JP2001397163A JP2003200306A JP 2003200306 A JP2003200306 A JP 2003200306A JP 2001397163 A JP2001397163 A JP 2001397163A JP 2001397163 A JP2001397163 A JP 2001397163A JP 2003200306 A JP2003200306 A JP 2003200306A
Authority
JP
Japan
Prior art keywords
layer
hard coating
cemented carbide
coating layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001397163A
Other languages
Japanese (ja)
Other versions
JP3849135B2 (en
Inventor
Takashi Fujisawa
隆史 藤澤
Natsuki Ichinomiya
夏樹 一宮
Kazuki Izumi
一樹 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2001397163A priority Critical patent/JP3849135B2/en
Publication of JP2003200306A publication Critical patent/JP2003200306A/en
Application granted granted Critical
Publication of JP3849135B2 publication Critical patent/JP3849135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard coating layer showing excellent biting property for a material to be cut under a heavy cutting condition. <P>SOLUTION: This surface coated cemented carbide cutting tool is made by physically depositing the hard coating layer made of four or more alternate lamination layers of first thin layers and second thin layers having each average layer thickness of 0.2 to 1 μm by whole average layer thickness of 2 to 10 μm on the surface of a tungsten carbide group cemented carbide base body or a titanium carbonitride system cermet. When the first thin layer is shown by a composition formula: (Ti<SB>1-</SB>XAlX)N, the layer is made of a composite nitride layer of Ti and Al satisfying X: 0.30 to 0.70 in an atomic ratio by a measurement by an Auger spectroscopic analyzer in a thickness direction center part. The second thin layer is made of a mixed layer of aluminium oxide phases and titanium carbonitride phases in which the rate of the aluminium oxide phases is 35 to 65 mass% in the rate occupied in total amount with titanium carbonitride phases. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】この発明は、特に鋼や鋳鉄な
どの被削材の切削を高切り込みや高送りなどの重切削条
件で行なった場合に、硬質被覆層が前記被削材に対して
良好な食いつき性を示し、この結果切削時の発熱が小さ
くなり、切刃の摩耗進行が著しく抑制されることから、
長期に亘ってすぐれた切削性能を発揮するようになる表
面被覆超硬合金製切削工具(以下、被覆超硬工具とい
う)に関するものである。 【0002】 【従来の技術】一般に、切削工具には、各種の鋼や鋳鉄
などの被削材の旋削加工や平削り加工にバイトの先端部
に着脱自在に取り付けて用いられるスローアウエイチッ
プ、前記被削材の穴あけ切削加工などに用いられるドリ
ルやミニチュアドリル、さらに前記被削材の面削加工や
溝加工、肩加工などに用いられるソリッドタイプのエン
ドミルなどがあり、また前記スローアウエイチップを着
脱自在に取り付けて前記ソリッドタイプのエンドミルと
同様に切削加工を行うスローアウエイエンドミル工具な
どが知られている。 【0003】また、切削工具として、炭化タングステン
(以下、WCで示す)基超硬合金または炭窒化チタン
(以下、TiCNで示す)基サーメットからなる基体
(以下、これらを総称して超硬基体と云う)の表面に、
個々の平均層厚が0.2〜1μmの第1薄層と第2薄層
の4層以上の交互積層からなり、(a)上記第1薄層
を、組成式:(Ti1-XAlX)Nで表わした場合、厚さ
方向中央部のオージェ分光分析装置による測定で、原子
比で、X:0.30〜0.70を満足するTiとAlの
複合窒化物[以下、(Ti,Al)Nで示す]で構成
し、(b)上記第2薄層を、窒化チタン(以下、TiN
で示す)で構成してなる、硬質被覆層を2〜10μmの
全体平均層厚で物理蒸着してなる被覆超硬工具が、各種
の鋼や鋳鉄などの連続切削や断続切削加工用として提案
されている。 【0004】さらに、上記の被覆超硬工具は、図1
(a)に概略平面図で、同(b)に概略正面図で示され
る構造のアークイオンプレーティング装置を用いて製造
することができる。すなわち、前記アークイオンプレー
ティング装置内の回転テーブル上に上記の超硬基体を装
着し、一方カソード電極(蒸発源)として、種々の成分
組成をもった第1薄層形成用Ti−Al合金と第2薄層
形成用金属Tiを装置内の所定位置(図1での前記金属
Tiの設置位置は図示されるTi−Al23焼結体の設
置位置と同じ)に装着し、まず装置内を排気して真空に
保持しながら、ヒーターで装置内を所定温度に加熱した
後、前記回転テーブル上で回転する超硬基体に所定電圧
の直流バイアス電圧を印加して、カソード電極の前記金
属Tiとアノード電極との間にアーク放電を発生させ、
もって超硬基体表面をTiボンバート洗浄し、ついで装
置内に反応ガスとして窒素ガスを導入して所定圧力の反
応雰囲気とすると共に、前記回転テーブル上で回転する
超硬基体に印加する直流バイアス電圧を所定の電圧とし
て、前記カソード電極(前記第1薄層形成用Ti−Al
合金または第2薄層形成用金属Ti)とアノード電極と
の間にアーク放電を発生させ、もって前記超硬基体の表
面に、所定の層厚を有する第1薄層と第2薄層との交互
積層からなる硬質被覆層を所定の全体層厚で蒸着するこ
とにより製造されるものである。 【0005】 【発明が解決しようとする課題】一方、近年の切削装置
の高性能化はめざましく、かつ切削加工に対する省力化
および省エネ化、さらに低コスト化に対する要求も強
く、これに伴い、切削加工は通常の条件での連続加工や
断続加工は勿論のこと、高切り込みや高送りなどの重切
削条件での切削加工にもすぐれた切削性能を発揮する汎
用性のある切削工具が求められる傾向にあるが、上記の
従来被覆超硬工具においては、これを鋼や鋳鉄などの通
常の条件での切削加工に用いた場合には問題はないが、
これを重切削条件で用いると、特に硬質被覆層の被削材
に対する食いつき性が低下し、切刃が被削材表面でから
滑りし、この結果著しい切削熱が発生し、硬質被覆層の
温度が上昇するようになることから、硬質被覆層の摩耗
が一段と促進し、比較的短時間で使用寿命に至るのが現
状である。 【0006】 【課題を解決するための手段】そこで、本発明者等は、
上述のような観点から、上記の従来被覆超硬工具に着目
し、特に重切削条件での硬質被覆層の温度上昇を抑制す
べく研究を行った結果、 上記従来被覆超硬工具の硬質
被覆層の第2薄層であるTiN層を、酸化アルミニウム
(以下、Al23で示す)相の割合をTiN相との合量
に占める割合で35〜65質量%とした相対的に硬質の
Al23相(マイクロビッカース硬さで約3000kg
f/mm2)と軟質のTiN相(マイクロビッカース硬
さで約2000kgf/mm2)の混合層で構成し、か
つこの混合層と第1薄層である(Ti,Al)N層の4
層以上の交互積層数とすると共に、これらの個々の層厚
を平均層厚で0.2〜1μmの薄層とした状態で、全体
平均層厚を2〜10μmとした条件で硬質被覆層を構成
すると、前記第2薄層におけるAl23相の存在によっ
て硬質被覆層の被削材に対する食いつき性がきわめて良
好なものとなり、重切削条件でも切刃の被削材表面に対
するから滑り現象は著しく低減し、切削熱の発生が小さ
くなって、硬質被覆層の摩耗進行が抑制されるようにな
ることから、被覆超硬工具は長期に亘ってすぐれた切削
性能を発揮するようになる、という研究結果を得たので
ある。 【0007】この発明は、上記の研究結果に基づいてな
されたものであって、超硬基体の表面に、2〜10μm
の全体平均層厚で物理蒸着した硬質被覆層が、個々の平
均層厚が0.2〜1μmの第1薄層と第2薄層の4層以
上の交互積層からなり、(a)上記第1薄層を、組成
式:(Ti1-XAlX)Nで表わした場合、厚さ方向中央
部のオージェ分光分析装置による測定で、原子比で、
X:0.30〜0.70を満足する(Ti,Al)N層
で構成し、(b)上記第2薄層を、Al23相の割合が
TiN相との合量に占める割合で35〜65質量%であ
るAl23相とTiN相の混合層で構成してなる、硬質
被覆層が重切削条件で被削材に対して良好な食いつき性
を示す被覆超硬工具に特徴を有するものである。 【0008】つぎに、この発明の被覆超硬工具におい
て、硬質被覆層の交互積層を構成する第1薄層および第
2薄層の組成、さらに平均層厚を上記の通りに限定した
理由を説明する。 (a)硬質被覆層の第1薄層の組成 上記第1薄層を構成する(Ti,Al)N層におけるA
lは高強度を有するTiNに対して高温硬さおよび耐熱
性を高める目的で含有するものであり、したがって組成
式:(Ti1-XAlX)NのX値が原子比(以下同じ)
で、0.3未満では高温硬さおよび耐熱性に所望の向上
効果が得られず、一方X値が0.7を越えると、強度が
急激に低下し、硬質被覆層にチッピングが発生し易くな
ると云う理由によりX値を0.3〜0.7と定めた。な
お、X値は0.4〜0.6とするのが望ましい。 【0009】(b)硬質被覆層の第2薄層の組成 上記第2薄層を構成する混合層におけるAl23相は、
硬質被覆層の被削材に対する食いつき性を向上させ、重
切削条件での切削加工でも切刃と被削材表面との間のか
ら滑り現象を抑制し、切削熱の発生減少に寄与する作用
があるが、その割合がTiN相との合量に占める割合で
35容量%未満では前記作用に所望の効果が得られず、
一方その割合が同じく65質量%を越えるとTiN相に
よってもたらされる強度が急激に低下し、硬質被覆層に
チッピングが発生し易くなることから、その割合を35
〜65質量%、望ましくは45〜55質量%と定めた。 【0010】(c)硬質被覆層の平均層厚 硬質被覆層の交互積層を構成する第1薄層および第2薄
層の平均層厚を、それぞれ0.2〜1μmとしたのは、
いずれの薄層においても、その平均層厚が0.2μm未
満になると、それぞれの薄層のもつ特性、すなわち第1
薄層による高硬度とすぐれた耐熱性、第2薄層による高
強度とすぐれた被削材食いつき性を硬質被覆層に十分に
具備せしめることができず、一方その平均層厚がそれぞ
れ1μmを越えると、それぞれの薄層のもつすぐれた特
性が相互に阻害されるようになるという理由によるもの
である。また、上記の第1薄層および第2薄層のもつ特
性を硬質被覆層に十分に具備させるためには、経験的に
少なくとも4層の交互積層とする必要があることから、
4層以上の交互積層数とした。さらに、硬質被覆層の全
体平均層厚を1〜10μmとしたのは、その層厚が2μ
mでは所望のすぐれた耐摩耗性を確保することができ
ず、一方その層厚が10μmを越えると、切刃にチッピ
ングが発生し易くなるという理由によるものである。 【0011】 【発明の実施の形態】つぎに、この発明の被覆超硬工具
を実施例により具体的に説明する。 (実施例1)原料粉末として、いずれも1〜3μmの平
均粒径を有するWC粉末、TiC粉末、VC粉末、Ta
C粉末、NbC粉末、Cr3 2 粉末、およびCo粉末
を用意し、これら原料粉末を、表1に示される配合組成
に配合し、ボールミルで72時間湿式混合し、乾燥した
後、100MPa の圧力で圧粉体にプレス成形し、こ
の圧粉体を6Paの真空中、温度:1400℃に1時間
保持の条件で焼結し、焼結後、切刃部分にR:0.05
のホーニング加工を施してISO規格・CNMG120
408のチップ形状をもったWC基超硬合金製の超硬基
体A1〜A10を形成した。 【0012】また、原料粉末として、いずれも0.5〜
2μmの平均粒径を有するTiCN(重量比でTiC/
TiN=50/50)粉末、Mo2 C粉末、ZrC粉
末、NbC粉末、TaC粉末、WC粉末、Co粉末、お
よびNi粉末を用意し、これら原料粉末を、表2に示さ
れる配合組成に配合し、ボールミルで24時間湿式混合
し、乾燥した後、100MPaの圧力で圧粉体にプレス
成形し、この圧粉体を2kPaの窒素雰囲気中、温度:
1500℃に1時間保持の条件で焼結し、焼結後、切刃
部分にR:0.03のホーニング加工を施してISO規
格・CNMG120408のチップ形状をもったTiC
N系サーメット製の超硬基体B1〜B6を形成した。 【0013】さらに、原料粉末として、平均粒径:1μ
mの金属Ti粉末および同0.1μmのAl23粉末を
用意し、これら原料粉末を、所定の配合割合に配合し、
ボールミルで24時間湿式混合し、乾燥した後、100
MPaの圧力で圧粉体にプレス成形し、この圧粉体を
0.5Paの真空雰囲気中、温度:1200℃に1時間
保持の条件で焼結することにより、種々の割合のTiと
Al23からなる本発明第2薄層形成用Ti−Al23
焼結体を形成した。 【0014】ついで、上記の超硬基体A1〜A10およ
びB1〜B6のそれぞれを、アセトン中で超音波洗浄
し、乾燥した状態で、図1に示されるアークイオンプレ
ーティング装置内の回転テーブル上に装着し、一方カソ
ード電極(蒸発源)として、種々の成分組成をもった第
1薄層形成用Ti−Al合金と上記の本発明第2薄層形
成用Ti−Al23焼結体を装置内の所定位置に装着
し、またボンバート洗浄用金属Tiも装着し、まず装置
内を排気して0.5Paの真空に保持しながら、ヒータ
ーで装置内を500℃に加熱した後、前記回転テーブル
上で回転する超硬基体に−1000Vの直流バイアス電
圧を印加して、カソード電極の前記金属Tiとアノード
電極との間にアーク放電を発生させ、もって超硬基体表
面をTiボンバート洗浄し、ついで装置内に反応ガスと
して窒素ガスを導入して10Paの反応雰囲気とすると
共に、前記回転テーブル上で回転する超硬基体に−30
0Vの直流バイアス電圧を印加して、前記カソード電極
(前記第1薄層形成用Ti−Al合金または本発明第2
薄層形成用Ti−Al23焼結体)とアノード電極との
間にアーク放電を発生させ、もって前記超硬基体の表面
に、表3に示される目標組成および目標層厚の第1薄層
と本発明第2薄層とを表4に示される組み合わせで、か
つ同じく表4に示される交互積層数からなる硬質被覆層
を蒸着することにより、図2(a)に概略斜視図で、同
(b)に概略縦断面図で示される形状を有する本発明被
覆超硬工具としての本発明表面被覆超硬合金製スローア
ウエイチップ(以下、本発明被覆超硬チップと云う)1
〜16をそれぞれ製造した。 【0015】また、比較の目的で、上記の本発明第2薄
層形成用のTi−Al23焼結体に代って従来第2薄層
形成用の金属Tiを用いる以外は、上記の本発明被覆超
硬チップ1〜16の製造条件と同じ条件で、上記超硬基
体の表面に表3に示される通りの目標組成および目標層
厚の第1薄層と従来第2薄層とを表5に示される組み合
わせで、かつ同じく表5に示される交互積層数からなる
硬質被覆層を蒸着することにより、従来被覆超硬工具と
しての従来表面被覆超硬合金製スローアウエイチップ
(以下、従来被覆超硬チップと云う)1〜16をそれぞ
れ製造した。 【0016】つぎに、上記本発明被覆超硬チップ1〜1
6および従来被覆超硬チップ1〜16について、これを
工具鋼製バイトの先端部に固定治具にてネジ止めした状
態で、 被削材:JIS・SCM440の丸棒、 切削速度:250m/min.、 切り込み:4mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での合金鋼の乾式高切り込み連続旋削加工試験、 被削材:JIS・S50Cの長さ方向等間隔4本縦溝入
り丸棒、 切削速度:200m/min.、 切り込み:2mm、 送り:0.4mm/rev.、 切削時間:10分、 の条件での炭素鋼の乾式高送り断続旋削加工試験、さら
に、 被削材:JIS・FC300の長さ方向等間隔4本縦溝
入り丸棒、 切削速度:250m/min.、 切り込み:4mm、 送り:0.2mm/rev.、 切削時間:10分、 の条件での鋳鉄の乾式高切り込み断続旋削加工試験を行
