WO2022172729A1 - Cemented carbide and cutting tool which comprises same as base material - Google Patents

Cemented carbide and cutting tool which comprises same as base material Download PDF

Info

Publication number
WO2022172729A1
WO2022172729A1 PCT/JP2022/002227 JP2022002227W WO2022172729A1 WO 2022172729 A1 WO2022172729 A1 WO 2022172729A1 JP 2022002227 W JP2022002227 W JP 2022002227W WO 2022172729 A1 WO2022172729 A1 WO 2022172729A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cemented carbide
phase
particles
metal element
Prior art date
Application number
PCT/JP2022/002227
Other languages
French (fr)
Japanese (ja)
Inventor
聡 小野
裕明 後藤
圭一 津田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2022581294A priority Critical patent/JPWO2022172729A1/ja
Publication of WO2022172729A1 publication Critical patent/WO2022172729A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide

Definitions

  • the present disclosure relates to a cemented carbide and a cutting tool containing it as a base material.
  • This application claims priority from Japanese Patent Application No. 2021-021598 filed on February 15, 2021. All the contents described in the Japanese patent application are incorporated herein by reference.
  • cemented carbide comprising a hard phase mainly composed of tungsten carbide (WC) and a binder phase mainly composed of iron group elements (e.g., Fe, Co, Ni) has been used as a material for cutting tools. It is Properties required for cutting tools include strength (eg, transverse rupture strength), toughness (eg, fracture toughness), hardness (eg, Vickers hardness), plastic deformation resistance, wear resistance, and the like.
  • the cemented carbide according to the present disclosure is A cemented carbide comprising a first hard phase and a binder phase,
  • the first hard phase consists of tungsten carbide particles
  • the binder phase contains nickel and a metal element M as constituent elements
  • the metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron
  • On any surface or any cross section of the cemented carbide A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1, A region other than the region R1 in the bonding phase is defined as a region R2,
  • a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1.
  • a cutting tool according to the present disclosure includes the cemented carbide according to the present disclosure as a base material.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment.
  • FIG. 2 is another schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment.
  • FIG. 3 is a photograph showing an STEM image of a cross section of the cemented carbide according to this embodiment.
  • FIG. 4 is an example of a graph showing the results of line analysis of the cemented carbide according to this embodiment.
  • FIG. 5 is a graph showing a temperature and pressure variation program (sintering program 1) in the cemented carbide manufacturing method according to the present embodiment.
  • FIG. 6 is a graph showing a general temperature and pressure variation program (sintering program 2) in a conventional cemented carbide manufacturing method.
  • cemented carbides used as base materials for cutting tools are also required to have various properties improved, and in particular, cemented carbides having high toughness and high hardness are desired. Further, as described above, Co is a scarce resource, so a cemented carbide with a reduced Co content is desired.
  • the present disclosure has been made in view of the above circumstances, and aims to provide a cemented carbide with excellent toughness and hardness even if the Co content is low, and a cutting tool containing it as a base material. .
  • a cemented carbide according to an aspect of the present disclosure A cemented carbide comprising a first hard phase and a binder phase, The first hard phase consists of tungsten carbide particles, The binder phase contains nickel and a metal element M as constituent elements, The metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron, On any surface or any cross section of the cemented carbide, A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1, A region other than the region R1 in the bonding phase is defined as a region R2, When a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the
  • the metal element M is localized in the binder phase (that is, the region R1) near the tungsten carbide grains.
  • the cemented carbide has improved adhesion between the tungsten carbide particles and the binder phase. Therefore, the cemented carbide can have toughness comparable to that of conventional cemented carbide containing cobalt in the binder phase. That is, the cemented carbide is a cemented carbide having excellent toughness and hardness.
  • the content of the metal element M is preferably 24 wt % or more and 36 wt % or less with respect to the binder phase.
  • the metal element M preferably contains molybdenum.
  • the cemented carbide can be further excellent in toughness and hardness.
  • the cemented carbide is selected from the group consisting of one or more metal elements selected from Group 4 elements, Group 5 elements and Group 6 elements of the periodic table excluding tungsten, and carbon, nitrogen, oxygen and boron. It is preferable to further include a second hard phase composed of a compound containing one or more nonmetallic elements.
  • the second hard phase is composed of particles of the compound,
  • the average particle size of the particles of the compound is preferably 0.05 ⁇ m or more and 2 ⁇ m or less.
  • the average particle size of the tungsten carbide particles is preferably 0.1 ⁇ m or more and 10 ⁇ m or less. By defining in this way, the cemented carbide can be further excellent in toughness and hardness.
  • a cutting tool includes the cemented carbide according to any one of [1] to [6] above as a base material.
  • the above-mentioned cutting tool can realize processing corresponding to severer cutting conditions, longer life, and the like by providing a base material made of a cemented carbide having excellent toughness and hardness.
  • the cutting tool further comprises a coating provided on the base material.
  • the coating By providing the coating on the surface of the base material, the wear resistance of the cutting tool can be improved. Therefore, the above-mentioned cutting tool can cope with severer cutting conditions and achieve a longer life.
  • this embodiment An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this.
  • a notation of the form "X to Y” means the upper and lower limits of a range (ie, greater than or equal to X and less than or equal to Y). When no unit is described for X and only a unit is described for Y, the unit of X and the unit of Y are the same.
  • the chemical formula when a compound is represented by a chemical formula in which the composition ratio of constituent elements is not limited, such as "TiC", the chemical formula can be any conventionally known composition ratio (element ratio) shall include At this time, the above chemical formula includes not only stoichiometric compositions but also non-stoichiometric compositions.
  • the chemical formula of “TiC” includes not only the stoichiometric composition “Ti 1 C 1 ” but also non-stoichiometric compositions such as “Ti 1 C 0.8 ”. This also applies to the description of compounds other than "TiC".
  • an element symbol or an element name when described, it may mean the simple substance of the element, or it may mean the constituent element in the compound.
  • the cemented carbide of this embodiment is A cemented carbide comprising a first hard phase and a binder phase,
  • the first hard phase consists of tungsten carbide particles
  • the binder phase contains nickel and a metal element M as constituent elements
  • the metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron
  • On any surface or any cross section of the cemented carbide A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1, A region other than the region R1 in the bonding phase is defined as a region R2,
  • a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1.
  • the first hard phase consists of tungsten carbide (hereinafter sometimes referred to as "WC") particles.
  • the WC includes not only “pure WC (WC that does not contain any impurity elements, and WC in which impurity elements are below the detection limit)” but also “as long as the effect of the present disclosure is exhibited, WC in which other impurity elements are intentionally or unavoidably included.
  • the content ratio of impurities in the WC particles is 5 mass% or less (5 wt% or less) with respect to the total amount of the WC and the impurities. be.
  • the average particle size of the WC particles in the cemented carbide is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the toughness of the cemented carbide tends to be high. Therefore, a cutting tool containing the cemented carbide as a base material can suppress chipping or breakage due to mechanical and thermal impacts. In addition, since the cutting tool has improved crack propagation resistance, crack propagation is suppressed, and chipping or breakage can be suppressed.
  • a cutting tool containing the above cemented carbide as a base material can suppress deformation during cutting, and can suppress wear or chipping.
  • the average grain size of the WC particles in the cemented carbide is determined by mirror-finishing any surface or cross-section of the cemented carbide, photographing the processed surface with a microscope, and analyzing the photographed image. Desired. Specifically, the particle diameter of each WC particle (Heywood diameter: equivalent circle diameter with equal area) is calculated from the photographed image, and the average value is taken as the average particle diameter of the WC particles.
  • the number of WC particles to be measured should be at least 100, preferably 200 or more. Further, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view and use the average value as the average grain size of the WC grains.
  • the number of fields for image analysis is preferably 5 or more, more preferably 7 or more, still more preferably 10 or more, and even more preferably 20 or more.
  • One field of view may be, for example, a 20 ⁇ m long by 20 ⁇ m wide square.
  • mirror-finishing methods include polishing with diamond paste, using a focused ion beam device (FIB device), using a cross-section polisher device (CP device), and combining these methods.
  • FIB device focused ion beam device
  • CP device cross-section polisher device
  • etch the processed surface with Murakami's reagent.
  • Types of microscopes include metallurgical microscopes, scanning transmission electron microscopes (STEM), and the like. Images taken with a microscope are taken into a computer and analyzed using image analysis software to obtain various information such as the average particle size.
  • STEM scanning transmission electron microscopes
  • image analysis software can be preferably used as the image analysis software.
  • the cemented carbide according to the present embodiment preferably has an area ratio of the first hard phase of 85% or more and 96% or less with respect to any surface or any cross section of the cemented carbide.
  • the sum of the area ratio of the first hard phase and the area ratio of the binder phase described later is 100% (when the cemented carbide contains the second hard phase, it will be described later).
  • the area ratio of the first hard phase can be obtained, for example, by photographing an arbitrary processed surface of the cemented carbide with a microscope and analyzing the photographed image in the same manner as when obtaining the average grain size of the WC grains described above. Desired.
  • WC particles in a predetermined field of view are specified, and the sum of the areas of the WC particles specified by image processing is calculated.
  • the area ratio of the first hard phase can be calculated by dividing the calculated sum of the areas of the WC grains by the area of the field of view.
  • Image analysis type particle size distribution software (“Mac-View” manufactured by Mountec Co., Ltd.) can be preferably used for the image processing.
  • the above-mentioned "predetermined field of view” may be the same as the field of view for determining the average particle size of the WC grains.
  • the binder phase binds the WC particles that form the first hard phase, the compounds that form the second hard phase described later, or the WC particles that form the first hard phase and the compound that forms the second hard phase. It is a phase that causes The content of the binder phase is preferably 4 wt % or more and 15 wt % or less based on the cemented carbide.
  • the binder phase contains nickel (Ni) as constituent elements and a metal element M described later.
  • the main components of the binder phase are preferably nickel and the metal element M.
  • the main components of the binder phase are nickel and the metal element M
  • the content ratio of "nickel and the metal element M contained in the binder phase” to the binder phase is 50 wt% or more and 100 wt% or less.
  • the content of nickel and metal element M contained in the binder phase is preferably 80 wt % or more and 100 wt % or less, more preferably 90 wt % or more and 100 wt % or less.
  • the content of nickel is preferably 64 wt% or more and 76 wt% or less, more preferably 65 wt% or more and 75 wt% or less, and further preferably 67 wt% or more and 73 wt% or less with respect to the binder phase. preferable.
  • the metal element M contains at least one selected from the group consisting of chromium (Cr), molybdenum (Mo), vanadium (V) and iron (Fe).
  • the metal element M preferably contains molybdenum.
  • the content of the metal element M is preferably 24 wt% or more and 36 wt% or less, more preferably 25 wt% or more and 35 wt% or less, and 27 wt% or more and 33 wt% or less with respect to the binder phase. is more preferred.
  • the metal element M includes a plurality of metal elements, the total content of the respective metal elements is the content of the metal element M.
  • the content of nickel or metal element M contained in the binding phase can be measured by a titration method. That is, first, the atomic concentration of each element contained in the binding phase is obtained by a titration method. Here, the inventors consider that the atomic concentration measured by the titration method is the atomic concentration averaged over the entire bonding phase. Next, from the determined atomic concentration and the mass number of the corresponding element, the content ratio (wt%) of the element in the binder phase is determined.
  • the area ratio of the binder phase with respect to any surface or any cross section of the cemented carbide according to the present embodiment is preferably 4% or more and 15% or less, and more preferably 6% or more and 15% or less. .
  • the area ratio of the binder phase is preferably 4% or more and 15% or less, and more preferably 6% or more and 15% or less.
  • the area ratio of the binder phase can be calculated by the same method as the measurement of the area ratio of the first hard phase. That is, the bonded phases in a predetermined field of view are identified, and the sum of the areas of the bonded phases is calculated. Next, by dividing the sum of the calculated areas of the bonded phases by the area of the predetermined field of view, the area ratio of the bonded phases can be calculated. Moreover, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view (for example, 5 or more fields of view) and take the average value as the area ratio of the binder phase.
  • binder phase examples include cobalt (Co) and copper (Cu).
  • the above and other elements may be used alone, or may be used in combination.
  • the binder phase may contain tungsten, carbon, and other unavoidable component elements of the first hard phase.
  • the other elements that constitute the binder phase function as the binder phase (the WC particles that form the first hard phase, the compounds that form the second hard phase, or the WC particles that form the first hard phase). It is allowed to be included in the binding phase as long as the function of binding the compound constituting the second hard phase) is exhibited.
  • component elements other than the first hard phase and the later-described second hard phase are contained in the binder phase.
  • a region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1
  • a region other than the region R1 in the bonding phase is defined as a region R2
  • the atomic concentration of the metal element M is maximum in the region R1.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment.
  • the schematic cross-sectional view may represent any surface of the cemented carbide 1 .
  • Most of the tungsten carbide grains 2 are surrounded by a binder phase 3.
  • the binder phase 3 is divided into regions R1 and R2.
  • the region R1 is a region sandwiched between an interface S between the tungsten carbide particles 2 and the binder phase 3 and a virtual line A indicating a point 5 nm away from the interface S toward the binder phase 3. be. It can also be understood that the virtual line A is formed by a set of points separated by 5 nm from the interface S toward the binding phase 3 side.
  • the region R2 is a region of the bonding phase 3 other than the region R1.
  • Whether the binder phase is divided into the region R1 or the region R2 is determined based on the nearest tungsten carbide grain among the plurality of tungsten carbide grains surrounded by the binder phase.
  • the point P in FIG. 2 corresponds to the region R2 with respect to the tungsten carbide grain WC1, but corresponds to the region R1 with respect to the tungsten carbide grain WC3. Since the tungsten carbide grain WC3 is closest to the point P, it can be determined that the point P is included in the region R1. Moreover, it can be determined that the point Q corresponds to the region R2 regardless of which of the tungsten carbide grains WC1, WC2, and WC3 is used as a reference.
  • the region R1 and the region R2 are obtained by the following method.
  • any surface or any cross section of the cemented carbide is observed at low magnification using STEM.
  • the magnification of STEM is, for example, 20000 times.
  • the cross section can be formed by cutting the cemented carbide at an arbitrary position and subjecting the cut surface to the mirror finish described above.
  • a field of view that includes all of the first hard phase (tungsten carbide particles) and the binder phase region R1 and region R2 is selected.
  • One of the selected fields of view is focused on and observed at a high magnification (eg, 2,000,000 times) (eg, FIG. 3).
  • the interface between the first hard phase and the binder phase is specified based on the observed STEM image.
  • the first hard phase composed of high-density WC is observed white.
  • the binder phase which has a lower density than the first hard phase, appears black. Therefore, the present inventors believe that the interface between the first hard phase and the binder phase can be clearly identified. Furthermore, a virtual line A is set based on the specified interface. Based on the interface and the imaginary line A, the binding phase is divided into regions R1 and R2.
  • the atomic concentration of the metal element M is maximum in the region R1.
  • the atomic concentration of the metal element M can be obtained as follows. First, a field of view (for example, FIG. 3) that includes all of the first hard phase (tungsten carbide grains) and the binder phase regions R1 and R2 is selected by observing the cross section of the cemented carbide by STEM as described above. At this time, the region R2 is adjacent to the first hard phase via the region R1. Next, the selected field of view is subjected to line analysis along the direction intersecting the interface S and the imaginary line A using an energy dispersive X-ray spectroscopy (EDS) device attached to the STEM.
  • EDS energy dispersive X-ray spectroscopy
  • FIG. 4 is an example of a graph showing the results of line analysis of the cemented carbide according to this embodiment.
  • the horizontal axis represents the distance (nm) from the origin (measurement starting point) set for convenience in line analysis.
  • the vertical axis represents the quantitative value of the atomic concentration (wt%) of nickel or the like.
  • the maximum atomic concentration (wt%) of the metal element M with respect to the total of nickel and the metal element M in the region R1 is preferably 40 wt% or more and 80 wt% or less, It is more preferably 55 wt % or more and 75 wt % or less.
  • the maximum value (wt%) of the atomic concentration of the metal element M can be obtained based on the results of the line analysis described above. At this time, the maximum value of the atomic concentration of the metal element M is first obtained in each field of view used when performing the above determination, and the average value of the values obtained in a plurality of fields of view is the atomic concentration of the metal element M. The maximum value (wt%).
  • the cemented carbide according to the present embodiment may further have a second hard phase having a composition different from that of the first hard phase.
  • the second hard phase includes "one or more metal elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table excluding tungsten" and "carbon (C), nitrogen (N), oxygen (O) and one or more nonmetallic elements selected from the group consisting of boron (B)" (composite compound).
  • Group 4 elements of the periodic table include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. Vanadium (V), niobium (Nb), tantalum (Ta), etc. are mentioned as a periodic table V group element.
  • Chromium (Cr), molybdenum (Mo), etc. are mentioned as a periodic table 6-group element.
  • Compounds are mainly carbides, nitrides, carbonitrides, oxides, borides, etc. of the above metal elements.
  • the second hard phase may consist of particles of the above compound.
  • the average particle size of the particles is preferably 0.05 ⁇ m or more and 2 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the second hard phase is a compound phase or solid solution phase composed of one or more of the above compounds.
  • compound phase or solid solution phase indicates that the compounds that constitute such a phase may form a solid solution, or may exist as individual compounds without forming a solid solution.
  • the second hard phase examples include TaC, NbC, TiC, HfC, Mo2C, ZrC, and the like.
  • the area ratio of the first hard phase is set as the area ratio of the first hard phase (tungsten carbide particles) and the second hard phase combined. That is, when the cemented carbide further has a second hard phase, the sum of the area ratio of the first hard phase and the area ratio of the second hard phase with respect to any surface or cross section of the cemented carbide is It is preferably 85% or more and 96% or less. In this case, the sum of the area ratio of the first hard phase, the area ratio of the second hard phase and the area ratio of the binder phase is 100%.
  • the area ratio of the second hard phase can be calculated by the same method as the measurement of the area ratio of the first hard phase.
  • the "second hard phase” is specified in a predetermined field of view, and the sum of the areas of the "second hard phase” is calculated.
  • the area ratio of the second hard phase is calculated by dividing the calculated sum of the areas of the second hard phase by the area of the predetermined field of view.
  • the area ratio of the second hard phase to any surface or any cross section of the cemented carbide is preferably 1% or more and 10% or less, more preferably 2% or more and 5% or less.
  • the cemented carbide of the present embodiment can be typically manufactured through the following steps: raw material powder preparation step mixing step molding step degreasing step sintering step reprecipitation promotion step cooling step. Each step will be described below.
  • the preparation step is a step of preparing all the raw material powders of the materials that constitute the cemented carbide.
  • the raw material powder include WC particles as the first hard phase, particles containing nickel as the binder phase, and particles containing the metal element M.
  • a compound-constituting powder, a grain growth inhibitor, and the like, which will be the second hard phase, may be prepared.
  • WC particles The WC grains used as the raw material are not particularly limited, and WC grains commonly used in the production of cemented carbide may be used. Commercially available products may be used as the WC particles. Commercially available WC particles include, for example, the “Uniform Grain Tungsten Carbide Powder” series manufactured by A.L.M.T.
  • the average particle size of the WC particles used as the raw material is preferably 0.3 ⁇ m or more and 10 ⁇ m or less, more preferably 0.3 ⁇ m or more and 5 ⁇ m or less.
  • the average grain size of the WC grains used as the raw material is 0.3 ⁇ m or more, the toughness tends to be high when made into a cemented carbide. Therefore, a cutting tool containing the cemented carbide as a base material can suppress chipping and breakage due to mechanical and thermal impacts. In addition, since the cutting tool has improved resistance to crack propagation, propagation of cracks is suppressed, and chipping and breakage can be suppressed.
  • the cemented carbide tends to have a high hardness. Therefore, a cutting tool containing the above cemented carbide as a base material can suppress deformation during cutting, and can suppress wear and chipping.
  • nickel-containing particles are preferably particles made of nickel metal. Commercially available products may be used as the nickel-containing particles.
  • the average particle diameter of the nickel-containing particles is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the particles containing the metal element M as the raw material are preferably molybdenum metal particles, chromium metal particles, vanadium metal particles, or iron metal particles. Commercially available particles may be used as the particles containing the metal element M.
  • the average particle diameter of the particles containing the metal element M is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the compound-constituting powder is not particularly limited, and a compound-constituting powder that is usually used as a raw material for the second hard phase in the production of cemented carbide may be used.
  • Examples of such compound constituent powders include TaC, TiC, NbC, Cr 3 C 2 , ZrC and TiN.
  • One of the conditions for uniformly dispersing the second hard phase with a uniform grain size in the cemented carbide is to use a powder with fine grains and a uniform grain size as the compound-constituting powder. By doing so, the second hard phase can be made fine and dispersed in the sintering step, which will be described later.
  • the average particle size of the compound-constituting powder is, for example, in the range of 0.5 ⁇ m or more and 3 ⁇ m or less. The smaller the average particle size of the compound-constituting powder used as the raw material, the smaller the average particle size of the second hard phase in the finally obtained cemented carbide.
  • the compound-constituting powder can be obtained by pulverizing/classifying a commercially available product so as to obtain a fine particle having a uniform particle size.
  • the mixing step is a step of mixing each raw material powder prepared in the preparation step.
  • a mixed powder in which each raw material powder is mixed is obtained by the mixing step.
  • the mass ratio of the raw material powders (for example, WC particles, nickel-containing particles, metal element M-containing particles, etc.) when mixed is the area ratio of the first hard phase, the area ratio of the second hard phase, and the The ratio corresponds to the area ratio of the bonding phase.
  • a known device can be used for the device used in the mixing step. For example, attritors, rolling ball mills, Karman mixers, bead mills and the like can be used.
  • An example of mixing conditions when using an attritor is rotation speed: 100 m/min or more and 400 m/min or less, and mixing time: 1.5 hours or more and 25 hours or less.
  • the mixing conditions for the attritor may be either wet mixing or dry mixing.
  • Mixing may also be performed in a solvent such as water, ethanol, acetone, or isopropyl alcohol.
  • Mixing may be performed with a binder such as polyethylene glycol, paraffin wax, and the like.
  • the mixed powder may be granulated as needed.
  • it is easy to fill the mixed powder into a die or mold during the molding process described below.
  • a known granulation method can be applied for granulation, and for example, a commercially available granulator such as a spray dryer can be used.
  • the molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a compact.
  • General methods and conditions may be adopted for the molding method and molding conditions in the molding step, and are not particularly limited.
  • Examples of the predetermined shape include cutting tool shapes (for example, the shape of indexable cutting inserts: CNMG120408, etc.).
  • the degreasing step is a step of removing the binder (for example, paraffin wax, etc.) in the molded body obtained in the molding step, and is a step of performing heat treatment under the following conditions.
  • the binder for example, paraffin wax, etc.
  • the temperature during treatment in the degreasing step is preferably 300°C or higher and 1000°C or lower, more preferably 400°C or higher and 800°C or lower.
  • the pressure during treatment in the degreasing step is preferably 110 kPa or more and 500 kPa or less, more preferably 200 kPa or more and 400 kPa or less.
  • the treatment time in the degreasing step is preferably 30 minutes or more and 120 minutes or less, more preferably 60 minutes or more and 90 minutes or less.
  • the atmosphere in the degreasing step is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
  • the sintering step is a step of sintering the molded body obtained through the degreasing step to obtain a sintered body.
  • the sintering temperature (T1) is preferably 1300° C. or higher and 1600° C. or lower, more preferably 1350° C. or higher and 1500° C. or lower.
  • the sintering time is preferably 30 minutes or more and 120 minutes or less, more preferably 50 minutes or more and 90 minutes or less.
  • the atmosphere during sintering is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
  • the degree of vacuum (pressure) during sintering is preferably 10 kPa or less, more preferably 5 kPa or less, and even more preferably 3 kPa or less.
  • the lower limit is not particularly limited, it may be, for example, 0.5 kPa or more.
  • the sintering process may perform a sintering HIP (sintering HIP) process which can pressurize at the time of sintering.
  • HIP conditions include, for example, N 2 gas atmosphere, inert gas atmosphere such as Ar, temperature: 1300° C. or higher and 1350° C. or lower, pressure: 5 MPa or higher and 200 MPa or lower.
  • the redeposition promoting step is a step of heating the sintered body after sintering is completed at a predetermined temperature (see FIG. 5).
  • the present inventors believe that the metal element M dissolved in the hard phase (first hard phase, second hard phase) is reprecipitated on the surface of the hard phase by performing the redeposition promoting step.
  • the treatment temperature (T2) in the reprecipitation promotion step is preferably 400°C or higher and 1230°C or lower, more preferably 400°C or higher and 1100°C or lower, and even more preferably 500°C or higher and 900°C or lower.
  • the temperature drop rate from the sintering temperature in the reprecipitation promoting step is preferably 10°C/min or more and 20°C/min or less, more preferably 12°C/min or more and 17°C/min or less.
  • the holding time of the heat treatment in the reprecipitation promotion step is preferably 30 minutes or more and 120 minutes or less, more preferably 50 minutes or more and 90 minutes or less.
  • the atmosphere in the re-deposition promoting step is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
  • the pressure in the reprecipitation promotion step is preferably 100 kPa or more and 490 kPa or less, more preferably 190 kPa or more and 390 kPa or less.
  • the cooling step is a step of cooling the sintered body after the reprecipitation promoting step to room temperature.
  • the cooling step is not particularly limited.
  • the cooling rate is, for example, cooling at a temperature drop rate of 2° C./min or more.
  • the temperature drop rate is 2°C/min
  • the atmosphere at the time of cooling is not particularly limited, and may be an N 2 gas atmosphere or an inert gas atmosphere such as Ar.
  • the pressure during cooling is not particularly limited, and may be increased or reduced.
  • the pressure at the time of pressurization is, for example, 400 kPa or more and 500 kPa or less.
  • the pressure during the decompression is, for example, 100 kPa or less, preferably 10 kPa or more and 50 kPa or less.
  • the cooling step includes cooling the sintered body to room temperature in an Ar gas atmosphere.
  • the cemented carbide of this embodiment has excellent toughness and hardness as described above, it can be used as a base material for cutting tools, wear-resistant tools and grinding tools. That is, the cutting tool of this embodiment contains the cemented carbide as a base material. Further, the wear-resistant tool and grinding tool of the present embodiment contain the cemented carbide as a base material.
  • the cemented carbide of this embodiment can be widely applied to conventionally known cutting tools, wear-resistant tools and grinding tools.
  • cutting tools include cutting tools, drills, end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, gear cutting tools, reamers and taps.
  • wear-resistant tools include dies, scribers, scribing wheels, and dressers.
  • a grinding tool for example, a grinding wheel can be exemplified.
  • the cemented carbide of this embodiment may constitute the entirety of these tools.
  • the cemented carbide may form part of these tools.
  • "constituting a part” indicates, for example, in the case of a cutting tool, a cutting edge portion formed by brazing the cemented carbide of the present embodiment at a predetermined position of an arbitrary base material.
  • the cutting tool according to this embodiment may further include a coating provided on the substrate.
  • the wear-resistant tool and grinding tool according to this embodiment may further include a coating provided on the substrate.
  • the composition of the coating is one or more metals selected from the group consisting of metal elements of Group 4 of the periodic table, metal elements of Group 5 of the periodic table, metal elements of Group 6 of the periodic table, aluminum (Al), and silicon (Si).
  • Examples include compounds of the element with one or more nonmetallic elements selected from the group consisting of nitrogen (N), oxygen (O), carbon (C) and boron (B).
  • the compound include TiCN, Al 2 O 3 , TiAlN, TiN, TiC, AlCrN and the like.
  • the film may be a single metal.
  • cBN cubic boron nitride
  • diamond-like carbon and the like are also suitable as the coating composition.
  • Such coatings can be formed by vapor phase methods such as chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) methods.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the CVD method includes, for example, a thermal CVD method.
  • the film is formed by the PVD method, compressive residual stress is imparted, and the toughness of cutting tools and the like is likely to be increased.
  • the coating in the cutting tool according to the present embodiment is preferably provided on the cutting edge portion of the base material and its vicinity.
  • the coating may be provided on the entire surface of the substrate.
  • the coating may be a single layer or multiple layers.
  • the thickness of the coating may be 1 ⁇ m or more and 20 ⁇ m or less, or may be 1.5 ⁇ m or more and 15 ⁇ m or less.
  • the processed surface of this observation sample was photographed with a scanning transmission electron microscope (STEM) (manufactured by JEOL Ltd.) at a magnification of about 2000 times. For each sample, 10 fields of view were taken for each of the outer side of the processed surface and the center of the processed surface.
  • STEM scanning transmission electron microscope
  • composition analysis of bonded phase The binder phase on the processed surface of each sample was analyzed by a titration method to determine the composition of the binder phase. As a result, it was found that the composition of the binder phase corresponds to the raw composition of the binder phase shown in Table 1.
  • ⁇ Atomic concentration distribution of metal element M in binding phase First, the processed surface of each sample was observed at a magnification of 20,000 using STEM (manufactured by JEOL Ltd.). At this time, a square having a length of 4 ⁇ m and a width of 4 ⁇ m was defined as one visual field. Also, the field of view was selected so that both the first hard phase and the binder phase (region R1 and region R2) were included in one field of view (eg, FIG. 3). The magnification at this time was 2,000,000 times. In one selected field, the interface between the first hard phase and the binder phase was identified. Furthermore, a virtual line A was set based on the specified interface. Here, the imaginary line A is a line indicating a point 5 nm away from the interface toward the binding phase side. Based on the interface and the imaginary line A, the binder phase was divided into regions R1 and R2.
  • EDS energy dispersive spectroscopy
  • the atomic concentration of the metal element M was maximum in the above region R1. It should be noted that, in performing the above determination, it was decided not to take into consideration points that seem to be abnormal values at first glance. Such a determination is performed for at least five fields of view, and if the atomic concentration of the metal element M is maximum in the region R1 in each field of view, the cemented carbide has the maximum atomic concentration of the metal element M in the region R1. determined to be Further, based on the atomic concentration (wt%) of each element obtained from the line analysis result described above, the maximum atomic concentration of the metal element M with respect to the total of nickel and the metal element M in the region R1 ( wt%) was calculated.
  • the maximum value of the atomic concentration of the metal element M is first obtained in each field of view used when performing the above determination, and the average value of the values obtained in a plurality of fields of view is the atomic concentration of the metal element M.
  • the maximum value (wt%) was used. Table 3 shows the results.
  • the toughness of each sample was measured by the following method. That is, the fracture toughness value was determined by the HV method, which is calculated from the length of the crack extending from the indentation in which the Vickers hardness was measured. Table 3 shows the results.
  • Example No. 1 cutting tool A cutting tool using the cemented carbide of No. 1 as a base material is referred to as "Sample No. 1 cutting tool" or the like. Sample no. The same applies to samples other than No. 1.
  • ⁇ Cutting Test 1 Wear Resistance Test> Sample No. prepared as described above. 1 to 13 and sample no. Using cutting tools No. 101 to 107, the cutting time (minutes) until the flank wear amount Vb reached 0.2 mm was measured under the following cutting conditions. Table 3 shows the results. The longer the cutting time, the more excellent the wear resistance of the cutting tool can be evaluated. Wear resistance test conditions Work material: S50C Round bar Cutting speed: 250 m/min Feed rate: 0.15mm/rev Depth of cut: 1mm Cutting oil: Yes
  • ⁇ Cutting test 2 Fracture resistance test> Sample No. prepared as described above. 1 to 13 and sample no. Using cutting tools Nos. 101 to 107, the cutting time (minutes) until chipping occurred on the cutting edge was measured under the following cutting conditions. Table 3 shows the results. As the cutting time is longer, the cutting tool can be evaluated to have excellent chipping resistance. Fracture resistance test conditions Work material: SCM435 groove material (number of grooves: 4) Cutting speed: 300m/min Feed rate: 0.3mm/rev Cutting depth: 1.5mm Cutting oil: Yes
  • sample No. Cutting tools 1 to 13 had a cutting time of 57 minutes or longer in Cutting Test 1, which was a good result. This result is comparable to conventional cemented carbides containing cobalt in the binder phase (Sample Nos. 104-107). From the above results, sample no. Cemented carbides 1 to 13 (Examples) were found to be excellent in hardness.
  • sample No. Cutting tools 1 to 13 had a cutting time of 6.9 minutes or more in cutting test 2, which was a good result. This result is comparable to conventional cemented carbides containing cobalt in the binder phase (Sample Nos. 104-107).
  • sample no. Cutting tools 101 to 103 had a cutting time of 4.7 minutes or less in cutting test 2.
  • sample No. Cemented carbides of 1 to 13 are sample Nos. It was found to be superior to the cemented carbides of 101 to 103 (comparative examples) in toughness.