い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測
定した。この測定結果を表6に示した。 【0017】 【表1】【0018】 【表2】 【0019】 【表3】 【0020】 【表4】【0021】 【表5】 【0022】 【表6】【0023】(実施例2)原料粉末として、平均粒径:
5.5μmを有する中粗粒WC粉末、同0.8μmの微
粒WC粉末、同1.3μmのTaC粉末、同1.2μm
のNbC粉末、同1.2μmのZrC粉末、同2.3μ
mのCr32粉末、同1.5μmのVC粉末、同1.0
μmの(Ti,W)C粉末、および同1.8μmのCo
粉末を用意し、これら原料粉末をそれぞれ表7に示され
る配合組成に配合し、さらにワックスを加えてアセトン
中で24時間ボールミル混合し、減圧乾燥した後、10
0MPaの圧力で所定形状の各種の圧粉体にプレス成形
し、これらの圧粉体を、6Paの真空雰囲気中、7℃/
分の昇温速度で1370〜1470℃の範囲内の所定の
温度に昇温し、この温度に1時間保持後、炉冷の条件で
焼結して、直径が8mm、13mm、および26mmの
3種の超硬基体形成用丸棒焼結体を形成し、さらに前記
の3種の丸棒焼結体から、研削加工にて、表7に示され
る組合せで、切刃部の直径×長さがそれぞれ6mm×1
3mm、10mm×22mm、および20mm×45m
mの寸法をもったエンドミル用超硬基体C−1〜C−8
をそれぞれ製造した。 【0024】ついで、これらの超硬基体C−1〜C−8
を、それぞれアセトン中で超音波洗浄し、乾燥した状態
で、同じく図1に示されるアークイオンプレーティング
装置に装入し、これらの表面に上記実施例1と同一の条
件で、表3に示される目標組成および目標層厚の第1薄
層と本発明第2薄層とを表8に示される組み合わせで、
かつ同じく表8に示される交互積層数からなる硬質被覆
層を蒸着することにより、図3(a)に概略正面図で、
同(b)に切刃部の概略横断面図で示される形状を有す
る本発明被覆超硬工具としての本発明表面被覆超硬合金
製エンドミル(以下、本発明被覆超硬エンドミルと云
う)1〜8をそれぞれ製造した。 【0025】また、比較の目的で、上記の超硬基体C−
1〜C−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図1に示されるアークイオンプレ
ーティング装置に装入し、これらの表面に上記実施例1
における従来被覆超硬チップ1〜16の製造条件と同じ
条件で、表3に示される目標組成および目標層厚の第1
薄層と従来第2薄層とを表9に示される組み合わせで、
かつ同じく表9に示される交互積層数からなる硬質被覆
層を蒸着することにより、従来被覆超硬工具としての従
来表面被覆超硬合金製エンドミル(以下、従来被覆超硬
エンドミルと云う)1〜8をそれぞれ製造した。 【0026】つぎに、上記本発明被覆超硬エンドミル1
〜8および従来被覆超硬エンドミル1〜8のうち、本発
明被覆超硬エンドミル1〜3および従来被覆超硬エンド
ミル1〜3については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SNCM439の板材、 回転速度:2000min−1、 軸方向切り込み:10mm、 送り:100mm/min. の条件での合金鋼の乾式高切り込み溝切削加工試験、本
発明被覆超硬エンドミル4〜6および従来被覆超硬エン
ドミル4〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC300の板材、 回転速度:2200min−1、 軸方向切り込み:8mm、 送り:120mm/min. の条件での鋳鉄の乾式高切り込み溝切削加工試験、本発
明被覆超硬エンドミル7,8および従来被覆超硬エンド
ミル7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SKD61(硬さ:HRC52)の板
材、 回転速度:1500min−1、 軸方向切り込み:6mm、 送り:70mm/min. の条件での焼入れ鋼の乾式高切り込み溝切削加工試験、
をそれぞれ行い、いずれの溝切削加工試験でも外周刃の
逃げ面摩耗量が使用寿命の目安とされる0.1mmに至
るまでの切削溝長を測定した。この測定結果を表8,9
にそれぞれ示した。 【0027】 【表7】 【0028】 【表8】 【0029】 【表9】【0030】(実施例3)上記の実施例2で製造した直
径が8mm(超硬基体C−1〜C−3形成用)、13m
m(超硬基体C−4〜C−6形成用)、および26mm
(超硬基体C−7、C−8形成用)の3種の丸棒焼結体
を用い、この3種の丸棒焼結体から、研削加工にて、溝
形成部の直径×長さがそれぞれ4mm×13mm(超硬
基体D−1〜D−3)、8mm×22mm(超硬基体D
−4〜D−6)、および16mm×45mm(超硬基体
D−7、D−8)の寸法をもったドリル用超硬基体D−
1〜D−8をそれぞれ製造した。 【0031】ついで、これらの超硬基体D−1〜D−8
を、アセトン中で超音波洗浄し、乾燥した状態で、同じ
く図1に示されるアークイオンプレーティング装置に装
入し、これら超硬基体の表面に、上記実施例1と同一の
条件で、表3に示される目標組成および目標層厚の第1
薄層と本発明第2薄層とを表10に示される組み合わせ
で、かつ同じく表10に示される交互積層数からなる硬
質被覆層を蒸着することにより、図4(a)に概略正面
図で、同(b)に溝形成部の概略横断面図で示される形
状を有する本発明被覆超硬工具としての本発明表面被覆
超硬合金製ドリル(以下、本発明被覆超硬ドリルと云
う)1〜8をそれぞれ製造した。 【0032】また、比較の目的で、上記の超硬基体D−
1〜D−8を、それぞれアセトン中で超音波洗浄し、乾
燥した状態で、同じく図1に示されるアークイオンプレ
ーティング装置に装入し、これらの表面に上記実施例1
における従来被覆超硬チップ1〜16の製造条件と同じ
条件で、表3に示される目標組成および目標層厚の第1
薄層と従来第2薄層とを表11に示される組み合わせ
で、かつ同じく表11に示される交互積層数からなる硬
質被覆層を蒸着することにより、従来被覆超硬工具とし
ての従来表面被覆超硬合金製ドリル(以下、従来被覆超
硬ドリルと云う)1〜8をそれぞれ製造した。 【0033】つぎに、上記本発明被覆超硬ドリル1〜8
および従来被覆超硬ドリル1〜8のうち、本発明被覆超
硬ドリル1〜3および従来被覆超硬ドリル1〜3につい
ては、 被削材:平面寸法:100mm×250厚さ:50mm
のJIS・S50Cの板材、 切削速度:120m/min.、 送り:0.4mm/rev、 の条件での炭素鋼の湿式高送り穴あけ切削加工試験、本
発明被覆超硬ドリル4〜6および従来被覆超硬ドリル4
〜6については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・SCM440の板材、 切削速度:140m/min.、 送り:0.4mm/rev、 の条件での合金鋼の湿式高送り穴あけ切削加工試験、本
発明被覆超硬ドリル7,8および従来被覆超硬ドリル
7,8については、 被削材:平面寸法:100mm×250mm、厚さ:5
0mmのJIS・FC250の板材、 切削速度:150m/min.、 送り:0.4mm/rev、 の条件での鋳鉄の湿式高送り穴あけ切削加工試験、をそ
れぞれ行い、いずれの湿式高速穴あけ切削加工試験(い
ずれの試験も水溶性切削油使用)でも先端切刃面の逃げ
面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定
した。この測定結果を表10,11にそれぞれ示した。 【0034】 【表10】【0035】 【表11】 【0036】また、この結果得られた本発明被覆超硬工
具としての本発明被覆超硬チップ1〜16、本発明被覆
超硬エンドミル1〜8、および本発明被覆超硬ドリル1
〜8、並びに従来被覆超硬工具としての従来被覆超硬チ
ップ1〜16、従来被覆超硬エンドミル1〜8、および
従来被覆超硬ドリル1〜8の硬質被覆層の組成および層
厚を、エネルギー分散型X線測定装置およびオージェ分
光分析装置、さらに走査型電子顕微鏡を用いて測定した
ところ、表3〜11の目標組成および目標層厚と実質的
に同じ組成および平均層厚(任意5ヶ所測定の平均値と
の比較)を示した。 【0037】 【発明の効果】表3〜11に示される結果から、本発明
被覆超硬工具は、いずれも鋼や鋳鉄の切削加工を高切り
込みや高送りなどの重切削条件で行なっても、特に硬質
被覆層を構成する第2薄層におけるAl23相の存在に
よって被削材に対する食いつき性が向上し、切刃が被削
材表面でから滑りすることなく、すぐれた耐摩耗性を発
揮するのに対して、硬質被覆層の第2薄層にAl23
が存在しない従来被覆超硬工具においては、いずれも硬
質被覆層の重切削条件での被削材に対する食いつき性が
悪く、切刃が被削材表面でから滑りし、この結果著しい
切削熱が発生することから、硬質被覆層の温度が上昇
し、硬質被覆層の摩耗が一段と促進するようになり、比
較的短時間で使用寿命に至ることが明らかである。上述
のように、この発明の被覆超硬工具は、各種の鋼や鋳鉄
などの通常の条件での切削加工は勿論のこと、特に高切
り込みや高送りなどの重切削条件での切削加工において
もすぐれた耐摩耗性を発揮するものであるから、切削加
工の省力化および省エネ化、さらに低コスト化に十分満
足に対応できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cutting hard materials such as steel and cast iron under heavy cutting conditions such as high cutting and high feed. Since the coating layer shows good biting properties to the work material, as a result, heat generation during cutting is reduced, and wear progress of the cutting edge is significantly suppressed,
The present invention relates to a cutting tool made of a surface-coated cemented carbide (hereinafter referred to as a coated cemented carbide tool) capable of exhibiting excellent cutting performance over a long period of time. 2. Description of the Related Art Generally, a cutting tool includes a throw-away tip which is removably attached to a tip of a cutting tool for turning or planing of a work material such as steel or cast iron. There are drills and miniature drills used for drilling and cutting work materials, and solid type end mills used for face milling, grooving, shoulder processing, etc. of the work material. A throw-away end mill tool or the like which is freely mounted and performs cutting in the same manner as the solid type end mill is known. [0003] Further, as a cutting tool, a substrate made of tungsten carbide (hereinafter, referred to as WC) -based cemented carbide or a titanium cermet (hereinafter, referred to as TiCN) -based cermet (hereinafter, collectively referred to as a cemented carbide substrate). On the surface)
Each of the first and second thin layers has an average layer thickness of 0.2 to 1 μm and is composed of four or more alternate layers. (A) The first thin layer has a composition formula: (Ti 1-x Al X ) When represented by N, a composite nitride of Ti and Al satisfying X: 0.30 to 0.70 in atomic ratio as measured by an Auger spectrometer at the center in the thickness direction [hereinafter, (Ti , Al) N], and (b) the second thin layer is made of titanium nitride (hereinafter TiN).
Coated carbide tools formed by physical vapor deposition of a hard coating layer with an overall average layer thickness of 2 to 10 μm have been proposed for continuous cutting and intermittent cutting of various types of steel and cast iron. ing. [0004] Further, the coated carbide tool described above has a structure shown in FIG.
It can be manufactured using an arc ion plating apparatus having a structure shown in a schematic plan view in (a) and a schematic front view in (b). That is, the above-mentioned super-hard substrate is mounted on a rotary table in the arc ion plating apparatus, and a first thin layer forming Ti-Al alloy having various component compositions is used as a cathode electrode (evaporation source). The metal Ti for forming the second thin layer is mounted at a predetermined position in the apparatus (the installation position of the metal Ti in FIG. 1 is the same as the installation position of the illustrated Ti-Al 2 O 3 sintered body). After the inside of the apparatus is heated to a predetermined temperature by a heater while evacuating and maintaining a vacuum, a DC bias voltage of a predetermined voltage is applied to the carbide substrate rotating on the rotary table, and the metal of the cathode electrode is heated. An arc discharge is generated between Ti and the anode electrode,
Then, the surface of the cemented carbide substrate was cleaned by Ti bombarding, and nitrogen gas was introduced as a reaction gas into the apparatus to form a reaction atmosphere of a predetermined pressure, and a DC bias voltage applied to the cemented carbide substrate rotating on the rotary table was adjusted. As the predetermined voltage, the cathode electrode (the first thin layer forming Ti-Al
An arc discharge is generated between the alloy or the metal for forming the second thin layer Ti) and the anode electrode, so that the first thin layer and the second thin layer having a predetermined layer thickness are formed on the surface of the cemented carbide substrate. It is manufactured by vapor-depositing hard coating layers composed of alternating layers with a predetermined overall layer thickness. [0005] On the other hand, in recent years, the performance of cutting devices has been remarkably improved, and there has been a strong demand for labor saving and energy saving for the cutting process, and further, cost reduction. In general, there is a growing demand for versatile cutting tools that exhibit excellent cutting performance not only in continuous machining and intermittent machining under normal conditions, but also in heavy cutting conditions such as high cutting and high feed. However, in the above-mentioned conventional coated carbide tools, there is no problem when this is used for cutting under ordinary conditions such as steel or cast iron,
If this is used under heavy cutting conditions, especially the biting property of the hard coating layer on the work material is reduced, and the cutting edge slides off the work material surface, resulting in significant cutting heat and the temperature of the hard coating layer. At the same time, the wear of the hard coating layer is further accelerated, and the service life is relatively short. Means for Solving the Problems Accordingly, the present inventors have proposed:
In view of the above, the above-mentioned conventional coated carbide tools were focused on, and as a result of conducting research especially to suppress the temperature rise of the hard coating layer under heavy cutting conditions, the hard coating layer of the conventional coated carbide tools was obtained. The TiN layer, which is the second thin layer, is made of a relatively hard Al having a ratio of an aluminum oxide (hereinafter, referred to as Al 2 O 3 ) phase of 35 to 65 mass% in a total amount with the TiN phase. 2 O 3 phase (approx. 3000 kg in micro Vickers hardness)
f / mm 2) and a soft TiN phase (micro Vickers hardness of about 2000 kgf / mm 2), and the mixed layer and the first thin layer (Ti, Al) N layer 4
The hard coating layer is formed under the condition that the total layer thickness is 2 to 10 μm in a state where the individual layer thickness is a thin layer having an average layer thickness of 0.2 to 1 μm while the number of the layers is alternately laminated. With this configuration, the presence of the Al 2 O 3 phase in the second thin layer makes the hard coating layer have extremely good biting properties with respect to the work material. It is remarkably reduced, the generation of cutting heat is reduced, and the wear progress of the hard coating layer is suppressed, so that the coated carbide tool will exhibit excellent cutting performance over a long period of time. The research results were obtained. The present invention has been made on the basis of the above research results, and has a surface of a super-hard substrate of 2 to 10 μm.
The hard coating layer physically vapor-deposited with the overall average layer thickness of (a) is composed of four or more alternately laminated first and second thin layers each having an average layer thickness of 0.2 to 1 μm. When one thin layer is represented by a composition formula: (Ti 1-x Al x ) N, the atomic ratio is measured by an Auger spectrometer at the center in the thickness direction.
X: a (Ti, Al) N layer satisfying 0.30 to 0.70, and (b) a ratio of the second thin layer to the total amount of the Al 2 O 3 phase and the TiN phase in the second thin layer. The hard coating layer is composed of a mixed layer of Al 2 O 3 phase and TiN phase of 35 to 65% by mass, and the hard coating layer shows good biting property to the work material under heavy cutting conditions. It has features. Next, in the coated cemented carbide tool of the present invention, the reason why the composition of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layer and the average layer thickness are limited as described above. I do. (A) Composition of the first thin layer of the hard coating layer A in the (Ti, Al) N layer constituting the first thin layer
l are those containing for the purpose of enhancing the high-temperature hardness and heat resistance with respect to TiN having a high strength, therefore the composition formula: (Ti 1-X Al X ) X value of N atomic ratio (hereinafter the same)
If the value is less than 0.3, the desired effects of improving the high-temperature hardness and heat resistance cannot be obtained. On the other hand, if the value X exceeds 0.7, the strength is sharply reduced and chipping easily occurs in the hard coating layer. For this reason, the value of X was determined to be 0.3 to 0.7. Note that the X value is desirably set to 0.4 to 0.6. (B) Composition of the second thin layer of the hard coating layer The Al 2 O 3 phase in the mixed layer constituting the second thin layer is:
The effect of contributing to the reduction in the generation of cutting heat by improving the bite of the hard coating layer on the work material, suppressing the slip phenomenon between the cutting edge and the work material surface even in cutting under heavy cutting conditions. However, if the proportion is less than 35% by volume relative to the total amount with the TiN phase, the desired effect cannot be obtained in the above-mentioned action,
On the other hand, if the proportion exceeds 65% by mass, the strength provided by the TiN phase sharply decreases and chipping easily occurs in the hard coating layer.
6565 mass%, desirably 45 to 55 mass%. (C) Average thickness of the hard coating layer The average thickness of the first thin layer and the second thin layer constituting the alternate lamination of the hard coating layer is 0.2 to 1 μm, respectively.
When the average layer thickness of any of the thin layers is less than 0.2 μm, the characteristics of each thin layer, that is, the first
The hard coating layer cannot have sufficient hardness and excellent heat resistance due to the thin layer, and high strength and excellent work material biting property due to the second thin layer, while the average layer thickness exceeds 1 μm each. This is because the excellent properties of each thin layer are mutually inhibited. Further, in order to sufficiently provide the hard coating layer with the characteristics of the first thin layer and the second thin layer, it is empirically necessary to alternately laminate at least four layers.
The number of layers was four or more. Furthermore, the reason why the total average layer thickness of the hard coating layer is 1 to 10 μm is that the layer thickness is 2 μm.
With m, the desired excellent wear resistance cannot be ensured, while if the layer thickness exceeds 10 μm, chipping tends to occur on the cutting edge. Next, the coated carbide tool of the present invention will be specifically described with reference to examples. (Example 1) As raw material powders, WC powder, TiC powder, VC powder, and Ta each having an average particle size of 1 to 3 µm
C powder, NbC powder, Cr 3 C 2 powder, and Co powder were prepared, and these raw material powders were blended in the blending composition shown in Table 1, wet-mixed in a ball mill for 72 hours, dried, and then dried under a pressure of 100 MPa. Is pressed into a green compact, and the green compact is sintered at a temperature of 1400 ° C. for 1 hour in a vacuum of 6 Pa. After sintering, R: 0.05 is applied to the cutting edge portion.
Honing process, ISO standard, CNMG120
The cemented carbide substrates A1 to A10 made of a WC-based cemented carbide having a chip shape of 408 were formed. In addition, as raw material powders,
TiCN having an average particle size of 2 μm (by weight ratio TiC /
(TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, and Ni powder were prepared, and these raw material powders were blended into the composition shown in Table 2. After wet-mixing with a ball mill for 24 hours and drying, the mixture is pressed into a green compact at a pressure of 100 MPa, and the green compact is heated in a nitrogen atmosphere of 2 kPa at a temperature of:
Sintered under the condition of holding at 1500 ° C. for 1 hour, and after sintering, the cutting edge portion is subjected to a honing process of R: 0.03 to obtain a TiC having a chip shape conforming to ISO standard, CNMG120408.
Carbide substrates B1 to B6 made of N-based cermet were formed. Further, as a raw material powder, an average particle diameter is 1 μm.
m metal Ti powder and 0.1 μm Al 2 O 3 powder were prepared, and these raw material powders were blended at a predetermined blending ratio.
After wet mixing with a ball mill for 24 hours and drying, 100
The green compact is press-molded at a pressure of MPa, and the green compact is sintered in a vacuum atmosphere of 0.5 Pa at a temperature of 1200 ° C. for 1 hour to obtain various ratios of Ti and Al 2. consisting O 3 for the present invention the second thin layer forming Ti-Al 2 O 3
A sintered body was formed. Next, each of the above-mentioned super-hard substrates A1 to A10 and B1 to B6 is ultrasonically cleaned in acetone and dried, and placed on a rotary table in an arc ion plating apparatus shown in FIG. mounting and, on the other hand as a cathode electrode (vapor source), a first thin layer forming Ti-Al alloy and the present invention described above the second thin layer forming Ti-Al 2 O 3 sintered body having various component compositions After mounting the metal at a predetermined position in the apparatus and also mounting metal Ti for bombarding, first heating the inside of the apparatus to 500 ° C. with a heater while evacuating the inside of the apparatus and maintaining a vacuum of 0.5 Pa, A DC bias voltage of -1000 V is applied to the carbide substrate rotating on the table to generate an arc discharge between the metal Ti of the cathode electrode and the anode electrode. And Kiyoshi, then with introducing nitrogen gas as a reaction gas into the apparatus and reaction atmosphere of 10 Pa, a cemented carbide substrate rotates on the turntable -30
0 V DC bias voltage is applied to the cathode electrode.
(The Ti-Al alloy for forming the first thin layer or the second
An arc discharge is generated between the Ti-Al 2 O 3 sintered body for forming a thin layer) and the anode electrode, so that the first composition having the target composition and target layer thickness shown in Table 3 is formed on the surface of the cemented carbide substrate. By depositing the thin layer and the second thin layer of the present invention in a combination shown in Table 4 and also by depositing a hard coating layer having the same number of layers as shown in Table 4, a schematic perspective view in FIG. And (b) a throw-away tip made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having a shape shown in a schematic longitudinal sectional view (hereinafter referred to as the coated cemented carbide tip of the present invention) 1
~ 16 were each manufactured. For the purpose of comparison, the above-described Ti-Al 2 O 3 sintered body for forming a second thin layer of the present invention is replaced with the conventional metal Ti for forming a second thin layer. Under the same conditions as those for producing the coated superhard chips 1 to 16 of the present invention, the first thin layer having the target composition and the target layer thickness as shown in Table 3 and the conventional second thin layer were formed on the surface of the superhard substrate. By depositing a hard coating layer having the number of layers alternately shown in Table 5 in the combination shown in Table 5, a conventional surface coated cemented carbide alloy throwaway chip (hereinafter, referred to as a conventional coated carbide tool) Conventionally referred to as coated carbide tips) 1 to 16 were manufactured. Next, the coated carbide tips 1 to 1 according to the present invention will be described.
6 and the conventional coated carbide tips 1 to 16 were screwed to the tip of a tool steel bit with a fixing jig. Work material: JIS SCM440 round bar, Cutting speed: 250 m / min . Infeed: 4 mm Feed: 0.2 mm / rev. , Cutting time: 10 minutes, Dry high-cut continuous turning test of alloy steel under the following conditions: Work material: JIS S50C, 4 longitudinally-spaced round bars at regular intervals in the longitudinal direction, Cutting speed: 200 m / min. Infeed: 2 mm Feed: 0.4 mm / rev. , Cutting time: 10 minutes, Dry high-feed intermittent turning test of carbon steel under the following conditions: Work material: JIS-FC300, 4 longitudinally-spaced round bars with equally spaced longitudinal grooves, Cutting speed: 250 m / min. Infeed: 4 mm Feed: 0.2 mm / rev. Cutting time: 10 minutes, a dry high-cut intermittent turning test of cast iron was performed under the following conditions, and the flank wear width of the cutting edge was measured in each of the turning tests. Table 6 shows the measurement results. [Table 1] [Table 2] [Table 3] [Table 4] [Table 5] [Table 6] Example 2 As raw material powder, average particle size:
Medium coarse WC powder having 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, 1.2 μm
NbC powder, 1.2 μm ZrC powder, 2.3 μm
m Cr 3 C 2 powder, 1.5 μm VC powder, 1.0
μm of (Ti, W) C powder and 1.8 μm of Co
Powders were prepared, and these raw material powders were respectively blended in the composition shown in Table 7, and further added with wax, and ball-mixed in acetone for 24 hours, and dried under reduced pressure.
Press molding at a pressure of 0 MPa into various green compacts of a predetermined shape, and pressing these green compacts in a vacuum atmosphere of 6 Pa at 7 ° C. /
The temperature was raised to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 1 minute, kept at this temperature for 1 hour, and then sintered under the condition of furnace cooling to obtain a sample having a diameter of 8 mm, 13 mm and 26 mm. Kinds of round bar sintered bodies for forming a cemented carbide substrate are formed, and the above three kinds of round bar sintered bodies are subjected to grinding processing in a combination shown in Table 7 to obtain the diameter × length of the cutting edge portion. Is 6mm × 1 each
3mm, 10mm x 22mm, and 20mm x 45m
Carbide substrate C-1 to C-8 for end mill having dimension of m
Was manufactured respectively. Next, these cemented carbide substrates C-1 to C-8
Each was washed with ultrasonic waves in acetone and dried, and then charged into an arc ion plating apparatus also shown in FIG. 1, and the surfaces thereof were shown in Table 3 under the same conditions as in Example 1 above. The first thin layer of the target composition and the target layer thickness to be combined with the second thin layer of the present invention in the combination shown in Table 8,
Also, by depositing a hard coating layer having the same number of layers as shown in Table 8, a schematic front view in FIG.
(B) End mill made of surface-coated cemented carbide of the present invention (hereinafter referred to as coated carbide end mill of the present invention) 1 as a coated carbide tool of the present invention having the shape shown in the schematic cross-sectional view of the cutting edge portion. 8 were each produced. For the purpose of comparison, the cemented carbide substrate C-
1 to C-8 were each subjected to ultrasonic cleaning in acetone and dried, and then charged into an arc ion plating apparatus also shown in FIG.
Of the target composition and the target layer thickness shown in Table 3 under the same conditions as the manufacturing conditions of the conventional coated carbide tips 1 to 16 in FIG.
The combination of the thin layer and the conventional second thin layer as shown in Table 9,