Abstract

A cemented carbide which comprises a first hard phase and a binder phase, wherein: the first hard phase is composed of tungsten carbide particles; the binder phase contains nickel and a metal element M as constituent elements; and the metal element M contains at least one element that is selected from the group consisting of chromium, molybdenum, vanadium and iron. With respect to an arbitrary surface or an arbitrary cross-section of the cemented carbide, if region R1 is the region between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating points that are 5 nm away from the interface toward the binder phase, region R2 is the region other than the region R1 in the binder phase, and a linear analysis is performed with a scope that includes the tungsten carbide particles and the region R2, which is adjacent to the tungsten carbide particles with the region R1 being interposed therebetween, the atomic concentration of the metal element M is highest in the region R1.

Description

超硬合金及びそれを基材として含む切削工具Cemented carbide and cutting tools containing it as a base material
 本開示は、超硬合金及びそれを基材として含む切削工具に関する。本出願は、2021年2月15日に出願した日本特許出願である特願2021-021598号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a cemented carbide and a cutting tool containing it as a base material. This application claims priority from Japanese Patent Application No. 2021-021598 filed on February 15, 2021. All the contents described in the Japanese patent application are incorporated herein by reference.
 従来から、炭化タングステン(WC)を主成分とする硬質相と、鉄族元素(例えば、Fe、Co、Ni)を主成分とする結合相とを備える超硬合金が、切削工具の素材に利用されている。切削工具に求められる特性には、強度(例えば、抗折力)、靱性(例えば、破壊靭性)、硬度(例えば、ビッカース硬さ)、耐塑性変形性、耐摩耗性等がある。 Conventionally, cemented carbide comprising a hard phase mainly composed of tungsten carbide (WC) and a binder phase mainly composed of iron group elements (e.g., Fe, Co, Ni) has been used as a material for cutting tools. It is Properties required for cutting tools include strength (eg, transverse rupture strength), toughness (eg, fracture toughness), hardness (eg, Vickers hardness), plastic deformation resistance, wear resistance, and the like.
特開2012-077352号公報JP 2012-077352 A
 本開示に係る超硬合金は、
 第一硬質相と結合相とを含む超硬合金であって、
 上記第一硬質相は、炭化タングステン粒子からなり、
 上記結合相は、構成元素としてニッケル及び金属元素Mを含み、
 上記金属元素Mは、クロム、モリブデン、バナジウム及び鉄からなる群より選ばれる少なくとも1種を含み、
 上記超硬合金の任意の表面又は任意の断面における、
 上記炭化タングステン粒子と上記結合相との界面と、上記界面から上記結合相の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域を領域R1とし、
 上記結合相における上記領域R1以外の領域を領域R2とし、
 上記炭化タングステン粒子と、上記領域R1を介して上記炭化タングステン粒子と隣接している上記領域R2とを含む範囲で線分析を行った場合、上記金属元素Mの原子濃度は上記領域R1において最大である。
The cemented carbide according to the present disclosure is
A cemented carbide comprising a first hard phase and a binder phase,
The first hard phase consists of tungsten carbide particles,
The binder phase contains nickel and a metal element M as constituent elements,
The metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron,
On any surface or any cross section of the cemented carbide,
A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1,
A region other than the region R1 in the bonding phase is defined as a region R2,
When a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1. be.
本開示に係る切削工具は、上記本開示に係る超硬合金を基材として含む。 A cutting tool according to the present disclosure includes the cemented carbide according to the present disclosure as a base material.
図1は、本実施形態に係る超硬合金の構造を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment. 図2は、本実施形態に係る超硬合金の構造を示す他の模式断面図である。FIG. 2 is another schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment. 図3は、本実施形態に係る超硬合金の断面におけるSTEM画像を示す写真である。FIG. 3 is a photograph showing an STEM image of a cross section of the cemented carbide according to this embodiment. 図4は、本実施形態に係る超硬合金における線分析の結果を示すグラフの一例である。FIG. 4 is an example of a graph showing the results of line analysis of the cemented carbide according to this embodiment. 図5は、本実施形態に係る超硬合金の製造方法における、温度及び圧力の変動プログラム(焼結プログラム1)を示すグラフである。FIG. 5 is a graph showing a temperature and pressure variation program (sintering program 1) in the cemented carbide manufacturing method according to the present embodiment. 図6は、従来の超硬合金の製造方法における、一般的な温度及び圧力の変動プログラム(焼結プログラム2)を示すグラフである。FIG. 6 is a graph showing a general temperature and pressure variation program (sintering program 2) in a conventional cemented carbide manufacturing method.
[本開示が解決しようとする課題]
 結合相に用いられているCoは希少資源であることから、近年、結合相にCoを含まない超硬合金が開発されている。例えば、特開2012-077352号公報(特許文献1)には、炭化タングステン(WC)を含有する金属元素セラミックス粒子を分散させ、結合相が鉄(Fe)、アルミニウム(Al)、ホウ素(B)、及び不可避不純物から組成される超硬合金であって、前記結合相中のBの含有量が0.07質量%以上かつ0.28質量%以下であることを特徴とする超硬合金が開示されている。
[Problems to be Solved by the Present Disclosure]
Since Co used in the binder phase is a scarce resource, cemented carbides containing no Co in the binder phase have been developed in recent years. For example, in JP-A-2012-077352 (Patent Document 1), metal element ceramic particles containing tungsten carbide (WC) are dispersed, and the binding phase is iron (Fe), aluminum (Al), boron (B) and inevitable impurities, wherein the content of B in the binder phase is 0.07% by mass or more and 0.28% by mass or less. It is
 近年、切削加工において被削材の難削化が進み、加工形状もより複雑化する等、切削工具の使用条件は過酷になっている。このため、切削工具の基材として用いられる超硬合金に対しても種々の特性の向上が求められており、とりわけ高い靱性及び高い硬度を備える超硬合金が望まれている。
 また、上述したようにCoは希少資源であるため、Coの含有割合が抑えられた超硬合金が望まれている。
In recent years, cutting tools have become more difficult to cut, and cutting tools have become more difficult to machine. Therefore, cemented carbides used as base materials for cutting tools are also required to have various properties improved, and in particular, cemented carbides having high toughness and high hardness are desired.
Further, as described above, Co is a scarce resource, so a cemented carbide with a reduced Co content is desired.
 本開示は、上記事情に鑑みてなされたものであり、Coの含有割合が低くても靱性及び硬度に優れる超硬合金、並びに、それを基材として含む切削工具を提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide a cemented carbide with excellent toughness and hardness even if the Co content is low, and a cutting tool containing it as a base material. .
[本開示の効果]
 本開示によれば、Coの含有割合が低くても靱性及び硬度に優れる超硬合金、並びに、それを基材として含む切削工具を提供することが可能になる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to provide a cemented carbide with excellent toughness and hardness even with a low Co content, and a cutting tool containing the same as a base material.
[本開示の実施形態の説明]
 最初に本開示の一態様の内容を列記して説明する。
 [1]本開示の一態様に係る超硬合金は、
 第一硬質相と結合相とを含む超硬合金であって、
 上記第一硬質相は、炭化タングステン粒子からなり、
 上記結合相は、構成元素としてニッケル及び金属元素Mを含み、
 上記金属元素Mは、クロム、モリブデン、バナジウム及び鉄からなる群より選ばれる少なくとも1種を含み、
 上記超硬合金の任意の表面又は任意の断面における、
 上記炭化タングステン粒子と上記結合相との界面と、上記界面から上記結合相の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域を領域R1とし、
 上記結合相における上記領域R1以外の領域を領域R2とし、
 上記炭化タングステン粒子と、上記領域R1を介して上記炭化タングステン粒子と隣接している上記領域R2とを含む範囲で線分析を行った場合、上記金属元素Mの原子濃度は上記領域R1において最大である。
[Description of Embodiments of the Present Disclosure]
First, the contents of one aspect of the present disclosure are listed and described.
[1] A cemented carbide according to an aspect of the present disclosure,
A cemented carbide comprising a first hard phase and a binder phase,
The first hard phase consists of tungsten carbide particles,
The binder phase contains nickel and a metal element M as constituent elements,
The metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron,
On any surface or any cross section of the cemented carbide,
A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1,
A region other than the region R1 in the bonding phase is defined as a region R2,
When a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1. be.
 上記超硬合金は、上述のような構成を備えることによって、炭化タングステン粒子近傍の結合相(すなわち、領域R1)に金属元素Mが局在する。その結果、上記超硬合金は、炭化タングステン粒子と結合相との密着力が向上する。そのため、上記超硬合金は、コバルトを結合相中に含む従来の超硬合金と同程度の靱性を有することが可能になる。すなわち、上記超硬合金は、靱性及び硬度に優れる超硬合金となる。 By providing the cemented carbide with the configuration as described above, the metal element M is localized in the binder phase (that is, the region R1) near the tungsten carbide grains. As a result, the cemented carbide has improved adhesion between the tungsten carbide particles and the binder phase. Therefore, the cemented carbide can have toughness comparable to that of conventional cemented carbide containing cobalt in the binder phase. That is, the cemented carbide is a cemented carbide having excellent toughness and hardness.
 [2]上記金属元素Mの含有割合は、上記結合相に対して、24wt%以上36wt%以下であることが好ましい。このように規定することで、靱性及び硬度に更に優れる超硬合金となる。 [2] The content of the metal element M is preferably 24 wt % or more and 36 wt % or less with respect to the binder phase. By defining in this way, the cemented carbide can be further excellent in toughness and hardness.
 [3]上記金属元素Mは、モリブデンを含むことが好ましい。このように規定することで、靱性及び硬度に更に優れる超硬合金となる。 [3] The metal element M preferably contains molybdenum. By defining in this way, the cemented carbide can be further excellent in toughness and hardness.
 [4]上記超硬合金は、タングステンを除く周期表4族元素、5族元素及び6族元素から選択される一種以上の金属元素と、炭素、窒素、酸素及び硼素からなる群より選択される一種以上の非金属元素と、を含む化合物からなる第二硬質相を更に含むことが好ましい。このように規定することによって、上記超硬合金を切削工具の材料として用いた場合、切削工具としての耐摩耗性及び耐欠損性のバランスを確保できる。 [4] The cemented carbide is selected from the group consisting of one or more metal elements selected from Group 4 elements, Group 5 elements and Group 6 elements of the periodic table excluding tungsten, and carbon, nitrogen, oxygen and boron. It is preferable to further include a second hard phase composed of a compound containing one or more nonmetallic elements. By defining in this way, when the cemented carbide is used as a material for a cutting tool, it is possible to secure a balance between wear resistance and chipping resistance as the cutting tool.
 [5]上記第二硬質相は、上記化合物の粒子からなり、
 上記化合物の粒子の平均粒径は、0.05μm以上2μm以下であることが好ましい。このように規定することによって、上記超硬合金を切削工具の材料として用いた場合、切削工具としての耐摩耗性及び耐欠損性のバランスを確保できる。
[5] The second hard phase is composed of particles of the compound,
The average particle size of the particles of the compound is preferably 0.05 μm or more and 2 μm or less. By defining in this way, when the cemented carbide is used as a material for a cutting tool, it is possible to secure a balance between wear resistance and chipping resistance as the cutting tool.
 [6]上記炭化タングステン粒子の平均粒径は、0.1μm以上10μm以下であることが好ましい。このように規定することで、靱性及び硬度に更に優れる超硬合金となる。 [6] The average particle size of the tungsten carbide particles is preferably 0.1 μm or more and 10 μm or less. By defining in this way, the cemented carbide can be further excellent in toughness and hardness.
 [7]本開示の一態様に係る切削工具は、上記[1]~[6]のいずれかに記載の超硬合金を基材として含む。上記切削工具は、靱性及び硬度に優れる超硬合金を基材に備えることで、より厳しい切削条件に対応した加工及び、長寿命化等を実現できる。 [7] A cutting tool according to an aspect of the present disclosure includes the cemented carbide according to any one of [1] to [6] above as a base material. The above-mentioned cutting tool can realize processing corresponding to severer cutting conditions, longer life, and the like by providing a base material made of a cemented carbide having excellent toughness and hardness.
 [8]上記切削工具は、上記基材上に設けられている被膜を更に備えることが好ましい。基材の表面に被膜を備えることで、切削工具の耐摩耗性等を改善できる。よって、上記切削工具は、更に厳しい切削条件への対応及び、更なる長寿命化等を実現できる。 [8] Preferably, the cutting tool further comprises a coating provided on the base material. By providing the coating on the surface of the base material, the wear resistance of the cutting tool can be improved. Therefore, the above-mentioned cutting tool can cope with severer cutting conditions and achieve a longer life.
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において「X~Y」という形式の表記は、範囲の上限下限(すなわちX以上Y以下)を意味する。Xにおいて単位の記載がなく、Yにおいてのみ単位が記載されている場合、Xの単位とYの単位とは同じである。さらに、本明細書において、例えば「TiC」等のように、構成元素の組成比が限定されていない化学式によって化合物が表された場合には、その化学式は従来公知のあらゆる組成比(元素比)を含むものとする。このとき上記化学式は、化学量論組成のみならず、非化学量論組成も含むものとする。例えば「TiC」の化学式には、化学量論組成「Ti」のみならず、例えば「Ti0.8」のような非化学量論組成も含まれる。このことは、「TiC」以外の化合物の記載についても同様である。本明細書において、元素記号又は元素名が記載されている場合は、その元素の単体を意味している場合もあるし、化合物中の構成元素を意味している場合もある。
[Details of the embodiment of the present disclosure]
An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this. As used herein, a notation of the form "X to Y" means the upper and lower limits of a range (ie, greater than or equal to X and less than or equal to Y). When no unit is described for X and only a unit is described for Y, the unit of X and the unit of Y are the same. Furthermore, in this specification, when a compound is represented by a chemical formula in which the composition ratio of constituent elements is not limited, such as "TiC", the chemical formula can be any conventionally known composition ratio (element ratio) shall include At this time, the above chemical formula includes not only stoichiometric compositions but also non-stoichiometric compositions. For example, the chemical formula of “TiC” includes not only the stoichiometric composition “Ti 1 C 1 ” but also non-stoichiometric compositions such as “Ti 1 C 0.8 ”. This also applies to the description of compounds other than "TiC". In this specification, when an element symbol or an element name is described, it may mean the simple substance of the element, or it may mean the constituent element in the compound.
 ≪超硬合金≫
 本実施形態の超硬合金は、
 第一硬質相と結合相とを含む超硬合金であって、
 上記第一硬質相は、炭化タングステン粒子からなり、
 上記結合相は、構成元素としてニッケル及び金属元素Mを含み、
 上記金属元素Mは、クロム、モリブデン、バナジウム及び鉄からなる群より選ばれる少なくとも1種を含み、
 上記超硬合金の任意の表面又は任意の断面における、
 上記炭化タングステン粒子と上記結合相との界面と、上記界面から上記結合相の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域を領域R1とし、
 上記結合相における上記領域R1以外の領域を領域R2とし、
 上記炭化タングステン粒子と、上記領域R1を介して上記炭化タングステン粒子と隣接している上記領域R2とを含む範囲で線分析を行った場合、上記金属元素Mの原子濃度は上記領域R1において最大である。
≪Cemented Carbide≫
The cemented carbide of this embodiment is
A cemented carbide comprising a first hard phase and a binder phase,
The first hard phase consists of tungsten carbide particles,
The binder phase contains nickel and a metal element M as constituent elements,
The metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron,
On any surface or any cross section of the cemented carbide,
A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1,
A region other than the region R1 in the bonding phase is defined as a region R2,
When a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1. be.
 <第一硬質相>
 第一硬質相は、炭化タングステン(以下、「WC」と表記する場合がある。)粒子からなる。ここで、WCには、「純粋なWC(不純物元素が一切含有されないWC、不純物元素が検出限界未満となるWCも含む)」だけではなく、「本開示の効果が奏する限りにおいて、その内部に他の不純物元素が意図的又は不可避的に含有されるWC」も含まれる。WC粒子における不純物の含有割合(不純物を構成する元素が二種類以上の場合は、それらの合計の含有割合)は、上記WC及び上記不純物の総量に対して5質量%以下(5wt%以下)である。
<First hard phase>
The first hard phase consists of tungsten carbide (hereinafter sometimes referred to as "WC") particles. Here, the WC includes not only “pure WC (WC that does not contain any impurity elements, and WC in which impurity elements are below the detection limit)” but also “as long as the effect of the present disclosure is exhibited, WC in which other impurity elements are intentionally or unavoidably included. The content ratio of impurities in the WC particles (if there are two or more elements constituting the impurities, the total content ratio of them) is 5 mass% or less (5 wt% or less) with respect to the total amount of the WC and the impurities. be.
 (WC粒子の平均粒径)
 超硬合金中における上記WC粒子の平均粒径は、0.1μm以上10μm以下であることが好ましく、0.5μm以上3μm以下であることがより好ましい。超硬合金中における上記WC粒子の平均粒径は、0.1μm以上であることで上記超硬合金の靱性が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、機械的及び熱的な衝撃によるチッピング又は欠損を抑制できる。また、上記切削工具は耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピング又は欠損を抑制できる。一方、上記平均粒径は、10μm以下であることで上記超硬合金の硬度が高くなる傾向がある。そのため、上記超硬合金を基材として含む切削工具は、切削時の変形が抑制され、摩耗又は欠損を抑制できる。
(Average particle size of WC particles)