Also, by depositing the hard coating layers having the number of layers alternately shown in Table 9, end mills made of conventional surface-coated cemented carbide as conventional coated carbide tools (hereinafter referred to as conventional coated carbide end mills) 1 to 8 Was manufactured respectively. Next, the coated carbide end mill 1 of the present invention will be described.
-8 and the conventional coated carbide end mills 1-8, the coated carbide end mills 1-3 of the present invention and the conventional coated carbide end mills 1-3 are: work material: plane dimension: 100 mm × 250 mm, thickness: 5
JIS SNCM439 plate material of 0 mm, rotation speed: 2000 min -1 , axial cut: 10 mm, feed: 100 mm / min. For the dry high-groove cutting test of the alloy steel under the following conditions, the coated carbide end mills 4 to 6 of the present invention and the conventional coated carbide end mills 4 to 6, the work material: plane dimension: 100 mm × 250 mm, thickness: 5
JIS FC300 plate material of 0 mm, rotation speed: 2200 min -1 , axial cut: 8 mm, feed: 120 mm / min. For the dry high-groove cutting test of the cast iron under the following conditions, the coated carbide end mills 7, 8 of the present invention and the conventional coated carbide end mills 7, 8 are as follows: Work material: plane dimension: 100 mm × 250 mm, thickness: 5
0 mm JIS SKD61 (hardness: HRC52) plate material, rotational speed: 1500 min -1 , axial cut: 6 mm, feed: 70 mm / min. Dry high-groove cutting test of hardened steel under the following conditions:
In each of the groove cutting tests, the cutting groove length was measured until the flank wear amount of the outer peripheral edge reached 0.1 mm, which is a standard for the service life. Tables 8 and 9 show the measurement results.
Respectively. [Table 7] [Table 8] [Table 9] (Example 3) The diameter produced in Example 2 was 8 mm (for forming the cemented carbide substrates C-1 to C-3) and 13 m.
m (for forming the super-hard substrate C-4 to C-6), and 26 mm
Using the three types of round bar sintered bodies (for forming the cemented carbide substrates C-7 and C-8), the three types of round bar sintered bodies were subjected to grinding to obtain the diameter × length of the groove forming portion. Are 4 mm × 13 mm (carbide substrate D-1 to D-3) and 8 mm × 22 mm (carbide substrate D
-4 to D-6), and a carbide substrate D- for a drill having dimensions of 16 mm × 45 mm (carbide substrates D-7 and D-8).
1 to D-8 were produced respectively. Next, these super-hard substrates D-1 to D-8
Was washed ultrasonically in acetone and dried, and then charged into an arc ion plating apparatus shown in FIG. 1 on the surface of these super-hard substrates under the same conditions as in Example 1 above. The first of the target composition and the target layer thickness shown in FIG.
By depositing the thin layer and the second thin layer of the present invention in a combination shown in Table 10 and a hard coating layer having the same number of laminated layers as shown in Table 10, a schematic front view is shown in FIG. And (b) a drill made of a surface-coated cemented carbide of the present invention as a coated carbide tool of the present invention having the shape shown in the schematic cross-sectional view of the groove forming portion (hereinafter referred to as the coated carbide drill of the present invention) 1 To 8 were each manufactured. For the purpose of comparison, the above-mentioned carbide substrate D-
1 to D-8 were each subjected to ultrasonic cleaning in acetone, dried, and charged into an arc ion plating apparatus also shown in FIG.
Of the target composition and the target layer thickness shown in Table 3 under the same conditions as the manufacturing conditions of the conventional coated carbide tips 1 to 16 in FIG.
The thin layer and the conventional second thin layer are combined in the manner shown in Table 11 and the hard coating layer having the alternate number of layers also shown in Table 11 is deposited to form the conventional surface coated super hard tool as the conventionally coated super hard tool. Drills made of hard alloy (hereinafter referred to as conventional coated carbide drills) 1 to 8 were manufactured, respectively. Next, the coated carbide drills of the present invention 1 to 8
Of the coated carbide drills 1 to 8 of the present invention, the coated carbide drills 1 to 3 and the coated carbide drills 1 to 3 of the present invention are as follows: Work material: plane dimension: 100 mm × 250 thickness: 50 mm
JIS S50C plate material, Cutting speed: 120 m / min. , Feed: 0.4 mm / rev, wet high feed drilling cutting test of carbon steel under the conditions of: coated carbide drills 4 to 6 of the present invention and conventional coated carbide drill 4
About 6: Work material: Plane dimensions: 100 mm x 250 mm, thickness: 5
0 mm JIS SCM440 plate material, Cutting speed: 140 m / min. , Feed: 0.4 mm / rev, Wet high-feed drilling cutting test of alloy steel under the following conditions: coated carbide drills 7 and 8 of the present invention and conventional coated carbide drills 7 and 8 Dimensions: 100mm x 250mm, thickness: 5
0 mm JIS FC250 plate material, Cutting speed: 150 m / min. , Feed: 0.4mm / rev, Wet cutting test of high feed drilling of cast iron under the following conditions, respectively, and any wet high speed drilling cutting test (both tests use water-soluble cutting oil) The number of holes drilled until the flank wear width of the surface reached 0.3 mm was measured. The measurement results are shown in Tables 10 and 11, respectively. [Table 10] [Table 11] The coated carbide tips 1-16, the coated end mills 1-8, and the coated drill 1 of the present invention as the resulting coated carbide tools of the present invention.
The composition and thickness of the hard coating layer of the conventional coated carbide tips 1-16, the conventional coated carbide end mills 1-8, and the conventionally coated carbide drills 1-8 as the conventional coated carbide tools, When measured using a dispersive X-ray measurement device, an Auger spectrometer, and a scanning electron microscope, the composition and the average layer thickness are substantially the same as the target compositions and the target layer thicknesses in Tables 3 to 11 (measured at any five locations). (Comparison with the average value). According to the results shown in Tables 3 to 11, all of the coated carbide tools of the present invention can be used for cutting steel or cast iron under heavy cutting conditions such as high cutting and high feed. In particular, the presence of the Al 2 O 3 phase in the second thin layer constituting the hard coating layer improves the biting property with respect to the work material, so that the cutting edge does not slip on the work material surface and has excellent wear resistance. On the other hand, in the case of the conventional coated carbide tool in which the Al 2 O 3 phase does not exist in the second thin layer of the hard coating layer, the hard coating layer has a biting property to the work material under heavy cutting conditions. Poorly, the cutting edge slides off the surface of the work material, and as a result, remarkable cutting heat is generated, so that the temperature of the hard coating layer increases, and the wear of the hard coating layer is further accelerated, and the cutting time is relatively short. It is evident that time will lead to a service life. As described above, the coated carbide tool of the present invention can be used not only for cutting under ordinary conditions such as various kinds of steel and cast iron, but also especially for cutting under heavy cutting conditions such as high cutting and high feed. Since it exhibits excellent abrasion resistance, it can sufficiently satisfactorily save labor and energy and also reduce costs in cutting.