The average particle size of the WC particles in the cemented carbide is preferably 0.1 μm or more and 10 μm or less, more preferably 0.5 μm or more and 3 μm or less. When the average grain size of the WC grains in the cemented carbide is 0.1 μm or more, the toughness of the cemented carbide tends to be high. Therefore, a cutting tool containing the cemented carbide as a base material can suppress chipping or breakage due to mechanical and thermal impacts. In addition, since the cutting tool has improved crack propagation resistance, crack propagation is suppressed, and chipping or breakage can be suppressed. On the other hand, when the average grain size is 10 μm or less, the hardness of the cemented carbide tends to increase. Therefore, a cutting tool containing the above cemented carbide as a base material can suppress deformation during cutting, and can suppress wear or chipping.
 ここで超硬合金中における上記WC粒子の平均粒径は、超硬合金の任意の表面又は任意の断面を鏡面加工し、その加工面を顕微鏡で撮影し、その撮影画像を画像解析することによって求められる。具体的には撮影画像から、個々のWC粒子の粒径(Heywood径:等面積円相当径)を算出し、その平均値をWC粒子の平均粒径とする。測定するWC粒子の数は、少なくとも100個以上とし、更に200個以上とすることが好ましい。また、同一の超硬合金において、複数の視野で上記画像解析を行い、その平均値をWC粒子の平均粒径とすることが好ましい。画像解析を行う視野の数は、5視野以上であることが好ましく、7視野以上であることがより好ましく、10視野以上であることが更に好ましく、20視野以上であることが更により好ましい。1つの視野は、例えば縦20μm×幅20μmの正方形であってもよい。 Here, the average grain size of the WC particles in the cemented carbide is determined by mirror-finishing any surface or cross-section of the cemented carbide, photographing the processed surface with a microscope, and analyzing the photographed image. Desired. Specifically, the particle diameter of each WC particle (Heywood diameter: equivalent circle diameter with equal area) is calculated from the photographed image, and the average value is taken as the average particle diameter of the WC particles. The number of WC particles to be measured should be at least 100, preferably 200 or more. Further, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view and use the average value as the average grain size of the WC grains. The number of fields for image analysis is preferably 5 or more, more preferably 7 or more, still more preferably 10 or more, and even more preferably 20 or more. One field of view may be, for example, a 20 μm long by 20 μm wide square.
 鏡面加工の方法としては、例えば、ダイヤモンドペーストで研磨する方法、集束イオンビーム装置(FIB装置)を用いる方法、クロスセクションポリッシャー装置(CP装置)を用いる方法、及びこれらを組み合わせる方法等が挙げられる。加工面を金属顕微鏡で撮影する場合には、加工面を村上試薬でエッチングすることが好ましい。顕微鏡の種類としては、金属顕微鏡、走査型透過電子顕微鏡(STEM)等が挙げられる。顕微鏡で撮影した撮影画像をコンピュータに取り込み、画像解析ソフトウェアを用いて解析して、平均粒径等の各種情報を取得する。このとき、第一硬質相を構成するWC粒子、後述する結合相及び後述する第二硬質相のそれぞれは、色の濃淡で上記撮影画像から識別できる。画像解析ソフトウェアとしては、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を好適に用いることができる。 Examples of mirror-finishing methods include polishing with diamond paste, using a focused ion beam device (FIB device), using a cross-section polisher device (CP device), and combining these methods. When photographing the processed surface with a metallurgical microscope, it is preferable to etch the processed surface with Murakami's reagent. Types of microscopes include metallurgical microscopes, scanning transmission electron microscopes (STEM), and the like. Images taken with a microscope are taken into a computer and analyzed using image analysis software to obtain various information such as the average particle size. At this time, each of the WC particles constituting the first hard phase, the binder phase described later, and the second hard phase described later can be identified from the photographed image by the shade of color. Image analysis type particle size distribution software (“Mac-View” manufactured by Mountec Co., Ltd.) can be preferably used as the image analysis software.
 (第一硬質相の面積比率)
 本実施形態に係る超硬合金は、上記超硬合金の任意の表面又は任意の断面に対する、上記第一硬質相の面積比率が85%以上96%以下であることが好ましい。この場合、上記第一硬質相の面積比率及び後述する結合相の面積比率の和は、100%である(超硬合金が第二硬質相を含む場合は、後述する。)。上記第一硬質相の面積比率は、例えば、上述したWC粒子の平均粒径を求めるときと同様に、超硬合金の任意の加工面を顕微鏡で撮影し、その撮影画像を画像解析することによって求められる。すなわち、まず所定の視野中のWC粒子を特定し、画像処理により特定されたWC粒子の面積の和を算出する。次に、算出したWC粒子の面積の和を視野の面積で割ることにより、上記第一硬質相の面積比率を算出することが可能である。また、同一の超硬合金において、複数の視野(例えば、5視野以上)で上記画像解析を行い、その平均値を第一硬質相の面積比率とすることが好ましい。上記画像処理には、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を好適に用いることができる。なお、上記「所定の視野」は、上述したWC粒子の平均粒径を求めるときの視野と同じであってもよい。
(Area ratio of first hard phase)
The cemented carbide according to the present embodiment preferably has an area ratio of the first hard phase of 85% or more and 96% or less with respect to any surface or any cross section of the cemented carbide. In this case, the sum of the area ratio of the first hard phase and the area ratio of the binder phase described later is 100% (when the cemented carbide contains the second hard phase, it will be described later). The area ratio of the first hard phase can be obtained, for example, by photographing an arbitrary processed surface of the cemented carbide with a microscope and analyzing the photographed image in the same manner as when obtaining the average grain size of the WC grains described above. Desired. That is, first, WC particles in a predetermined field of view are specified, and the sum of the areas of the WC particles specified by image processing is calculated. Next, the area ratio of the first hard phase can be calculated by dividing the calculated sum of the areas of the WC grains by the area of the field of view. Moreover, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view (for example, 5 or more fields of view) and take the average value as the area ratio of the first hard phase. Image analysis type particle size distribution software (“Mac-View” manufactured by Mountec Co., Ltd.) can be preferably used for the image processing. The above-mentioned "predetermined field of view" may be the same as the field of view for determining the average particle size of the WC grains.
 <結合相>
 結合相は、第一硬質相を構成するWC粒子同士、後述する第二硬質相を構成する化合物同士、又は第一硬質相を構成するWC粒子と第二硬質相を構成する化合物と、を結合させる相である。上記結合相は、上記超硬合金を基準として、その含有割合が4wt%以上15wt%以下であることが好ましい。上記結合相は、構成元素としてニッケル(Ni)及び後述する金属元素Mを含む。
<Bonded phase>
The binder phase binds the WC particles that form the first hard phase, the compounds that form the second hard phase described later, or the WC particles that form the first hard phase and the compound that forms the second hard phase. It is a phase that causes The content of the binder phase is preferably 4 wt % or more and 15 wt % or less based on the cemented carbide. The binder phase contains nickel (Ni) as constituent elements and a metal element M described later.
 本実施形態において結合相の主成分はニッケル及び金属元素Mであることが好ましい。「結合相の主成分がニッケル及び金属元素Mである」とは、上記結合相に対する「結合相中に含まれるニッケル及び金属元素M」の含有割合が、50wt%以上100wt%以下であることをいう。上記結合相中に含まれるニッケル及び金属元素Mの含有割合は、80wt%以上100wt%以下であることが好ましく、90wt%以上100wt%以下であることがより好ましい。 In this embodiment, the main components of the binder phase are preferably nickel and the metal element M. "The main components of the binder phase are nickel and the metal element M" means that the content ratio of "nickel and the metal element M contained in the binder phase" to the binder phase is 50 wt% or more and 100 wt% or less. Say. The content of nickel and metal element M contained in the binder phase is preferably 80 wt % or more and 100 wt % or less, more preferably 90 wt % or more and 100 wt % or less.
 上記ニッケルの含有割合は、上記結合相に対して、64wt%以上76wt%以下であることが好ましく、65wt%以上75wt%以下であることがより好ましく、67wt%以上73wt%以下であることが更に好ましい。 The content of nickel is preferably 64 wt% or more and 76 wt% or less, more preferably 65 wt% or more and 75 wt% or less, and further preferably 67 wt% or more and 73 wt% or less with respect to the binder phase. preferable.
 上記金属元素Mは、クロム(Cr)、モリブデン(Mo)、バナジウム(V)及び鉄(Fe)からなる群より選ばれる少なくとも1種を含む。上記金属元素Mは、モリブデンを含むことが好ましい。 The metal element M contains at least one selected from the group consisting of chromium (Cr), molybdenum (Mo), vanadium (V) and iron (Fe). The metal element M preferably contains molybdenum.
 上記金属元素Mの含有割合は、上記結合相に対して、24wt%以上36wt%以下であることが好ましく、25wt%以上35wt%以下であることがより好ましく、27wt%以上33wt%以下であることが更に好ましい。ここで、金属元素Mが複数の金属元素を含む場合、それぞれの金属元素の含有割合の合計が、当該金属元素Mの含有割合となる。 The content of the metal element M is preferably 24 wt% or more and 36 wt% or less, more preferably 25 wt% or more and 35 wt% or less, and 27 wt% or more and 33 wt% or less with respect to the binder phase. is more preferred. Here, when the metal element M includes a plurality of metal elements, the total content of the respective metal elements is the content of the metal element M.
 結合相中に含まれるニッケル又は金属元素Mの含有割合は、滴定法により測定することができる。すなわち、まず滴定法により結合相中に含まれる各元素の原子濃度を求める。ここで、滴定法により測定される上記原子濃度は、結合相全体を平均した原子濃度であると本発明者らは考えている。次に、求められた原子濃度と対応する元素の質量数から、結合相中における当該元素の含有割合(wt%)を求める。 The content of nickel or metal element M contained in the binding phase can be measured by a titration method. That is, first, the atomic concentration of each element contained in the binding phase is obtained by a titration method. Here, the inventors consider that the atomic concentration measured by the titration method is the atomic concentration averaged over the entire bonding phase. Next, from the determined atomic concentration and the mass number of the corresponding element, the content ratio (wt%) of the element in the binder phase is determined.
 (結合相の面積比率)
 本実施形態に係る超硬合金の任意の表面又は任意の断面に対する、上記結合相の面積比率は、4%以上15%以下であることが好ましく、6%以上15%以下であることがより好ましい。上記結合相の面積比率を上述の範囲とすることにより、超硬合金に占める第一硬質相(結合相よりも高硬度の相)の体積比率を上昇させて超硬合金全体としての高温時の硬度を高くし、かつ、第一硬質相と結合相との密着強度を上昇させることができる。
(Area ratio of bonding phase)
The area ratio of the binder phase with respect to any surface or any cross section of the cemented carbide according to the present embodiment is preferably 4% or more and 15% or less, and more preferably 6% or more and 15% or less. . By setting the area ratio of the binder phase within the above range, the volume ratio of the first hard phase (a phase with higher hardness than the binder phase) in the cemented carbide is increased, and the cemented carbide as a whole can be The hardness can be increased and the adhesion strength between the first hard phase and the binder phase can be increased.
 なお、上記結合相の面積比率は、第一硬質相の面積比率の測定と同様の方法で算出することが可能である。すなわち、所定の視野中の結合相を特定し、その結合相の面積の和を算出する。次に、算出した結合相の面積の和を所定の視野の面積で割ることにより、上記結合相の面積比率を算出することが可能である。また、同一の超硬合金において、複数の視野(例えば、5視野以上)で上記画像解析を行い、その平均値を結合相の面積比率とすることが好ましい。 The area ratio of the binder phase can be calculated by the same method as the measurement of the area ratio of the first hard phase. That is, the bonded phases in a predetermined field of view are identified, and the sum of the areas of the bonded phases is calculated. Next, by dividing the sum of the calculated areas of the bonded phases by the area of the predetermined field of view, the area ratio of the bonded phases can be calculated. Moreover, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view (for example, 5 or more fields of view) and take the average value as the area ratio of the binder phase.
 上記結合相を構成するその他の元素としては、例えば、コバルト(Co)、銅(Cu)等が挙げられる。上記その他の元素は単独で用いてもよいし、複数を組み合わせて用いてもよい。また、結合相は、第一硬質相の成分元素であるタングステン、炭素、その他の不可避的な成分元素を含んでいてもよい。上記結合相を構成するその他の元素は、上記結合相としての機能(第一硬質相を構成するWC粒子同士、第二硬質相を構成する化合物同士、又は第一硬質相を構成するWC粒子と第二硬質相を構成する化合物と、を結合させる機能)が発揮される範囲において、結合相に含まれることが許容される。本実施形態の一側面において、上記第一硬質相及び後述する第二硬質相以外の成分元素は、結合相に含まれると把握することができる。 Examples of other elements that make up the binder phase include cobalt (Co) and copper (Cu). The above and other elements may be used alone, or may be used in combination. In addition, the binder phase may contain tungsten, carbon, and other unavoidable component elements of the first hard phase. The other elements that constitute the binder phase function as the binder phase (the WC particles that form the first hard phase, the compounds that form the second hard phase, or the WC particles that form the first hard phase). It is allowed to be included in the binding phase as long as the function of binding the compound constituting the second hard phase) is exhibited. In one aspect of the present embodiment, it can be understood that component elements other than the first hard phase and the later-described second hard phase are contained in the binder phase.
 (結合相中の金属元素Mの原子濃度分布)
 本実施形態に係る超硬合金において、
 上記超硬合金の任意の表面又は任意の断面における、
 上記炭化タングステン粒子と上記結合相との界面と、上記界面から上記結合相の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域を領域R1とし、
 上記結合相における上記領域R1以外の領域を領域R2とし、
 上記炭化タングステン粒子と、上記領域R1を介して上記炭化タングステン粒子と隣接している上記領域R2とを含む範囲で線分析を行った場合、上記金属元素Mの原子濃度は上記領域R1において最大である。
(Atomic concentration distribution of metal element M in binding phase)
In the cemented carbide according to this embodiment,
On any surface or any cross section of the cemented carbide,
A region sandwiched between the interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1,
A region other than the region R1 in the bonding phase is defined as a region R2,
When a line analysis is performed in a range including the tungsten carbide particles and the region R2 adjacent to the tungsten carbide particles through the region R1, the atomic concentration of the metal element M is maximum in the region R1. be.
 (領域R1及び領域R2)
 本実施形態において、上記結合相は領域R1及び領域R2からなる。すなわち、上記結合相は領域R1及び領域R2に区分される。以下、図1を用いて詳細に説明する。図1は、本実施形態に係る超硬合金の構造を示す模式断面図である。上記模式断面図は、上記超硬合金1の任意の表面を表していてもよい。大部分の炭化タングステン粒子2は、結合相3に囲まれている。本実施形態において、上記結合相3は領域R1及び領域R2に区分される。上記領域R1は、上記炭化タングステン粒子2と上記結合相3との界面Sと、上記界面Sから上記結合相3の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域である。上記仮想線Aは、上記界面Sから上記結合相3の側に向かって5nm離れた点の集合によって構成されていると把握することもできる。上記領域R2は、上記結合相3における上記領域R1以外の領域である。
(Region R1 and Region R2)
In this embodiment, the binder phase consists of region R1 and region R2. That is, the binder phase is divided into regions R1 and R2. A detailed description will be given below with reference to FIG. FIG. 1 is a schematic cross-sectional view showing the structure of the cemented carbide according to this embodiment. The schematic cross-sectional view may represent any surface of the cemented carbide 1 . Most of the tungsten carbide grains 2 are surrounded by a binder phase 3. In this embodiment, the binder phase 3 is divided into regions R1 and R2. The region R1 is a region sandwiched between an interface S between the tungsten carbide particles 2 and the binder phase 3 and a virtual line A indicating a point 5 nm away from the interface S toward the binder phase 3. be. It can also be understood that the virtual line A is formed by a set of points separated by 5 nm from the interface S toward the binding phase 3 side. The region R2 is a region of the bonding phase 3 other than the region R1.
 上記結合相が上記領域R1及び上記領域R2のいずれに区分されるかは、結合相に囲まれている複数の炭化タングステン粒子のうち最も近い炭化タングステン粒子を基準に判断する。例えば、図2における点Pは、炭化タングステン粒子WC1を基準にすると領域R2に該当するが、炭化タングステン粒子WC3を基準にすると領域R1に該当する。点Pに最も近いのは炭化タングステン粒子WC3であるので、点Pは領域R1に含まれると判断できる。また、点Qは、炭化タングステン粒子WC1、WC2及びWC3のいずれを基準にしても領域R2に該当すると判断できる。 Whether the binder phase is divided into the region R1 or the region R2 is determined based on the nearest tungsten carbide grain among the plurality of tungsten carbide grains surrounded by the binder phase. For example, the point P in FIG. 2 corresponds to the region R2 with respect to the tungsten carbide grain WC1, but corresponds to the region R1 with respect to the tungsten carbide grain WC3. Since the tungsten carbide grain WC3 is closest to the point P, it can be determined that the point P is included in the region R1. Moreover, it can be determined that the point Q corresponds to the region R2 regardless of which of the tungsten carbide grains WC1, WC2, and WC3 is used as a reference.