【図面の簡単な説明】 【図1】アークイオンプレーティング装置の概略説明図
である。 【図2】(a)は被覆超硬チップの概略斜視図、(b)
は被覆超硬チップの概略縦断面図である。 【図3】(a)は被覆超硬エンドミル概略正面図、
(b)は同切刃部の概略横断面図である。 【図4】(a)は被覆超硬ドリルの概略正面図、(b)
は同溝形成部の概略横断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic explanatory view of an arc ion plating apparatus. FIG. 2A is a schematic perspective view of a coated carbide tip, and FIG.
1 is a schematic vertical sectional view of a coated carbide tip. FIG. 3 (a) is a schematic front view of a coated carbide end mill,
(B) is a schematic transverse sectional view of the cutting blade portion. FIG. 4A is a schematic front view of a coated carbide drill, and FIG.
FIG. 3 is a schematic cross-sectional view of the groove forming portion.

フロントページの続き (72)発明者 泉 一樹 茨城県結城郡石下町大字古間木1511番地 三菱マテリアル株式会社筑波製作所内 Fターム(参考) 3C037 CC02 CC09 CC11 FF04 3C046 FF03 FF05 FF10 FF13 FF16 FF19 FF25 4K029 AA04 BA58 BA64 BB02 BC02 BD05 CA04 EA01 Continuation of front page    (72) Inventor Kazuki Izumi             1511 Furamagi, Ishishita-cho, Yuki-gun, Ibaraki Prefecture             Mitsubishi Materials Corporation Tsukuba Works F-term (reference) 3C037 CC02 CC09 CC11 FF04                 3C046 FF03 FF05 FF10 FF13 FF16                       FF19 FF25                 4K029 AA04 BA58 BA64 BB02 BC02                       BD05 CA04 EA01