 上記領域R1及び上記領域R2は、以下の方法で求められる。まず、上記超硬合金の任意の表面又は任意の断面を、STEMを用いて低倍率で観察する。STEMの倍率は、例えば20000倍である。ここで、上記断面は、上記超硬合金の任意の位置を切断して、切断面に上述の鏡面加工を施すことで形成できる。低倍率の観察において、第一硬質相(炭化タングステン粒子)、並びに、結合相の領域R1及び領域R2のすべてが含まれる視野を選定する。選定した視野の1つに着目し、高倍率(例えば、2000000倍)で観察する(例えば、図3)。次に、観察したSTEM像に基づいて第一硬質相と結合相との界面を特定する。STEM像の環状暗視野像(ADF像)において高密度のWCからなる第一硬質相は白く観察される。第一硬質相に比べ低密度の結合相は黒く観察される。そのため、第一硬質相と結合相との界面は、明確に特定が可能であると本発明者らは考えている。さらに、特定した界面に基づいて、仮想線Aを設定する。そして、上記界面及び上記仮想線Aに基づいて、結合相を領域R1及び領域R2に区分する。 The region R1 and the region R2 are obtained by the following method. First, any surface or any cross section of the cemented carbide is observed at low magnification using STEM. The magnification of STEM is, for example, 20000 times. Here, the cross section can be formed by cutting the cemented carbide at an arbitrary position and subjecting the cut surface to the mirror finish described above. In observation at low magnification, a field of view that includes all of the first hard phase (tungsten carbide particles) and the binder phase region R1 and region R2 is selected. One of the selected fields of view is focused on and observed at a high magnification (eg, 2,000,000 times) (eg, FIG. 3). Next, the interface between the first hard phase and the binder phase is specified based on the observed STEM image. In the annular dark field image (ADF image) of the STEM image, the first hard phase composed of high-density WC is observed white. The binder phase, which has a lower density than the first hard phase, appears black. Therefore, the present inventors believe that the interface between the first hard phase and the binder phase can be clearly identified. Furthermore, a virtual line A is set based on the specified interface. Based on the interface and the imaginary line A, the binding phase is divided into regions R1 and R2.
 (金属元素Mの原子濃度)
 本実施形態において、上記金属元素Mの原子濃度は上記領域R1において最大である。上記金属元素Mの原子濃度は、以下のようにして求めることができる。まず、上述したSTEMによる超硬合金の断面観察で第一硬質相(炭化タングステン粒子)、並びに、結合相の領域R1及び領域R2のすべてが含まれる視野(例えば、図3)を選定する。このとき、上記領域R2は、上記領域R1を介して上記第一硬質相と隣接している。次に選定した視野について、界面S及び仮想線Aと交差する方向に沿って、STEMに付帯するエネルギー分散型X線分光分析(EDS)装置を用いて線分析を行う。上述の「界面S及び仮想線Aと交差する方向」は、更に界面Sに対して垂直となる方向であることが好ましい。
(Atomic concentration of metal element M)
In this embodiment, the atomic concentration of the metal element M is maximum in the region R1. The atomic concentration of the metal element M can be obtained as follows. First, a field of view (for example, FIG. 3) that includes all of the first hard phase (tungsten carbide grains) and the binder phase regions R1 and R2 is selected by observing the cross section of the cemented carbide by STEM as described above. At this time, the region R2 is adjacent to the first hard phase via the region R1. Next, the selected field of view is subjected to line analysis along the direction intersecting the interface S and the imaginary line A using an energy dispersive X-ray spectroscopy (EDS) device attached to the STEM. The "direction intersecting the interface S and the virtual line A" mentioned above is preferably a direction perpendicular to the interface S.
 図4は、本実施形態に係る超硬合金における線分析の結果を示すグラフの一例である。横軸は線分析を行うにあたり便宜上設定した原点(測定開始点)からの距離(nm)を表している。縦軸は、ニッケル等の原子濃度(wt%)の定量値を表している。このグラフに基づいて、上記金属元素Mの原子濃度が上記領域R1において最大であるか否かを判定する。上記金属元素Mが複数の金属元素を含む場合は、それぞれの金属元素の原子濃度の合計が、上記領域R1において最大であるか否かを判定する。なお、上述の判定を行うにあたっては、一見して異常値と思われる点は考慮しないことにする。このような判定を少なくとも5視野について行い、各視野において、上記金属元素Mの原子濃度が上記領域R1において最大であれば、上記超硬合金は上記金属元素Mの原子濃度が上記領域R1において最大であるとみなす。 FIG. 4 is an example of a graph showing the results of line analysis of the cemented carbide according to this embodiment. The horizontal axis represents the distance (nm) from the origin (measurement starting point) set for convenience in line analysis. The vertical axis represents the quantitative value of the atomic concentration (wt%) of nickel or the like. Based on this graph, it is determined whether or not the atomic concentration of the metal element M is maximum in the region R1. When the metal element M contains a plurality of metal elements, it is determined whether or not the total atomic concentration of each metal element is the maximum in the region R1. It should be noted that in performing the above determination, points that seem to be abnormal values at first glance are not taken into consideration. Such determination is performed for at least five fields of view, and if the atomic concentration of the metal element M is maximum in the region R1 in each field of view, the cemented carbide has the maximum atomic concentration of the metal element M in the region R1. be considered to be
 本実施形態の一側面において、上記領域R1における、ニッケル及び上記金属元素Mの合計に対する上記金属元素Mの原子濃度の最大値(wt%)は、40wt%以上80wt%以下であることが好ましく、55wt%以上75wt%以下であることがより好ましい。当該金属元素Mの原子濃度の最大値(wt%)は、上述した線分析の結果に基づいて求めることが可能である。このとき、上述の判定を行う際に用いた各視野において、当該金属元素Mの原子濃度の最大値をまず求め、複数の視野において求められた値の平均値を当該金属元素Mの原子濃度の最大値(wt%)とする。 In one aspect of the present embodiment, the maximum atomic concentration (wt%) of the metal element M with respect to the total of nickel and the metal element M in the region R1 is preferably 40 wt% or more and 80 wt% or less, It is more preferably 55 wt % or more and 75 wt % or less. The maximum value (wt%) of the atomic concentration of the metal element M can be obtained based on the results of the line analysis described above. At this time, the maximum value of the atomic concentration of the metal element M is first obtained in each field of view used when performing the above determination, and the average value of the values obtained in a plurality of fields of view is the atomic concentration of the metal element M. The maximum value (wt%).
 <第二硬質相>
 本実施形態に係る超硬合金は、上記第一硬質相とは組成が異なる第二硬質相を更に有していてもよい。第二硬質相は、「タングステンを除く周期表4族元素、5族元素及び6族元素からなる群より選択される一種以上の金属元素」と、「炭素(C)、窒素(N)、酸素(O)及び硼素(B)からなる群より選択される一種以上の非金属元素」とを含む化合物(複合化合物)からなることが好ましい。周期表4族元素としては、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)等が挙げられる。周期表5族元素としては、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)等が挙げられる。周期表6族元素としては、クロム(Cr)、モリブデン(Mo)等が挙げられる。化合物とは、主として、上述の金属元素の炭化物、窒化物、炭窒化物、酸化物、硼化物等である。
<Second hard phase>
The cemented carbide according to the present embodiment may further have a second hard phase having a composition different from that of the first hard phase. The second hard phase includes "one or more metal elements selected from the group consisting of Group 4 elements, Group 5 elements and Group 6 elements of the periodic table excluding tungsten" and "carbon (C), nitrogen (N), oxygen (O) and one or more nonmetallic elements selected from the group consisting of boron (B)" (composite compound). Examples of Group 4 elements of the periodic table include titanium (Ti), zirconium (Zr), hafnium (Hf), and the like. Vanadium (V), niobium (Nb), tantalum (Ta), etc. are mentioned as a periodic table V group element. Chromium (Cr), molybdenum (Mo), etc. are mentioned as a periodic table 6-group element. Compounds are mainly carbides, nitrides, carbonitrides, oxides, borides, etc. of the above metal elements.
 上記第二硬質相は上述の化合物の粒子からなっていてもよい。当該粒子の平均粒径は、0.05μm以上2μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましい。 The second hard phase may consist of particles of the above compound. The average particle size of the particles is preferably 0.05 μm or more and 2 μm or less, more preferably 0.1 μm or more and 0.5 μm or less.
 第二硬質相は、上記化合物の一種以上からなる化合物相又は固溶体相である。ここで「化合物相又は固溶体相」とは、かかる相を構成する化合物が固溶体を形成していてもよいし、固溶体を形成せず個々の化合物として存在していてもよいことを示す。 The second hard phase is a compound phase or solid solution phase composed of one or more of the above compounds. Here, the term "compound phase or solid solution phase" indicates that the compounds that constitute such a phase may form a solid solution, or may exist as individual compounds without forming a solid solution.
 具体的な第二硬質相としては、例えば、TaC、NbC、TiC、HfC、MoC、及びZrC等が挙げられる。 Specific examples of the second hard phase include TaC, NbC, TiC, HfC, Mo2C, ZrC, and the like.
 上記超硬合金が第二硬質相を更に有する場合、上述の第一硬質相の面積比率は、第一硬質相(炭化タングステン粒子)と第二硬質相とを合わせた面積比率として設定される。すなわち、上記超硬合金が第二硬質相を更に有する場合、上記超硬合金の任意の表面又は任意の断面に対する、上記第一硬質相の面積比率及び第二硬質相の面積比率の和は、85%以上96%以下であることが好ましい。この場合、上記第一硬質相の面積比率、上記第二硬質相の面積比率及び上記結合相の面積比率の和は100%である。第二硬質相の面積比率は、第一硬質相の面積比率の測定と同様の方法で算出することが可能である。すなわち、所定の視野中の「第二硬質相」を特定し、その「第二硬質相」の面積の和を算出する。次に、算出した第二硬質相の面積の和を所定の視野の面積で割ることにより、第二硬質相の面積比率を算出することが可能である。また、同一の超硬合金において、複数の視野(例えば、5視野以上)で上記画像解析を行い、その平均値を第二硬質相の面積比率とすることが好ましい。 When the cemented carbide further has a second hard phase, the area ratio of the first hard phase is set as the area ratio of the first hard phase (tungsten carbide particles) and the second hard phase combined. That is, when the cemented carbide further has a second hard phase, the sum of the area ratio of the first hard phase and the area ratio of the second hard phase with respect to any surface or cross section of the cemented carbide is It is preferably 85% or more and 96% or less. In this case, the sum of the area ratio of the first hard phase, the area ratio of the second hard phase and the area ratio of the binder phase is 100%. The area ratio of the second hard phase can be calculated by the same method as the measurement of the area ratio of the first hard phase. That is, the "second hard phase" is specified in a predetermined field of view, and the sum of the areas of the "second hard phase" is calculated. Next, it is possible to calculate the area ratio of the second hard phase by dividing the calculated sum of the areas of the second hard phase by the area of the predetermined field of view. Moreover, in the same cemented carbide, it is preferable to perform the above image analysis in a plurality of fields of view (for example, 5 or more fields of view) and take the average value as the area ratio of the second hard phase.
 超硬合金の任意の表面又は任意の断面に対する、第二硬質相の面積比率は、1%以上10%以下であることが好ましく、2%以上5%以下であることがより好ましい。第二硬質相の面積比率をこの範囲に収めることにより、超硬合金の硬度を維持しつつ、熱的又は機械的衝撃による亀裂の発生を抑制し且つ耐酸化性及び被削材との耐反応性を向上することができる。なお、第二硬質相の面積比率が上限値より大きくなった場合、超硬合金の強度が下がり、靭性が低下する傾向がある。 The area ratio of the second hard phase to any surface or any cross section of the cemented carbide is preferably 1% or more and 10% or less, more preferably 2% or more and 5% or less. By keeping the area ratio of the second hard phase within this range, while maintaining the hardness of the cemented carbide, cracking due to thermal or mechanical impact is suppressed, oxidation resistance and reaction resistance with the work material are improved. can improve sexuality. In addition, when the area ratio of the second hard phase is larger than the upper limit, the strength of the cemented carbide tends to decrease and the toughness tends to decrease.
 ≪超硬合金の製造方法≫
 本実施形態の超硬合金は、代表的には、原料粉末の準備工程⇒混合工程⇒成形工程⇒脱脂工程⇒焼結工程⇒再析出促進工程⇒冷却工程という工程を経て製造することができる。以下、各工程について説明する。
<<Manufacturing method of cemented carbide>>
The cemented carbide of the present embodiment can be typically manufactured through the following steps: raw material powder preparation step mixing step molding step degreasing step sintering step reprecipitation promotion step cooling step. Each step will be described below.
 <準備工程>
 準備工程は、超硬合金を構成する材料の全ての原料粉末を準備する工程である。原料粉末としては、例えば、第一硬質相となるWC粒子、結合相となるニッケルを含む粒子及び金属元素Mを含む粒子が挙げられる。また、必要に応じて第二硬質相となる化合物構成粉末、粒成長抑制剤等を準備してもよい。
<Preparation process>
The preparation step is a step of preparing all the raw material powders of the materials that constitute the cemented carbide. Examples of the raw material powder include WC particles as the first hard phase, particles containing nickel as the binder phase, and particles containing the metal element M. In addition, if necessary, a compound-constituting powder, a grain growth inhibitor, and the like, which will be the second hard phase, may be prepared.
 (WC粒子)
 原料としての上記WC粒子は、特に制限はなく、超硬合金の製造に通常用いられるWC粒子を用いればよい。上記WC粒子は、市販品を用いてもよい。市販されているWC粒子としては、例えばアライドマテリアル社製の「均粒タングステンカーバイド粉」シリーズ等が挙げられる。
(WC particles)
The WC grains used as the raw material are not particularly limited, and WC grains commonly used in the production of cemented carbide may be used. Commercially available products may be used as the WC particles. Commercially available WC particles include, for example, the “Uniform Grain Tungsten Carbide Powder” series manufactured by A.L.M.T.
 原料としての上記WC粒子の平均粒径は、0.3μm以上10μm以下であることが好ましく、0.3μm以上5μm以下であることがより好ましい。原料としての上記WC粒子の平均粒径は、0.3μm以上であることで、超硬合金にした際、靱性が高くなる傾向がある。そのため上記超硬合金を基材として含む切削工具は、機械的及び熱的な衝撃によるチッピング及び欠損を抑制できる。また、上記切削工具は耐亀裂伝播性が向上することから、亀裂の伝播が抑制され、チッピング及び欠損を抑制できる。一方、上記平均粒径は、10μm以下であることで、超硬合金にした際、硬度が高くなる傾向がある。そのため上記超硬合金を基材として含む切削工具は、切削時の変形が抑制され、摩耗及び欠損を抑制できる。 The average particle size of the WC particles used as the raw material is preferably 0.3 μm or more and 10 μm or less, more preferably 0.3 μm or more and 5 μm or less. When the average grain size of the WC grains used as the raw material is 0.3 μm or more, the toughness tends to be high when made into a cemented carbide. Therefore, a cutting tool containing the cemented carbide as a base material can suppress chipping and breakage due to mechanical and thermal impacts. In addition, since the cutting tool has improved resistance to crack propagation, propagation of cracks is suppressed, and chipping and breakage can be suppressed. On the other hand, when the average grain size is 10 μm or less, the cemented carbide tends to have a high hardness. Therefore, a cutting tool containing the above cemented carbide as a base material can suppress deformation during cutting, and can suppress wear and chipping.
 (ニッケルを含む粒子)
 原料としての上記ニッケルを含む粒子(以下、「ニッケル含有粒子」という場合がある。)は、ニッケル金属からなる粒子であることが好ましい。上記ニッケル含有粒子は、市販品を用いてもよい。
(Particles containing nickel)
The particles containing nickel as a raw material (hereinafter sometimes referred to as "nickel-containing particles") are preferably particles made of nickel metal. Commercially available products may be used as the nickel-containing particles.
 上記ニッケル含有粒子の平均粒径は、0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましい。 The average particle diameter of the nickel-containing particles is preferably 0.5 μm or more and 10 μm or less, more preferably 0.5 μm or more and 5 μm or less.
 (金属元素Mを含む粒子)
 原料としての上記金属元素Mを含む粒子は、モリブデン金属からなる粒子、クロム金属からなる粒子、バナジウム金属からなる粒子、又は鉄金属からなる粒子であることが好ましい。上記金属元素Mを含む粒子は、市販品を用いてもよい。
(Particles containing metal element M)
The particles containing the metal element M as the raw material are preferably molybdenum metal particles, chromium metal particles, vanadium metal particles, or iron metal particles. Commercially available particles may be used as the particles containing the metal element M.
 上記金属元素Mを含む粒子の平均粒径は、0.5μm以上10μm以下であることが好ましく、0.5μm以上5μm以下であることがより好ましい。 The average particle diameter of the particles containing the metal element M is preferably 0.5 μm or more and 10 μm or less, more preferably 0.5 μm or more and 5 μm or less.
 (化合物構成粉末)
 化合物構成粉末は、特に制限無く、超硬合金の製造に第二硬質相の原料として通常用いられる化合物構成粉末を用いればよい。そのような化合物構成粉末としては、例えば、TaC、TiC、NbC、Cr、ZrC、TiN等が挙げられる。
(Compound constituent powder)
The compound-constituting powder is not particularly limited, and a compound-constituting powder that is usually used as a raw material for the second hard phase in the production of cemented carbide may be used. Examples of such compound constituent powders include TaC, TiC, NbC, Cr 3 C 2 , ZrC and TiN.
 超硬合金中に粒度が均質な第二硬質相を均一的に分散する条件の一つとして、化合物構成粉末は、微粒、かつ粒度が均質な粉末を用いることが挙げられる。そうすることで、後述する焼結工程において、第二硬質相を微細かつ分散化できる。化合物構成粉末の平均粒径は、例えば、0.5μm以上3μm以下の範囲とすることが挙げられる。原料に用いる化合物構成粉末の平均粒径が小さい程、最終的に得られる超硬合金中の第二硬質相の平均粒径が小さくなる。原料に用いる化合物構成粉末の平均粒径が大きい程、最終的に得られる超硬合金中の第二硬質相の平均粒径が大きくなる。化合物構成粉末は、市販品を粉砕/分級することで、微粒かつ粒度が均質なものが得られる。 One of the conditions for uniformly dispersing the second hard phase with a uniform grain size in the cemented carbide is to use a powder with fine grains and a uniform grain size as the compound-constituting powder. By doing so, the second hard phase can be made fine and dispersed in the sintering step, which will be described later. The average particle size of the compound-constituting powder is, for example, in the range of 0.5 μm or more and 3 μm or less. The smaller the average particle size of the compound-constituting powder used as the raw material, the smaller the average particle size of the second hard phase in the finally obtained cemented carbide. The larger the average particle size of the compound-constituting powder used as the raw material, the larger the average particle size of the second hard phase in the finally obtained cemented carbide. The compound-constituting powder can be obtained by pulverizing/classifying a commercially available product so as to obtain a fine particle having a uniform particle size.
 <混合工程>
 混合工程は、準備工程で準備した各原料粉末を混合する工程である。混合工程により、各原料粉末が混合された混合粉末が得られる。なお、混合する際の原料粉末(例えば、WC粒子、ニッケルを含む粒子、金属元素Mを含む粒子等)の質量比率は、上述した第一硬質相の面積比率、第二硬質相の面積比率及び結合相の面積比率に対応する比率となっている。混合工程に用いる装置には公知の装置を用いることができる。例えば、アトライター、転動ボールミル、カルマンミキサ及びビーズミル等を用いることができる。アトライターを用いる場合の混合条件の一例は、回転数:100m/min以上400m/min以下、混合時間:1.5時間以上25時間以下とすることが挙げられる。アトライターによる混合の条件は、湿式混合であっても乾式混合であってもよい。また、混合は、水、エタノール、アセトン、イソプロピルアルコール等の溶媒中で行ってもよい。混合は、ポリエチレングリコール、パラフィンワックス等のバインダーと共に行ってもよい。
<Mixing process>
The mixing step is a step of mixing each raw material powder prepared in the preparation step. A mixed powder in which each raw material powder is mixed is obtained by the mixing step. The mass ratio of the raw material powders (for example, WC particles, nickel-containing particles, metal element M-containing particles, etc.) when mixed is the area ratio of the first hard phase, the area ratio of the second hard phase, and the The ratio corresponds to the area ratio of the bonding phase. A known device can be used for the device used in the mixing step. For example, attritors, rolling ball mills, Karman mixers, bead mills and the like can be used. An example of mixing conditions when using an attritor is rotation speed: 100 m/min or more and 400 m/min or less, and mixing time: 1.5 hours or more and 25 hours or less. The mixing conditions for the attritor may be either wet mixing or dry mixing. Mixing may also be performed in a solvent such as water, ethanol, acetone, or isopropyl alcohol. Mixing may be performed with a binder such as polyethylene glycol, paraffin wax, and the like.
 混合工程の後、必要に応じて混合粉末を造粒してもよい。混合粉末を造粒することで、後述する成形工程の際にダイ又は金型へ混合粉末を充填し易い。造粒には、公知の造粒方法が適用でき、例えば、スプレードライヤー等の市販の造粒機を用いることができる。 After the mixing process, the mixed powder may be granulated as needed. By granulating the mixed powder, it is easy to fill the mixed powder into a die or mold during the molding process described below. A known granulation method can be applied for granulation, and for example, a commercially available granulator such as a spray dryer can be used.
 <成形工程>
 成形工程は、混合工程で得られた混合粉末を所定の形状に成形して、成形体を得る工程である。成形工程における成形方法及び成形条件は、一般的な方法及び条件を採用すればよく、特に問わない。所定の形状としては、例えば、切削工具形状(例えば、刃先交換型切削チップの形状:CNMG120408等)とすることが挙げられる。
<Molding process>
The molding step is a step of molding the mixed powder obtained in the mixing step into a predetermined shape to obtain a compact. General methods and conditions may be adopted for the molding method and molding conditions in the molding step, and are not particularly limited. Examples of the predetermined shape include cutting tool shapes (for example, the shape of indexable cutting inserts: CNMG120408, etc.).
 <脱脂工程>
 脱脂工程は、成形工程で得られた成形体におけるのバインダー(例えば、パラフィンワックス等)を除去する工程であり、以下の条件で熱処理を行う工程である。
<Degreasing process>
The degreasing step is a step of removing the binder (for example, paraffin wax, etc.) in the molded body obtained in the molding step, and is a step of performing heat treatment under the following conditions.
 脱脂工程における処理時の温度は、300℃以上1000℃以下であることが好ましく、400℃以上800℃以下であることがより好ましい。 The temperature during treatment in the degreasing step is preferably 300°C or higher and 1000°C or lower, more preferably 400°C or higher and 800°C or lower.
 脱脂工程における処理時の圧力は、110kPa以上500kPa以下であることが好ましく、200kPa以上400kPa以下であることがより好ましい。 The pressure during treatment in the degreasing step is preferably 110 kPa or more and 500 kPa or less, more preferably 200 kPa or more and 400 kPa or less.
 脱脂工程における処理の時間は、30分以上120分以下であることが好ましく、60分以上90分以下であることがより好ましい。 The treatment time in the degreasing step is preferably 30 minutes or more and 120 minutes or less, more preferably 60 minutes or more and 90 minutes or less.
 脱脂工程における雰囲気は、特に限定されず、Nガス雰囲気又はAr等の不活性ガス雰囲気とすることが挙げられる。 The atmosphere in the degreasing step is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
 <焼結工程>
 焼結工程は、脱脂工程を経て得られた成形体を焼結して、焼結体を得る工程である。焼結温度(T1)は、1300℃以上1600℃以下であることが好ましく、1350℃以上1500℃以下であることがより好ましい。
<Sintering process>
The sintering step is a step of sintering the molded body obtained through the degreasing step to obtain a sintered body. The sintering temperature (T1) is preferably 1300° C. or higher and 1600° C. or lower, more preferably 1350° C. or higher and 1500° C. or lower.
 焼結時間は、30分以上120分以下であることが好ましく、50分以上90分以下であることがより好ましい。 The sintering time is preferably 30 minutes or more and 120 minutes or less, more preferably 50 minutes or more and 90 minutes or less.
 焼結時の雰囲気は、特に限定されず、Nガス雰囲気又はAr等の不活性ガス雰囲気とすることが挙げられる。 The atmosphere during sintering is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
 また、焼結時の真空度(圧力)は、好ましくは10kPa以下、より好ましくは5kPa以下、更に好ましくは3kPa以下とすることが挙げられる。下限は特に制限されないが、例えば、0.5kPa以上にすることが挙げられる。焼結時の圧力を0.5kPa以上とすることで、焼結時に上記成形体の表面からNi等の揮発を抑制することができる。 Also, the degree of vacuum (pressure) during sintering is preferably 10 kPa or less, more preferably 5 kPa or less, and even more preferably 3 kPa or less. Although the lower limit is not particularly limited, it may be, for example, 0.5 kPa or more. By setting the pressure during sintering to 0.5 kPa or more, it is possible to suppress volatilization of Ni and the like from the surface of the compact during sintering.
 なお、焼結工程は、焼結時に加圧できる焼結HIP(シンターヒップ)処理を行ってもよい。HIP条件は、例えば、Nガス雰囲気、Ar等の不活性ガス雰囲気中、温度:1300℃以上1350℃以下、圧力:5MPa以上200MPa以下とすることが挙げられる。 In addition, the sintering process may perform a sintering HIP (sintering HIP) process which can pressurize at the time of sintering. HIP conditions include, for example, N 2 gas atmosphere, inert gas atmosphere such as Ar, temperature: 1300° C. or higher and 1350° C. or lower, pressure: 5 MPa or higher and 200 MPa or lower.
 <再析出促進工程>
 再析出促進工程は、焼結完了後の焼結体に対して所定の温度で加熱する工程である(図5参照)。再析出促進工程を行うことで、硬質相(第一硬質相、第二硬質相)に固溶した上記金属元素Mが当該硬質相の表面に再析出すると本発明者らは考えている。
<Reprecipitation promotion step>
The redeposition promoting step is a step of heating the sintered body after sintering is completed at a predetermined temperature (see FIG. 5). The present inventors believe that the metal element M dissolved in the hard phase (first hard phase, second hard phase) is reprecipitated on the surface of the hard phase by performing the redeposition promoting step.
 再析出促進工程における処理温度(T2)は、400℃以上1230℃以下であることが好ましく、400℃以上1100℃以下であることがより好ましく、500℃以上900℃以下であることが更に好ましい。 The treatment temperature (T2) in the reprecipitation promotion step is preferably 400°C or higher and 1230°C or lower, more preferably 400°C or higher and 1100°C or lower, and even more preferably 500°C or higher and 900°C or lower.
 再析出促進工程における焼結温度からの降温速度は、10℃/分以上20℃/分以下であることが好ましく、12℃/分以上17℃/分以下であることがより好ましい。 The temperature drop rate from the sintering temperature in the reprecipitation promoting step is preferably 10°C/min or more and 20°C/min or less, more preferably 12°C/min or more and 17°C/min or less.
 再析出促進工程における加熱処理の保持時間は、30分以上120分以下であることが好ましく、50分以上90分以下であることがより好ましい。 The holding time of the heat treatment in the reprecipitation promotion step is preferably 30 minutes or more and 120 minutes or less, more preferably 50 minutes or more and 90 minutes or less.
 再析出促進工程における雰囲気は、特に限定されず、Nガス雰囲気又はAr等の不活性ガス雰囲気とすることが挙げられる。 The atmosphere in the re-deposition promoting step is not particularly limited, and may be an N2 gas atmosphere or an inert gas atmosphere such as Ar.
 再析出促進工程における圧力は、100kPa以上490kPa以下であることが好ましく、190kPa以上390kPa以下であることがより好ましい。 The pressure in the reprecipitation promotion step is preferably 100 kPa or more and 490 kPa or less, more preferably 190 kPa or more and 390 kPa or less.
 <冷却工程>
 冷却工程は、再析出促進工程後の焼結体を常温まで冷却する工程である。上記冷却工程は、特に制限されない。冷却速度は、例えば、2℃/分以上の降温速度で冷却することが挙げられる。ここで、「降温速度が2℃/分である」とは、毎分2℃の速度で温度が低下することを意味する。冷却時の雰囲気は、特に限定されず、Nガス雰囲気又はAr等の不活性ガス雰囲気とすることが挙げられる。冷却時の圧力は、特に限定されず、加圧してもよいし減圧してもよい。上記加圧のときの圧力は、例えば、400kPa以上500kPa以下とすることが挙げられる。また、上記減圧のときの圧力は、例えば、100kPa以下とし、好ましくは10kPa以上50kPa以下とすることが挙げられる。本実施形態の一側面において、上記冷却工程は、Arガス雰囲気中で、上記焼結体を常温にまで冷却することが挙げられる。
<Cooling process>
The cooling step is a step of cooling the sintered body after the reprecipitation promoting step to room temperature. The cooling step is not particularly limited. The cooling rate is, for example, cooling at a temperature drop rate of 2° C./min or more. Here, "the temperature drop rate is 2°C/min" means that the temperature drops at a rate of 2°C/min. The atmosphere at the time of cooling is not particularly limited, and may be an N 2 gas atmosphere or an inert gas atmosphere such as Ar. The pressure during cooling is not particularly limited, and may be increased or reduced. The pressure at the time of pressurization is, for example, 400 kPa or more and 500 kPa or less. Further, the pressure during the decompression is, for example, 100 kPa or less, preferably 10 kPa or more and 50 kPa or less. In one aspect of the present embodiment, the cooling step includes cooling the sintered body to room temperature in an Ar gas atmosphere.
 ≪切削工具、耐摩工具及び研削工具≫
 本実施形態の超硬合金は、前述のように優れた靱性及び硬度を有するため、切削工具、耐摩工具及び研削工具の基材として利用できる。すなわち、本実施形態の切削工具は、上記超硬合金を基材として含む。また、本実施形態の耐摩工具及び研削工具は、上記超硬合金を基材として含む。
≪Cutting tools, wear-resistant tools and grinding tools≫
Since the cemented carbide of this embodiment has excellent toughness and hardness as described above, it can be used as a base material for cutting tools, wear-resistant tools and grinding tools. That is, the cutting tool of this embodiment contains the cemented carbide as a base material. Further, the wear-resistant tool and grinding tool of the present embodiment contain the cemented carbide as a base material.
 本実施形態の超硬合金は、従来公知の切削工具、耐摩工具及び研削工具に幅広く適用可能である。こうした工具としては次のようなものを例示できる。切削工具としては、例えば、切削バイト、ドリル、エンドミル、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切り工具、リーマ又はタップ等を例示できる。また耐摩工具としては、例えば、ダイス、スクライバー、スクライビングホイール又はドレッサー等を例示できる。さらに研削工具としては、例えば研削砥石等を例示できる。 The cemented carbide of this embodiment can be widely applied to conventionally known cutting tools, wear-resistant tools and grinding tools. Examples of such tools include the following. Examples of cutting tools include cutting tools, drills, end mills, indexable cutting inserts for milling, indexable cutting inserts for turning, metal saws, gear cutting tools, reamers and taps. Examples of wear-resistant tools include dies, scribers, scribing wheels, and dressers. Furthermore, as a grinding tool, for example, a grinding wheel can be exemplified.
 本実施形態の超硬合金は、これらの工具の全体を構成していてもよい。上記超硬合金は、これらの工具の一部を構成していてもよい。ここで「一部を構成する」とは、例えば切削工具の場合に、任意の基材の所定位置に本実施形態の超硬合金をロウ付けして刃先部とする態様等を示している。 The cemented carbide of this embodiment may constitute the entirety of these tools. The cemented carbide may form part of these tools. Here, "constituting a part" indicates, for example, in the case of a cutting tool, a cutting edge portion formed by brazing the cemented carbide of the present embodiment at a predetermined position of an arbitrary base material.
 <被膜>
 本実施形態に係る切削工具は、上記基材上に設けられている被膜を更に備えてもよい。本実施形態に係る耐摩工具及び研削工具は、上記基材上に設けられている被膜を更に備えてもよい。上記被膜の組成は、周期表4族の金属元素、周期表5族の金属元素、周期表6族の金属元素、アルミニウム(Al)及びシリコン(Si)からなる群より選択される一種以上の金属元素と、窒素(N)、酸素(O)、炭素(C)及び硼素(B)からなる群より選択される一種以上の非金属元素との化合物が挙げられる。当該化合物としては、例えば、TiCN、Al、TiAlN、TiN、TiC、AlCrN等が挙げられる。本実施形態において、上記被膜は金属単体であってもよい。その他、立方晶窒化硼素(cBN)、ダイヤモンドライクカーボン等も、被膜の組成として好適である。このような被膜は、化学的蒸着(CVD)法、物理的蒸着(PVD)法等の気相法により形成することができる。被膜がCVD法により形成されていると、基材との密着性に優れる被膜が得られ易い。CVD法としては、例えば、熱CVD法等が挙げられる。被膜がPVD法により形成されていると、圧縮残留応力が付与され、切削工具等の靱性を高め易い。
<Coating>
The cutting tool according to this embodiment may further include a coating provided on the substrate. The wear-resistant tool and grinding tool according to this embodiment may further include a coating provided on the substrate. The composition of the coating is one or more metals selected from the group consisting of metal elements of Group 4 of the periodic table, metal elements of Group 5 of the periodic table, metal elements of Group 6 of the periodic table, aluminum (Al), and silicon (Si). Examples include compounds of the element with one or more nonmetallic elements selected from the group consisting of nitrogen (N), oxygen (O), carbon (C) and boron (B). Examples of the compound include TiCN, Al 2 O 3 , TiAlN, TiN, TiC, AlCrN and the like. In this embodiment, the film may be a single metal. In addition, cubic boron nitride (cBN), diamond-like carbon, and the like are also suitable as the coating composition. Such coatings can be formed by vapor phase methods such as chemical vapor deposition (CVD) methods and physical vapor deposition (PVD) methods. When the coating is formed by the CVD method, it is easy to obtain a coating with excellent adhesion to the substrate. The CVD method includes, for example, a thermal CVD method. When the film is formed by the PVD method, compressive residual stress is imparted, and the toughness of cutting tools and the like is likely to be increased.
 本実施形態に係る切削工具における被膜は、基材における刃先となる部分とその近傍に設けられていることが好ましい。上記被膜は、基材の表面全体に設けられていてもよい。また、被膜は、単層でも多層でもよい。被膜の厚みは、1μm以上20μm以下であってもよいし、1.5μm以上15μm以下であってもよい。 The coating in the cutting tool according to the present embodiment is preferably provided on the cutting edge portion of the base material and its vicinity. The coating may be provided on the entire surface of the substrate. Also, the coating may be a single layer or multiple layers. The thickness of the coating may be 1 μm or more and 20 μm or less, or may be 1.5 μm or more and 15 μm or less.
 以下、実施例を挙げて本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these.
 ≪超硬合金の作製≫
 <原料粉末の準備:準備工程>
 原料粉末として、表1に示す組成の粉末を準備した。表1における第一硬質相、第二硬質相又は結合相として用いられた原料粉末はそれぞれ以下の平均粒径の粉末を用いた。
各原料粉末の平均粒径
WC :平均粒径4μm
TaC:平均粒径2μm
NbC:平均粒径2μm
TiC:平均粒径2μm
Co :平均粒径3μm
Ni :平均粒径3μm
Mo :平均粒径3μm
Cr :平均粒径3μm
V  :平均粒径3μm
Fe :平均粒径3μm
≪Fabrication of Cemented Carbide≫
<Preparation of raw material powder: preparation process>
Powders having the compositions shown in Table 1 were prepared as raw material powders. Raw material powders used as the first hard phase, the second hard phase, or the binder phase in Table 1 had the following average particle sizes.
Average particle size WC of each raw material powder: Average particle size 4 μm
TaC: average particle size 2 μm
NbC: average particle size 2 μm
TiC: average particle size 2 μm
Co: average particle size 3 μm
Ni: average particle size 3 μm
Mo: average particle size 3 μm
Cr: average particle size 3 μm
V: average particle size 3 μm
Fe: average particle size 3 μm
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <原料粉末の混合:混合工程>
 準備した各原料粉末を表1に記載の配合割合で加えて、アトライターを用いて混合し、混合粉末を作製した。混合条件を以下に示す。混合後、得られたスラリーを大気中で乾燥させ混合粉末を得た。
アトライターの混合条件
ボール     :超硬合金製、直径3.5mm
分散媒     :エタノール
攪拌子の回転速度:100rpm
処理時間    :12時間
<Mixing of Raw Material Powders: Mixing Process>
Each of the prepared raw material powders was added at the mixing ratio shown in Table 1 and mixed using an attritor to prepare a mixed powder. Mixing conditions are shown below. After mixing, the resulting slurry was dried in the atmosphere to obtain a mixed powder.
Attritor mixing condition ball: Cemented carbide, diameter 3.5 mm
Dispersion medium: ethanol Rotational speed of stirrer: 100 rpm
Processing time: 12 hours
 <成形体の作製:成形工程>
 得られた混合粉末をプレス成形して、型番CNMG120408(住友電工ハードメタル株式会社製)(刃先交換型切削チップ)の形状の成形体を作製した。
<Production of molded body: molding process>
The mixed powder thus obtained was press-molded to produce a molded body having a model number CNMG120408 (manufactured by Sumitomo Electric Hardmetal Co., Ltd.) (indexable cutting tip).
 <成形体の脱脂:脱脂工程>
 得られた成形体を焼結炉に入れ、以下の条件で脱脂を行った。
処理時の温度 :500℃
処理時の圧力 :250kPa
処理の時間  :60分
処理時の雰囲気:Arガス
<Degreasing of Molded Body: Degreasing Process>
The compact thus obtained was placed in a sintering furnace and degreased under the following conditions.
Temperature during treatment: 500°C
Pressure during treatment: 250 kPa
Processing time: 60 minutes Atmosphere during processing: Ar gas
 <成形体の焼結:焼結工程>
 脱脂工程が終わった成形体を、Arガス雰囲気中(0.5kPa)、表2に記載の焼結プログラム、最高焼結温度(T1)で、60分間焼結した。
<Sintering compact: sintering process>
After the degreasing step, the compact was sintered for 60 minutes in an Ar gas atmosphere (0.5 kPa) under the sintering program shown in Table 2 under the maximum sintering temperature (T1).
 <成形体の再加熱:再析出促進工程>
 表2における焼結プログラム1(図5)に該当する試料は、焼結工程の後に、以下の条件で再加熱を行った。一方、表2における焼結プログラム2(図6)に該当する試料は、焼結工程の後に再析出促進工程を行わなかった。
再析出促進工程の条件
処理時の雰囲気   :Arガス
処理時の圧力    :250kPa
最高処理温度(T2):表2に記載の温度
T1からの降温速度      :15℃/分
加熱処理の保持時間 :60分
<Reheating of molded body: reprecipitation promotion step>
The samples corresponding to sintering program 1 (FIG. 5) in Table 2 were reheated under the following conditions after the sintering process. On the other hand, the samples corresponding to sintering program 2 (FIG. 6) in Table 2 were not subjected to the redeposition promotion step after the sintering step.
Atmosphere during condition treatment for re-deposition promotion step: Pressure during Ar gas treatment: 250 kPa
Maximum treatment temperature (T2): Temperature drop rate from temperature T1 listed in Table 2: 15°C/min Heat treatment retention time: 60 minutes
 <成形体の冷却:冷却工程>
 再析出促進工程の完了後、Arガス雰囲気中で常温にまで冷却した。このとき、2℃/分の降温速度で冷却した。以上より、試料No.1~13の超硬合金及び試料No.101~107の超硬合金を作製した。試料No.1~13の超硬合金は、実施例に対応する。試料No.101~103の超硬合金は、比較例に対応する。試料No.104~107の超硬合金は、参考例に対応する。
<Cooling of compact: cooling process>
After completion of the re-precipitation promotion step, it was cooled to room temperature in an Ar gas atmosphere. At this time, the temperature was cooled at a rate of temperature decrease of 2°C/min. From the above, sample no. 1 to 13 cemented carbide and sample no. Cemented carbides of 101 to 107 were produced. Sample no. Cemented carbides 1 to 13 correspond to the examples. Sample no. Cemented carbides 101-103 correspond to comparative examples. Sample no. Cemented carbides 104-107 correspond to reference examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ≪試料の観察≫
 <炭化タングステン粒子の平均粒径の算出>
 作製した試料No.1~13及び試料No.101~107の超硬合金を切断して切断面を鏡面加工した。その後、鏡面加工した切断面をアルゴンイオンビームによってイオンミリング加工し、これらの断面を顕微鏡用観察試料とした。
<<Observation of sample>>
<Calculation of Average Particle Size of Tungsten Carbide Particles>
Sample no. 1 to 13 and sample no. Cemented carbides No. 101 to 107 were cut and the cut surface was mirror-finished. Thereafter, the mirror-finished cut surfaces were subjected to ion milling using an argon ion beam, and these cross sections were used as microscopic observation samples.
 この観察試料の加工面を、走査型透過電子顕微鏡(STEM)(日本電子社製)により2000倍程度の倍率で撮影した。この撮影は、各試料に対して、上記加工面の外側及び上記加工面の中心のそれぞれを10視野ずつ行った。 The processed surface of this observation sample was photographed with a scanning transmission electron microscope (STEM) (manufactured by JEOL Ltd.) at a magnification of about 2000 times. For each sample, 10 fields of view were taken for each of the outer side of the processed surface and the center of the processed surface.
 各試料において、1視野につき、炭化タングステン粒子300個以上について、画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、個々の粒子の粒径(Heywood径)を求め、計10視野における焼結後の炭化タングステン粒子の平均粒径を算出した。その結果、焼結後の炭化タングステン粒子の平均粒径は、原料として用いたWC粒子の平均粒径にほぼ等しいことが分かった。 For each sample, for 300 or more tungsten carbide particles per field of view, image analysis type particle size distribution software ("Mac-View" manufactured by Mountech Co., Ltd.) is used to determine the particle size (Heywood diameter) of each particle. , the average particle size of the tungsten carbide particles after sintering in a total of 10 fields of view was calculated. As a result, it was found that the average particle size of the tungsten carbide particles after sintering was substantially equal to the average particle size of the WC particles used as the raw material.
 <第一硬質相、第二硬質相及び結合相それぞれの面積比率の算出>
 画像解析式粒度分布ソフトウェア(株式会社マウンテック社製「Mac-View」)を用いて、上記各試料の加工面における第一硬質相、第二硬質相及び結合相それぞれの面積比率を求めた。その結果、第一硬質相、第二硬質相及び結合相それぞれの面積比率は、第一硬質相、第二硬質相及び結合相それぞれに対応する原料粉末の配合割合(表1)に対応することが分かった。
<Calculation of Area Ratios of First Hard Phase, Second Hard Phase, and Bonding Phase>
Using image analysis type particle size distribution software ("Mac-View" manufactured by Mountech Co., Ltd.), the area ratios of the first hard phase, the second hard phase and the binder phase on the processed surface of each sample were determined. As a result, the area ratios of the first hard phase, the second hard phase, and the binder phase correspond to the mixing ratios of the raw material powders corresponding to the first hard phase, the second hard phase, and the binder phase (Table 1). I found out.
 <結合相の組成分析>
 上記各試料の加工面における結合相を滴定法によって分析して上記結合相の組成を求めた。その結果、結合相の組成は、表1に示される結合相の原料組成に対応することが分かった。
<Composition analysis of bonded phase>
The binder phase on the processed surface of each sample was analyzed by a titration method to determine the composition of the binder phase. As a result, it was found that the composition of the binder phase corresponds to the raw composition of the binder phase shown in Table 1.
 <結合相中の金属元素Mの原子濃度分布>
 まず、上記各試料の加工面を、STEM(日本電子社製)を用いて20000倍の倍率で観察した。このとき縦4μm×幅4μmの正方形を1視野とした。また1視野内に第一硬質相と結合相(領域R1及び領域R2)とが共に含まれるように視野を選択した(例えば、図3)。このときの倍率は2000000倍とした。選択した1視野において、第一硬質相と結合相との界面を特定した。さらに、特定した界面に基づいて、仮想線Aを設定した。ここで、仮想線Aは、界面から上記結合相の側に向かって5nm離れた地点を示す線である。そして、上記界面及び上記仮想線Aに基づいて、結合相を領域R1及び領域R2に区分した。
<Atomic concentration distribution of metal element M in binding phase>
First, the processed surface of each sample was observed at a magnification of 20,000 using STEM (manufactured by JEOL Ltd.). At this time, a square having a length of 4 μm and a width of 4 μm was defined as one visual field. Also, the field of view was selected so that both the first hard phase and the binder phase (region R1 and region R2) were included in one field of view (eg, FIG. 3). The magnification at this time was 2,000,000 times. In one selected field, the interface between the first hard phase and the binder phase was identified. Furthermore, a virtual line A was set based on the specified interface. Here, the imaginary line A is a line indicating a point 5 nm away from the interface toward the binding phase side. Based on the interface and the imaginary line A, the binder phase was divided into regions R1 and R2.
 次に、上述の第一硬質相、並びに、上述の結合相の領域R1及び領域R2の全てを通る方向(界面S及び仮想線Aと交差する方向)に沿って、エネルギー分散分光分析法(EDS法)を用いて線分析を行った。線分析には、日本電子社製のSTEMを用いた。得られた線分析の結果に基づいてグラフを作成した(例えば、図4)。当該グラフにおいて、横軸は線分析を行うにあたり便宜上設定した原点(測定開始点)からの距離(nm)を表し、縦軸は各元素の原子濃度(wt%)の定量値を表す。 Next, energy dispersive spectroscopy (EDS A line analysis was performed using the method). A STEM manufactured by JEOL Ltd. was used for the line analysis. A graph was created based on the line analysis results obtained (eg, FIG. 4). In the graph, the horizontal axis represents the distance (nm) from the origin (measurement start point) set for convenience in line analysis, and the vertical axis represents the quantitative value of the atomic concentration (wt%) of each element.
 上記グラフに基づいて、上記金属元素Mの原子濃度が上記領域R1において最大であるか否かを判定した。なお、上述の判定を行うにあたっては、一見して異常値と思われる点は考慮しないことにした。このような判定を少なくとも5視野について行い、各視野において、上記金属元素Mの原子濃度が上記領域R1において最大であれば、上記超硬合金は上記金属元素Mの原子濃度が上記領域R1において最大であると判定した。また、上述した線分析の結果から得られた各元素の原子濃度(wt%)に基づいて、上記領域R1における、ニッケル及び上記金属元素Mの合計に対する上記金属元素Mの原子濃度の最大値(wt%)を算出した。このとき、上述の判定を行う際に用いた各視野において、当該金属元素Mの原子濃度の最大値をまず求め、複数の視野において求められた値の平均値を当該金属元素Mの原子濃度の最大値(wt%)とした。その結果を表3に示す。 Based on the above graph, it was determined whether or not the atomic concentration of the metal element M was maximum in the above region R1. It should be noted that, in performing the above determination, it was decided not to take into consideration points that seem to be abnormal values at first glance. Such a determination is performed for at least five fields of view, and if the atomic concentration of the metal element M is maximum in the region R1 in each field of view, the cemented carbide has the maximum atomic concentration of the metal element M in the region R1. determined to be Further, based on the atomic concentration (wt%) of each element obtained from the line analysis result described above, the maximum atomic concentration of the metal element M with respect to the total of nickel and the metal element M in the region R1 ( wt%) was calculated. At this time, the maximum value of the atomic concentration of the metal element M is first obtained in each field of view used when performing the above determination, and the average value of the values obtained in a plurality of fields of view is the atomic concentration of the metal element M. The maximum value (wt%) was used. Table 3 shows the results.
 <ビッカース硬度の測定>
 以下の条件で各試料のビッカース硬度を測定した。結果を表3に示す。
荷重:1kgf
保持時間:10s
<Measurement of Vickers hardness>
The Vickers hardness of each sample was measured under the following conditions. Table 3 shows the results.
Load: 1kgf
Holding time: 10s
 <靱性の測定>
 以下の方法で各試料の靱性を測定した。すなわち、上記ビッカース硬度を測定した圧痕から伸びる亀裂の長さから算出するHV法により破壊靱性値を求めた。結果を表3に示す。
<Measurement of toughness>
The toughness of each sample was measured by the following method. That is, the fracture toughness value was determined by the HV method, which is calculated from the length of the crack extending from the indentation in which the Vickers hardness was measured. Table 3 shows the results.
 ≪切削試験≫
 各試料の表面に、公知のPVD法の一種であるイオンプレーティング法で硬質膜を形成して切削試験用の切削工具を作製した。硬質膜は、厚さ4.8μmのTiAlN膜とした。以下、試料No.1の超硬合金を基材として用いた切削工具を「試料No.1の切削工具」等と表記する。試料No.1以外の試料についても同様である。
≪Cutting test≫
A hard film was formed on the surface of each sample by an ion plating method, which is a kind of known PVD method, to prepare a cutting tool for a cutting test. A TiAlN film having a thickness of 4.8 μm was used as the hard film. Below, sample no. A cutting tool using the cemented carbide of No. 1 as a base material is referred to as "Sample No. 1 cutting tool" or the like. Sample no. The same applies to samples other than No. 1.
 <切削試験1:耐摩耗性試験>
 上述のようにして作製した試料No.1~13及び試料No.101~107の切削工具を用いて、以下の切削条件により、逃げ面摩耗量Vbが0.2mmになるまでの切削時間(分)を測定した。その結果を表3に示す。切削時間が長い程、耐摩耗性に優れる切削工具として評価できる。
耐摩耗性試験の条件
被削材  :S50C 丸棒
切削速度 :250m/min
送り量  :0.15mm/rev
切込み量 :1mm
切削油:  有り
<Cutting Test 1: Wear Resistance Test>
Sample No. prepared as described above. 1 to 13 and sample no. Using cutting tools No. 101 to 107, the cutting time (minutes) until the flank wear amount Vb reached 0.2 mm was measured under the following cutting conditions. Table 3 shows the results. The longer the cutting time, the more excellent the wear resistance of the cutting tool can be evaluated.
Wear resistance test conditions Work material: S50C Round bar Cutting speed: 250 m/min
Feed rate: 0.15mm/rev
Depth of cut: 1mm
Cutting oil: Yes
 <切削試験2:耐欠損性試験>
 上述のようにして作製した試料No.1~13及び試料No.101~107の切削工具を用いて、以下の切削条件により、切れ刃に欠損が発生するまでの切削時間(分)を測定した。その結果を表3に示す。切削時間が長い程、耐欠損性に優れる切削工具として評価することができる。
耐欠損性試験の条件
被削材:  SCM435溝材(溝数:4)
切削速度: 300m/min
送り量:  0.3mm/rev
切込み量: 1.5mm
切削油:  有り
<Cutting test 2: Fracture resistance test>
Sample No. prepared as described above. 1 to 13 and sample no. Using cutting tools Nos. 101 to 107, the cutting time (minutes) until chipping occurred on the cutting edge was measured under the following cutting conditions. Table 3 shows the results. As the cutting time is longer, the cutting tool can be evaluated to have excellent chipping resistance.
Fracture resistance test conditions Work material: SCM435 groove material (number of grooves: 4)
Cutting speed: 300m/min
Feed rate: 0.3mm/rev
Cutting depth: 1.5mm
Cutting oil: Yes
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、試料No.1~13の切削工具(実施例)は、切削試験1における切削時間が57分以上であり、良好な結果であった。この結果は、結合相にコバルトを含む従来の超硬合金(試料No.104~107)に匹敵する結果である。以上の結果から、試料No.1~13の超硬合金(実施例)は、硬度に優れることが分かった。 From the results in Table 3, sample No. Cutting tools 1 to 13 (Examples) had a cutting time of 57 minutes or longer in Cutting Test 1, which was a good result. This result is comparable to conventional cemented carbides containing cobalt in the binder phase (Sample Nos. 104-107). From the above results, sample no. Cemented carbides 1 to 13 (Examples) were found to be excellent in hardness.
 表3の結果から、試料No.1~13の切削工具(実施例)は、切削試験2における切削時間が6.9分以上であり、良好な結果であった。この結果は、結合相にコバルトを含む従来の超硬合金(試料No.104~107)に匹敵する結果である。一方、試料No.101~103の切削工具(比較例)は、切削試験2における切削時間が4.7分以下であった。 From the results in Table 3, sample No. Cutting tools 1 to 13 (examples) had a cutting time of 6.9 minutes or more in cutting test 2, which was a good result. This result is comparable to conventional cemented carbides containing cobalt in the binder phase (Sample Nos. 104-107). On the other hand, sample no. Cutting tools 101 to 103 (comparative examples) had a cutting time of 4.7 minutes or less in cutting test 2.
 以上の結果から、試料No.1~13の超硬合金(実施例)は、試料No.101~103(比較例)の超硬合金よりも、靱性に優れることが分かった。 From the above results, sample No. Cemented carbides of 1 to 13 (Examples) are sample Nos. It was found to be superior to the cemented carbides of 101 to 103 (comparative examples) in toughness.
 以上のように本発明の実施形態及び実施例について説明を行なったが、上述の各実施形態及び各実施例の構成を適宜組み合わせることも当初から予定している。 Although the embodiments and examples of the present invention have been described above, it is planned from the beginning to appropriately combine the configurations of the above-described embodiments and examples.
 今回開示された実施の形態及び実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態及び実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、及び範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are illustrative in all respects and should be considered not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above-described embodiments and examples, and is intended to include meanings equivalent to the scope of the claims and all modifications within the scope.
1 超硬合金、2 炭化タングステン粒子、3 結合相、A 仮想線A、S 炭化タングステン粒子と結合相との界面、R1 領域R1、R2 領域R2 1 Cemented Carbide, 2 Tungsten Carbide Particles, 3 Binding Phase, A Imaginary Line A, S Interface between Tungsten Carbide Particles and Binding Phase, R1 Region R1, R2 Region R2

Claims (8)

  1.  第一硬質相と結合相とを含む超硬合金であって、
     前記第一硬質相は、炭化タングステン粒子からなり、
     前記結合相は、構成元素としてニッケル及び金属元素Mを含み、
     前記金属元素Mは、クロム、モリブデン、バナジウム及び鉄からなる群より選ばれる少なくとも1種を含み、
     前記超硬合金の任意の表面又は任意の断面における、
     前記炭化タングステン粒子と前記結合相との界面と、前記界面から前記結合相の側に向かって5nm離れた地点を示す仮想線Aとに挟まれた領域を領域R1とし、
     前記結合相における前記領域R1以外の領域を領域R2とし、
     前記炭化タングステン粒子と、前記領域R1を介して前記炭化タングステン粒子と隣接している前記領域R2とを含む範囲で線分析を行った場合、前記金属元素Mの原子濃度は前記領域R1において最大である、超硬合金。
    A cemented carbide comprising a first hard phase and a binder phase,
    The first hard phase consists of tungsten carbide particles,
    The binder phase contains nickel and a metal element M as constituent elements,
    The metal element M contains at least one selected from the group consisting of chromium, molybdenum, vanadium and iron,
    On any surface or any cross section of the cemented carbide,
    A region sandwiched between an interface between the tungsten carbide particles and the binder phase and a virtual line A indicating a point 5 nm away from the interface toward the binder phase is defined as a region R1,
    A region other than the region R1 in the bonding phase is defined as a region R2,
    When line analysis is performed in a range including the tungsten carbide grain and the region R2 adjacent to the tungsten carbide grain via the region R1, the atomic concentration of the metal element M is the maximum in the region R1. There is cemented carbide.
  2.  前記金属元素Mの含有割合は、前記結合相に対して、24wt%以上36wt%以下である、請求項1に記載の超硬合金。 The cemented carbide according to claim 1, wherein the content of the metal element M is 24 wt% or more and 36 wt% or less with respect to the binder phase.
  3.  前記金属元素Mは、モリブデンを含む、請求項1又は請求項2に記載の超硬合金。 The cemented carbide according to claim 1 or 2, wherein the metal element M contains molybdenum.
  4.  タングステンを除く周期表4族元素、5族元素及び6族元素から選択される一種以上の金属元素と、炭素、窒素、酸素及び硼素からなる群より選択される一種以上の非金属元素と、を含む化合物からなる第二硬質相を更に含む、請求項1から請求項3のいずれか一項に記載の超硬合金。 One or more metal elements selected from periodic table group 4 elements, group 5 elements and group 6 elements excluding tungsten, and one or more non-metal elements selected from the group consisting of carbon, nitrogen, oxygen and boron Cemented carbide according to any one of claims 1 to 3, further comprising a second hard phase consisting of a compound comprising:
  5.  前記第二硬質相は、前記化合物の粒子からなり、
     前記化合物の粒子の平均粒径は、0.05μm以上2μm以下である、請求項4に記載の超硬合金。
    The second hard phase consists of particles of the compound,
    5. The cemented carbide according to claim 4, wherein the particles of said compound have an average particle size of 0.05 [mu]m or more and 2 [mu]m or less.
  6.  前記炭化タングステン粒子の平均粒径は、0.1μm以上10μm以下である、請求項1から請求項5のいずれか一項に記載の超硬合金。 The cemented carbide according to any one of claims 1 to 5, wherein the tungsten carbide particles have an average particle size of 0.1 µm or more and 10 µm or less.
  7.  請求項1から請求項6のいずれか一項に記載の超硬合金を基材として含む、切削工具。 A cutting tool comprising the cemented carbide according to any one of claims 1 to 6 as a base material.
  8.  前記基材上に設けられている被膜を更に備える、請求項7に記載の切削工具。 The cutting tool according to claim 7, further comprising a coating provided on the base material.
PCT/JP2022/002227 2021-02-15 2022-01-21 Cemented carbide and cutting tool which comprises same as base material WO2022172729A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022581294A JPWO2022172729A1 (en) 2021-02-15 2022-01-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021021598 2021-02-15
JP2021-021598 2021-02-15

Publications (1)

Publication Number Publication Date
WO2022172729A1 true WO2022172729A1 (en) 2022-08-18

Family

ID=82838698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002227 WO2022172729A1 (en) 2021-02-15 2022-01-21 Cemented carbide and cutting tool which comprises same as base material

Country Status (2)

Country Link
JP (1) JPWO2022172729A1 (en)
WO (1) WO2022172729A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649581A (en) * 1992-08-05 1994-02-22 Nippon Steel Corp Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JPH10148107A (en) * 1996-10-25 1998-06-02 Orient Co Ltd Valve lifter for internal combustion engine and manufacture thereof
JP2003001505A (en) * 2001-04-05 2003-01-08 Seco Tools Ab Cemented carbide cutting tool insert for turning processing titanium alloy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649581A (en) * 1992-08-05 1994-02-22 Nippon Steel Corp Metal-ceramics composite excellent in corrosion resistance and wear resistance and its production
JPH10148107A (en) * 1996-10-25 1998-06-02 Orient Co Ltd Valve lifter for internal combustion engine and manufacture thereof
JP2003001505A (en) * 2001-04-05 2003-01-08 Seco Tools Ab Cemented carbide cutting tool insert for turning processing titanium alloy

Also Published As

Publication number Publication date
JPWO2022172729A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
TWI457445B (en) Metal cermet
CN111566241B (en) Cemented carbide and cutting tool
WO2017191744A1 (en) Cemented carbide and cutting tool
CN110168121B (en) Cemented carbide and cutting tool
WO2015156005A1 (en) Cermet and cutting tool
JP5559575B2 (en) Cermet and coated cermet
JP7103565B1 (en) Cemented carbide and cutting tools containing it as a base material
JP7392714B2 (en) Cemented carbide and cutting tools containing it as a base material
JP7388431B2 (en) Cemented carbide and cutting tools containing it as a base material
JP7098969B2 (en) Cemented Carbide, Cutting Tools Containing It, Cemented Carbide Manufacturing Method and Cutting Tool Manufacturing Method
JP7392423B2 (en) Cemented carbide and cutting tools containing it as a base material
WO2022137399A1 (en) Cemented carbide, and cutting tool containing same as base material
WO2022172729A1 (en) Cemented carbide and cutting tool which comprises same as base material
JP2005097646A (en) Sintered alloy with gradient structure, and its production method
WO2022172730A1 (en) Cemented carbide and cutting tool comprising same as base material
JP5233124B2 (en) Cemented carbide and coated cemented carbide
JP6459106B1 (en) Cemented carbide and cutting tools
JP7346751B1 (en) Cubic boron nitride sintered body
WO2022070677A1 (en) Cubic boron nitride sintered body tool
KR20240051212A (en) Cubic boron nitride sintered body
WO2016114190A1 (en) Cermet, cutting tool, and method for manufacturing cermet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581294

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752559

Country of ref document: EP

Kind code of ref document: A1