Claims (1)

【特許請求の範囲】 【請求項1】 炭化タングステン基超硬合金基体または
炭窒化チタン系サーメット基体の表面に、2〜10μm
の全体平均層厚で物理蒸着した硬質被覆層が、個々の平
均層厚が0.2〜1μmの第1薄層と第2薄層の4層以
上の交互積層からなり、 (a)上記第1薄層を、組成式:(Ti1-XAlX)Nで
表わした場合、厚さ方向中央部のオージェ分光分析装置
による測定で、原子比で、X:0.30〜0.70を満
足するTiとAlの複合窒化物層で構成し、 (b)上記第2薄層を、酸化アルミニウム相の割合が窒
化チタン相との合量に占める割合で35〜65質量%で
ある酸化アルミニウム相と窒化チタン相の混合層で構成
したこと、を特徴とする硬質被覆層が重切削条件で被削
材に対して良好な食いつき性を示す表面被覆超硬合金製
切削工具。
Claims: 1. A surface of a tungsten carbide-based cemented carbide substrate or a titanium carbonitride-based cermet substrate having a thickness of 2 to 10 μm.
The hard coating layer physically vapor-deposited with the total average layer thickness of (a) comprises four or more alternately laminated first and second thin layers each having an average layer thickness of 0.2 to 1 μm; When one thin layer is represented by the composition formula: (Ti 1-x Al x ) N, the atomic ratio X: 0.30 to 0.70 is measured by an Auger spectrometer at the center in the thickness direction. (B) an aluminum oxide in which the second thin layer is 35 to 65% by mass in a ratio of the aluminum oxide phase to the total amount of the titanium nitride phase. A cutting tool made of a surface-coated cemented carbide having a hard coating layer characterized by being composed of a mixed layer of a titanium phase and a titanium nitride phase, and exhibiting good biteability to a work material under heavy cutting conditions.
JP2001397163A 2001-12-27 2001-12-27 Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions Expired - Fee Related JP3849135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001397163A JP3849135B2 (en) 2001-12-27 2001-12-27 Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001397163A JP3849135B2 (en) 2001-12-27 2001-12-27 Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions

Publications (2)

Publication Number Publication Date
JP2003200306A true JP2003200306A (en) 2003-07-15
JP3849135B2 JP3849135B2 (en) 2006-11-22

Family

ID=27639569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001397163A Expired - Fee Related JP3849135B2 (en) 2001-12-27 2001-12-27 Cutting tool made of surface-coated cemented carbide with a hard coating layer showing good biting properties against the work material under heavy cutting conditions

Country Status (1)

Country Link
JP (1) JP3849135B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025057A1 (en) 2012-08-10 2014-02-13 株式会社タンガロイ Coated tool
US10265775B2 (en) 2014-03-27 2019-04-23 Tungaloy Corporation Coated tool
US10300533B2 (en) 2014-08-01 2019-05-28 Tungaloy Corporation Coated cutting tool
US10640864B2 (en) 2014-04-10 2020-05-05 Tungaloy Corporation Coated tool

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014025057A1 (en) 2012-08-10 2014-02-13 株式会社タンガロイ Coated tool
KR20150038031A (en) 2012-08-10 2015-04-08 가부시키가이샤 탕가로이 Coated tool
KR101684412B1 (en) 2012-08-10 2016-12-08 가부시키가이샤 탕가로이 Coated tool
US10501842B2 (en) 2012-08-10 2019-12-10 Tungaloy Corporation Coated tool
US10265775B2 (en) 2014-03-27 2019-04-23 Tungaloy Corporation Coated tool
US10640864B2 (en) 2014-04-10 2020-05-05 Tungaloy Corporation Coated tool
US10300533B2 (en) 2014-08-01 2019-05-28 Tungaloy Corporation Coated cutting tool

Also Published As

Publication number Publication date
JP3849135B2 (en) 2006-11-22

Similar Documents

Publication Publication Date Title
JP2004050381A (en) Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP2003326403A (en) Cutting tool made of surface coated cemented carbide providing excellent wear resistance by hard layer in high speed heavy cutting
JP2009101490A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2003136303A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP4007102B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3948013B2 (en) Surface coated cemented carbide cutting tool with excellent heat resistance due to hard coating layer
JP2003205404A (en) Surface-coated cemented carbide cutting tool capable of demonstrating excellent wear resistance when cutting hardly machinable material at high speed
JP2003200306A (en) Surface coated cemented carbide cutting tool having hard coating layer showing excellent biting property for material to be cut under heavy cutting condition
JP2003136302A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP2003145317A (en) Cutting tool of surface-coated cemented carbide with abrasion-resistant coat layer having excellent adhesion performance and chipping resistance
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2005028474A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004358610A (en) Surface-coated cermet made cutting tool with hard coating layer having excellent wear resistance in high-speed cutting
JP2003334704A (en) Surface-coated hard metal cutting tool having hard coated layer of excellent abrasion resistance in high- speed cutting processing
JP2003225809A (en) Surface coated cemented carbide cutting tool superior in wear resistance in high speed cutting of hard-to-cut material
JP2003136305A (en) Surface coated cemented carbide cutting tool having hard coating layer exerting excellent wear resistance in high-speed cutting
JP3475932B2 (en) Surface-coated cemented carbide cutting tool that demonstrates excellent wear resistance in high-speed cutting
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3580275B2 (en) Surface-coated cemented carbide cutting tool with excellent heat dissipation with a wear-resistant coating layer
JP3478276B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent chipping resistance in high-speed heavy cutting
JP4029331B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer under high-speed heavy cutting conditions
JP3508746B2 (en) Surface coated cemented carbide cutting tool that demonstrates excellent wear resistance in high speed cutting
JP2004074379A (en) Surface coated cemented carbide cutting tool having hard coated layer exhibiting superior abrasion resistance under high speed heavy duty cutting condition
JP3928498B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees