JP2012124189A - Sintered magnet - Google Patents

Sintered magnet Download PDF

Info

Publication number
JP2012124189A
JP2012124189A JP2010271025A JP2010271025A JP2012124189A JP 2012124189 A JP2012124189 A JP 2012124189A JP 2010271025 A JP2010271025 A JP 2010271025A JP 2010271025 A JP2010271025 A JP 2010271025A JP 2012124189 A JP2012124189 A JP 2012124189A
Authority
JP
Japan
Prior art keywords
feco
crystal
phase
fluorine
based crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010271025A
Other languages
Japanese (ja)
Inventor
Nobuo Abe
信雄 阿部
Yuichi Satsu
祐一 佐通
Matahiro Komuro
又洋 小室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010271025A priority Critical patent/JP2012124189A/en
Publication of JP2012124189A publication Critical patent/JP2012124189A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve characteristics of a magnetic material without using heavy rare earth elements of scarce resources.SOLUTION: A fluorine-containing grain boundary phase is formed between a rare earth-iron crystal grain and an iron-cobalt alloy crystal grain, and magnetic coupling is developed in the iron-cobalt alloy crystal grain and the rare earth-iron crystal grain with an eccentrically-located rare earth element, so that a high energy product is achieved. A sintered magnet having a high saturation magnetic flux density, a coercive force of 10 kOe or more, and a Curie point of 600 K or more can be obtained when a weight of the iron-cobalt alloy crystal grain is in a range from 0.1 to 90% by weight relative to a weight of the entire sintered magnet.

Description

本発明は、高飽和磁束密度結晶を含有し、希土類元素が偏在する焼結磁石に関する。   The present invention relates to a sintered magnet containing a high saturation magnetic flux density crystal and in which rare earth elements are unevenly distributed.

特許文献1〜4にはNdFeB系粉を用いた永久磁石の記載があり、特許文献1には軟磁性と硬磁性からなるナノコンポジット磁石の例が開示されている。特許文献2には、FeやFeCo系結晶粉とR2Fe14B粉を混合させて焼結した磁石について記載がある。特許文献3には希土類鉄ホウ素系焼結磁石において、粒界に希土類酸素フッ素からなる相が形成されていることが開示されている。また、特許文献4にはNdFeB系磁粉とFe粉の間にフッ素化合物が存在する複合材料の記載がある。 Patent Documents 1 to 4 describe a permanent magnet using NdFeB-based powder, and Patent Document 1 discloses an example of a nanocomposite magnet composed of soft magnetism and hard magnetism. Patent Document 2 describes a magnet obtained by mixing and sintering Fe or FeCo crystal powder and R 2 Fe 14 B powder. Patent Document 3 discloses that in a rare earth iron boron based sintered magnet, a phase composed of rare earth oxygen fluorine is formed at the grain boundary. Patent Document 4 describes a composite material in which a fluorine compound is present between NdFeB magnetic powder and Fe powder.

特開2003−158005号公報JP 2003-158005 A 特開2003−217918号公報JP 2003-217918 A 特開2007−157903号公報JP 2007-157903 A 特開2008−60183号公報JP 2008-60183 A

上記従来の発明は、NdFeB系磁石材料において軟磁性かつ高飽和磁束密度を示す鉄基材料をNdFeB系結晶と複合化させることに関する記載がある。ナノコンポジット磁石と称する複合材料は、焼結するような温度範囲に加熱すると磁気特性が劣化するため、磁粉体積率が小さいボンド磁石のような材料には適用できるが、磁粉占有率が95%以上でかつ異方性を有する焼結磁石には適用が困難である。NdFeB系磁石における焼結温度は1000〜1100℃という高温であるため、上記ナノコンポジット磁石で使用している材料は結晶粒の成長や結晶粒間の拡散が起こり易く焼結して磁気特性を確保することは困難である。フッ素含有層は焼結磁石内に形成可能なことが開示されているが、FeCo系結晶とNdFeB系結晶の間に粒界相としてフッ素含有層が形成された焼結磁石において、その組成や結晶粒の大きさなどの磁石材料の構成及びキュリー温度などの磁気物性に関する記載がない。焼結磁石において粒界に接触してFeCo系結晶とNdFeB系結晶を形成するためには、FeCo系結晶とNdFeB系結晶の結晶構造の間に、両結晶粒が安定に成長可能な粒界を形成して始めて、残留磁束密度と保磁力ならびにエネルギー積のすべてが増加する磁石を提供することが可能となる。このような磁石を実現するための粒界と粒界の形成手法ならびに粒界近傍のFeCo系結晶とNdFeB系結晶の構成に関する記載はない。   The above-mentioned conventional invention has a description relating to the composite of an iron-based material exhibiting a soft magnetic and high saturation magnetic flux density with an NdFeB-based crystal in an NdFeB-based magnet material. A composite material called a nanocomposite magnet can be applied to a material such as a bond magnet having a small magnetic powder volume ratio because the magnetic properties deteriorate when heated to a sintering temperature range, but the magnetic powder occupation ratio is 95% or more. In addition, it is difficult to apply to a sintered magnet having anisotropy. Since the sintering temperature of NdFeB magnets is as high as 1000 to 1100 ° C, the materials used in the above-mentioned nanocomposite magnets tend to cause crystal grain growth and diffusion between crystal grains to ensure magnetic properties. It is difficult to do. Although it is disclosed that a fluorine-containing layer can be formed in a sintered magnet, in a sintered magnet in which a fluorine-containing layer is formed as a grain boundary phase between an FeCo-based crystal and an NdFeB-based crystal, the composition and crystal There is no description regarding the composition of the magnetic material such as the size of the grains and the magnetic properties such as the Curie temperature. In order to form an FeCo-based crystal and an NdFeB-based crystal in contact with a grain boundary in a sintered magnet, a grain boundary where both crystal grains can grow stably is formed between the crystal structures of the FeCo-based crystal and the NdFeB-based crystal. Only after formation can it be possible to provide a magnet in which all of the residual flux density, coercivity and energy product are increased. There is no description regarding the grain boundary and grain boundary formation method for realizing such a magnet, and the structure of FeCo-based crystals and NdFeB-based crystals in the vicinity of the grain boundaries.

従来の手法で残留磁束密度と保磁力ならびにエネルギー積のすべての特性を増加させることが困難であったのは、従来手法で開示されているように、FeやFeCoとNdFeB系焼結粉とが焼結時に拡散し易いことや帆保磁力増大のためには残留磁束密度を減少させる重希土類元素をNdFeB系結晶に添加する必要があること、残留磁束密度増加のために重希土類元素の添加量を少なくすると結晶磁気異方性エネルギーが低下するために保磁力が減少することなどと関連しており、Nd2Fe14B系焼結磁石の残留磁束密度と保磁力ならびにエネルギー積のすべてを増加させる手段は見出されていない。 It was difficult to increase all the characteristics of residual magnetic flux density, coercive force and energy product with the conventional method, as disclosed in the conventional method, Fe, FeCo and NdFeB-based sintered powders. It is necessary to add a heavy rare earth element that decreases the residual magnetic flux density to the NdFeB-based crystal in order to easily diffuse during sintering and increase the coercive force, and to add the amount of heavy rare earth element to increase the residual magnetic flux density. If it is decreased, it is related to a decrease in coercive force due to a decrease in magnetocrystalline anisotropy energy, and all of the residual magnetic flux density, coercive force and energy product of Nd 2 Fe 14 B sintered magnet are increased. No means have been found.

Nd2Fe14B焼結磁石の残留磁束密度は主相である正方晶構造のNd2Fe14Bの飽和磁束密度(1.61T)が上限値となる。残留磁束密度を増加させるためには、この上限値を増加させることが必要であるが、種々の添加物などによる材料組成の検討では大きく増加させることが困難であることが明らかになっている。そこでNd2Fe14Bの飽和磁束密度(1.61T)よりも大きな飽和磁束密度をもった磁性材料と複合化することが検討され、FeやFeCo系結晶とNd2Fe14Bとの交換結合により飽和磁束密度を増加させることが急冷磁粉で明らかになった。しかしこのような急冷磁粉は加熱により容易に結晶粒の成長や拡散反応が生じ焼結工程に適用できない。また、これに類似してFeとNd2Fe14Bの結晶粒を複合化した磁石が熱間成形法や焼結法で作製され、残留磁束密度の増加が確認されているが、FeやFeCo系結晶粒と複合化すると保磁力は急激に減少する。保磁力を増加させる手法としては、粒界拡散法などがあるが、重希土類元素を拡散させる手法のため、残留磁束密度が減少する。上記のように従来手法の中にNd2Fe14B焼結磁石の残留磁束密度と保磁力ならびにエネルギー積のすべてを増加させる手段は見出せない。 The residual magnetic flux density of the Nd 2 Fe 14 B sintered magnet is the upper limit value of the saturation magnetic flux density (1.61 T) of tetragonal Nd 2 Fe 14 B as the main phase. In order to increase the residual magnetic flux density, it is necessary to increase this upper limit value, but it has been found that it is difficult to increase it greatly by examining the material composition with various additives. So that composite magnetic material having a saturation magnetic flux density than a saturation magnetic flux density of the Nd 2 Fe 14 B (1.61T) is considered, the exchange coupling between Fe and FeCo-based crystal and Nd 2 Fe 14 B It was revealed by quenching magnetic powder that the saturation magnetic flux density is increased. However, such rapidly-cooled magnetic powder is easily applied to the sintering process due to crystal growth and diffusion reaction caused by heating. Similar to this, a magnet in which Fe and Nd 2 Fe 14 B crystal grains are combined is produced by a hot forming method or a sintering method, and an increase in residual magnetic flux density has been confirmed. The coercive force decreases abruptly when compounded with the system crystal grains. As a method for increasing the coercive force, there is a grain boundary diffusion method or the like, but the residual magnetic flux density decreases because of the method of diffusing heavy rare earth elements. As described above, no means for increasing all of the residual magnetic flux density, coercive force, and energy product of the Nd 2 Fe 14 B sintered magnet can be found in the conventional method.

希土類鉄系結晶粒と鉄コバルト合金結晶粒の間にフッ素含有粒界相を形成し、希土類元素が偏在化した希土類鉄系結晶粒と鉄コバルト合金結晶粒には磁気的な結合を発現させることにより高エネルギー積を実現させた。   A fluorine-containing grain boundary phase is formed between the rare earth iron-based crystal grains and the iron cobalt alloy crystal grains, and magnetic coupling is expressed in the rare earth iron-based crystal grains and the iron cobalt alloy crystal grains in which the rare earth elements are unevenly distributed. The high energy product was realized.

本発明の焼結磁石は、希土類元素使用量を低減し、磁石のエネルギー積及びキュリー点上昇を実現でき、回転機などに適用することにより、小型軽量化を可能とし、種々の回転機やハードディスクのボイスコイルモータを含む高エネルギー積を必要とする磁気回路に適用できる。   The sintered magnet of the present invention can reduce the amount of rare earth elements used, realize an increase in the energy product of the magnet and increase the Curie point, and can be reduced in size and weight when applied to a rotating machine, etc. It can be applied to a magnetic circuit that requires a high energy product including a voice coil motor.

本発明に係るFe70Co30結晶粒の体積率と保磁力,残留磁束密度の関係を示す図である。Volume ratio and the coercive force of Fe 70 Co 30 crystal grains according to the present invention, is a diagram showing the relationship between the residual magnetic flux density. 本発明に係るFe70Co30結晶粒の体積率と保磁力,残留磁束密度の関係を示す図である。Volume ratio and the coercive force of Fe 70 Co 30 crystal grains according to the present invention, is a diagram showing the relationship between the residual magnetic flux density. 本発明に係るフッ化物体積率/FeCo系体積率と保磁力,残留磁束密度の関係を示す図である。It is a figure which shows the relationship of the fluoride volume ratio / FeCo type | system | group volume ratio based on this invention, a coercive force, and a residual magnetic flux density. 本発明に係るCo濃度と保磁力,残留磁束密度の関係を示す図である。It is a figure which shows the relationship between Co density | concentration which concerns on this invention, coercive force, and residual magnetic flux density. 本発明に係るCo濃度と保磁力,残留磁束密度の関係を示す図である。It is a figure which shows the relationship between Co density | concentration which concerns on this invention, coercive force, and residual magnetic flux density. 本発明に係る磁石断面の組織を示す図である。It is a figure which shows the structure | tissue of the magnet cross section based on this invention.

Nd2Fe14B焼結磁石の残留磁束密度と保磁力ならびにエネルギー積のすべてを増加させる手段について以下に説明する。Nd2Fe14B焼結磁石の残留磁束密度は主相である正方晶構造のNd2Fe14Bの飽和磁束密度(1.61T)が上限値となる。残留磁束密度を増加させるためには、この上限値を増加させることが必要であり、Nd2Fe14Bよりも飽和磁束密度の高い磁性材料を使用する。飽和磁束密度が高い材料は磁気異方性エネルギーが小さい軟磁性である場合が多いことから、軟磁性材料の磁化が反転しにくいように固定する必要がある。磁化の固定手段としては、交換結合,超交換相互作用,静磁結合などがある。これらの磁気的な結合は、軟磁性相と界面で接触する相手の相の材料系や界面近傍組成と界面近傍の構造に大きく左右される。軟磁性相,粒界相,Nd2Fe14B相の少なくとも3相は磁場中仮成形に続く焼結工程を経て磁石内部にほぼ均一に形成される必要がある。 Means for increasing all of the residual magnetic flux density, coercive force, and energy product of the Nd 2 Fe 14 B sintered magnet will be described below. The residual magnetic flux density of the Nd 2 Fe 14 B sintered magnet is the upper limit value of the saturation magnetic flux density (1.61 T) of tetragonal Nd 2 Fe 14 B as the main phase. In order to increase the residual magnetic flux density, it is necessary to increase the upper limit value, and a magnetic material having a higher saturation magnetic flux density than Nd 2 Fe 14 B is used. Since a material having a high saturation magnetic flux density is often soft magnetism having a small magnetic anisotropy energy, it is necessary to fix the magnetization of the soft magnetic material so that the magnetization is not easily reversed. Examples of magnetization fixing means include exchange coupling, super-exchange interaction, and magnetostatic coupling. These magnetic couplings greatly depend on the material system of the partner phase that contacts the soft magnetic phase at the interface, the composition near the interface, and the structure near the interface. At least three phases of the soft magnetic phase, the grain boundary phase, and the Nd 2 Fe 14 B phase need to be formed almost uniformly in the magnet through a sintering process subsequent to temporary forming in a magnetic field.

その条件として下記が挙げられる。1)軟磁性相の粒子が焼結中にNd2Fe14B相の粒子あるいは粉末と容易に反応しないこと。2)軟磁性相とNd2Fe14B相の粒子がほぼ均一に混合できること。3)軟磁性相の結晶粒周辺のNd2Fe14B相は高い結晶磁気異方性エネルギーを有すること。4)軟磁性相の粒子が混合されていても、Nd2Fe14B相の粒子は焼結前の磁界印加により配向させることが可能なこと。5)焼結後の軟磁性相は焼結前と同等以上の飽和磁束密度を有していること。6)軟磁性相の粒子を導入することでNd2Fe14B相内の酸素濃度が大幅に増加しないこと。7)1200℃以下の温度で焼結可能なこと。8)焼結中に、軟磁性相の結晶粒が液相と反応して飽和磁束密度の小さな相に変化しにくいこと。これらの条件を満足し、さらに磁気特性を向上させるためには以下の条件を満足する必要がある。9)軟磁性相のキュリー温度がNd2Fe14B相のキュリー温度よりも高く、かつ焼結体に形成された軟磁性相の結晶がキュリー点以下で安定なこと。10)Nd2Fe14B相と軟磁性相は磁気的に結合していること。11)軟磁性相周辺のNd2Fe14B相の保磁力が十分大きいこと。12)軟磁性相は焼結体内部で分散していること。 The conditions include the following. 1) Soft magnetic phase particles do not easily react with Nd 2 Fe 14 B phase particles or powder during sintering. 2) The soft magnetic phase and Nd 2 Fe 14 B phase particles can be mixed almost uniformly. 3) The Nd 2 Fe 14 B phase around the crystal grains of the soft magnetic phase has a high crystal magnetic anisotropy energy. 4) Even if soft magnetic phase particles are mixed, the Nd 2 Fe 14 B phase particles can be oriented by applying a magnetic field before sintering. 5) The soft magnetic phase after sintering has a saturation magnetic flux density equal to or higher than that before sintering. 6) The oxygen concentration in the Nd 2 Fe 14 B phase does not increase significantly by introducing particles of the soft magnetic phase. 7) Sinterable at a temperature of 1200 ° C or lower. 8) During sintering, the crystal grains of the soft magnetic phase hardly react with the liquid phase and change into a phase with a small saturation magnetic flux density. In order to satisfy these conditions and further improve the magnetic properties, the following conditions must be satisfied. 9) The Curie temperature of the soft magnetic phase is higher than the Curie temperature of the Nd 2 Fe 14 B phase, and the soft magnetic phase crystals formed in the sintered body are stable below the Curie point. 10) The Nd 2 Fe 14 B phase and the soft magnetic phase are magnetically coupled. 11) The coercive force of the Nd 2 Fe 14 B phase around the soft magnetic phase is sufficiently large. 12) The soft magnetic phase is dispersed inside the sintered body.

以下、本発明の実施形態について、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

鉄及びコバルトを秤量後真空溶解することによりFe−30重量%Co合金を作成する。この合金をAr+5%H2ガス雰囲気中で1000℃に加熱還元し、酸素濃度200ppm以下とする。この合金をAr+5%H2ガス雰囲気中で高周波溶解し、溶解した溶湯を回転ロールに吹き付けて箔体を作成する。この箔体は大気に曝すことなく、鉱油中に混合される。鉱油には平均粒径3μmの(Nd0.7Dy0.3)2Fe14B粉及びTb−F溶液があらかじめ混合されており、この鉱油と箔体の混合物を170℃に加熱してビーズミルを進める。ビーズにはZrO2(外径0.1mm)を使用し、箔体がビーズにより粉砕されると同時にTbFx(X=1〜3)が箔体や(Nd0.7Dy0.3)2Fe14B粉表面に付着する。この粉末を磁場中成形(磁場10kOe,1t/cm2)し、700℃から1200℃の熱処理温度で焼結する。最適な焼結温度範囲は1000〜1100℃であり、700〜900℃の温度では焼結後密度が7.0〜7.8g/cm3となる。磁場中成形後の熱処理により、(Nd0.7Dy0.3)2Fe14B粉が焼結し、結晶粒界近傍には、希土類リッチ相,TbOF,NdOF,NdF2などの酸化物やフッ素含有相が形成される。(Nd0.7Dy0.3)2Fe14Bの粒界近傍にはTbの偏在がみられ、この高結晶磁気異方性エネルギー相形成により保磁力が増加し、結晶粒界のFeCo系結晶と強磁性結合により磁化反転を抑制しており、Fe70Co30の体積率が20%で残留磁束密度1.7T,保磁力20kOe,キュリー温度680℃の磁石特性を確認している。前記粒界近傍とは粒界との界面から100nm以内の距離で粒界に沿った部分であり、粒界の界面から500nm以上離れた部分での平均Tb濃度と粒界界面から100nm以内の最高Tb濃度の比(粒界近傍のTb濃度/粒内のTb濃度)は2倍以上の濃度差が認められる。 An Fe-30 wt% Co alloy is prepared by weighing iron and cobalt and then melting them in vacuo. This alloy is heated and reduced to 1000 ° C. in an Ar + 5% H 2 gas atmosphere to obtain an oxygen concentration of 200 ppm or less. This alloy is melted at high frequency in an Ar + 5% H 2 gas atmosphere, and the molten metal is sprayed on a rotating roll to form a foil body. This foil is mixed in mineral oil without exposure to the atmosphere. Mineral oil is premixed with (Nd 0.7 Dy 0.3 ) 2 Fe 14 B powder having an average particle size of 3 μm and a Tb-F solution, and the mixture of mineral oil and foil is heated to 170 ° C. to advance the bead mill. ZrO 2 (outer diameter 0.1 mm) is used for the beads, and at the same time the foil is pulverized by the beads, TbF x (X = 1 to 3) becomes foil or (Nd 0.7 Dy 0.3 ) 2 Fe 14 B powder. Adhere to the surface. This powder is molded in a magnetic field (magnetic field: 10 kOe, 1 t / cm 2 ) and sintered at a heat treatment temperature of 700 ° C. to 1200 ° C. The optimum sintering temperature range is 1000 to 1100 ° C., and the density after sintering becomes 7.0 to 7.8 g / cm 3 at a temperature of 700 to 900 ° C. (Nd 0.7 Dy 0.3 ) 2 Fe 14 B powder is sintered by heat treatment after forming in a magnetic field, and oxides and fluorine-containing phases such as rare earth rich phase, TbOF, NdOF, NdF 2 are present in the vicinity of the grain boundary. It is formed. Tb is unevenly distributed near the grain boundary of (Nd 0.7 Dy 0.3 ) 2 Fe 14 B, and the coercive force is increased by the formation of this high crystal magnetic anisotropy energy phase. Magnetization reversal is suppressed by the coupling, and the magnetic properties of Fe 70 Co 30 having a volume fraction of 20%, a residual magnetic flux density of 1.7 T, a coercive force of 20 kOe, and a Curie temperature of 680 ° C. have been confirmed. The vicinity of the grain boundary is a portion along the grain boundary at a distance of 100 nm or less from the interface with the grain boundary, and the average Tb concentration at a portion separated by 500 nm or more from the interface of the grain boundary and the maximum within 100 nm from the grain boundary interface. The Tb concentration ratio (Tb concentration in the vicinity of the grain boundary / Tb concentration in the grain) has a concentration difference more than twice.

このようなNd2Fe14Bの飽和磁束密度1.61Tを超える残留磁束密度を有し、保磁力が15kOe以上となる焼結磁石の特徴は、1)Nd2Fe14Bよりも高い飽和磁束密度を有するFe系強磁性結晶粒が形成されていること、2)Fe系強磁性結晶粒と主相のNd2Fe14B系結晶粒の間にはフッ素及び重希土類元素が含有する粒界相が形成されていること、3)主相のNd2Fe14B系結晶粒の粒界近傍には重希土類元素が偏在していること、4)Fe系強磁性結晶粒の平均結晶粒径の方がNd2Fe14B系結晶粒の平均結晶粒径よりも小さいこと、5)重希土類フッ化物あるいは酸フッ化物の体積率はFe系強磁性結晶の体積率よりも小さいこと、6)重希土類元素の濃度はFe系強磁性結晶粒よりもNd2Fe14B系結晶粒内の方が高いことである。上記1)から6)の条件をすべて満足してNd2Fe14Bの飽和磁束密度1.61Tを超える残留磁束密度となる。 The feature of the sintered magnet having a residual magnetic flux density exceeding 1.61 T of the saturation magnetic flux density of Nd 2 Fe 14 B and having a coercive force of 15 kOe or higher is as follows: 1) Saturation magnetic flux higher than Nd 2 Fe 14 B 2) Grain boundaries containing fluorine and heavy rare earth elements are formed between the Fe-based ferromagnetic crystal grains and the Nd 2 Fe 14 B-based crystal grains of the main phase. 3) the presence of heavy rare earth elements in the vicinity of the grain boundary of the main phase Nd 2 Fe 14 B-based grains; 4) the average grain size of the Fe-based ferromagnetic grains Is smaller than the average crystal grain size of Nd 2 Fe 14 B-based grains, 5) the volume fraction of heavy rare earth fluoride or oxyfluoride is smaller than the volume fraction of Fe-based ferromagnetic crystals, 6) The concentration of heavy rare earth elements is Nd 2 Fe 14 B based grains rather than Fe based ferromagnetic grains. The inside is higher. All the above conditions 1) to 6) are satisfied, and the residual magnetic flux density exceeds 1.61 T of the saturation magnetic flux density of Nd 2 Fe 14 B.

以下これらの特徴について説明する。Nd2Fe14Bの飽和磁束密度1.61Tを超える強磁性体が含有して初めて高い磁束密度となり、FeやFeCo系結晶ならびにこれらに遷移元素が添加された合金が使用できる。これらの合金粉は飽和磁束密度が170emu/g以上であり、酸素や炭素濃度は10〜300ppmの範囲である。中でもFeCo二元系合金を使用することにより高い飽和磁化が得られ、高い残留磁束密度の磁石となる。酸素や炭素が単独で300ppmよりも多くなると飽和磁化が低下し、フッ化物を構成する重希土類元素が拡散せずに酸フッ化物を形成し、Nd2Fe14B系結晶粒内への重希土類元素の偏在化が抑制され、保磁力が減少し、その結果残留磁束密度も低下する。また酸素や炭素が単独で10ppmを下回ると、FeCo系結晶粉表面での酸フッ化物や炭素含有酸フッ化物が成長せず、フッ化物の密着力が低下し、フッ化物が剥離し易くなることから磁気特性が減少する。したがってFeCo系結晶粒の平均酸素あるいは炭素濃度は3〜300ppmが望ましい。焼結過程において低融点相である希土類リッチ相が主の液相が形成され、液相に囲まれてFeCo系結晶粒及びNd2Fe14B系結晶粒が残留しこれらの結晶粒の外周の一部には酸フッ化物などの高融点相が形成されており、焼結中あるいは時効処理中に、TbがNd2Fe14B系結晶粒に拡散しNd2Fe14B系結晶粒外周部に偏在化する。Tbは希土類原子間の拡散によって移動するため、FeCo系結晶内にはほとんど偏在化せず、FeCo系結晶及びNd2Fe14B系結晶に含有する酸素はフッ化物により還元され、結晶粒界には酸素を含有するフッ化物や(Nd,Tb)OFなどの酸フッ化物が形成される。 These features will be described below. Only when a ferromagnetic material having a saturation magnetic flux density exceeding 1.61 T of Nd 2 Fe 14 B is contained, a high magnetic flux density is obtained, and Fe, FeCo-based crystals, and alloys obtained by adding transition elements to these can be used. These alloy powders have a saturation magnetic flux density of 170 emu / g or more, and oxygen and carbon concentrations are in the range of 10 to 300 ppm. Among them, by using an FeCo binary alloy, high saturation magnetization is obtained, and a magnet having a high residual magnetic flux density is obtained. When oxygen or carbon alone exceeds 300 ppm, the saturation magnetization decreases, and the heavy rare earth element constituting the fluoride does not diffuse to form an oxyfluoride, and the heavy rare earth into the Nd 2 Fe 14 B crystal grains The uneven distribution of elements is suppressed, the coercive force is reduced, and as a result, the residual magnetic flux density is also reduced. If oxygen or carbon alone is less than 10 ppm, oxyfluoride or carbon-containing oxyfluoride on the surface of FeCo-based crystal powder will not grow, and the adhesion of fluoride will be reduced, making it easier for the fluoride to peel off. The magnetic properties decrease. Therefore, the average oxygen or carbon concentration of the FeCo-based crystal grains is preferably 3 to 300 ppm. In the sintering process, a rare earth-rich phase, which is a low melting point phase, forms a main liquid phase. FeCo-based crystal grains and Nd 2 Fe 14 B-based crystal grains remain surrounded by the liquid phase, and the outer periphery of these crystal grains part is formed with a high melting point phase such as acid fluorides, in during the sintering or aging treatment, Tb diffuses into Nd 2 Fe 14 B-based grain Nd 2 Fe 14 B-based grain outer peripheral portion It is unevenly distributed. Since Tb moves by diffusion between rare earth atoms, it is hardly unevenly distributed in the FeCo-based crystal, and the oxygen contained in the FeCo-based crystal and the Nd 2 Fe 14 B-based crystal is reduced by the fluoride and enters the grain boundary. Forms an oxygen-containing fluoride or an acid fluoride such as (Nd, Tb) OF.

焼結後のFeCo系結晶内の酸素濃度は1〜100ppmとなる。尚、この酸フッ化物の結晶の多くは立方晶系の結晶構造である。このフッ素含有物が厚くなり、その体積率が増加すると焼結時の液相焼結過程を阻害するので添加するFeCo系結晶粒またはFe系結晶粒(粉末)の全体に占める体積よりも少なくする必要がある。また、Fe系強磁性結晶粒の平均結晶粒径がNd2Fe14B系結晶粒の平均結晶粒径の10倍程度に大きくなると、磁場中仮成形中にFe系強磁性結晶粒の変形によるNd2Fe14B系結晶の配向方向の乱れが大きくなる。Fe系強磁性結晶粒がNd2Fe14B系結晶粉に変形して噛み込むことでNd2Fe14B系結晶粉の配向は磁場印加方向に揃いにくくなるので、噛み込みが起きにくい粒の大きさであるNd2Fe14B系結晶粉の平均粒子径の10倍以下、できればNd2Fe14B系結晶粉の平均粒子径以下が望ましい。焼結前後での平均結晶粒径は、大きく変動せず、焼結前の平均粒径に対して焼結後は50%〜200%(0.5倍〜2倍)であり、フッ化物の厚さを最適にすることにより70%〜130%に制御可能である。 The oxygen concentration in the FeCo-based crystal after sintering is 1 to 100 ppm. Many of the oxyfluoride crystals have a cubic crystal structure. If this fluorine-containing material becomes thicker and its volume fraction increases, the liquid phase sintering process during sintering is hindered, so the volume of FeCo-based crystal grains or Fe-based crystal grains (powder) to be added is reduced. There is a need. Further, when the average crystal grain size of the Fe-based ferromagnetic crystal grains is increased to about 10 times the average crystal grain size of the Nd 2 Fe 14 B-based crystal grains, the Fe-based ferromagnetic crystal grains are deformed during temporary forming in a magnetic field. The disorder of the orientation direction of the Nd 2 Fe 14 B-based crystal increases. Since Fe-based ferromagnetic crystal grains it is easily aligned to the orientation direction of the applied magnetic field in that in Nd 2 Fe 14 B-based crystal powder biting deformed in Nd 2 Fe 14 B based crystal powder, is caught hardly causes grain 10 times the average particle diameter of which is the magnitude Nd 2 Fe 14 B-based crystal powder below, under the average particle size or less of the Nd 2 Fe 14 B-based crystalline powder if desirable. The average crystal grain size before and after sintering does not vary greatly and is 50% to 200% (0.5 to 2 times) after sintering with respect to the average grain size before sintering. It can be controlled to 70% to 130% by optimizing the thickness.

本実施例ではTbを含有するフッ化物を形成しているが、Tb以外にDyあるいは他の希土類元素を少なくとも1種含有するフッ化物またはMn(マンガン)含有フッ化物を形成することにより同様の磁気特性が確認できる。また、フッ化物には希土類元素以外の遷移元素が含有していても良い。   In this embodiment, a fluoride containing Tb is formed. However, a similar magnetic property can be obtained by forming a fluoride containing at least one Dy or other rare earth element or a Mn (manganese) containing fluoride in addition to Tb. The characteristics can be confirmed. Further, the fluoride may contain a transition element other than the rare earth element.

エネルギー積の増加が確認できた焼結磁石のキュリー点は590〜1250Kとなる。このようなキュリー点の上昇はFeCo系結晶の磁気物性が反映されている結果であり、焼結磁石の耐熱性向上効果を確認できる。すなわち、保磁力や残留磁束密度の温度係数の絶対値の減少や熱減磁の減少が確認できている。   The Curie point of the sintered magnet in which the increase in energy product has been confirmed is 590 to 1250K. Such an increase in the Curie point is a result of reflecting the magnetic properties of the FeCo-based crystal, and the effect of improving the heat resistance of the sintered magnet can be confirmed. That is, it has been confirmed that the absolute value of the temperature coefficient of the coercive force and the residual magnetic flux density is decreased and the thermal demagnetization is decreased.

尚、焼結工程あるいは焼結後の時効熱処理工程においてNd2Fe14B系結晶のc軸方向にほぼ平行に10〜50kOeの磁場を印加することによりFeCo系結晶の異方性方向とNd2Fe14B系結晶のc軸方向をほぼ平行にすることが可能であり、この磁場中熱処理により減磁曲線の角型性が向上し、エネルギー積が1〜10%増加できる。 In addition, by applying a magnetic field of 10 to 50 kOe substantially parallel to the c-axis direction of the Nd 2 Fe 14 B-based crystal in the sintering step or the aging heat treatment step after sintering, the anisotropic direction of the FeCo-based crystal and the Nd 2 The c-axis direction of the Fe 14 B-based crystal can be made substantially parallel, and this square heat treatment improves the squareness of the demagnetization curve and increases the energy product by 1 to 10%.

Fe−50%Co合金を真空溶解し、組成が均一な母合金塊を作成する。この合金塊をArガス雰囲気中で高周波溶解し、3000rpmの回転数で回転するロールに溶湯を吹きつけることにより、粗粉末を作成する。この粗粉末を大気に曝さずに鉱油とDyF3混合液に沈降させる。前記鉱油とフッ化物の混合液はスクアランに10%のDyF3を溶解したほぼ透明な液体である。このFe−50%Co合金と鉱油及びDyF3の混合溶液を大気中に曝さずにビーズミル装置を使用して、粉砕と同時に拡散反応を進行させる。ビーズミル装置の粉砕には直径0.5mmのZrO2ボールを使用し、200℃で加熱粉砕した。温度が180℃から300℃であればFeCo系結晶粉表面にDyF3が形成され、FeCo系結晶粉とDyF3との界面には酸フッ化物が成長する。このDyF3被覆FeCo系結晶粉と平均粒径3μmのNd2Fe14B粉を1:10の重量比で混合後、磁場中仮成形,焼結させる。焼結後、時効処理、500℃近傍の温度を20℃/秒の冷却速度で急冷後、磁場中成形時の磁場印加方向に着磁して焼結磁石を得た。 A Fe-50% Co alloy is melted in a vacuum to form a master alloy lump having a uniform composition. The alloy lump is melted at a high frequency in an Ar gas atmosphere, and the molten metal is sprayed onto a roll rotating at a rotational speed of 3000 rpm to prepare a coarse powder. This coarse powder is allowed to settle in a mineral oil and DyF 3 mixture without exposure to the atmosphere. The mixed liquid of mineral oil and fluoride is a substantially transparent liquid in which 10% of DyF 3 is dissolved in squalane. Using the bead mill apparatus without exposing the mixed solution of this Fe-50% Co alloy, mineral oil and DyF 3 to the atmosphere, the diffusion reaction proceeds simultaneously with the pulverization. For the grinding of the bead mill apparatus, ZrO 2 balls having a diameter of 0.5 mm were used and pulverized by heating at 200 ° C. If the temperature is 180 ° C. to 300 ° C., DyF 3 is formed on the surface of the FeCo-based crystal powder, and oxyfluoride grows at the interface between the FeCo-based crystal powder and DyF 3 . The DyF 3 -coated FeCo crystal powder and Nd 2 Fe 14 B powder having an average particle diameter of 3 μm are mixed at a weight ratio of 1:10, and then temporarily molded and sintered in a magnetic field. After sintering, an aging treatment was performed, and a temperature in the vicinity of 500 ° C. was quenched at a cooling rate of 20 ° C./second, and then magnetized in the magnetic field application direction during molding in a magnetic field to obtain a sintered magnet.

FeCo系結晶が焼結磁石内に不連続に分散し、FeCo系結晶粒近傍の粒界にはフッ化物や酸フッ化物が成長し、これらのフッ化物や酸フッ化物と接したNd2Fe14B系結晶粒内の外周側にDyが偏在していることを透過電子顕微鏡のEDX分析により確認している。フッ化物には重希土類元素よりもNdが多く含有し、FeCo系結晶粒内よりもNd2Fe14B系結晶粒内のDyの濃度の方が高い。FeCo系結晶粒が0.1μmの平均結晶粒でNd2Fe14Bが平均3μmの時、残留磁束密度1.7T,保磁力20kOeを実現できる。磁化−温度曲線において、Nd2Fe14Bの磁気変態点に近い温度で磁化の減少が認められ、高温側でFeCo系結晶の磁気変態点に対応する磁化減少が確認でき、300K以上の温度において複数の急激な磁化降下がみられ、ランジェバン関数(Langevin function)のような単調な曲線にはならない。 FeCo-based crystals discontinuously disperse in the sintered magnet, and fluorides and oxyfluorides grow at grain boundaries near the FeCo-based crystal grains. Nd 2 Fe 14 in contact with these fluorides and oxyfluorides It is confirmed by EDX analysis of a transmission electron microscope that Dy is unevenly distributed on the outer peripheral side in the B-based crystal grains. The fluoride contains more Nd than heavy rare earth elements, and the concentration of Dy in the Nd 2 Fe 14 B crystal grains is higher than in the FeCo crystal grains. When the average grain size of FeCo-based crystal grains is 0.1 μm and the average Nd 2 Fe 14 B is 3 μm, a residual magnetic flux density of 1.7 T and a coercive force of 20 kOe can be realized. In the magnetization-temperature curve, a decrease in magnetization is observed at a temperature close to the magnetic transformation point of Nd 2 Fe 14 B, and a decrease in magnetization corresponding to the magnetic transformation point of the FeCo-based crystal can be confirmed on the high temperature side. Multiple sudden magnetization drops are observed, and the curve is not monotonous like the Langevin function.

本実施例の磁石において、キュリー点は1050Kであった。キュリー点の上昇は、FeCo系結晶の磁気物性が反映されており、磁化の温度依存性は単調ではない。すなわち、磁化の温度依存性には主相のキュリー点及びナノ粒子のキュリー点に対応する磁化の変化が確認でき、ナノ粒子のキュリー点が主相のキュリー点よりも高い。ナノ粒子は一部凝集して粒径が大きくなったFeCo系結晶も認められる場合もFeCo系結晶のキュリー点が主相のキュリー点よりも高く、磁石のキュリー点(磁気消失温度)はFeCo系結晶のキュリー点となる。   In the magnet of this example, the Curie point was 1050K. The increase in the Curie point reflects the magnetic properties of the FeCo-based crystal, and the temperature dependence of magnetization is not monotonous. That is, in the temperature dependence of magnetization, the change in magnetization corresponding to the Curie point of the main phase and the Curie point of the nanoparticles can be confirmed, and the Curie point of the nanoparticles is higher than the Curie point of the main phase. Even in the case where FeCo-based crystals in which the nanoparticles are partially agglomerated and have a large particle size are observed, the Curie point of the FeCo-based crystal is higher than the Curie point of the main phase, and the Curie point (magnetic disappearance temperature) of the magnet is FeCo-based. It becomes the Curie point of the crystal.

このような希土類焼結磁石を実現するためには以下の条件が必要である。1)重希土類元素の少なくとも1種がNd2Fe14B系化合物の結晶粒界近傍の結晶粒内側に偏在し、偏在した重希土類元素を含有するNd2Fe14Bの結晶磁気異方性が増加していること。2)FeCo系結晶がNd2Fe14B系化合物とフッ素含有結晶粒を介して不連続に分散して形成され、粒界の一部にFeCo系結晶粒が認められること。3)FeCo系結晶の平均結晶粒径はNd2Fe14B系化合物の平均結晶粒径以下が望ましく、できればFeCo系結晶の平均結晶粒径はNd2Fe14B系化合物の平均結晶粒径の1/10から1/1000が保磁力増加と残留磁束密度を顕著に増加させる範囲である。4)FeCo系結晶粒の重希土類元素濃度は、Nd2Fe14B系化合物粒内に偏在する重希土類元素よりも低い。5)FeCo系結晶の一部の結晶の格子定数は2.851〜3.120nmであり、格子が同一組成のバルクFeCo系結晶よりも拡大している。6)Nd2Fe14B系結晶は磁石内で配向方向がある。7)フッ化物あるいは酸フッ化物はNd2Fe14B系結晶粒の外周よりもFeCo系結晶粒の外周の方が平均して連続性が高く、FeCo系結晶粒の外周の方がフッ化物あるいは酸フッ化物による被覆率が高い。 In order to realize such a rare earth sintered magnet, the following conditions are necessary. 1) At least one kind of heavy rare earth element is unevenly distributed inside the crystal grain in the vicinity of the grain boundary of the Nd 2 Fe 14 B-based compound, and the magnetocrystalline anisotropy of Nd 2 Fe 14 B containing the unevenly distributed heavy rare earth element is That it is increasing. 2) FeCo-based crystals are formed discontinuously dispersed via Nd 2 Fe 14 B-based compounds and fluorine-containing crystal grains, and FeCo-based crystal grains are observed in part of the grain boundaries. 3) The average crystal grain size of the FeCo-based crystal is preferably equal to or less than the average crystal grain size of the Nd 2 Fe 14 B-based compound. If possible, the average crystal grain size of the FeCo-based crystal is equal to the average crystal grain size of the Nd 2 Fe 14 B-based compound. 1/10 to 1/1000 is a range in which the coercive force increase and the residual magnetic flux density are remarkably increased. 4) The concentration of the heavy rare earth element in the FeCo-based crystal grains is lower than that of the heavy rare earth element unevenly distributed in the Nd 2 Fe 14 B-based compound grains. 5) The lattice constant of a part of the FeCo-based crystal is 2.851 to 3.120 nm, and the lattice is larger than that of the bulk FeCo-based crystal having the same composition. 6) Nd 2 Fe 14 B-based crystals have an orientation direction in the magnet. 7) Fluoride or oxyfluoride has an average higher continuity at the outer periphery of the FeCo-based crystal grains than at the outer periphery of the Nd 2 Fe 14 B-based crystal grains, and the outer periphery of the FeCo-based crystal grains is fluoride or High coverage with oxyfluoride.

本実施例のようなFeCo系結晶の粒子が焼結後も焼結体の中に残留できるのは、FeCo系結晶の表面にフッ素含有膜が形成されているためである。フッ素含有膜は1200℃の熱処理でも酸素や炭素を吸収して安定にFeCo系結晶粒表面に成長しており、焼結時にも液相と接しながらフッ素含有膜に保護されてFeCo系結晶が液相と反応せずに存在できる。このため、仮成形前の結晶粒あるいは粉の状態が保たれて焼結され、焼結前後でのFeCo系結晶粒の寸法は大きく変動しない。FeCo系結晶がナノ粒子の場合、一部のFeCo系結晶は凝集しFeCoの結晶が接合しているか、粒子間にフッ素含有相が形成されており、さらに焼結後はフッ素含有相を介してNd2Fe14Bの結晶粒に隣接する。FeCo系結晶がナノ粒子の場合は一つの粒子がFeCo系結晶の単結晶であり、外部の磁場印加によりFeCo系結晶のキュリー点以下であれば異方性を付加することができる。焼結温度近傍でもFeCo系結晶のキュリー温度の方が高い場合も組成を選択すれば可能であり、外部磁界によってFeCo系結晶の磁化状態や格子歪み、その周辺の結晶粒との磁気的な結合状態まで変えることが可能であり、従来のNd2Fe14B焼結磁石では必要のない新しい工程が磁気特性に大きく影響する。これはFeCo系結晶のキュリー温度が高くその磁気物性は印加磁場と熱処理過程により変化するためであり、FeCo系結晶がNd2Fe14B系結晶粒の粒界近傍に成長するため保磁力を決定するNd2Fe14B系結晶粒の粒界近傍の構造や磁気的な結合ならびに異方性などに影響することが重要な知見である。 The reason why FeCo-based crystal particles as in this example can remain in the sintered body after sintering is that a fluorine-containing film is formed on the surface of the FeCo-based crystal. The fluorine-containing film absorbs oxygen and carbon even after heat treatment at 1200 ° C. and stably grows on the surface of the FeCo-based crystal grains, and is protected by the fluorine-containing film while in contact with the liquid phase even during sintering. Can exist without reacting with the phase. For this reason, the state of the crystal grains or powder before temporary forming is maintained and sintered, and the size of the FeCo-based crystal grains before and after sintering does not vary greatly. When the FeCo-based crystals are nanoparticles, some of the FeCo-based crystals are agglomerated and the FeCo crystals are joined, or a fluorine-containing phase is formed between the particles. Adjacent to the crystal grains of Nd 2 Fe 14 B. When the FeCo-based crystal is a nanoparticle, one particle is a single crystal of the FeCo-based crystal, and anisotropy can be added as long as it is below the Curie point of the FeCo-based crystal by applying an external magnetic field. Even if the Curie temperature of the FeCo-based crystal is higher even near the sintering temperature, it is possible by selecting the composition, and the magnetic state and lattice distortion of the FeCo-based crystal and magnetic coupling with the surrounding crystal grains by an external magnetic field It is possible to change the state, and a new process which is not necessary for the conventional Nd 2 Fe 14 B sintered magnet greatly affects the magnetic properties. This is because the Curie temperature of the FeCo crystal is high and its magnetic properties change depending on the applied magnetic field and the heat treatment process, and the coercivity is determined because the FeCo crystal grows near the grain boundary of the Nd 2 Fe 14 B crystal grain. It is an important finding to influence the structure, magnetic coupling, anisotropy, and the like in the vicinity of the grain boundary of the Nd 2 Fe 14 B-based crystal grains.

上記熱処理工程における磁場は1〜200kOeの範囲であり、Nd2Fe14Bのキュリー温度以上FeCo系結晶のキュリー点以下の温度範囲において種々の方向と周波数で磁場を付加することで、FeCo系結晶の磁化状態や格子歪,規則不規則配列ならびに結晶構造を変えることが可能である。磁場中熱処理はNd2Fe14B系結晶との磁気的な結合を強め、FeCo系結晶磁気異方性エネルギー増大,飽和磁束密度増大,キュリー点上昇などの磁気物性向上に寄与する。 The magnetic field in the heat treatment step is in the range of 1 to 200 kOe, and by adding a magnetic field at various directions and frequencies in a temperature range from the Curie temperature of Nd 2 Fe 14 B to the Curie point of the FeCo-based crystal, the FeCo-based crystal It is possible to change the magnetization state, lattice distortion, ordered irregular arrangement, and crystal structure of. Heat treatment in a magnetic field strengthens the magnetic coupling with the Nd 2 Fe 14 B-based crystal and contributes to the improvement of magnetic properties such as an increase in magnetic anisotropy energy of FeCo-based crystal, an increase in saturation magnetic flux density, and an increase in Curie point.

純度99.9%のFeを不活性ガス雰囲気中で蒸発させ、粒径30nmのナノ粒子を作成し、TbF系溶液中に沈降させる。この溶液に粒径3μmのNd2Fe14B粉を混合する。Feナノ粒子とNd2Fe14B粉との混合比は1:10である。このようなスラリー状の溶液と粉の混合物を金型に挿入し、磁場中成形後、1100℃で焼結する。さらに600℃で時効処理後急冷し、焼結磁石を得た。粉体作成から焼結までを不活性ガス雰囲気または真空雰囲気とすることにより、酸化を抑制している。 Fe having a purity of 99.9% is evaporated in an inert gas atmosphere to form nanoparticles having a particle size of 30 nm and precipitated in a TbF-based solution. Nd 2 Fe 14 B powder having a particle diameter of 3 μm is mixed with this solution. The mixing ratio of Fe nanoparticles and Nd 2 Fe 14 B powder is 1:10. Such a mixture of slurry-like solution and powder is inserted into a mold, molded in a magnetic field, and then sintered at 1100 ° C. Furthermore, it was rapidly cooled after aging treatment at 600 ° C. to obtain a sintered magnet. Oxidation is suppressed by making an inert gas atmosphere or a vacuum atmosphere from powder preparation to sintering.

焼結後の磁石は、正方晶構造のNd2Fe14B系結晶粒,立方晶あるいは正方晶のFe及び粒界相のフッ化物,酸フッ化物,希土類酸化物などから構成され、Nd2Fe14B系結晶粒とFe結晶粒の間にはフッ素含有相が確認でき、Nd2Fe14B系結晶粒にはTbの偏在が認められる。Feの結晶内に含有する酸素と炭素の濃度は20ppm以下である。酸素と炭素の合計濃度が20ppmを超えると残留磁束密度の値が低下するため、Coを添加してFeCo系結晶をFeの代わりに使用することが望ましい。酸素と炭素の濃度が合計10ppmの場合、焼結磁石の磁気特性は残粒磁束密度1.65T,保磁力15kOeでありエネルギー積が67MGOeである。この特性はNd2Fe14B磁石の理論値を超える特性であり、種々の磁気回路に使用することが可能である。 The sintered magnet is composed of tetragonal Nd 2 Fe 14 B-based crystal grains, cubic or tetragonal Fe, and grain boundary phase fluoride, oxyfluoride, rare earth oxide, etc., and Nd 2 Fe A fluorine-containing phase can be confirmed between the 14 B system crystal grains and the Fe crystal grains, and uneven distribution of Tb is observed in the Nd 2 Fe 14 B system crystal grains. The concentration of oxygen and carbon contained in the Fe crystal is 20 ppm or less. When the total concentration of oxygen and carbon exceeds 20 ppm, the value of the residual magnetic flux density decreases. Therefore, it is desirable to add Co and use an FeCo-based crystal instead of Fe. When the concentration of oxygen and carbon is 10 ppm in total, the magnetic characteristics of the sintered magnet are a residual magnetic flux density of 1.65 T, a coercive force of 15 kOe, and an energy product of 67 MGOe. This characteristic exceeds the theoretical value of the Nd 2 Fe 14 B magnet and can be used in various magnetic circuits.

このようなNd2Fe14B磁石の理論値を超える磁気特性を得るためには以下の条件が必要である。1)正方晶あるいは立方晶のFeあるいはFeCo系の粒子が分散して存在すること。2)Nd2Fe14B系結晶粒に重希土類元素の偏在があること。3)FeあるいはFeCo系結晶粒子内の重希土類元素よりもNd2Fe14B系結晶粒内の重希土類元素濃度の方が高いこと。4)FeあるいはFeCo系結晶粒とNd2Fe14B系結晶粒の間にはフッ素含有相が成長していること。5)FeあるいはFeCo系結晶粒径はNd2Fe14B系結晶粒径よりも平均的に小さいこと。6)フッ素含有相の体積率はFeあるいはFeCo系結晶粒の体積率よりも小さいこと。7)フッ素含有相はNd2Fe14B系結晶粒外周よりもFeあるいはFeCo系結晶粒外周側で連続性が高いこと。 In order to obtain magnetic characteristics exceeding the theoretical value of such an Nd 2 Fe 14 B magnet, the following conditions are required. 1) Tetragonal or cubic Fe or FeCo particles are present in a dispersed state. 2) Heavy rare earth elements are unevenly distributed in the Nd 2 Fe 14 B-based crystal grains. 3) The heavy rare earth element concentration in the Nd 2 Fe 14 B crystal grains is higher than the heavy rare earth element in the Fe or FeCo crystal grains. 4) A fluorine-containing phase has grown between the Fe or FeCo crystal grains and the Nd 2 Fe 14 B crystal grains. 5) The Fe or FeCo crystal grain size should be smaller than the Nd 2 Fe 14 B crystal grain size on average. 6) The volume fraction of the fluorine-containing phase is smaller than the volume fraction of Fe or FeCo-based crystal grains. 7) The fluorine-containing phase has higher continuity on the outer periphery side of Fe or FeCo-based crystal grains than on the outer periphery of Nd 2 Fe 14 B-based crystal grains.

これらの条件を満足することでNd2Fe14B磁石の理論値を超えることが可能であり、焼結磁石の組成はNd2〜11原子%,重希土類元素0.01〜1原子%,フッ素0.001〜0.1原子%,Fe5〜92%,Co0.1〜90%である。重希土類元素はNd2Fe14B系結晶粒の中心からみた外周側で最も高く、中心部の2倍から100倍となり、フッ素は二粒界あるいは粒界三重点などの結晶粒界部に偏在し一部は酸フッ化物を形成する。この酸フッ化物は急冷処理により立方晶構造を有し、一部の立方晶酸フッ化物はFe,FeCoあるいはNd2Fe14B系結晶粒と整合界面を形成する。 By satisfying these conditions, it is possible to exceed the theoretical value of the Nd 2 Fe 14 B magnet, the composition of the sintered magnet is Nd 2 to 11 atomic%, heavy rare earth element 0.01 to 1 atomic%, fluorine 0 0.001 to 0.1 atomic%, Fe 5 to 92%, and Co 0.1 to 90%. Heavy rare earth elements are the highest on the outer peripheral side seen from the center of Nd 2 Fe 14 B type crystal grains, and are 2 to 100 times the center part, and fluorine is unevenly distributed at grain boundary parts such as double grain boundaries or triple grain boundary points. And partly forms oxyfluoride. This oxyfluoride has a cubic structure by rapid cooling, and some of the cubic oxyfluoride forms a coherent interface with Fe, FeCo or Nd 2 Fe 14 B-based crystal grains.

本実施例のようにFeを含有するナノ粒子とフッ素含有相を形成させた磁石について種々のナノ粒子と主相の希土類含有化合物を用いて検討した例を表1−1,表1−2に示す。平均ナノ粒子径が1000nmを超える例ではナノ粒子が凝集して一部合体した粒子になっている。フッ素含有相には酸フッ化物が認められ、フッ素含有相の体積率は0.5〜30%の範囲である。また結晶粒界近傍には希土類元素などの偏在が認められ、ナノ粒子中の平均酸素濃度は希土類含有化合物(母相)の平均酸素濃度よりも低く、ナノ粒子界面近傍のフッ素濃度は希土類含有化合物間結晶粒界近傍のフッ素濃度よりも小さい。キュリー温度は755〜1210KでありNd2Fe14Bの値(588K)よりも高い。 Table 1-1 and Table 1-2 show examples in which various nanoparticles and main-phase rare earth-containing compounds were used for magnets containing Fe-containing nanoparticles and a fluorine-containing phase as in this example. Show. In an example in which the average nanoparticle diameter exceeds 1000 nm, the particles are aggregated and partially combined. An oxyfluoride is observed in the fluorine-containing phase, and the volume fraction of the fluorine-containing phase is in the range of 0.5 to 30%. In addition, rare earth elements are unevenly distributed in the vicinity of the grain boundaries, the average oxygen concentration in the nanoparticles is lower than the average oxygen concentration of the rare earth-containing compound (matrix), and the fluorine concentration in the vicinity of the nanoparticle interface is the rare earth-containing compound. It is smaller than the fluorine concentration in the vicinity of the intergranular grain boundary. The Curie temperature is 755 to 1210 K, which is higher than the value of Nd 2 Fe 14 B (588 K).

本実施例の典型的な組織を図6に示す。図6は磁石断面組織であり、ナノ粒子が1、主相である希土類含有化合物が2、フッ素含有相が3である。結晶粒界相であるフッ素含有相の一部はフッ素を含有しない希土類リッチ相であっても良い。図6に示すようにナノ粒子の一部が主相である希土類含有化合物に接触しており、ナノ粒子と希土類含有化合物が磁気的に結合する。フッ素化合物と接触したナノ粒子の一部は希土類含有化合物と接触しており、ナノ粒子と希土類含有化合物との接触面積が大きくなるとともに磁気特性が向上する傾向がある。ナノ粒子体積率が50%以下では磁気特性がナノ粒子体積率と共に増加傾向を示すが、50%超えるとナノ粒子が希土類含有化合物粒子の周囲を完全に被覆した組織となり保磁力が低下する傾向を示す。したがってナノ粒子体積率は50%未満が望ましい。   A typical structure of this example is shown in FIG. FIG. 6 shows the cross-sectional structure of the magnet, with 1 nanoparticle, 2 rare earth-containing compound as the main phase, and 3 fluorine-containing phase. A part of the fluorine-containing phase that is a grain boundary phase may be a rare earth-rich phase that does not contain fluorine. As shown in FIG. 6, some of the nanoparticles are in contact with the rare earth-containing compound that is the main phase, and the nanoparticles and the rare earth-containing compound are magnetically coupled. Some of the nanoparticles in contact with the fluorine compound are in contact with the rare earth-containing compound, and there is a tendency that the contact area between the nanoparticle and the rare earth-containing compound is increased and the magnetic properties are improved. When the nanoparticle volume fraction is 50% or less, the magnetic properties tend to increase with the nanoparticle volume fraction. However, when the nanoparticle volume fraction exceeds 50%, the nanoparticle becomes a structure completely covering the periphery of the rare earth-containing compound particles, and the coercive force tends to decrease. Show. Therefore, the volume fraction of nanoparticles is desirably less than 50%.

Figure 2012124189
Figure 2012124189

Figure 2012124189
Figure 2012124189

純度99.9%のFe−30%Co合金を不活性ガス雰囲気中で蒸発させ、粒径30nmのナノ粒子を作成し、TbF系ゲルを含有する鉱油中に沈降させる。この溶液に粒径3μmのNd2Fe14B粉をナノ粒子が分散できるような分散剤を添加して凝集を防止して混合する。Fe−30%Coナノ粒子とNd2Fe14B粉との混合比は1:10である。このようなスラリー状の溶液と粉の混合物を金型に挿入し、磁場中成形後、1000℃で焼結する。さらに600℃で時効処理後急冷し、焼結磁石を得た。粉体作成から焼結までを不活性ガス雰囲気または真空雰囲気とすることにより、酸化を抑制している。 A 99.9% pure Fe-30% Co alloy is evaporated in an inert gas atmosphere to produce nanoparticles with a particle size of 30 nm and precipitated into mineral oil containing a TbF-based gel. To this solution, Nd 2 Fe 14 B powder having a particle size of 3 μm is added with a dispersing agent capable of dispersing nanoparticles and mixed to prevent aggregation. The mixing ratio of Fe-30% Co nanoparticles and Nd 2 Fe 14 B powder is 1:10. Such a mixture of a slurry-like solution and powder is inserted into a mold, molded in a magnetic field, and then sintered at 1000 ° C. Furthermore, it was rapidly cooled after aging treatment at 600 ° C. to obtain a sintered magnet. Oxidation is suppressed by making an inert gas atmosphere or a vacuum atmosphere from powder preparation to sintering.

焼結後の磁石は、正方晶構造のNd2Fe14B系結晶粒,立方晶あるいは正方晶のFeCo系結晶及び結晶粒界相のフッ化物,酸フッ化物,希土類酸化物などから構成され、Nd2Fe14B系結晶粒とFeCo系結晶粒の間にはフッ素含有相が確認でき、Nd2Fe14B系結晶粒にはTbの偏在が認められる。焼結磁石の磁気特性は残粒磁束密度1.7T(17kg),保磁力19kOeでありエネルギー積が70MGOeである。この特性はNd2Fe14B磁石の理論値である64MGOe超える特性であり、種々の磁気回路に使用することが可能である。またキュリー点は590〜1100KでありNd2Fe14Bの値よりも高く、磁石の耐熱性が高い。 The sintered magnet is composed of Nd 2 Fe 14 B crystal grains having a tetragonal structure, cubic or tetragonal FeCo crystals, and fluoride, oxyfluoride, rare earth oxide, etc. A fluorine-containing phase can be confirmed between the Nd 2 Fe 14 B crystal grains and the FeCo crystal grains, and Tb is unevenly distributed in the Nd 2 Fe 14 B crystal grains. The magnetic characteristics of the sintered magnet are a residual magnetic flux density of 1.7 T (17 kg), a coercive force of 19 kOe, and an energy product of 70 MGOe. This characteristic exceeds 64 MGOe, which is the theoretical value of the Nd 2 Fe 14 B magnet, and can be used for various magnetic circuits. The Curie point is 590 to 1100 K, which is higher than the value of Nd 2 Fe 14 B, and the heat resistance of the magnet is high.

Nd2Fe14B系結晶に対するFe−30%Co合金結晶の体積率と残留磁束密度Br,保磁力Hcとの関係を図1に示す。Fe−30%Co合金結晶の体積率が1%以上90%以下で保磁力及び残留磁束密度の増加が認められる。また、(Nd90Dy10)2Fe14B結晶に対する、Fe−30%Co合金結晶の体積率と残留磁束密度Br,保磁力Hcとの関係を図2に示す。Fe−30%Co合金結晶の体積率が1%以上90%以下で保磁力及び残留磁束密度の増加が認められる。90%を超えるとFeCo系結晶とNdFeB系化合物の磁気的結合による拘束が働かずFeCo系結晶の磁化が反転しやすいためである。 FIG. 1 shows the relationship between the volume ratio of the Fe-30% Co alloy crystal, the residual magnetic flux density Br, and the coercive force Hc with respect to the Nd 2 Fe 14 B-based crystal. When the volume fraction of the Fe-30% Co alloy crystal is 1% or more and 90% or less, the coercive force and the residual magnetic flux density are increased. FIG. 2 shows the relationship between the volume fraction of Fe-30% Co alloy crystal, the residual magnetic flux density Br, and the coercive force Hc with respect to the (Nd 90 Dy 10 ) 2 Fe 14 B crystal. When the volume fraction of the Fe-30% Co alloy crystal is 1% or more and 90% or less, the coercive force and the residual magnetic flux density are increased. This is because if it exceeds 90%, the magnetic coupling between the FeCo-based crystal and the NdFeB-based compound does not work, and the magnetization of the FeCo-based crystal is easily reversed.

Nd2Fe14BにFe−30%Co合金結晶を添加する場合、被覆するフッ化物の体積率も重要な因子であり、図3に示すように残留磁束密度Br,保磁力Hcはフッ化物体積に依存する。フッ化物体積はFeCo系結晶の体積に対し0.01〜1の範囲で保磁力及び残留磁束密度の増大効果がある。したがってフッ化物体積はFeCo系結晶に対して1%〜100%が望ましい。 When Fe-30% Co alloy crystal is added to Nd 2 Fe 14 B, the volume fraction of the fluoride to be coated is also an important factor. As shown in FIG. 3, the residual magnetic flux density Br and the coercive force Hc are the fluoride volume. Depends on. The fluoride volume has an effect of increasing the coercive force and residual magnetic flux density in the range of 0.01 to 1 with respect to the volume of the FeCo-based crystal. Accordingly, the fluoride volume is desirably 1% to 100% with respect to the FeCo-based crystal.

残留磁束密度を増加させるのは、Nd2Fe14B粒とFe−Co粒が磁気的な結合をもっているためであり、磁気特性向上には、結晶粒径やFeCo系結晶の組成,重希土類元素の組成分布,粒界相の構造と組成ならびに体積率,配向性,結晶粒形状などが影響する。Fe−Co粒の結晶粒径はNd2Fe14B粒の結晶粒径よりも小さい方が望ましい。Fe−Co粒の結晶粒径がNd2Fe14B粒よりも大きくなるとFe−Co粒とNd2Fe14B粒間の拡散が容易になり、Nd2Fe14Bの保磁力が低下する。 The reason why the residual magnetic flux density is increased is that the Nd 2 Fe 14 B grains and the Fe—Co grains have a magnetic coupling. For improving the magnetic characteristics, the crystal grain size, the composition of the FeCo-based crystal, the heavy rare earth element are used. The composition distribution, grain boundary phase structure and composition, volume fraction, orientation, crystal grain shape, etc. are affected. The crystal grain size of the Fe—Co grains is preferably smaller than the crystal grain size of the Nd 2 Fe 14 B grains. Crystal grain size of the Fe-Co particles is facilitated diffusion between Nd 2 Fe 14 becomes larger than the B particles when Fe-Co particles and Nd 2 Fe 14 B grains, the coercive force of the Nd 2 Fe 14 B is decreased.

本実施例のように、粒径30nmのナノ粒子表面にはTbF系ゲルを含有する鉱油中に沈降させた時にTb−F系膜がナノ粒子表面に形成され、ナノ粒子表面のフッ化物被覆率は後に添加混合したNd2Fe14B粒のフッ化物表面被覆率よりも高い。したがって、Tb及びフッ素はFeCo系ナノ粒子近傍で焼結後も高い濃度で検出される傾向があり、Fe−Co近傍のNd2Fe14B粒はTb偏在が顕著となることから結晶磁気異方性が大きくなる。Fe−Co粒単独では軟磁気特性を示すが、Tbが偏在化したNd2Fe14B粒が粒界を介して隣接すること及びフッ素含有相による歪み導入で静磁気結合などの磁気的な結合によりFe−Co粒の磁化がNd2Fe14B粒の磁化あるいは磁場,磁気的結合により固定され磁化反転が抑制され軟磁気的な性質が変化する。粒界は希土類元素及びフッ素含有のフッ化物または酸フッ化物あるいはこれらの相に水素,炭素,窒素あるいは鉄,コバルトなど磁粉構成元素または他の遷移金属が含有していても良く、粒界相の幅は0.1〜100nmである。酸フッ化物粒界相の構造は主に立方晶であり、その一部はFeCo系結晶あるいはNd2Fe14B系結晶との格子整合が認められる。 As in this example, a Tb-F film was formed on the nanoparticle surface when precipitated in mineral oil containing a TbF-based gel on the surface of the nanoparticle having a particle size of 30 nm, and the fluoride coverage on the nanoparticle surface. Is higher than the fluoride surface coverage of Nd 2 Fe 14 B grains added and mixed later. Therefore, Tb and fluorine tend to be detected at a high concentration in the vicinity of the FeCo-based nanoparticles even after sintering, and the Nd 2 Fe 14 B grains in the vicinity of Fe—Co have a pronounced Tb uneven distribution. Increases sex. Fe-Co grains alone show soft magnetic properties, but magnetic coupling such as magnetostatic coupling is caused by the fact that Nd 2 Fe 14 B grains in which Tb is unevenly distributed are adjacent via grain boundaries and strain is introduced by a fluorine-containing phase. As a result, the magnetization of the Fe—Co grains is fixed by the magnetization, magnetic field, or magnetic coupling of the Nd 2 Fe 14 B grains, the magnetization reversal is suppressed, and the soft magnetic properties change. The grain boundary may contain rare earth elements and fluorine-containing fluorides or oxyfluorides, or magnetic powder constituent elements such as hydrogen, carbon, nitrogen, iron, cobalt, or other transition metals in these phases. The width is 0.1 to 100 nm. The structure of the oxyfluoride grain boundary phase is mainly cubic, and a part of the structure is lattice-matched with FeCo crystal or Nd 2 Fe 14 B crystal.

図4及び図5に磁気特性とFeCo系結晶のCo濃度との関係を示す。Co濃度が0.1原子%以上で保磁力及び残留磁束密度が増大する。また図5より、この増大効果はCo濃度が90原子%以下の範囲で認められる。FeCo系結晶のCo濃度は0.1〜90原子%が望ましい。   4 and 5 show the relationship between the magnetic characteristics and the Co concentration of the FeCo-based crystal. When the Co concentration is 0.1 atomic% or more, the coercive force and the residual magnetic flux density increase. Further, from FIG. 5, this increase effect is recognized when the Co concentration is 90 atomic% or less. The Co concentration of the FeCo-based crystal is preferably 0.1 to 90 atomic%.

Coが0.1原子%未満の場合、FeCo系結晶表面に鉱油などに含有する炭素と反応し易くなり磁化が減少する。Co濃度が0.001の場合FeCo系結晶ナノ粒子の磁化がバルク値よりも10〜30%減少しているため、Nd2Fe14B焼結体の残留磁化の増加効果は小さい。残留磁化の増加効果が顕著となるのはFeCo系結晶のCo濃度が0.1〜90%であり、この範囲のCo濃度であればFeCo系結晶ナノ粒子の飽和磁化がバルク値の90%以上の値を示し、Nd2Fe14B系焼結磁石の残留磁束密度を増加でき、重希土類のNd2Fe14B系結晶粒内偏在とフッ素含有相によるFeCo系結晶粒とNd2Fe14B系結晶粒間の磁区分断により上記のような残留磁束密度増加と保磁力増加を両立できる。 When Co is less than 0.1 atomic%, the FeCo crystal surface easily reacts with carbon contained in mineral oil or the like, and magnetization is reduced. When the Co concentration is 0.001, the magnetization of the FeCo-based crystal nanoparticles is reduced by 10 to 30% from the bulk value, so the effect of increasing the residual magnetization of the Nd 2 Fe 14 B sintered body is small. The effect of increasing the remanent magnetization becomes remarkable when the Co concentration of the FeCo-based crystal is 0.1 to 90%. If the Co concentration is within this range, the saturation magnetization of the FeCo-based crystal nanoparticles is 90% or more of the bulk value. The residual magnetic flux density of the Nd 2 Fe 14 B-based sintered magnet can be increased, and the FeCo-based crystal grains and Nd 2 Fe 14 B due to the uneven distribution of heavy rare-earth Nd 2 Fe 14 B-based grains and fluorine-containing phases The increase in the residual magnetic flux density and the increase in the coercive force as described above can be achieved by the magnetic segmentation between the system crystal grains.

Fe−40重量%Co合金を真空溶解し高周波プラズマに曝すことにより、クラスターを作成する。冷却したクラスターは壁面などから回収し平均粒径30nmである。粒子形状は球形状あるいは楕円または扁平体である。このFe−40%Co粒子を大気に曝すことなくTbF3が溶解したアルコール中に沈め、フッ化アンモニウムを0.1%混合し、循環式ビーズミル装置により170℃に加熱する。ビーズミル装置内に一軸性の磁場を印加し、粒子に異方性を付加しながら拡散させることにより、磁気異方性が付加された粉末が作成される。この粉末を金型に大気に曝さずにNd2Fe14B系結晶粒とともに挿入し、磁場中成形することにより密度60%の成形体が作成できる。この成形体を1070℃で磁場中焼結後、磁場中で時効急冷することにより、強磁性相の磁気結合を高めた異方性焼結磁石を作成できる。Fe−40重量%Co合金粉とNd2Fe14B系結晶粒の粉の比率が1:3、TbF系フッ化物重量が0.1wt%の場合、残留磁束密度1.9T,保磁力25kOe,キュリー温度850〜1210Kの焼結磁石が作製できる。 A Fe-40 wt% Co alloy is melted in vacuum and exposed to high frequency plasma to form a cluster. The cooled cluster is recovered from the wall surface or the like and has an average particle size of 30 nm. The particle shape is spherical, elliptical or flat. The Fe-40% Co particles are submerged in an alcohol in which TbF 3 is dissolved without being exposed to the atmosphere, and 0.1% ammonium fluoride is mixed and heated to 170 ° C. by a circulating bead mill apparatus. By applying a uniaxial magnetic field in the bead mill apparatus and diffusing the particles while adding anisotropy, a powder with added magnetic anisotropy is produced. By inserting this powder into the mold without exposure to the atmosphere together with Nd 2 Fe 14 B-based crystal grains and molding in a magnetic field, a compact with a density of 60% can be produced. An anisotropic sintered magnet with enhanced magnetic coupling of the ferromagnetic phase can be produced by sintering this molded body at 1070 ° C. in a magnetic field and then aging and quenching in the magnetic field. When the ratio of Fe-40 wt% Co alloy powder to Nd 2 Fe 14 B crystal grains is 1: 3 and the TbF fluoride weight is 0.1 wt%, the residual magnetic flux density is 1.9 T, the coercive force is 25 kOe, A sintered magnet having a Curie temperature of 850 to 1210 K can be produced.

このようなエネルギー積60MGOeを超え、かつ保磁力が15kOe以上の磁石を作製するには、以下の条件を満足する必要がある。1)主相が正方晶構造のRe2Fe14B(ReはYを含む希土類元素から選ばれた少なくとも1種の元素)であり、主相とは異なる組成の強磁性相として焼結磁石内で飽和磁化が最大である立方晶系のFeCo系結晶粒が形成されていること。焼結磁石内で飽和磁束密度が高いということは、焼結磁石の磁気モーメントや磁気構造を中性子線や放射光を使用して確認でき、このFeCo系結晶の磁化が単独の結晶粒で存在するよりも磁気的な拘束を受けて焼結磁石の残留磁束密度を増加させていることが判明している。 In order to produce such a magnet having an energy product exceeding 60 MGOe and a coercive force of 15 kOe or more, the following conditions must be satisfied. 1) The main phase is tetragonal structure Re 2 Fe 14 B (Re is at least one element selected from rare earth elements including Y), and the inside of the sintered magnet as a ferromagnetic phase having a composition different from that of the main phase. Cubic FeCo crystal grains having the maximum saturation magnetization are formed. The fact that the saturation magnetic flux density is high in the sintered magnet can confirm the magnetic moment and magnetic structure of the sintered magnet using neutron rays and synchrotron radiation, and the magnetization of this FeCo-based crystal exists as a single crystal grain. It has been found that the residual magnetic flux density of the sintered magnet is increased by being more magnetically restrained.

2)FeCo系結晶の組成はCoが0.1〜90原子%が望ましく、FeCo系結晶粒はフッ素含有相であるReOFやReF系フッ化物などのフッ素含有相で被覆されている。その被覆率は10〜100%である。フッ素含有相は焼結温度である1070℃でのFeCo系結晶とRe2Fe14B間のFeやCo原子の相互拡散を防止し、重希土類をRe2Fe14Bの結晶粒界近傍に偏在化させる役目を担っている。FeCo系結晶のCo濃度が0.1原子%未満あるいは質量分析の測定感度以下の場合、焼結磁石の残留磁束密度増加効果は顕著ではない。Coを含有しないFeナノ粒子と(Nd,Dy)2Fe14Bの混合でTbF系フッ化物0.1wt%を用いて焼結させた場合、残留磁束密度は減少する。ナノ粒子の表面は活性なため酸化や炭化など磁化が減少する反応をできるだけ抑制する必要がある。このような酸化や炭化は焼結時及び焼結前の工程でも重要であり、Co添加によりこれらの反応は抑制され、フッ化物による還元反応の進行により磁化が増加し、焼結後もNdFeB系結晶の飽和磁化を超える値を示す。このような高飽和磁化のFeCo系結晶とNdFeB系結晶がフッ素含有粒界相を介して静磁エネルギーを低減するように磁場中(10〜100kOe)焼結及び磁場中(1〜100kOe)時効冷却工程を採用することで、磁気的に結合し、NdFeB系結晶の粒界近傍に重希土類元素が偏在することにより高保磁力と高残留磁束密度が達成できる。磁場中焼結あるいは時効処理により磁歪により格子が歪み、磁気異方性が強められる。従って磁歪定数が零ではないFeCo系結晶を使用することが重要であり、NdFeB系結晶のキュリー点よりも高くFeCo系結晶のキュリー温度以下の温度範囲で1kOe以上の磁場を印加することで磁場中熱処理による磁気異方性増大をもたらし、エネルギー積が1〜20%増加する。磁気特性が焼結温度あるいは時効熱処理温度よりも高いキュリー点であるため、印加磁場によりFeCo系結晶に誘導磁気異方性が生じ、その異方性の影響によりNdFeB系結晶との磁気的な結合が強められる。ナノ粒子は焼結前の仮成形時に粒径が大きなNdFeB系結晶粉の隙間に容易に侵入し、NdFeB系結晶粉の磁場配向を阻害しない。NdFeB系結晶粉の平均粒径よりもFeCo系結晶の平均粒径が大きい場合、NdFeB系結晶粉の隙間に入るFeCo系結晶は少なく、NdFeB系結晶粉の磁場配向が乱れるため、平均粒径が前記のように大きい場合は特にFeCo系結晶の体積率が30%以上では焼結後の磁気特性が向上しにくい。FeCo系結晶にはbcc安定化元素を含む遷移元素が添加されていても良い。また、FeCo系結晶には水素,フッ素,窒素が含有されていても立方晶構造が維持される範囲であれば上記特性と同様の結果が得られる。またフッ素含有相には窒素,炭素,酸素,水素以外に磁石構成成分やCu,Zr,Al,Mn,Ti,Ag,Sn,Ga,Ge,Biなどの遷移金属が含有されていても特に問題はない。Coが90%を超えるとFeCo系結晶粒の一部にhcp構造やfcc構造が認められエネルギー積の大幅な増加は困難であった。フッ素含有相の一部が立方晶系でかつFeCo相がbcc構造、NdFeB系結晶粒が重希土類元素の偏在を有するbct構造の場合が最もエネルギー積が高い。 2) The composition of the FeCo-based crystal is desirably 0.1 to 90 atomic% of Co, and the FeCo-based crystal grains are coated with a fluorine-containing phase such as ReOF or ReF-based fluoride which is a fluorine-containing phase. The coverage is 10 to 100%. The fluorine-containing phase prevents interdiffusion of Fe and Co atoms between the FeCo-based crystal and Re 2 Fe 14 B at the sintering temperature of 1070 ° C., and the heavy rare earth is unevenly distributed in the vicinity of the Re 2 Fe 14 B grain boundary It plays a role to make it. When the Co concentration of the FeCo-based crystal is less than 0.1 atomic% or less than the measurement sensitivity of mass spectrometry, the effect of increasing the residual magnetic flux density of the sintered magnet is not remarkable. When the Fe nanoparticles not containing Co and (Nd, Dy) 2 Fe 14 B are mixed and sintered with 0.1 wt% of TbF fluoride, the residual magnetic flux density decreases. Since the surface of the nanoparticle is active, it is necessary to suppress reactions such as oxidation and carbonization that reduce magnetization as much as possible. Such oxidation and carbonization are also important during the sintering and pre-sintering processes. These reactions are suppressed by the addition of Co, the magnetization increases due to the progress of the reduction reaction with fluoride, and the NdFeB system after sintering. The value exceeds the saturation magnetization of the crystal. Sintering in a magnetic field (10 to 100 kOe) and aging cooling in a magnetic field (1 to 100 kOe) so that such highly saturated magnetization FeCo-based crystals and NdFeB-based crystals reduce magnetostatic energy through the fluorine-containing grain boundary phase. By adopting the process, it is possible to achieve a high coercive force and a high residual magnetic flux density by magnetically coupling and the heavy rare earth element being unevenly distributed in the vicinity of the grain boundary of the NdFeB-based crystal. The lattice is distorted by magnetostriction due to sintering in magnetic field or aging treatment, and magnetic anisotropy is strengthened. Therefore, it is important to use an FeCo-based crystal whose magnetostriction constant is not zero. In the magnetic field, a magnetic field of 1 kOe or higher is applied in a temperature range higher than the Curie temperature of the NdFeB-based crystal and lower than the Curie temperature of the FeCo-based crystal. Increase in magnetic anisotropy due to heat treatment increases energy product by 1-20%. Since the magnetic property is a Curie point higher than the sintering temperature or the aging heat treatment temperature, induced magnetic anisotropy occurs in the FeCo-based crystal by the applied magnetic field, and magnetic coupling with the NdFeB-based crystal is caused by the effect of the anisotropy. Is strengthened. The nanoparticles easily penetrate into the gaps of the NdFeB-based crystal powder having a large particle size during temporary molding before sintering, and do not hinder the magnetic field orientation of the NdFeB-based crystal powder. When the average particle size of the FeCo-based crystal is larger than the average particle size of the NdFeB-based crystal powder, there are few FeCo-based crystals entering the gaps of the NdFeB-based crystal powder, and the magnetic field orientation of the NdFeB-based crystal powder is disturbed. When it is large as described above, the magnetic properties after sintering are difficult to improve particularly when the volume ratio of the FeCo-based crystal is 30% or more. A transition element containing a bcc stabilizing element may be added to the FeCo-based crystal. Further, even if the FeCo-based crystal contains hydrogen, fluorine and nitrogen, the same result as the above can be obtained as long as the cubic structure is maintained. In addition to nitrogen, carbon, oxygen, and hydrogen, the fluorine-containing phase may contain magnet constituents and transition metals such as Cu, Zr, Al, Mn, Ti, Ag, Sn, Ga, Ge, and Bi. There is no. When Co exceeded 90%, hcp structure and fcc structure were recognized in a part of FeCo-based crystal grains, and it was difficult to significantly increase the energy product. The energy product is highest in the case where a part of the fluorine-containing phase is a cubic system, the FeCo phase is a bcc structure, and the NdFeB system crystal grains are unevenly distributed with heavy rare earth elements.

3)FeCo系結晶構造は4回対称性をもった立方晶系である。結晶構造は隣接するフッ素含有相の組成や結晶構造に依存しbccやbctの不規則相あるいは規則相となる。焼結後に立方晶系のFeCo系結晶が高飽和磁化の磁気特性で残留できるのは、フッ素含有相に被覆され焼結時のFeやCoの拡散反応が抑制されているためである。フッ素含有相に残留する重希土類元素は、NdFeB系結晶の粒界近傍に相互拡散して偏在し、FeCo系結晶内にはほとんど拡散しないことから、フッ素含有結晶粒界がFeCo系結晶粒とNdFeB系結晶の結晶粒の間にある場合、重希土類元素の濃度分布は結晶粒界を中心として粒界と直行方向に非対称の濃度分布を示し、NdFeB系結晶の結晶粒側で高く、FeCo系結晶粒内の重希土類元素の濃度は結晶粒中心よりも低い。また、フッ素濃度はNdFeB系結晶の結晶粒間では低く、FeCo系結晶粒近傍の結晶粒界で高い。   3) The FeCo-based crystal structure is a cubic system with fourfold symmetry. The crystal structure depends on the composition and crystal structure of the adjacent fluorine-containing phase and becomes an irregular or regular phase of bcc or bct. The reason why the cubic FeCo crystal can remain in the magnetic characteristics of high saturation magnetization after sintering is that the diffusion reaction of Fe and Co during sintering is suppressed by being covered with the fluorine-containing phase. The heavy rare earth element remaining in the fluorine-containing phase is unevenly diffused and unevenly distributed in the vicinity of the grain boundary of the NdFeB-based crystal, and hardly diffuses in the FeCo-based crystal. Therefore, the fluorine-containing crystal grain boundary is formed of FeCo-based crystal grains and NdFeB. When it is between the crystal grains of the system crystal, the concentration distribution of the heavy rare earth element shows an asymmetric concentration distribution in the direction perpendicular to the grain boundary centering on the crystal grain boundary, and is high on the crystal grain side of the NdFeB system crystal, The concentration of heavy rare earth elements in the grains is lower than the center of the grains. The fluorine concentration is low between the crystal grains of the NdFeB-based crystal and is high at the crystal grain boundary near the FeCo-based crystal grain.

4)本実施例の焼結磁石はFeCo系結晶粒を含んでいるため、焼結磁石のキュリー温度が850〜1230Kであり、Nd2Fe14Bにおけるキュリー温度(588K)よりも高く、Nd2Fe14Bのキュリー点よりも50K高温側における温度での磁化が0.1emu/g〜150emu/gである。このような高キュリー温度を示すFeCo系結晶粒がフッ素含有粒界で隔てられたRe2Fe14B系結晶の磁化と静磁気結合あるいは交換結合、フッ素イオンや酸素イオンを介した超交換相互作用などの磁化を反転しにくくする結合または磁壁移動の抑制により高い残留磁束密度を有するようになる。時効熱処理後の急冷時に磁場を着磁方向に印加することによりFeCo系結晶粒に一軸異方性が誘導され、減磁曲線の角型性が向上しキュリー点が上昇する。 4) Since the sintered magnet of this example contains FeCo-based crystal grains, the Curie temperature of the sintered magnet is 850 to 1230 K, which is higher than the Curie temperature (588 K) in Nd 2 Fe 14 B, and Nd 2 The magnetization at a temperature 50K higher than the Curie point of Fe 14 B is 0.1 emu / g to 150 emu / g. Magnetization and magnetostatic or exchange coupling of a Re 2 Fe 14 B-based crystal in which FeCo-based crystal grains exhibiting such a high Curie temperature are separated by a fluorine-containing grain boundary, and super-exchange interaction via fluorine ions and oxygen ions Thus, a high residual magnetic flux density is obtained by suppressing the coupling or the domain wall movement that makes it difficult to reverse the magnetization. By applying a magnetic field in the magnetization direction during rapid cooling after aging heat treatment, uniaxial anisotropy is induced in the FeCo-based crystal grains, the squareness of the demagnetization curve is improved, and the Curie point is raised.

5)FeCo系結晶粒子は焼結磁石の表面あるいは焼結磁石内部の粒界三重点や二粒子粒界のいずれかにNd2Fe14B系結晶粒とは異なる結晶粒形状で認められ、一部の粒子は複数でフッ素含有粒界相を介して接触している。残留磁束密度と高保磁力を両立するためには、FeCo系結晶粒子を二粒子粒界よりも粒界三重点に多く形成し静磁気結合の低下を抑制する。FeCo系結晶粒子が凝集してRe2Fe14B系結晶の粒径よりも大きくなると、FeCo系結晶粒子とRe2Fe14B系結晶間の磁気的な結合は弱まり、角型性の低下,保磁力の減少,エネルギー積減少につながる。したがってFeCo系結晶粒子は凝集する場合でも凝集体の大きさはRe2Fe14B系結晶の平均粒径よりも小さくする必要がある。このような凝集抑制のため、仮成形前の溶液中に分散剤を添加してFeCo系結晶粒子を分散させるか交番磁界印加により、Re2Fe14B系結晶粒子とほぼ均一な混合状態にすることが望ましい。 5) FeCo-based crystal grains are recognized in a crystal grain shape different from Nd 2 Fe 14 B-based crystal grains on either the surface of the sintered magnet or the grain boundary triple point or two-particle grain boundary inside the sintered magnet. A plurality of particles are in contact with each other via a fluorine-containing grain boundary phase. In order to achieve both the residual magnetic flux density and the high coercive force, FeCo-based crystal particles are formed more at the grain boundary triple points than at the two-grain grain boundaries to suppress the decrease in magnetostatic coupling. When the FeCo crystal grains is larger than the particle size of the aggregate into Re 2 Fe 14 B-based crystal weakens the magnetic coupling between the FeCo crystal grains and Re 2 Fe 14 B-based crystals, decrease of squareness, This leads to a decrease in coercive force and energy product. Therefore, even when the FeCo-based crystal particles are aggregated, the size of the aggregate needs to be smaller than the average particle size of the Re 2 Fe 14 B-based crystal. In order to suppress such agglomeration, a dispersing agent is added to the pre-molding solution to disperse the FeCo-based crystal particles, or an alternating magnetic field is applied to obtain a substantially uniform mixed state with the Re 2 Fe 14 B-based crystal particles. It is desirable.

6)フッ素含有粒界相の粒界幅はFeCo系結晶粒子の平均粒子径よりも小さくする必要がある。フッ素含有粒界相の粒界幅がFeCo系結晶粒子の平均粒子径よりも大きくなるとFeCo系結晶粒子とRe2Fe14B系結晶間の磁気的な結合が弱められるとともに、フッ素含有粒界相の磁化は小さいためその体積が増加すると残留磁束密度が減少する。 6) The grain boundary width of the fluorine-containing grain boundary phase needs to be smaller than the average particle diameter of the FeCo-based crystal particles. When the grain boundary width of the fluorine-containing grain boundary phase is larger than the average particle diameter of the FeCo-based crystal particles, the magnetic coupling between the FeCo-based crystal particles and the Re 2 Fe 14 B-based crystal is weakened, and the fluorine-containing grain boundary phase Since the magnetization of is small, the residual magnetic flux density decreases as its volume increases.

7)フッ素含有粒界相の結晶構造には立方晶が認められ、一部の立方晶結晶はFeCo系結晶粒と整合関係をもっている。これはフッ素含有粒界相とFeCo系結晶系が同一であり、格子定数の整数倍を含めた格子定数差が小さいことによる。高飽和磁化相と粒界相が立方晶という同一結晶構造を有し、一部の結晶は整合関係にあることが磁気的結合に影響していると推定できる。フッ素含有粒界相はFeCo系結晶粒界面で形成され、Re2Fe14B系結晶粒間のフッ素濃度よりもFeCo系結晶粒界面のフッ素濃度の方が高い。これはフッ素含有相がFeCo系結晶粒を囲むように形成され、フッ素含有相で被覆されているFeCo系結晶粒はRe2Fe14B系結晶粒よりも多く、Re2Fe14B系結晶の二粒子界面の一部ではフッ素が検出されない。 7) Cubic crystals are observed in the crystal structure of the fluorine-containing grain boundary phase, and some of the cubic crystals have a matching relationship with the FeCo-based crystal grains. This is because the fluorine-containing grain boundary phase and the FeCo crystal system are the same, and the lattice constant difference including an integer multiple of the lattice constant is small. It can be presumed that the magnetic saturation is affected by the fact that the highly saturated magnetization phase and the grain boundary phase have the same crystal structure of cubic crystals and that some crystals are in a matching relationship. The fluorine-containing grain boundary phase is formed at the FeCo-based crystal grain interface, and the fluorine concentration at the FeCo-based crystal grain interface is higher than the fluorine concentration between the Re 2 Fe 14 B-based crystal grains. This is because the fluorine-containing phase is formed so as to surround the FeCo-based crystal grains, and the FeCo-based crystal grains coated with the fluorine-containing phase are larger than the Re 2 Fe 14 B-based crystal grains, and the Re 2 Fe 14 B-based crystal Fluorine is not detected at part of the two-particle interface.

本実施例のようなRe2Fe14B系結晶の飽和磁束密度よりも高い飽和磁束密度を有し、保磁力が10kOe以上かつキュリー点が600K以上の焼結磁石は、Re2Fe14B系結晶粒よりも小さい径のFeCo系結晶粒を焼結磁石全体に対して0.1重量%から90重量%の範囲の重量にした場合に達成可能である。0.1%未満ではFeCo系結晶の効果が顕著に現れず、飽和磁束密度がRe2Fe14B系結晶の値とほぼ同等である。尚、不可避的に混入する酸素,窒素,炭素,水素,リン,硫黄,銅は上記条件や構成を変えるものでなければ磁気特性を低下させる大きな要因にはならない。 A sintered magnet having a saturation magnetic flux density higher than the saturation magnetic flux density of the Re 2 Fe 14 B crystal as in this embodiment, a coercive force of 10 kOe or more and a Curie point of 600 K or more is a Re 2 Fe 14 B system. This can be achieved when FeCo-based crystal grains having a diameter smaller than that of the crystal grains are adjusted to a weight in the range of 0.1 wt% to 90 wt% with respect to the entire sintered magnet. If it is less than 0.1%, the effect of the FeCo-based crystal does not appear remarkably, and the saturation magnetic flux density is almost equal to the value of the Re 2 Fe 14 B-based crystal. Note that oxygen, nitrogen, carbon, hydrogen, phosphorus, sulfur, and copper that are inevitably mixed will not be a major factor for deteriorating magnetic properties unless the conditions and configuration are changed.

上記高性能焼結磁石はFeCo系結晶を含有するため、希土類元素の使用量は従来のRe2Fe14B系焼結磁石よりも少なく、仮成形後の焼結工程を用いる以外にも、熱間押し出し成形法,温間成形,衝撃波を使用した成形,磁場中熱処理工程,スピノーダル分解熱処理,温間塑性加工,強磁場成形,静水圧成形,還元低温焼結法,スウェージング加工,切削加工,磁粉を用いたボンド磁石用コンパウンド作製,各種ボンド磁石成形工程なども使用できる。また本実施例の焼結磁石にスラリー,溶液または蒸気を使用した希土類元素の粒界拡散工程を加えて高保磁力化あるいは減磁曲線の角型性向上が可能である。 Since the high-performance sintered magnet contains FeCo-based crystals, the amount of rare earth elements used is less than that of conventional Re 2 Fe 14 B-based sintered magnets. Hot extrusion molding, warm molding, molding using shock waves, heat treatment in magnetic field, spinodal decomposition heat treatment, warm plastic working, strong magnetic field molding, hydrostatic pressing, reduction low temperature sintering, swaging, cutting, Compound production for bonded magnets using magnetic powder, various bonded magnet molding processes, etc. can also be used. Further, by adding a rare earth element grain boundary diffusion process using slurry, solution or steam to the sintered magnet of this embodiment, it is possible to increase the coercive force or improve the squareness of the demagnetization curve.

尚、本実施例のFeCo系結晶とフッ素含有相の組み合わせは、他の高結晶磁気異方性エネルギーをもった磁性材料にも適用することが可能であり、エネルギー積増大,キュリー点上昇,減磁曲線の角型性向上,保磁力増大,着磁性向上,結晶粒配向向上などの効果が確認できる。さらに前記FeCo系結晶の磁歪定数を絶対値で1×10-7より大きくすることにより、磁気異方性を増大でき、種々の添加元素や粒界との結晶方位関係制御により、前記磁石物性値を向上できる。合金系としてはFeCoGa合金が挙げられ、FeGa合金系においても磁場中熱処理による磁気異方性増大効果が得られる。このような焼結あるいは時効などの磁場中熱処理による誘導磁気異方性を利用した磁石物性値の向上は、磁歪定数の絶対値が1×10-7より大きい全ての磁性材とフッ素含有粒界相,硬質磁性材料を焼結させて作製する場合に適用できる。 In addition, the combination of the FeCo-based crystal and the fluorine-containing phase of this example can be applied to other magnetic materials having high crystal magnetic anisotropy energy, and the energy product increases, the Curie point increases, decreases. The effects of improving the squareness of the magnetic curve, increasing the coercive force, improving the magnetization, and improving the grain orientation can be confirmed. Furthermore, the magnetic anisotropy can be increased by making the magnetostriction constant of the FeCo-based crystal larger than 1 × 10 −7 in absolute value, and the physical properties of the magnet can be controlled by controlling the crystal orientation relationship with various additive elements and grain boundaries. Can be improved. An alloy system includes an FeCoGa alloy, and an effect of increasing magnetic anisotropy by heat treatment in a magnetic field can be obtained even in an FeGa alloy system. The improvement of the physical property value of the magnet using the induced magnetic anisotropy by the heat treatment in the magnetic field such as sintering or aging is achieved by all the magnetic materials having an absolute value of the magnetostriction constant larger than 1 × 10 −7 and the fluorine-containing grain boundary. This can be applied to the case where the phase and hard magnetic material are sintered.

本実施例のFeCo系結晶の代わりに他の磁性材料を使用して焼結することで磁石材料に他の特性を付加できる。GdやLaFeSi系,GdSiGe系合金を使用し磁石材料のエントロピー変化を−1〜−50J/kgKとすることで磁気冷凍効果を有する磁石材料が得られる。FeCo系結晶の代わりにBi系合金を使用することで磁場中熱電効果をもった磁石材料が得られる。FeCo系結晶の代わりにCo/Cr界面をもった磁性材料を使用することで、ペルチェ冷却効果を示す磁石材料が得られる。また、FeCo系結晶の代わりにアクチノイド系合金を使用することで異方性を高めることが可能である。   Other characteristics can be added to the magnet material by sintering using another magnetic material instead of the FeCo-based crystal of this embodiment. A magnet material having a magnetic refrigeration effect can be obtained by using Gd, LaFeSi-based, or GdSiGe-based alloy and setting the entropy change of the magnet material to −1 to −50 J / kgK. A magnet material having a thermoelectric effect in a magnetic field can be obtained by using a Bi-based alloy instead of an FeCo-based crystal. A magnetic material having a Peltier cooling effect can be obtained by using a magnetic material having a Co / Cr interface instead of an FeCo-based crystal. Further, it is possible to increase anisotropy by using an actinoid alloy instead of the FeCo crystal.

純度99.99%の鉄とコバルトを真空溶解後、Ar+10%H2の還元雰囲気中で溶解し、窒素雰囲気中で蒸発させることにより壁面などから50nmの平均粒径のFe−30wt%Co粒子を回収し、TbF系フッ化物を含有する透明な鉱油に沈降させる。このスラリー状のFe−30%Co粒子を700℃で加熱後、表面にTbF系膜を形成し、Re2Fe14B系結晶(Reは複数の希土類元素)粉と混合後、磁場中仮成形し仮成形体を得た。この仮成形体を真空中で1050℃に加熱することにより焼結させ、500℃で時効熱処理,急冷後着磁することで焼結磁石を作製した。原料作成から時効熱処理まで大気に曝さず酸素濃度が100ppm以下の雰囲気で作成し、Fe−30%Co粒子を体積率30%で(Nd,Pr)2Fe14Bと混合した場合、残留磁束密度1.7T,保磁力20kOeの特性が得られた。この特性は、Fe−30%Co粒子を使用しない場合よりも高残留磁束密度と高い保磁力を示すことを確認できた。 After melting 99.99% pure iron and cobalt in a vacuum, it is dissolved in a reducing atmosphere of Ar + 10% H 2 and evaporated in a nitrogen atmosphere to obtain Fe-30 wt% Co particles having an average particle diameter of 50 nm from the wall surface. Collect and settle into a clear mineral oil containing TbF fluoride. After heating the slurry-like Fe-30% Co particles at 700 ° C., a TbF-based film is formed on the surface, mixed with Re 2 Fe 14 B-based crystal (Re is a plurality of rare earth elements) powder, and then temporarily formed in a magnetic field. A temporary molded body was obtained. The temporary molded body was sintered by heating to 1050 ° C. in a vacuum, and a sintered magnet was produced by aging heat treatment at 500 ° C. and magnetizing after quenching. When the oxygen concentration is 100 ppm or less without exposure to the atmosphere from raw material preparation to aging heat treatment, and when Fe-30% Co particles are mixed with (Nd, Pr) 2 Fe 14 B at a volume ratio of 30%, residual magnetic flux density The characteristics of 1.7 T and coercive force of 20 kOe were obtained. It was confirmed that this characteristic showed higher residual magnetic flux density and higher coercive force than when Fe-30% Co particles were not used.

従来、Re2Fe14Bの残留磁束密度と保磁力の関係は残留磁束密度を高くすると保磁力が減少する傾向を示していたが、本実施例では残留磁束密度と保磁力が増加する。その増加量はFeCo粒の組成,結晶構造,形状,フッ素含有粒界相の組成,構造,連続性、ならびに主相であるRe2Fe14B系結晶の組成,配向性,粒度分布,粒界偏在幅,偏在元素,不純物濃度,粒界相との整合性などに依存するが、FeCo系結晶粒子を使用することで最高2.0Tの残留磁束密度と98MGOeのエネルギー積を示す。このエネルギー積の値はNd2Fe14Bの理論エネルギー積である64MGOeを大幅に超える値であり実用上極めて有用である。 Conventionally, the relationship between the residual magnetic flux density of Re 2 Fe 14 B and the coercive force has shown a tendency that the coercive force decreases when the residual magnetic flux density is increased. However, in this embodiment, the residual magnetic flux density and the coercive force increase. The amount of increase is the composition of FeCo grains, crystal structure, shape, composition of fluorine-containing grain boundary phase, structure, continuity, and composition, orientation, grain size distribution, grain boundary of the main phase, Re 2 Fe 14 B-based crystals. Although it depends on uneven distribution width, uneven distribution element, impurity concentration, consistency with grain boundary phase, etc., the use of FeCo-based crystal grains shows a maximum residual magnetic flux density of 2.0 T and an energy product of 98 MGOe. This energy product value is a value that greatly exceeds 64 MGOe, which is the theoretical energy product of Nd 2 Fe 14 B, and is extremely useful in practice.

このようにNd2Fe14Bの理論エネルギー積と同等以上の磁気特性を得るためには下記の条件をすべて満足することが重要である。1)FeCo系結晶の平均結晶粒は主相であるRe2Fe14Bの平均結晶粒と同等か小さいこと。2)立方晶系あるいは正方晶系のFeCo系結晶粒が形成されていること。3)FeCo系結晶の組成はCoが0.1〜90原子%が望ましく、コストと磁石性能を考慮するとCo濃度が0.1〜50%が最適である。4)FeCo系結晶粒あるいは凝集結晶粒はフッ素含有相であるReOFやReF系フッ化物などのフッ素含有相でほぼ被覆されている。ここでReは少なくとも一種の希土類元素である。5)NdFeB系結晶の粒界近傍に重希土類元素が偏在している。ここで粒界近傍とはフッ素が検出される粒界相からNdFeB系結晶粒内に500nm以内の距離を指している。6)焼結後に立方晶系のFeCo系結晶がNdFeB系結晶よりも高い飽和磁化とキュリー温度を有した状態で磁石内に残留している。これは磁石を加熱した場合、磁化の温度依存性が2段あるいは3段と複数の磁気転移点からなることを示し、時効処理温度がキュリー点よりも高いことから、磁場中急冷による磁気異方性の増加がみられる。磁化の温度依存性には250〜320℃で磁化の急激低下が確認され、さらに400℃から900℃の高温側で急激な磁化減少が確認できる。7)焼結磁石のキュリー温度が327〜957℃(600〜1230K)とNd2Fe14Bの588Kよりも高い。8)FeCo系結晶粒子は粒界三重点や二粒子粒界あるいは結晶粒内または磁石表面のいずれかに認められる。9)フッ素含有粒界相の平均粒界幅はFeCo系結晶粒子の平均粒子径よりも狭い。10)フッ素含有粒界相の結晶構造には立方晶や六方晶,斜方晶,菱面体晶が認められる。11)FeCo系結晶の粒子は全体の0.1〜90%で焼結可能であり、FeCo系結晶による磁気特性向上は0.1〜80%で確認できる。12)焼結前後でのFeCo系結晶粒の平均結晶粒径は、大きく変動せず、焼結前の平均粒径に対して焼結後は50%〜200%(0.5倍〜2倍)であり、一部のFeCo系結晶粒子は凝集して粗大化しているように観える。 Thus, it is important to satisfy all of the following conditions in order to obtain magnetic characteristics equivalent to or higher than the theoretical energy product of Nd 2 Fe 14 B. 1) The average grain size of the FeCo-based crystal should be equal to or smaller than the average grain size of the main phase, Re 2 Fe 14 B. 2) Cubic or tetragonal FeCo crystal grains are formed. 3) The composition of the FeCo-based crystal is desirably 0.1 to 90 atomic% of Co, and considering the cost and magnet performance, the optimal Co concentration is 0.1 to 50%. 4) FeCo-based crystal grains or agglomerated crystal grains are almost covered with a fluorine-containing phase such as ReOF or ReF-based fluoride which is a fluorine-containing phase. Here, Re is at least one kind of rare earth element. 5) Heavy rare earth elements are unevenly distributed near the grain boundaries of the NdFeB-based crystal. Here, the vicinity of the grain boundary means a distance within 500 nm from the grain boundary phase where fluorine is detected into the NdFeB-based crystal grain. 6) After sintering, the cubic FeCo crystal remains in the magnet in a state of higher saturation magnetization and Curie temperature than the NdFeB crystal. This means that when the magnet is heated, the temperature dependence of magnetization consists of two or three stages and a plurality of magnetic transition points, and the aging temperature is higher than the Curie point. There is an increase in sex. In the temperature dependence of magnetization, a rapid decrease in magnetization is confirmed at 250 to 320 ° C., and a rapid decrease in magnetization can be confirmed on the high temperature side from 400 ° C. to 900 ° C. 7) The Curie temperature of the sintered magnet is 327 to 957 ° C. (600 to 1230 K), which is higher than 588 K of Nd 2 Fe 14 B. 8) FeCo-based crystal grains are observed either at grain boundary triple points, two grain boundaries, in crystal grains, or on the magnet surface. 9) The average grain boundary width of the fluorine-containing grain boundary phase is narrower than the average particle diameter of the FeCo-based crystal particles. 10) Cubic, hexagonal, orthorhombic and rhombohedral crystals are observed in the crystal structure of the fluorine-containing grain boundary phase. 11) The FeCo-based crystal particles can be sintered at 0.1 to 90% of the whole, and the improvement in magnetic properties by the FeCo-based crystal can be confirmed at 0.1 to 80%. 12) The average crystal grain size of the FeCo-based crystal grains before and after sintering does not vary greatly and is 50% to 200% (0.5 to 2 times) after sintering with respect to the average grain size before sintering. It can be seen that some FeCo crystal grains are aggregated and coarsened.

上記条件を全て満足することにより60MGOeを超える焼結磁石を作成でき、この焼結磁石に種々の手法で粒界に重希土類元素を拡散,偏在化させることにより保磁力をさらに大きくすることが可能である。本実施例で作成した焼結磁石は、希土類鉄ホウ素系及び希土類鉄ホウ素系化合物よりも高い飽和磁束密度をもった鉄コバルト合金系の少なくとも二種類の強磁性相、及びフッ素含有粒界相から構成されており、上記鉄コバルト合金系結晶は0.1〜90%のコバルトを含有した立方晶系の結晶構造を有し、鉄コバルト合金系の平均結晶粒径は希土類鉄ホウ素系の平均結晶粒径よりも小さく、鉄コバルト合金系合金の結晶粒は粒界三重点や二粒子粒界のいずれかに認められ、フッ素含有相であるReOFやReF系フッ化物などのフッ素含有相でほぼ被覆されており、フッ素濃度は鉄コバルト合金系の結晶粒界面で最も高く、希土類鉄ホウ素系結晶粒の二粒子間粒界のフッ素濃度は、鉄コバルト合金系の結晶粒界面のフッ素濃度よりも低い。希土類鉄ホウ素系結晶粒の二粒子間粒界のフッ素濃度と鉄コバルト合金系の結晶粒界面のフッ素濃度との比は平均値で1/2よりも小さい。1/2以上になるとフッ化物や酸フッ化物が多く成長し、焼結不良を起こしやすい。フッ素濃度が高い粒界近傍に重希土類元素が偏在し、希土類鉄ホウ素系結晶粒の粒界近傍には重希土類元素が偏在する。本実施例の焼結磁石はキュリー温度が600〜1230Kであることを特徴としている。   By satisfying all of the above conditions, a sintered magnet exceeding 60 MGOe can be produced, and the coercive force can be further increased by diffusing and unevenly distributing heavy rare earth elements at grain boundaries using various methods. It is. The sintered magnet created in this example is composed of at least two ferromagnetic phases of an iron-cobalt alloy system having a saturation magnetic flux density higher than that of a rare earth iron boron system and a rare earth iron boron system compound, and a fluorine-containing grain boundary phase. The iron-cobalt alloy crystal has a cubic crystal structure containing 0.1 to 90% cobalt, and the average crystal grain size of the iron-cobalt alloy system is a rare-earth iron boron-based average crystal. The grain size of the iron-cobalt alloy alloy is smaller than the grain size, and the crystal grain of the iron-cobalt alloy alloy is found at either the grain boundary triple point or the two-grain grain boundary, and is almost covered with a fluorine-containing phase such as ReOF or ReF fluoride. The fluorine concentration is the highest at the iron cobalt alloy crystal grain interface, and the fluorine concentration at the grain boundary between the rare earth iron boron crystal grains is lower than the fluorine concentration at the iron cobalt alloy crystal grain interface. . The ratio of the fluorine concentration at the grain boundary between the two grains of the rare earth iron boron-based crystal grain and the fluorine concentration at the iron-cobalt alloy-based crystal grain interface is smaller than 1/2 on average. When it becomes 1/2 or more, a large amount of fluoride or oxyfluoride grows, which tends to cause sintering failure. Heavy rare earth elements are unevenly distributed in the vicinity of the grain boundaries where the fluorine concentration is high, and heavy rare earth elements are unevenly distributed in the vicinity of the grain boundaries of the rare earth iron boron-based crystal grains. The sintered magnet of this example is characterized by a Curie temperature of 600 to 1230K.

このような特徴において特に重要なことは、コバルト(Co)添加なしには上記特性は達成できないことである。鉄のみの場合、鉄粒子表面は上記のような鉱油やアルコールなどの炭素含有溶媒によって加熱中容易に炭素などの軽元素と結合して磁化が低下するため高性能化が困難である。これに対しCoを0.1%添加した合金において、炭化物が成長しにくくなり、本実施例のように700℃の熱処理により粒子表面の酸素が還元され、表面に酸フッ化物を形成することにより化学的に安定な粒子とすることができ、粒子の磁化増加とキュリー点上昇効果が特性向上に結びつくことが明らかとなり、焼結磁石の高性能化が可能となった。また本実施例の焼結磁石においてFeCo系結晶粒の格子定数は0.05〜1.5%、バルクの同一組成の格子定数よりも拡大していることが電子線回折やX線回折の解析から明らかになっており、Fe−30%Co合金粒子の場合、Feの格子定数よりも大きな格子定数となる。これはFeCo系結晶粒が周囲の酸フッ化物やフッ化物からの格子整合などに伴う格子歪みを有していることを示しており、このような格子歪みは飽和磁化やキュリー温度を増加させる一因となっている。   Of particular importance in such characteristics is that the above properties cannot be achieved without the addition of cobalt (Co). In the case of iron alone, the surface of the iron particles is easily combined with a light element such as carbon during heating by a carbon-containing solvent such as mineral oil or alcohol as described above, so that the magnetization is lowered, so that high performance is difficult. On the other hand, in the alloy with 0.1% Co added, carbides are less likely to grow, and oxygen on the particle surface is reduced by heat treatment at 700 ° C., as in this example, to form oxyfluoride on the surface. It became clear that the particles could be chemically stable, and it became clear that the increase in the magnetization of the particles and the effect of increasing the Curie point led to the improvement of the characteristics, and it was possible to improve the performance of the sintered magnet. Further, in the sintered magnet of this example, the FeCo-based crystal grains have a lattice constant of 0.05 to 1.5%, which is larger than the lattice constant of the same composition in the bulk. Analysis of electron diffraction and X-ray diffraction From the above, in the case of Fe-30% Co alloy particles, the lattice constant is larger than that of Fe. This indicates that the FeCo-based crystal grains have lattice strain accompanying lattice matching from the surrounding oxyfluoride and fluoride, and such lattice strain increases saturation magnetization and Curie temperature. It is a cause.

本実施例以外の方法で利用可能な高性能焼結磁石を作成する工程を列挙すると、仮成形後のフッ素含有溶液を用いた含浸処理工程,ビーズミルを用いた解砕工程,分散剤を用いた解砕工程,一方向磁場中冷却工程,交流磁場中冷却工程,磁場中焼結工程,磁場印加による異方性付加工程,蒸気やスラリーを用いた焼結後の拡散処理工程,ボンド磁石成形工程,熱間成形,熱間押し出し成形,電磁波を用いた選択加熱利用の焼結工程,熱間成形を用いた低温加圧焼結工程,加圧磁場中熱間成形,通電成形,ラジアル異方性付加工程,極異方性付加工程,耐蝕性向上のための各種メッキ工程である。なお、不可避的に混入する窒素,酸素,水素,炭素,銅,マンガンなどの不純物元素が磁石内に偏在していても上記条件が満足できれば問題なく、FeCo系結晶は規則相あるいは不規則相であり遷移元素を含有した三元系あるいは四元系合金となっても0.1〜90%のCoが含有していれば問題なく、Coを0.1%含有するNdFeB系結晶粒よりも高い飽和磁束密度を有する複数の組成の粒子を用いても良い。磁石全体に占めるFeCo系結晶の体積が0.1%未満では保磁力,エネルギー積,キュリー温度の全てを上昇させることは量産工程では困難である。FeCo系結晶が0.1〜80%で保磁力,エネルギー積,キュリー温度の全てを上昇させることが量産工程を使用しても可能である。FeCo系結晶が80%を超えるとフッ化物の量も多くなり磁石特性が得られる温度で焼結させることが困難となる。   Enumerating the process of creating a high-performance sintered magnet that can be used in methods other than this example, impregnation process using a fluorine-containing solution after temporary molding, crushing process using a bead mill, using a dispersing agent Crushing process, cooling process in one direction magnetic field, cooling process in AC magnetic field, sintering process in magnetic field, anisotropy adding process by applying magnetic field, diffusion treatment process after sintering using steam or slurry, bonding magnet forming process , Hot forming, hot extrusion forming, sintering process using selective heating using electromagnetic waves, low temperature pressure sintering process using hot forming, hot forming in pressurized magnetic field, current forming, radial anisotropy These are an addition process, a polar anisotropy addition process, and various plating processes for improving corrosion resistance. In addition, even if impurity elements such as nitrogen, oxygen, hydrogen, carbon, copper, and manganese that are inevitably mixed are unevenly distributed in the magnet, there is no problem as long as the above conditions are satisfied, and the FeCo-based crystal has a regular phase or an irregular phase. Even if it is a ternary or quaternary alloy containing a transition element, there is no problem as long as 0.1 to 90% Co is contained, which is higher than that of an NdFeB crystal grain containing 0.1% Co. You may use the particle | grains of the several composition which has a saturation magnetic flux density. If the volume of the FeCo-based crystal in the entire magnet is less than 0.1%, it is difficult to increase all of the coercive force, energy product, and Curie temperature in the mass production process. It is possible to increase all of the coercive force, energy product, and Curie temperature when the FeCo-based crystal is 0.1 to 80%, even using a mass production process. If the FeCo-based crystal exceeds 80%, the amount of fluoride increases and it becomes difficult to sinter at a temperature at which magnet characteristics can be obtained.

Fe−5wt%Ce(セリウム)をプラズマ中で蒸発させることにより、粉末径100nmの粉末を作成する。プラズマ中にHFガスを流すことにより、蒸発中の粉末はフッ化され、Fe−5wt%Ce−2wt%F合金が作成される。プラズマ中から粉末になる冷却過程において、10kOeの一方向磁場を印加し、誘導異方性を付加する。このような手法により作成した粉を大気に曝さずにFe−30%Co粒子とともに金型に挿入後、磁場中仮成形により仮成形体を作成し、さらに700℃で加熱成形する。   Fe-5 wt% Ce (cerium) is evaporated in plasma to prepare a powder having a powder diameter of 100 nm. By flowing HF gas into the plasma, the powder being evaporated is fluorinated, and an Fe-5 wt% Ce-2 wt% F alloy is produced. In the cooling process from powder to powder, a unidirectional magnetic field of 10 kOe is applied to add induced anisotropy. After the powder prepared by such a method is inserted into a mold together with Fe-30% Co particles without being exposed to the atmosphere, a temporary molded body is prepared by temporary molding in a magnetic field, and further heat molded at 700 ° C.

成形後の結晶粒界にはCeを0.1から10原子%含有するFeF2などの三元系フッ化物あるいはFe−Co−F−Ce−O4元系フッ化物が成長し、鉄粒子にもCeが含有してCenFemあるいはCeaFebFcが成長していることを確認した。前記でCeはセリウム、Feは鉄、Fはフッ素であり、n,m,a,b,cは正数である。特に本実施例ではFeCo系結晶以外にCeFe19,CeFe19Fc,CeFe21,CeFe21c(cは0.1〜3)の成長が確認でき、飽和磁束密度1.5T,保磁力17kOeを示す磁石が作成できた。 A ternary fluoride such as FeF 2 containing 0.1 to 10 atomic% of Ce or Fe—Co—F—Ce—O 4 quaternary fluoride grows in the grain boundary after forming, and forms iron particles. Also, it was confirmed that Ce contained and CenFem or CeaFebFc was growing. In the above, Ce is cerium, Fe is iron, F is fluorine, and n, m, a, b, and c are positive numbers. In particular, in this example, the growth of CeFe 19 , CeFe 19 Fc, CeFe 21 , CeFe 21 F c (c is 0.1 to 3) can be confirmed in addition to the FeCo-based crystal, and the saturation magnetic flux density is 1.5 T and the coercive force is 17 kOe. The magnet shown was made.

このような希土類元素の濃度が1〜5原子%の磁石は以下のような特徴を有している。1)粒界の一部にはフッ素含有相が成長している。2)軽希土類元素と鉄の濃度比率が原子濃度比で1:19以上の高鉄含有量である化合物が成長している。3)フッ素などの侵入型元素を含有する化合物が成長している。4)Co濃度が0.01%以上のFeCo系結晶粒がフッ素含有相を介して形成されている。5)重希土類元素は含有していない。上記の中で軽希土類元素と鉄の濃度比率が原子濃度比で1:19以上の高鉄含有量である化合物は、通常フッ素を含有しない鉄−軽希土類元素の二元系では成長しない。成長を可能としているのはフッ素含有相であり、酸フッ化物やフッ化物と整合関係を保持できる結晶相として成長したと考えられ、格子歪みを有している。このような格子歪みの導入により成長可能な高濃度の鉄含有化合物としてRenFemあるいはReaFebcがある。ここでReは希土類元素、Feは鉄、Fはフッ素、n,m,a,b,cは正数でありn/m≦19,a/b≦19である。このように酸フッ化物あるいはフッ化物の粒界相に整合して成長可能な化合物は、界面近傍の格子歪みを有し結晶磁気異方性が増加するため保磁力を増加させることが可能であり強磁性化合物に含有するフッ素に代わって水素,窒素や炭素あるいはフッ素以外のハロゲン元素とこれらの元素を複数使用できる。 Such a magnet having a rare earth element concentration of 1 to 5 atomic% has the following characteristics. 1) A fluorine-containing phase grows at a part of the grain boundary. 2) A compound having a high iron content in which the concentration ratio of light rare earth elements to iron is 1:19 or more in atomic concentration ratio is growing. 3) A compound containing an interstitial element such as fluorine is growing. 4) FeCo-based crystal grains having a Co concentration of 0.01% or more are formed through the fluorine-containing phase. 5) Does not contain heavy rare earth elements. Among the above, compounds having a high iron content in which the concentration ratio of light rare earth element to iron is 1:19 or more in atomic concentration ratio usually do not grow in an iron-light rare earth element binary system that does not contain fluorine. It is a fluorine-containing phase that enables growth, which is considered to have grown as a crystal phase that can maintain an alignment relationship with oxyfluoride or fluoride, and has lattice distortion. As a high-concentration iron-containing compound that can be grown by introducing such lattice strain, there are Re n Fe m and Re a Fe b F c . Here, Re is a rare earth element, Fe is iron, F is fluorine, n, m, a, b, and c are positive numbers, and n / m ≦ 19 and a / b ≦ 19. Thus, a compound that can grow in alignment with the grain boundary phase of oxyfluoride or fluoride can increase the coercive force because it has lattice distortion near the interface and increases the magnetocrystalline anisotropy. Instead of fluorine contained in the ferromagnetic compound, hydrogen, nitrogen, carbon or halogen elements other than fluorine and a plurality of these elements can be used.

Fe−30wt%Co合金を超高真空中で蒸発させ、平均粒径5〜100nmの粉末を形成し、酸化防止のためArガス雰囲気中で鉱油中に沈降させる。この鉱油中にはTb−F系ゲルが0.1〜5%の重量濃度で溶解し、NH4Fが1%添加されており、一部のFeCo系粉末の表面にはTb−F系膜が粒径よりも薄い膜厚で形成される。NH4FはFeCo系粉末表面に化学的に結合しTbF系膜の層状化を進行させる。粒径よりもフッ化物膜の厚さが厚い場合、残留磁束密度の低下が著しい。フッ化物が形成されたFeCo系結晶粉は、200℃から1000℃の熱処理により飽和磁化が1〜10%増加することが確認されている。この飽和磁化の増加は、粒子中の不純物である酸素や炭素などの元素がフッ化物に吸収されるためであり、フッ化物の組成や結晶構造は上記熱処理により変化する。粒子が酸化された場合あるいは表面に種々の保護層が形成された場合においても、フッ化物を形成後熱処理することにより、飽和磁化が増加し、バルク飽和磁化の90〜99%の値に達する。 The Fe-30 wt% Co alloy is evaporated in an ultra-high vacuum to form a powder with an average particle size of 5 to 100 nm, and precipitated in mineral oil in an Ar gas atmosphere to prevent oxidation. In this mineral oil, a Tb-F-based gel is dissolved at a weight concentration of 0.1 to 5%, and NH 4 F is added by 1%. A Tb-F-based film is formed on the surface of some FeCo-based powders. Is formed with a film thickness smaller than the particle diameter. NH 4 F is chemically bonded to the surface of the FeCo-based powder and advances the layering of the TbF-based film. When the fluoride film is thicker than the particle size, the residual magnetic flux density is significantly reduced. It has been confirmed that the FeCo-based crystal powder in which the fluoride is formed increases the saturation magnetization by 1 to 10% by heat treatment at 200 ° C. to 1000 ° C. This increase in saturation magnetization is due to the fact that elements such as oxygen and carbon, which are impurities in the particles, are absorbed by the fluoride, and the composition and crystal structure of the fluoride are changed by the heat treatment. Even when the particles are oxidized or various protective layers are formed on the surface, the saturation magnetization is increased by the heat treatment after forming the fluoride, and reaches 90 to 99% of the bulk saturation magnetization.

フッ化物膜が形成されたFeCo系粉を結晶磁気異方性の大きな磁粉であるNdFeB系磁粉と混合後、磁場配向,焼結することにより、異方性焼結磁石を形成できる。FeCo系結晶とフッ素含有粒界相、及び結晶磁気異方性の大きな強磁性相が主要構成となる磁石が作成でき、結晶磁気異方性の大きな強磁性相単独の磁石よりも残留磁束密度及び保磁力が増加する。残留磁束密度増加と保磁力増加の両立には、フッ素含有粒界相の形成が不可欠であり、結晶磁気異方性が小さいFeCo系相の飽和磁化を大きくすることと界面近傍の不純物を除去することが重要である。   An anisotropic sintered magnet can be formed by mixing the FeCo-based powder on which the fluoride film is formed with the NdFeB-based magnetic powder, which is a magnetic powder having a large crystal magnetic anisotropy, and then magnetic field orientation and sintering. A magnet composed mainly of a FeCo-based crystal, a fluorine-containing grain boundary phase, and a ferromagnetic phase having a large crystal magnetic anisotropy can be prepared, and the residual magnetic flux density and Coercivity increases. The formation of a fluorine-containing grain boundary phase is indispensable for achieving both an increase in residual magnetic flux density and an increase in coercive force, increasing the saturation magnetization of FeCo-based phases with low magnetocrystalline anisotropy and removing impurities near the interface. This is very important.

フッ化物はFeやFeCo系結晶内の酸素や炭素などの不純物を吸収する働きがあり、フッ化物によりFeやFeCo系結晶界面近傍(界面から2nm以内)の平均磁気モーメントを1.8から2.3μB(ボーア磁子)になることをスピンSEMや放射光、あるいは中性子を用いた磁気計測で確認している。酸素濃度が100ppm以上になると平均磁気モーメントが減少し、交換結合力も弱くなるため残留磁束密度が減少することから、フッ化物によりFeやFeCo系結晶内の酸素を吸収除去することが重要である。 Fluoride has a function of absorbing impurities such as oxygen and carbon in Fe and FeCo-based crystals, and the average magnetic moment in the vicinity of the Fe and FeCo-based crystal interface (within 2 nm from the interface) is 1.8 to 2. to become a 3.mu. B (Bohr magneton) are confirmed by magnetic measurement using a spin SEM and synchrotron radiation or neutrons. When the oxygen concentration is 100 ppm or more, the average magnetic moment is reduced and the exchange coupling force is also weakened, so that the residual magnetic flux density is reduced. Therefore, it is important to absorb and remove oxygen in Fe and FeCo-based crystals with fluoride.

また、フッ化物構成元素であるTbは前記FeやFeCo系結晶よりも結晶磁気異方性の大きな相に拡散し易いことが確認でき、フッ化物構成元素は結晶磁気異方性の大きな相の磁気物性値を増加できる組み合わせを選択することが重要である。さらにFeやFeCo系相の一部がフッ素含有相と特定の結晶方位関係をもって成長するために、FeやFeCo系相の格子が局所的に歪んでおり、一部の粒子では結晶構造がbccからbctになっていることが電子線回折や放射光を利用した原子間距離の測定解析から明らかになっており、格子定数の軸比が1.001から1.300のbct相が界面近傍に成長する。このようなbct相の成長は、磁気異方性の増加や磁束密度増加に寄与する。FeCo系結晶格子において格子定数が1種の値のみであるbcc(体心立方晶)構造の場合にはフッ素含有相との整合性が低いため、主相である高結晶磁気異方性相との交換結合が弱くかつFeCo系結晶の磁気異方性は小さいため、磁石全体の保磁力が小さい。これに対し、FeCo系結晶格子が二種の格子定数を有する正方晶の場合、フッ素含有相との界面近傍での格子整合性が高く、bccよりも高い異方性エネルギーをもつことから、主相である高結晶磁気異方性相との交換結合が強く、磁石全体の保磁力が高くなる。磁気異方性がbcc構造よりも大きくなることが確認できたのは軸比1.001以上のbct相である。また、bct相の構造は軸比が大きくなると温度に対して格子歪みを解放しようとして不安定となり、1.550を超えると500℃以上でbctからbccに転移することから1.550を超えるbct相はボンド磁石の作成は可能であっても焼結工程を使用できないため磁性体密度98%以上の磁石を得ることは通常困難である。上記結晶磁気異方性の大きな相が、bct構造のFeCo系結晶の場合、残留磁束密度が2.1T,保磁力18kOeを確認できた。   In addition, it can be confirmed that Tb, which is a fluoride constituent element, easily diffuses into a phase having a larger magnetocrystalline anisotropy than that of the Fe or FeCo-based crystal. It is important to select a combination that can increase the physical property value. Further, since a part of the Fe or FeCo phase grows in a specific crystal orientation relationship with the fluorine-containing phase, the lattice of the Fe or FeCo phase is locally distorted. It is clear from the measurement analysis of interatomic distance using electron diffraction and synchrotron radiation that bct is present, and a bct phase with a lattice constant axial ratio of 1.001 to 1.300 grows near the interface. To do. Such growth of the bct phase contributes to an increase in magnetic anisotropy and an increase in magnetic flux density. In the case of a bcc (body-centered cubic) structure having a lattice constant of only one value in the FeCo-based crystal lattice, the consistency with the fluorine-containing phase is low. Since the exchange coupling is weak and the magnetic anisotropy of the FeCo-based crystal is small, the coercive force of the entire magnet is small. On the other hand, when the FeCo-based crystal lattice is a tetragonal crystal having two types of lattice constants, it has high lattice matching near the interface with the fluorine-containing phase and has an anisotropic energy higher than bcc. The exchange coupling with the highly crystalline magnetic anisotropic phase, which is a phase, is strong, and the coercive force of the entire magnet is increased. It was confirmed that the magnetic anisotropy was larger than that of the bcc structure in the bct phase having an axial ratio of 1.001 or more. Also, the structure of the bct phase becomes unstable to release the lattice strain with respect to the temperature when the axial ratio becomes large, and when it exceeds 1.550, the bct phase transitions from bct to bcc at 500 ° C. or more, so that the bct exceeds 1.550. Although it is possible to produce a bonded magnet for the phase, it is usually difficult to obtain a magnet having a magnetic density of 98% or more because a sintering process cannot be used. When the phase having a large magnetocrystalline anisotropy was an FeCo-based crystal having a bct structure, a residual magnetic flux density of 2.1 T and a coercive force of 18 kOe could be confirmed.

本実施例のように、高残留磁束密度と高保磁力を実現するためには、以下のすべての要件を満足する必要がある。1)粒界の一部にフッ素含有相が成長し、粒界の酸素や炭素濃度が粒内よりも高いこと。2)飽和磁束密度が1.6〜2.7Tの範囲のFeやFeCo相の界面近傍の酸素濃度は、結晶磁気異方性エネルギーが0.5MJ/m3以上の結晶中の平均酸素濃度よりも小さいこと。すなわち磁石内部において、酸素濃度が最小である相はFeやFeCo相などの高飽和磁化相である。3)FeやFeCo相の界面の一部にはフッ素含有相が形成され、フッ素含有相の構成元素の一部が高結晶磁気異方性の結晶の粒界近傍に偏在していること。4)フッ素含有相を介して2種類の強磁性相間に静磁結合や交換結合などの磁気的結合が認められること。5)FeあるいはFeCo系結晶粒子の一部にbct(正方晶)が成長しているかあるいは格子歪みが認められること。6)FeあるいはFeCo系結晶粒子が不連続に粒界に形成されており、複数のFeあるいはFeCo系結晶粒子がフッ素含有相を介して接触している部分が焼結体に認められる。7)結晶粒界に形成されたフッ素含有相の磁化は0.001〜100emu/gの範囲であること。 In order to realize a high residual magnetic flux density and a high coercive force as in this embodiment, it is necessary to satisfy all the following requirements. 1) A fluorine-containing phase grows in a part of the grain boundary, and the oxygen and carbon concentrations in the grain boundary are higher than in the grain. 2) The oxygen concentration in the vicinity of the interface of the Fe or FeCo phase with a saturation magnetic flux density in the range of 1.6 to 2.7 T is greater than the average oxygen concentration in the crystal having a magnetocrystalline anisotropy energy of 0.5 MJ / m 3 or more. Also small. That is, in the magnet, the phase having the minimum oxygen concentration is a highly saturated magnetization phase such as Fe or FeCo phase. 3) A fluorine-containing phase is formed at a part of the interface of the Fe or FeCo phase, and a part of the constituent elements of the fluorine-containing phase is unevenly distributed in the vicinity of the crystal grain boundary of the high crystal magnetic anisotropy. 4) Magnetic coupling such as magnetostatic coupling and exchange coupling is recognized between the two types of ferromagnetic phases via the fluorine-containing phase. 5) Bct (tetragonal) is growing on some Fe or FeCo crystal grains, or lattice distortion is observed. 6) Fe or FeCo-based crystal particles are discontinuously formed at the grain boundary, and a portion where a plurality of Fe or FeCo-based crystal particles are in contact via a fluorine-containing phase is observed in the sintered body. 7) The magnetization of the fluorine-containing phase formed at the grain boundary is in the range of 0.001 to 100 emu / g.

Fe−50%Co合金にTbF系膜を形成後Nd2Fe14B系粉と混合後焼結させた磁石断面の典型的な組織を図6に示す。図中bcc構造のFeと識別できた部分が灰色の(ハッチング)部分であり、黒線がNd2Fe14B系結晶粒を主とする粒界である。主に粒界に沿ってbcc構造が検出され、粒内よりも粒界に沿って成長しているbcc相が多い。Bcc相にはEDX分析結果から、FeとCoが検出され希土類元素は約0.01〜5原子%の範囲であった。したがって、bccはFeCo系結晶であり、FeCo系結晶がNd2Fe14B系結晶粒に隣接して成長していることが分かった。焼結磁石の粒界は、FeCo系結晶とNd2Fe14B系結晶粒間粒界(FeCo/Nd2Fe14B)以外に、FeCo/希土類酸フッ化物やFeCo/希土類酸化物,Nd2Fe14B/希土類酸フッ化物,Nd2Fe14B/希土類フッ化物などの種類の界面からなる粒界が存在する。 FIG. 6 shows a typical structure of a cross section of a magnet obtained by forming a TbF-based film on an Fe-50% Co alloy and then sintering it after mixing with Nd 2 Fe 14 B-based powder. In the figure, the part that can be distinguished from Fe of the bcc structure is a gray (hatched) part, and the black line is a grain boundary mainly composed of Nd 2 Fe 14 B crystal grains. The bcc structure is detected mainly along the grain boundary, and there are more bcc phases growing along the grain boundary than in the grain. In the Bcc phase, Fe and Co were detected from the EDX analysis results, and the rare earth elements were in the range of about 0.01 to 5 atomic%. Therefore, it was found that bcc is an FeCo-based crystal, and the FeCo-based crystal is grown adjacent to the Nd 2 Fe 14 B-based crystal grain. The grain boundaries of the sintered magnet are FeCo / rare earth oxyfluoride, FeCo / rare earth oxide, Nd 2 , in addition to FeCo crystal and Nd 2 Fe 14 B intergrain boundary (FeCo / Nd 2 Fe 14 B). There are grain boundaries composed of different types of interfaces such as Fe 14 B / rare earth acid fluoride, Nd 2 Fe 14 B / rare earth fluoride.

前記結晶粒界の中で、FeCo系結晶とNd2Fe14B系結晶粒間粒界(FeCo/Nd2Fe14B)には交換結合と静磁結合などの磁気的結合が作用し、粒界近傍にはTbなどの重希土類元素の偏在が確認され、TbによるNd2Fe14B系結晶の磁気異方性エネルギー増大により、FeCo系結晶の磁化反転を抑制する。このような重希土類元素が偏在化したFeCo/Nd2Fe14B粒界の形成は、焼結磁石のエネルギー積増加と希土類使用量削減を両立できるための条件である。 Among the grain boundaries, magnetic coupling such as exchange coupling and magnetostatic coupling acts on the grain boundary between FeCo-based crystal and Nd 2 Fe 14 B-based intergrain (FeCo / Nd 2 Fe 14 B). The uneven distribution of heavy rare earth elements such as Tb is confirmed in the vicinity of the boundary, and the magnetization reversal of the FeCo-based crystal is suppressed by increasing the magnetic anisotropy energy of the Nd 2 Fe 14 B-based crystal due to Tb. The formation of such FeCo / Nd 2 Fe 14 B grain boundaries in which heavy rare earth elements are unevenly distributed is a condition for achieving both an increase in the energy product of the sintered magnet and a reduction in the amount of rare earth used.

モータなどの磁気回路では、FeCoとNd2Fe14B系結晶の積層構造を作成することが有効であり、Nd2Fe14B系結晶のc軸方向が積層界面にほぼ垂直で、着磁方向に垂直に伸びたFeCo系結晶粒あるいはFeCo系結晶が形成されることが望ましい。このような積層体はFeCo系結晶の板あるいは箔体とNd2Fe14B系結晶の焼結板を積層し、重希土類元素をNd2Fe14B系結晶の表面近傍に偏在化させることにより実現できる。 In a magnetic circuit such as a motor, it is effective to create a stacked structure of FeCo and Nd 2 Fe 14 B-based crystal, and the c-axis direction of the Nd 2 Fe 14 B-based crystal is almost perpendicular to the stacked interface, and the magnetization direction It is desirable to form FeCo-based crystal grains or FeCo-based crystals extending perpendicularly. Such laminates by laminating a sintered plate of the FeCo crystal plate or the foil and the Nd 2 Fe 14 B-based crystal, by unevenly distributed the heavy rare-earth element in the vicinity of the surface of Nd 2 Fe 14 B-based crystal realizable.

酢酸コバルト四水和物(Co(OCOCH3))2・4H2O,塩化鉄四水和物(FeCl2・4H2O),水酸化ナトリウム(NaOH)及びポリビニルピロリドンをエチレングリコールに溶解し、120℃に加熱し、TbF3組成のゲルを添加後140℃に加熱し、FeCo系結晶の粒子にTb−F膜が被覆された強磁性粉末を作成した。粒子径や粒子組成は溶液中のFeやCoの濃度,加熱速度,加熱温度などに依存し、立方体状の平均粒子径50nmのFe−30%Co合金系粒子表面にTb−F膜が被覆された粉体が得られる。 Cobalt acetate tetrahydrate (Co (OCOCH 3 )) 2 · 4H 2 O, iron chloride tetrahydrate (FeCl 2 · 4H 2 O), sodium hydroxide (NaOH) and polyvinylpyrrolidone are dissolved in ethylene glycol, The mixture was heated to 120 ° C., added with a gel having a TbF 3 composition, and then heated to 140 ° C. to prepare a ferromagnetic powder in which FeCo-based crystal particles were coated with a Tb—F film. The particle diameter and particle composition depend on the concentration of Fe and Co in the solution, the heating rate, the heating temperature, etc., and the surface of the Fe-30% Co alloy particle having an average particle diameter of 50 nm is coated with a Tb-F film. Powder is obtained.

得られたFeCo系結晶粒子を900℃で真空熱処理することにより、飽和磁化が熱処理温度とともに増加することが確認でき、平均粒子径50nmのFe−30%Co合金粉に平均膜厚2nmでTbOFやTbF2,TbF3がコートされている場合、強磁性部の飽和磁化が230emu/gであった。飽和磁化は、粒子内の酸素や炭素などの不純物がフッ化物に拡散吸収される熱処理により、増加する。さらにこの熱処理後に10℃/秒以上の速度で300℃以上の温度範囲を急速冷却することにより、酸フッ化物の一部は室温まで立方晶が安定化され、粒子内に格子歪みを残留させ、一部のFe−30%Co合金は格子定数が2つの値をもった相が成長する。前記格子歪みの導入により、Fe−30%Co合金の結晶磁気異方性エネルギーが増加し、保磁力が増加する。 By subjecting the obtained FeCo-based crystal particles to a vacuum heat treatment at 900 ° C., it can be confirmed that the saturation magnetization increases with the heat treatment temperature, and an Fe-30% Co alloy powder with an average particle diameter of 50 nm has an average film thickness of 2 nm and TbOF or When TbF 2 and TbF 3 were coated, the saturation magnetization of the ferromagnetic portion was 230 emu / g. Saturation magnetization is increased by heat treatment in which impurities such as oxygen and carbon in the particles are diffused and absorbed by fluoride. Furthermore, by rapidly cooling the temperature range of 300 ° C. or higher at a rate of 10 ° C./second or more after this heat treatment, a part of the oxyfluoride is stabilized to cubic to room temperature, leaving lattice strain in the particles, Some Fe-30% Co alloys grow a phase having two values of lattice constants. By introducing the lattice strain, the magnetocrystalline anisotropy energy of the Fe-30% Co alloy increases and the coercive force increases.

上記磁粉をNdFeB系磁粉と混合後、磁場中圧縮成形するかあるいは、磁場中仮成形後加熱成形,熱間成形,磁場中仮成形後焼結,衝撃圧縮成形,静水圧成形などにより高密度化可能であり、NdFeB系磁粉:Fe−30%Co合金粉が2:8の時、残留磁束密度2.1T,保磁力25kOe,キュリー温度710℃の磁石を作製できる。   After mixing the above magnetic powder with NdFeB magnetic powder, compression molding in a magnetic field, or densification by heat molding after temporary molding in a magnetic field, hot molding, sintering after temporary molding in a magnetic field, impact compression molding, isostatic pressing, etc. When NdFeB magnetic powder: Fe-30% Co alloy powder is 2: 8, a magnet having a residual magnetic flux density of 2.1 T, a coercive force of 25 kOe, and a Curie temperature of 710 ° C. can be produced.

このような残留磁束密度が2.0Tを超える磁石は以下の組成と構造で実現できる。即ち1)主相がFeCo系結晶であること、2)主相の一部が格子歪みをもち、格子定数が2つの値を有すること、立方晶構造では結晶異方性エネルギーが小さく、正方晶のように格子定数を2個有することにより結晶磁気異方性が大きくなり保磁力が増大する。3)主相に接して準安定なフッ素含有相を形成し、一部の主相/フッ素含有相界面は結晶方位関係が確認でき、界面近傍で格子歪みをもっていること。4)成形体を構成する主相粒子の配列方向が異方性をもっていること。5)NdFeB系粒子の平均粒径は10000nm以下5nm以上であること。上記すべての条件を満足することで、高性能磁石を得ることが可能となる。   Such a magnet having a residual magnetic flux density exceeding 2.0 T can be realized with the following composition and structure. That is, 1) the main phase is an FeCo-based crystal, 2) a part of the main phase has lattice distortion, and the lattice constant has two values. Thus, having two lattice constants increases the magnetocrystalline anisotropy and increases the coercive force. 3) A metastable fluorine-containing phase is formed in contact with the main phase, and the crystal orientation relationship can be confirmed at some main phase / fluorine-containing phase interfaces, and there is lattice distortion in the vicinity of the interface. 4) The arrangement direction of the main phase particles constituting the compact has anisotropy. 5) The average particle diameter of the NdFeB-based particles is 10,000 nm or less and 5 nm or more. By satisfying all the above conditions, a high-performance magnet can be obtained.

次に上記1)から5)についてさらに説明する。1)は主相の組成に関する限定であるが、残留磁束密度を2.0T以上にするためには、飽和磁束密度が2.0T以上となるFeCo系とする必要がある。飽和磁束密度が2.0Tよりも高くかつFeあるいはCoを含有しない材料はないため、このような合金系が望ましい。Fe−N系,Fe−C系,Fe−B系,Fe−F系などのFeやFeCo系結晶に軽元素を添加した合金あるいは化合物系や組成変調合金など飽和磁束密度が20℃で2.0T以上となる材料系も適用できる。飽和磁束密度の最高値は2.7Tである。また主相粒子にはFe−希土類元素系やFe−希土類元素−軽元素など希土類元素を含有する強磁性材料やこれらの材料を組み合わせて混合された複数の種類の粒子を使用してもよい。   Next, the above 1) to 5) will be further described. 1) is a limitation relating to the composition of the main phase, but in order to make the residual magnetic flux density 2.0 T or higher, it is necessary to use an FeCo system in which the saturation magnetic flux density is 2.0 T or higher. Such an alloy system is desirable because there is no material with a saturation magnetic flux density higher than 2.0T and containing no Fe or Co. Fe-N, Fe-C, Fe-B, Fe-F, and other Fe and FeCo-based alloys added with light elements, compound-based and composition-modulated alloys, etc. have a saturation magnetic flux density of 2.degree. A material system of 0T or more can also be applied. The maximum value of the saturation magnetic flux density is 2.7T. The main phase particles may include ferromagnetic materials containing rare earth elements such as Fe-rare earth elements and Fe-rare earth elements-light elements, and a plurality of types of particles mixed in combination of these materials.

2)粒界近傍で格子歪みをもつことにより、結晶の対称性が低対称となり磁気異方性エネルギーが増加する。格子歪みは磁場中焼結や焼結後の磁場中時効熱処理によりFeCo系結晶のキュリー点以下の温度範囲における磁場印加によって導入でき、粒界付近で0.1%から25%であり、粒界相である酸フッ化物あるいはフッ化物相の構造や方位関係,磁場強度,磁場印加方向などに依存する。格子歪みは透過電子顕微鏡の回折像解析や放射光を用いた原子位置や原子間距離の解析により確認できる。また、格子歪み導入部には転移や積層欠陥などの各種欠陥が観察できる。   2) By having lattice distortion in the vicinity of the grain boundary, the symmetry of the crystal becomes low and the magnetic anisotropy energy increases. Lattice strain can be introduced by applying a magnetic field in the temperature range below the Curie point of FeCo-based crystals by sintering in a magnetic field or aging heat treatment in a magnetic field after sintering, and is 0.1% to 25% near the grain boundary. It depends on the structure and orientation of the oxyfluoride or fluoride phase, the magnetic field strength, the magnetic field application direction, and the like. The lattice distortion can be confirmed by analyzing a diffraction image of a transmission electron microscope and analyzing an atomic position and an interatomic distance using synchrotron radiation. Various defects such as transition and stacking faults can be observed in the lattice strain introduction portion.

3)粒界にフッ素含有相が形成されることにより、フッ化物が主相内の不純物を拡散吸収するとともに、主相と結晶方位関係をもった粒界界面を形成することにより、主相に格子歪みを導入する。フッ化物は上記Tb−F系以外の遷移金属フッ化物あるいは遷移元素含有酸フッ化物が望ましく、その平均厚さは0.1から10nmである。0.1nm未満ではフッ化物が層状とはならず、主相界面全体に格子歪みを導入することは困難であり保磁力が低下する。また平均厚さが10nmを超えると保磁力は確保できるが、フッ化物体積率が増加し残留磁束密度が低下するためエネルギー積が低下する。フッ化物は酸素を含有し、酸素濃度は主相内よりもフッ化物の方が高い。格子定数の調整のために種々の元素が添加されてもよい。主相と接触するフッ化物あるいは酸フッ化物は室温と高温とでは結晶構造が異なり、温度あるいは酸素濃度に依存して複数の結晶構造を有している。主相とフッ化物あるいは酸フッ化物(室温あるいは高温で安定な相)の格子が界面近傍で一部整合性を有していることが望ましい。   3) By forming a fluorine-containing phase at the grain boundary, the fluoride diffuses and absorbs impurities in the main phase, and forms a grain boundary interface having a crystal orientation relationship with the main phase. Introduce lattice distortion. The fluoride is preferably a transition metal fluoride other than the Tb-F system or a transition element-containing oxyfluoride, and its average thickness is 0.1 to 10 nm. If the thickness is less than 0.1 nm, the fluoride is not layered, and it is difficult to introduce lattice distortion to the entire main phase interface, and the coercive force is reduced. Further, when the average thickness exceeds 10 nm, the coercive force can be secured, but the energy volume decreases because the fluoride volume ratio increases and the residual magnetic flux density decreases. The fluoride contains oxygen and the oxygen concentration is higher in the fluoride than in the main phase. Various elements may be added to adjust the lattice constant. Fluoride or oxyfluoride in contact with the main phase has different crystal structures at room temperature and high temperature, and has a plurality of crystal structures depending on temperature or oxygen concentration. It is desirable that the lattice of the main phase and fluoride or oxyfluoride (phase stable at room temperature or high temperature) is partially consistent in the vicinity of the interface.

4)成形体となる前の工程において配向方向に異方性を付加することにより、残留磁束密度を高める。成形体の平均的な結晶方位に異方性がない場合、残留磁束密度2.0T以上が達成できない。FeCo系結晶粒はNdFeB系粒子よりも透磁率が大きいため仮成形時の磁場を集中させ磁場分布の平行化、磁場強度増加に貢献し、NdFeB系磁粉の配向度を高めることができる。また焼結後の着磁性も向上する。さらに焼結中に磁場印加することで配向性は増加し磁石特性は向上する。   4) The residual magnetic flux density is increased by adding anisotropy in the orientation direction in the step before forming the molded body. If the average crystal orientation of the compact is not anisotropic, a residual magnetic flux density of 2.0 T or more cannot be achieved. Since the FeCo-based crystal grains have a higher magnetic permeability than the NdFeB-based particles, the magnetic field at the time of temporary forming is concentrated, contributing to the parallelization of the magnetic field distribution and the increase of the magnetic field strength, and the degree of orientation of the NdFeB-based magnetic powder can be increased. Also, the magnetization after sintering is improved. Furthermore, by applying a magnetic field during sintering, the orientation is increased and the magnet characteristics are improved.

5)FeCo系結晶の平均粒径が10μm以上では格子歪みが付加される割合が小さいために、保磁力や残留磁束密度が小さい。10μm未満で保磁力が発現し、残留磁束密度が2.0以上となる平均粒径は100〜200nmである。5nm未満では粒界のフッ化物体積の体積率が増加することと、粒子作成が困難なこと、異方性制御が困難なことにより残留磁束密度が0.5−1.5Tとなり高性能磁石が得られない。さらに成形体を構成する主相粒子の形状は等方性の球形ではなく、形状異方性をもった立方形状や偏平あるいは楕円形状であること、ならびに主相あるいはフッ素含有相の一部が規則構造を有することによる整合歪みの導入が高保磁力化には不可欠な要素である。このような磁石は、不可避的に含有する各種軽元素や遷移元素の不純物元素が粒内あるいは粒界にあっても、フッ素含有相や主相の構造や格子歪みに大きな影響がない範囲であれば磁気特性を維持できる。本材料プロセスの一部を(Nd,Dy)2Fe14B系,(Nd,Pr,Dy)2Fe14B磁石あるいはSm2Co17系磁石,アルニコ系磁石,MnAl系磁石,MnBi系磁石,FeCr系磁石あるいはフェライト系磁石に使用することあるいは材料の組み合わせにより、複合磁石や積層磁石を作成でき、種々の磁気回路に適用できる。 5) When the average grain size of the FeCo-based crystal is 10 μm or more, the ratio of lattice strain added is small, so the coercive force and the residual magnetic flux density are small. The average particle diameter at which the coercive force is manifested at less than 10 μm and the residual magnetic flux density is 2.0 or more is 100 to 200 nm. If it is less than 5 nm, the residual magnetic flux density becomes 0.5-1.5T due to the increase in the volume fraction of the fluoride volume at the grain boundary, the difficulty in producing particles, and the difficulty in controlling the anisotropy. I can't get it. Furthermore, the shape of the main phase particles constituting the molded body is not an isotropic spherical shape, but a cubic shape, a flat shape or an elliptic shape with shape anisotropy, and a part of the main phase or fluorine-containing phase is regular. Introduction of matching strain due to the structure is an indispensable element for increasing the coercive force. Such magnets must be in a range that does not significantly affect the structure and lattice distortion of the fluorine-containing phase and the main phase even if the impurities of various light elements and transition elements inevitably contained are present in the grains or at the grain boundaries. Magnetic properties can be maintained. Part of this material process is (Nd, Dy) 2 Fe 14 B system, (Nd, Pr, Dy) 2 Fe 14 B magnet or Sm 2 Co 17 system magnet, alnico system magnet, MnAl system magnet, MnBi system magnet, Composite magnets and laminated magnets can be created by using them in combination with FeCr-based magnets or ferrite-based magnets, and can be applied to various magnetic circuits.

(Nd,Dy)2Fe14Bを主構造とする平均粒径0.1〜5μmの磁粉と平均粒径が0.05〜1μmのFe−30%Co粒子を(Nd,Dy)2Fe14B粉に対し約20%混合する。この混合粉をフッ化アンモニウム20%含有鉱油中でビーズミルを130℃で10時間施し、フッ化ならびに粉砕を同時進行させる。ビーズには粒径100nmのTbF3粒子を使用した。ビーズミル後、乾燥,磁場中仮成形,焼結、焼結後の磁場中時効熱処理工程を得て異方性焼結磁石が得られる。フッ化物形成を伴うビーズミルの採用により、粉末の表面にフッ化物が形成され、焼結後の粒界にフッ化物あるいは酸フッ化物,炭素含有酸フッ化物が成長する。 (Nd, Dy) 2 Fe 14 B magnetic particles having an average particle diameter of 0.1 to 5 μm and Fe-30% Co particles having an average particle diameter of 0.05 to 1 μm are composed of (Nd, Dy) 2 Fe 14. About 20% is mixed with B powder. This mixed powder is subjected to bead milling at 130 ° C. for 10 hours in mineral oil containing 20% ammonium fluoride, and fluorination and pulverization proceed simultaneously. As the beads, TbF 3 particles having a particle diameter of 100 nm were used. After the bead mill, an anisotropic sintered magnet is obtained by drying, temporary forming in a magnetic field, sintering, and aging heat treatment in a magnetic field after sintering. By adopting a bead mill with fluoride formation, fluoride is formed on the surface of the powder, and fluoride, oxyfluoride, or carbon-containing oxyfluoride grows on the grain boundary after sintering.

焼結体には、(Nd,Dy)2Fe14B,Fe−30%Co,(Nd,Tb)OF,NdF2,NdF3,TbF2,TbF3などのフッ化物を含有する結晶粒が認められ、残留磁束密度1.65T,保磁力25kOe,エネルギー積67MGOeの焼結磁石が得られる。この焼結磁石には、格子歪みを有する立方晶、すなわち正方晶が成長しており、強磁性相にも0.1から1%の範囲で格子歪みが存在することを電子顕微鏡の電子線回折像解析から確認している。 In the sintered body, crystal grains containing fluorides such as (Nd, Dy) 2 Fe 14 B, Fe-30% Co, (Nd, Tb) OF, NdF 2 , NdF 3 , TbF 2 , TbF 3 are formed. A sintered magnet having a residual magnetic flux density of 1.65 T, a coercive force of 25 kOe, and an energy product of 67 MGOe is obtained. In this sintered magnet, a cubic crystal having a lattice strain, that is, a tetragonal crystal has grown, and the fact that a lattice strain exists in the ferromagnetic phase in the range of 0.1 to 1% is also confirmed by electron beam diffraction of an electron microscope. Confirmed from image analysis.

また、TbはFe−30%Co粒内よりも(Nd,Dy)2Fe14B粒内に多く拡散し、Fe−30%Co粒子からフッ素含有粒界を介した近傍の(Nd,Dy)2Fe14B結晶粒に偏在し、(Nd,Dy)2Fe14B結晶の結晶磁気異方性エネルギーを増加させ、(Nd,Dy,Tb)2Fe14BとFe−30%Co粒子間の磁気的結合を増大させる。Tbが偏在した(Nd,Dy,Tb)2Fe14BとFe−30%Co粒子間には静磁結合あるいは交換結合などの磁気的な結合が働き、FeCo系結晶の飽和磁束密度が(Nd,Dy)2Fe14Bよりも高いために残留磁束密度が高くなり、(Nd,Dy)2Fe14Bを超えるエネルギー積が実現できる。 Further, Tb diffuses more in the (Nd, Dy) 2 Fe 14 B grain than in the Fe-30% Co grain, and (Nd, Dy) in the vicinity of the Fe-30% Co grain through the fluorine-containing grain boundary. 2 It is unevenly distributed in the Fe 14 B crystal grains and increases the magnetocrystalline anisotropy energy of the (Nd, Dy) 2 Fe 14 B crystal, and between (Nd, Dy, Tb) 2 Fe 14 B and Fe-30% Co particles Increase the magnetic coupling. Magnetic coupling such as magnetostatic coupling or exchange coupling works between (Nd, Dy, Tb) 2 Fe 14 B in which Tb is unevenly distributed and Fe-30% Co particles, and the saturation magnetic flux density of the FeCo-based crystal is (Nd , Dy) 2 Fe 14 B, the residual magnetic flux density becomes higher, and an energy product exceeding (Nd, Dy) 2 Fe 14 B can be realized.

Fe−30%Co粒子は不規則あるいは規則的なbccあるいはbct構造でありbct構造の割合が増加するほど保磁力は増加する傾向を示す。本発明と同様に格子歪みをもった強磁性正方晶と高結晶磁気異方性との組み合わせは、RE2Fe14B/Fe−Co系以外(REは希土類元素)にも、RE2Fe14B/Fe系やRE2Fe17x/Fe,RE2Fe17x/Fe−Co系,REFe11yx/Fe系,RE2Co17/Fe−Co系など(Xは0.01〜4)の希土類元素を含有する高結晶磁気異方性エネルギー化合物と高飽和磁束密度材料があり、これらの組み合わせにおいて、フッ素含有相を粒界に形成し、粒界近傍の高飽和磁束密度材料の格子歪みが0.1%以上20%以下にすることによりエネルギー積が40〜100MGOeとなり、キュリー点は600〜1050Kを実現できる。 Fe-30% Co particles have an irregular or regular bcc or bct structure, and the coercive force tends to increase as the proportion of the bct structure increases. Similar to the present invention, the combination of ferromagnetic tetragonal crystal having lattice strain and high crystal magnetic anisotropy is not limited to the RE 2 Fe 14 B / Fe—Co system (RE is a rare earth element), and RE 2 Fe 14. B / Fe-based or RE 2 Fe 17 N x / Fe , RE 2 Fe 17 F x / Fe-Co -based, REFe 11 M y F x / Fe system, RE 2 Co 17 / Fe- Co -based, such as (X 0 0.01 to 4) high crystalline magnetic anisotropy energy compound containing rare earth element and high saturation magnetic flux density material, and in combination of these, a fluorine-containing phase is formed at the grain boundary, and the high saturation magnetic flux in the vicinity of the grain boundary is formed. When the lattice strain of the density material is 0.1% or more and 20% or less, the energy product is 40 to 100 MGOe, and the Curie point can be 600 to 1050K.

格子歪みが20%以上となると高飽和磁束密度材料の構造が不安定となり、400〜600℃で格子歪みの緩和が起こり易くなり、高温で使用することが困難となる。また、格子歪みが0.1%以下では高飽和磁束密度材料の結晶性が悪く、磁化の分散が大きいため、高結晶磁気異方性との結合も弱く角型性が低下するが、20〜70MGOeのエネルギー積が認められる。   When the lattice strain is 20% or more, the structure of the high saturation magnetic flux density material becomes unstable, the lattice strain is easily relaxed at 400 to 600 ° C., and it is difficult to use at high temperature. Further, when the lattice strain is 0.1% or less, the crystallinity of the high saturation magnetic flux density material is poor and the dispersion of magnetization is large, so that the bond with the high crystal magnetic anisotropy is weak and the squareness is lowered. An energy product of 70 MGOe is observed.

高飽和磁束密度材料の体積率は2〜90%において、高飽和磁束密度材料を使用しない場合と比較してエネルギー積の増大が認められる。高飽和磁束密度材料の体積率が2%未満ではエネルギー積の増大効果とフッ素含有粒界相の成長による磁化減少効果が相殺される。高飽和磁束密度材料の体積率が90%を超えると、高飽和磁束密度材料の連続性が高く、かつ高結晶磁気異方性の結晶粒が接触して重なるようになり、高結晶磁気異方性との静磁結合や交換結合が生じている割合が少なくなるため、格子歪が解放されエネルギー積が低下する。高飽和磁束密度材料の体積率が10%を超えるとエネルギー積増加以外に耐食性が向上する。さらに高飽和磁束密度材料の体積率はが30〜90%では耐食性向上に加え電気抵抗が増加することによる損失低減効果が確認できる。また、着磁性向上,キュリー点上昇はエネルギー積が増加したすべての磁石で確認できる。   When the volume ratio of the high saturation magnetic flux density material is 2 to 90%, an increase in the energy product is recognized as compared with the case where the high saturation magnetic flux density material is not used. When the volume fraction of the high saturation magnetic flux density material is less than 2%, the effect of increasing the energy product and the effect of decreasing the magnetization due to the growth of the fluorine-containing grain boundary phase are offset. When the volume fraction of the high saturation magnetic flux density material exceeds 90%, the high saturation magnetic flux density material has high continuity and high crystal magnetic anisotropy crystal grains come into contact and overlap, resulting in high crystal magnetic anisotropy. Since the ratio of magnetostatic coupling and exchange coupling with the magnetic field decreases, the lattice strain is released and the energy product decreases. When the volume ratio of the high saturation magnetic flux density material exceeds 10%, the corrosion resistance is improved in addition to the increase in the energy product. Furthermore, when the volume ratio of the high saturation magnetic flux density material is 30 to 90%, the loss reduction effect due to the increase in the electric resistance can be confirmed in addition to the improvement in the corrosion resistance. In addition, improvement in magnetism and increase in Curie point can be confirmed for all magnets with increased energy product.

本実施例のような希土類元素使用量を低減可能な磁石は以下の条件を満足する必要がある。1)粒界がフッ素を含有すること。2)飽和磁束密度がNd2Fe14B(1.61T)よりも高いFeCo系結晶が形成されていること。3)希土類元素を含有する相がReaFebc(Reは希土類元素の少なくとも1種、Feは鉄あるいは鉄−遷移金属多元合金、XはB,C,N,F,Cl,H,S,P,Al,Siの中の少なくとも1種、a,b,cは正数でb>a+cであること)でありフッ素含有相を介して前記FeCo系結晶が成長していること。4)フッ素含有相の一部に希土類元素が含有していること。5)前記ReaFebc結晶の容易磁化方向とFeCo系結晶の容易磁化方向が平行であることが焼結体の一部で確認できること。例えばNd2Fe14B{00n}とFeCo系結晶の{00n}が平均して平行になっていることを回折実験などで確認できる。 A magnet capable of reducing the amount of rare earth element used as in this embodiment needs to satisfy the following conditions. 1) The grain boundary contains fluorine. 2) An FeCo-based crystal having a saturation magnetic flux density higher than that of Nd 2 Fe 14 B (1.61T) is formed. 3) The phase containing the rare earth element is Re a Fe b X c (Re is at least one rare earth element, Fe is iron or an iron-transition metal multi-element alloy, X is B, C, N, F, Cl, H, And at least one of S, P, Al, and Si, a, b, and c are positive numbers and b> a + c), and the FeCo-based crystal is grown through the fluorine-containing phase. 4) A rare earth element is contained in a part of the fluorine-containing phase. 5) A part of the sintered body can confirm that the easy magnetization direction of the Re a Fe b Xc crystal is parallel to the easy magnetization direction of the FeCo-based crystal. For example, it can be confirmed by diffraction experiments that Nd 2 Fe 14 B {00n} and {00n} of the FeCo-based crystal are parallel on average.

フッ素含有粒界相は酸フッ化物,炭素含有フッ化物,遷移元素を含有するフッ化物や酸フッ化物などのフッ素を含有する相であり、非晶質などの準安定相であっても良い。酸フッ化物の場合、主な構造は立方晶を有しており希土類元素を含有している。フッ素含有相は立方晶以外に、斜方晶,六方晶,菱面体晶,単斜晶の結晶構造で成長している。フッ素含有粒界のフッ素濃度は、FeCo系結晶粒界面近傍で最も高く、ReaFebc結晶間の粒界相はフッ素濃度が低い。FeCo系結晶はCo濃度が0.1〜90原子%の合金またはこの組成範囲で第三元素が添加されていてもよく、結晶構造はbccまたはbctである。Co濃度が0.1%未満では酸化あるいは炭化や酸化し易く、飽和磁束密度が減少する。Co濃度が0.1〜90%の範囲であればこのような酸化や炭化が防止され、フッ素化合物の被覆率を高くできNd2Fe14B(1.61T)より高い飽和磁束密度が得られる。Co濃度が90%を超えるとhcpやfcc相が形成されやすくなり、フッ素化合物とFeCo系結晶粒間の界面の安定性が低くなるため、焼結後のフッ素化合物の被覆率が小さくなり磁気特性低下がみられる。このFeCo系結晶内でCoの濃度が変動または変調したり、種々の添加元素の偏在や不可避的不純物の混入があっても良い。Nd2Fe14Bの代わりに、複数の希土類元素を含有するNd2Fe14B系化合物や希土類鉄フッ素化合物,希土類鉄窒素化合物,LaSrCo系フェライト,希土類鉄ハロゲン化物,FeCrCo系合金,AiNiCo系合金などが使用できる。 The fluorine-containing grain boundary phase is a phase containing fluorine such as an acid fluoride, a carbon-containing fluoride, a fluoride containing a transition element or an acid fluoride, and may be a metastable phase such as amorphous. In the case of an oxyfluoride, the main structure has cubic crystals and contains rare earth elements. In addition to cubic crystals, the fluorine-containing phase grows with orthorhombic, hexagonal, rhombohedral and monoclinic crystal structures. The fluorine concentration of the fluorine-containing grain boundary is highest near the FeCo-based crystal grain interface, and the grain boundary phase between the Re a Fe b Xc crystals has a low fluorine concentration. The FeCo crystal may be an alloy having a Co concentration of 0.1 to 90 atomic% or a third element added in this composition range, and the crystal structure is bcc or bct. If the Co concentration is less than 0.1%, oxidation, carbonization or oxidation is likely to occur, and the saturation magnetic flux density decreases. If the Co concentration is in the range of 0.1 to 90%, such oxidation and carbonization can be prevented, the coverage of the fluorine compound can be increased, and a saturation magnetic flux density higher than that of Nd 2 Fe 14 B (1.61T) can be obtained. . If the Co concentration exceeds 90%, an hcp or fcc phase is likely to be formed, and the stability of the interface between the fluorine compound and the FeCo-based crystal grains is lowered. There is a decline. The Co concentration may fluctuate or vary in the FeCo-based crystal, and various additive elements may be unevenly distributed or inevitable impurities may be mixed. Instead of Nd 2 Fe 14 B, Nd 2 Fe 14 B compounds containing a plurality of rare earth elements, rare earth iron fluorine compounds, rare earth iron nitrogen compounds, LaSrCo ferrites, rare earth iron halides, FeCrCo alloys, AiNiCo alloys Etc. can be used.

本実施例では、Fe−30%Co粒子を(Nd,Dy)2Fe14B粉に対し約20%混合して焼結しているが、残留磁束密度,保磁力及びエネルギー積のすべての磁気特性が向上できるFe−30%Co粒子の体積率は0.1〜80%である。特にFe−30%Co粒子の体積率が1〜20%では従来のNd2Fe14B系焼結磁石の量産工程を改良して磁気特性向上が実現できる。 In this example, Fe-30% Co particles are sintered with (Nd, Dy) 2 Fe 14 B powder mixed with about 20%, but all the magnetic properties of residual magnetic flux density, coercive force and energy product are sintered. The volume fraction of Fe-30% Co particles that can improve the characteristics is 0.1 to 80%. In particular, when the volume fraction of Fe-30% Co particles is 1 to 20%, it is possible to improve the magnetic properties by improving the mass production process of the conventional Nd 2 Fe 14 B-based sintered magnet.

酢酸コバルト四水和物(Co(OCOCH3))2・4H2O,塩化鉄四水和物(FeCl2・4H2O),水酸化ナトリウム(NaOH)及びポリビニルピロリドンをエチレングリコールに溶解し、フッ化アンモニウムを5%添加し170℃に加熱保持後冷却することにより、Fe−Co−F−H系粒子を得る。平均粒径は100nmであり、粒成長時に10kOeの磁界を印加することにより結晶磁気異方性及び形状磁気異方性、あるいは応力誘起磁気異方性をもったFe−Co−F−H系粒が成長し、平均粒径2μmのNd2Fe14B粉と混合後、磁場中仮成形後圧縮成形し焼結することにより異方性磁石を作製できる。 Cobalt acetate tetrahydrate (Co (OCOCH 3 )) 2 · 4H 2 O, iron chloride tetrahydrate (FeCl 2 · 4H 2 O), sodium hydroxide (NaOH) and polyvinylpyrrolidone are dissolved in ethylene glycol, Fe-Co-F-H-based particles are obtained by adding 5% ammonium fluoride, cooling to 170 ° C. and then cooling. The average grain size is 100 nm, and Fe—Co—F—H type grains having crystal magnetic anisotropy and shape magnetic anisotropy or stress-induced magnetic anisotropy by applying a magnetic field of 10 kOe during grain growth. An anisotropic magnet can be prepared by mixing with Nd 2 Fe 14 B powder having an average particle diameter of 2 μm, followed by temporary molding in a magnetic field, compression molding and sintering.

焼結と冷却中の磁場印加により、粒界にフッ化物や酸フッ化物が成長し、FeCo系結晶には磁場中冷却による格子歪みが導入され、c/a(c軸とa軸の長さの比)が1.001〜1.20の正方晶が成長する。正方晶の格子定数比あるいは軸比が1.1〜1.2の相が成長すると、結晶磁気異方性エネルギーが増加することにより保磁力が増大する。軸比が1.30を超えた正方晶も形成可能であるが構造不安定性が増大するため、非磁性元素の添加元素を多く含有させる必要があるため、軸比は1.30以下で、できれば1.20以下が望ましい。FeCo系結晶とNd2Fe14Bの正方晶とFeCo系結晶とフッ化物の立方晶において複数の結晶粒の一部が磁気的に結合することにより、高飽和磁束密度と高残留磁束密度を両立でき、残留磁束密度1.6〜2.3T,保磁力10〜40kOeを実現できる。FeCo系結晶の正方晶構造を安定化するためにFeCo系結晶に遷移元素を添加することが可能であり、400℃であっても正方晶が安定である磁石を提供でき、高温で使用する磁気回路を含むすべての磁石応用製品に適用できる。 By applying a magnetic field during sintering and cooling, fluoride and oxyfluoride grow on the grain boundary, and lattice distortion due to cooling in the magnetic field is introduced into the FeCo-based crystal, and c / a (the lengths of c and a axes) ) Grows tetragonal crystals having a ratio of 1.001 to 1.20. When a phase having a lattice constant ratio or an axial ratio of tetragonal crystal of 1.1 to 1.2 grows, the coercive force is increased by increasing the magnetocrystalline anisotropy energy. Tetragonal crystals with an axial ratio exceeding 1.30 can also be formed, but structural instability increases, so it is necessary to contain a large amount of nonmagnetic elements, so the axial ratio should be 1.30 or less. 1.20 or less is desirable. FeCo crystal, Nd 2 Fe 14 B tetragonal crystal, FeCo crystal and fluoride cubic crystal part of the crystal grains are magnetically coupled to achieve both high saturation magnetic flux density and high residual magnetic flux density. And a residual magnetic flux density of 1.6 to 2.3 T and a coercive force of 10 to 40 kOe can be realized. In order to stabilize the tetragonal structure of the FeCo-based crystal, a transition element can be added to the FeCo-based crystal, and a magnet in which the tetragonal crystal is stable even at 400 ° C. can be provided. Applicable to all magnet application products including circuits.

本実施例の磁石の特徴は以下の通りである。1)格子歪みを伴った正方晶などの軸比が1よりも大きな結晶相が成長している。2)粒界にフッ素含有化合物または酸フッ素化合物が形成されている。3)希土類元素濃度がEDX検出濃度を下回る強磁性相が形成されている。4)軸比が1よりも大きな相とFe系立方晶及びフッ素含有粒界相の少なくとも3種類の結晶相が成長し、軸比が1よりも大きな相とFe系立方晶の間には磁気的結合が認められる。5)成形磁石は結晶配向性があり、磁気異方性を有し、構成する磁粉は磁気異方性を有している。6)FeCo系結晶の平均粒径が1000nm以下5nm以上である。これらを満足すれば、不可避的に含有する炭素,酸素,水素,遷移金属元素が検出されても大きな影響はない。7)Nd2Fe14B系結晶とフッ素含有相を介してFeCo系結晶が成長し、フッ素含有相には希土類元素が検出される。また、粒界にはフッ素含有相以外に酸化物や窒化物,炭化物あるいは非晶質相が成長し、粒界近傍に遷移元素の偏在が認められても良い。8)FeCo系結晶の平均粒径よりもフッ素含有粒界の粒界幅の方が小さく、局所的に複数のFeCo系結晶がフッ素を含有する粒界なしで凝集あるいは結合していても良い。 The features of the magnet of this embodiment are as follows. 1) A crystal phase having an axial ratio larger than 1 such as a tetragonal crystal accompanied by lattice distortion grows. 2) A fluorine-containing compound or an oxyfluorine compound is formed at the grain boundary. 3) A ferromagnetic phase having a rare earth element concentration lower than the EDX detection concentration is formed. 4) A phase with an axial ratio greater than 1 and at least three types of crystal phases, an Fe-based cubic crystal and a fluorine-containing grain boundary phase, grow between the phase with an axial ratio greater than 1 and an Fe-based cubic crystal. Binding is allowed. 5) The formed magnet has crystal orientation and magnetic anisotropy, and the magnetic powder constituting it has magnetic anisotropy. 6) The average particle diameter of the FeCo-based crystal is 1000 nm or less and 5 nm or more. If these are satisfied, even if carbon, oxygen, hydrogen, and transition metal elements contained inevitably are detected, there is no significant effect. 7) An FeCo-based crystal grows through the Nd 2 Fe 14 B-based crystal and the fluorine-containing phase, and a rare earth element is detected in the fluorine-containing phase. In addition to the fluorine-containing phase, an oxide, nitride, carbide, or amorphous phase may grow on the grain boundary, and uneven distribution of transition elements may be observed near the grain boundary. 8) The grain boundary width of the fluorine-containing grain boundary is smaller than the average grain diameter of the FeCo-based crystal, and a plurality of FeCo-based crystals may be locally aggregated or bonded without a fluorine-containing grain boundary.

なお、類似の材料系のFeCo系代替としてFe−Co−Ni系,Fe−Co−Al系,Fe−Co−Mn系,Fe−Co−N系,Fe−Co−F系,Co−Cr系,Fe−Pt系,Co−Pt系などで同様の効果が確認できる。上記Nd2Fe14Bの代わりにSm2Fe173やSm2Co17などの希土類元素を含有する化合物やAlNiCo合金,MnAl系合金,MnBi系合金,MnAs系合金,FeCrCo系合金,フェライトなどが使用できる。フッ素が他の材料系よりも高い磁気特性となる理由は、フッ素原子の高電気陰性度(電子親和力)に由来する。フッ素原子が粒界相と強磁性相の界面近傍に配置すると周囲の鉄原子の電子状態密度の分布を変え、鉄の状態密度に異方性が生じることから、磁気異方性エネルギーが増加する。 In addition, Fe-Co-Ni system, Fe-Co-Al system, Fe-Co-Mn system, Fe-Co-N system, Fe-Co-F system, Co-Cr system can be used as an alternative to FeCo system of similar materials. , Fe—Pt system, Co—Pt system and the like can be confirmed. Compounds containing rare earth elements such as Sm 2 Fe 17 N 3 and Sm 2 Co 17 instead of Nd 2 Fe 14 B, AlNiCo alloys, MnAl alloys, MnBi alloys, MnAs alloys, FeCrCo alloys, ferrites, etc. Can be used. The reason why fluorine has higher magnetic properties than other material systems is derived from the high electronegativity (electron affinity) of fluorine atoms. When fluorine atoms are arranged in the vicinity of the interface between the grain boundary phase and the ferromagnetic phase, the distribution of the electronic state density of the surrounding iron atoms is changed, and anisotropy occurs in the state density of iron, which increases the magnetic anisotropy energy. .

本実施例のように格子歪みを有する磁石材料は、磁場や熱ならびに電磁場などにより可逆的な格子歪みの変化を制御できる。例えばフッ素含有相のみ発熱する周波数の電磁場を印加することで、粒界近傍のみ発熱し、格子歪みが緩和され、保磁力が減少する。上記電磁場の印加を停止すると格子歪みあるいは結晶格子の軸比が可逆的に復元される。製品に組み込まれた磁石を消磁後再度着磁して使用する場合、電磁場やパルス状の磁場,FeGa合金などの磁歪材料による応力付加ならびに熱(光照射を含む)により容易に磁束や保磁力の制御が可能である。磁束の変化は着磁後を1とすると歪み解放時は0.1〜0.5と50〜90%に可逆的に減磁させることが可能である。着磁した磁石を高速回転する回転機で動作させた場合、磁石の磁束による損失が無視できない。このような場合、高速回転時のみ磁石の磁束を弱め、低速の磁石トルクが必要な場合のみ残留磁束密度およびエネルギー積を高めることが可能である。   A magnet material having lattice strain as in this embodiment can control reversible changes in lattice strain by a magnetic field, heat, electromagnetic field, and the like. For example, by applying an electromagnetic field having a frequency that generates heat only in the fluorine-containing phase, heat is generated only in the vicinity of the grain boundary, lattice distortion is relaxed, and coercive force is reduced. When the application of the electromagnetic field is stopped, the lattice strain or the axial ratio of the crystal lattice is reversibly restored. When a magnet incorporated in a product is demagnetized and then re-magnetized, it can be easily subjected to magnetic flux or coercive force by applying stress and heat (including light irradiation) by magnetostrictive materials such as electromagnetic fields, pulsed magnetic fields, and FeGa alloys. Control is possible. Assuming that the change in magnetic flux is 1 after magnetization, it can be reversibly demagnetized to 0.1 to 0.5 and 50 to 90% when the strain is released. When the magnetized magnet is operated with a rotating machine that rotates at high speed, the loss due to the magnetic flux of the magnet cannot be ignored. In such a case, it is possible to weaken the magnetic flux of the magnet only during high-speed rotation and increase the residual magnetic flux density and energy product only when low-speed magnet torque is required.

本実施例の焼結磁石は、各種磁気回路に適用でき、モータでは表面磁石モータ,埋め込み磁石モータ,扁平モータ,球面モータなどに焼結磁石を挿入し着磁後接着して製品とすることができる。またMRIなどの医療機器,発電機にも適用でき、HDD用VCM磁石としても使用可能である。これらの磁気回路では他の磁石材料であるNd2Fe14B系,Sm2Co17系,AlNiCo系,Sm2Fe17x系,Sm2Fe17x系,MnAlC系,MnBi系などFeCo系結晶を使用していない従来の全ての磁石材料と組み合わせて複数の磁石配置や積層磁石などを設計することにより上記各種磁気回路に適用できる。 The sintered magnet of this embodiment can be applied to various magnetic circuits. In a motor, a sintered magnet is inserted into a surface magnet motor, an embedded magnet motor, a flat motor, a spherical motor, etc. it can. It can also be applied to medical equipment and generators such as MRI, and can also be used as a VCM magnet for HDD. In these magnetic circuits, other magnetic materials such as Nd 2 Fe 14 B system, Sm 2 Co 17 system, AlNiCo system, Sm 2 Fe 17 N x system, Sm 2 Fe 17 F x system, MnAlC system, and MnBi system are available. It can be applied to the above-mentioned various magnetic circuits by designing a plurality of magnet arrangements and laminated magnets in combination with all conventional magnet materials that do not use a system crystal.

高周波プラズマを利用して不活性ガス中でFe−50%Co合金のナノ粒子を製造し、同一装置内でCeF系膜をナノ粒子表面に蒸着させる。ナノ粒子の平均粒子径は10nmであり、球形か楕円体あるいは扁平状である。またCeF系膜の厚さは平均0.5nmである。この粒子をCe2Fe14Bと混合し磁場中仮成形後焼結する。Fe−50%Co合金とCe2Fe14B粉の混合比は20:1である。1050℃で焼結後、時効急冷することにより、Fe−50%Co結晶粒には粒界のフッ素含有相により格子歪みが導入される。Fe−50%Co結晶の一部は正方晶となり、軸比は1.01〜1.2となる。粒界近傍の一部のFe−50%Co結晶は規則相であり、結晶磁気異方性エネルギーが増加する。 Fe-50% Co alloy nanoparticles are produced in an inert gas using high-frequency plasma, and a CeF-based film is deposited on the nanoparticle surface in the same apparatus. The average particle diameter of the nanoparticles is 10 nm and is spherical, ellipsoidal or flat. The CeF-based film has an average thickness of 0.5 nm. These particles are mixed with Ce 2 Fe 14 B, sintered in a magnetic field, and then sintered. The mixing ratio of Fe-50% Co alloy and Ce 2 Fe 14 B powder is 20: 1. After sintering at 1050 ° C., lattice strain is introduced into the Fe-50% Co crystal grains by the fluorine-containing phase at the grain boundaries by aging and quenching. Part of the Fe-50% Co crystal is tetragonal, and the axial ratio is 1.01 to 1.2. Some Fe-50% Co crystals in the vicinity of the grain boundaries are ordered phases, and the magnetocrystalline anisotropy energy increases.

このような焼結磁石の磁気特性は主相の一部が正方晶のFeCo系結晶であるため残留磁束密度が従来の希土類焼結磁石よりも大きく、正方晶がFeCo系結晶の中で約5体積%の時、20℃で1.5〜2.1Tとなる。粒界にはフッ素含有相と希土類酸化相が形成され、熱処理時に急冷によって準安定な粒界相が成長し、準安定粒界相とFe−50%Co結晶間には歪みが導入される。このような歪みは格子を変形させ磁石特性を向上させる。軸比が1.01〜1.2を実現するためには、粒界相がフッ素含有相の場合、Fe−50%Co結晶粒の平均粒径を30nm以下にする必要がある。Fe−50%Co結晶が正方晶のような格子歪みをもった結晶に変わるのは、立方晶の格子を変形させる必要があり、正方晶は結晶粒あるいは粒子の表面近傍に成長する。正方晶はこのような結晶粒や粒子の表面に応力あるいは歪みを発生させて成長させているため、中心部の立方晶よりも外周側の立方晶の構造が変形することになる。したがって、ナノ粒子のように表面積が多い粒子寸法にならないと変形した格子をもった構造をもつ相体積を多くすることは困難であり、平均粒径は100nm以下、できれば30nm以下にする必要がある。粒子中心部の立方晶は安定なため、格子歪みは粒子中心部の立方晶と外周側の変形格子とのエネルギーバランスによって外周側の変形格子が準安定状態で成長できるかどうかが決定される。立方晶の体積、すなわち粒子径が大きいと、外周側の変形格子は変形しようとしても安定な立方晶の影響が強いため成長は困難である。   The magnetic characteristics of such a sintered magnet are that a part of the main phase is a tetragonal FeCo-based crystal, so that the residual magnetic flux density is larger than that of a conventional rare earth sintered magnet, and the tetragonal crystal is about 5 in the FeCo-based crystal. When the volume%, it becomes 1.5 to 2.1 T at 20 ° C. A fluorine-containing phase and a rare earth oxide phase are formed at the grain boundary, and a metastable grain boundary phase is grown by rapid cooling during heat treatment, and strain is introduced between the metastable grain boundary phase and the Fe-50% Co crystal. Such distortion deforms the lattice and improves the magnet characteristics. In order to realize an axial ratio of 1.01 to 1.2, when the grain boundary phase is a fluorine-containing phase, the average grain size of Fe-50% Co crystal grains needs to be 30 nm or less. The change of the Fe-50% Co crystal to a crystal having a lattice distortion such as a tetragonal crystal requires deformation of a cubic lattice, and the tetragonal crystal grows near a crystal grain or the surface of the particle. Since tetragonal crystals are grown by generating stress or strain on the surface of such crystal grains and grains, the structure of the cubic crystals on the outer peripheral side of the cubic crystals at the center is deformed. Therefore, it is difficult to increase the phase volume having a structure having a deformed lattice unless the particle size has a large surface area such as nanoparticles, and the average particle size needs to be 100 nm or less, preferably 30 nm or less. . Since the cubic crystal at the center of the grain is stable, the lattice strain determines whether or not the deformed lattice on the outer peripheral side can grow in a metastable state by the energy balance between the cubic crystal at the center of the particle and the deformed lattice on the outer peripheral side. If the volume of the cubic crystal, that is, the particle diameter is large, the deformation on the outer peripheral side is difficult to grow because the effect of the stable cubic crystal is strong even when trying to deform.

高残留磁束密度の焼結磁石は、正方晶構造あるいは格子歪みをもった立方晶のFeCo系結晶粒とフッ素含有粒界相、及びフッ素含有粒界相を焼結工程で形成できる希土類含有相から主に構成され、フッ素含有粒界相が準安定相でかつFeCo系結晶粒とフッ素含有結晶との間には歪みが存在し、フッ素含有粒界相の方が希土類酸化物粒界相よりも体積比率が大きい。フッ素含有粒界相で囲まれている結晶粒はFeCo系結晶であり、その被覆率は50%以上である。Ce2Fe14B結晶粒間のフッ素含有粒界相のフッ素濃度は、FeCo系結晶の粒界面に形成されたフッ素含有相のフッ素濃度よりも低い。FeCo系結晶粒と接触しているフッ素含有相は、反強磁性,フェリ磁性あるいは強磁性,常磁性のいずれでもよい。フッ素含有化合物に、Mn,FeO,CoO,NiO,FeF2,MnF2,Cr,Fe23などの反強磁性材料、あるいはぺロブスカイト化合物,NiAs型化合物が混入しても良い。FeCo系結晶は規則相であればさらに保磁力を大きくすることが可能であり、時効温度を規則−不規則変態点直下の温度にすることで、正方晶の規則相を形成させることが可能である。 A sintered magnet having a high residual magnetic flux density is composed of cubic FeCo-based crystal grains having a tetragonal structure or lattice distortion, a fluorine-containing grain boundary phase, and a rare earth-containing phase capable of forming a fluorine-containing grain boundary phase in a sintering process. Mainly configured, the fluorine-containing grain boundary phase is a metastable phase, and there is distortion between the FeCo-based crystal grains and the fluorine-containing crystals, and the fluorine-containing grain boundary phase is more than the rare earth oxide grain boundary phase. Large volume ratio. The crystal grains surrounded by the fluorine-containing grain boundary phase are FeCo-based crystals, and the coverage is 50% or more. The fluorine concentration of the fluorine-containing grain boundary phase between Ce 2 Fe 14 B crystal grains is lower than the fluorine concentration of the fluorine-containing phase formed at the grain interface of the FeCo-based crystal. The fluorine-containing phase in contact with the FeCo crystal grains may be antiferromagnetic, ferrimagnetic, ferromagnetic, or paramagnetic. An antiferromagnetic material such as Mn, FeO, CoO, NiO, FeF 2 , MnF 2 , Cr, or Fe 2 O 3 , a perovskite compound, or a NiAs type compound may be mixed in the fluorine-containing compound. If the FeCo-based crystal is a regular phase, the coercive force can be further increased, and a tetragonal regular phase can be formed by setting the aging temperature to a temperature just below the regular-disorder transformation point. is there.

本実施例の焼結磁石は次のような式で示される少なくとも3種の相から構成される。   The sintered magnet of this example is composed of at least three types of phases represented by the following equations.

FexCoyz+Tabc+REuFevw (1)
ここでFeは鉄、Coはコバルト、Mは鉄及びコバルト以外の遷移元素、Tは遷移元素、Fはフッ素などのハロゲン元素、Oは酸素、REは希土類元素、Bは半金属あるいはハロゲン元素、x,y,z,a,b,c,u,v,wは正数であり、x+y>z≧0,u+v>w≧0を満足し、第一相の体積率が第二相の体積率よりも大きい。第一相のFexCoyzは最も飽和磁束密度が高い相でありその値は1.7T以上であり、第二相のTabcによって被覆されているか、第一相と第三相の間に第二相が形成されており、第一相及び第二相のそれぞれの一部には立方晶が形成され立方晶の一部が規則相であり、第一相と第二相、または第一相と第三相の間には結晶方位に特定の方位関係が認められ、第一相の結晶は格子歪みを有している。格子歪みは電子線回折で確認でき、0.01〜10%の歪みが結晶粒外周部に認められる。第一相と第三相間には磁気的な結合がある。すなわち減磁曲線は一つの磁石の曲線として測定でき、軟磁性成分の低保磁力部に対応する減磁部は認められない。特に、立方晶や正方晶の結晶が歪みを有し、歪みを有する結晶にM元素が偏在し、歪みを有する相の体積が第二相の体積よりも大きいことが磁気特性向上につながる。このような歪みは、第一相と第二相の界面近傍あるいは第一相と第三相の界面近傍で発現する。ここで界面近傍とは界面から20nm以内の距離を指す。FexCoyz格子歪みが0.01%未満では結晶磁気異方性エネルギーが最大とはならない。第一相のMあるいは第三相のRE元素の一部の元素は、粒界近傍に偏在しており、格子歪みの安定性向上,結晶磁気異方性エネルギー増加,界面安定性向上などに寄与しており、RE元素の偏在が認められる粒界近傍での第一相の格子歪みが、偏在が少ない粒界近傍の格子歪みより大きい。
Fe x Co y M z + T a F b O c + RE u Fe v B w (1)
Here, Fe is iron, Co is cobalt, M is a transition element other than iron and cobalt, T is a transition element, F is a halogen element such as fluorine, O is oxygen, RE is a rare earth element, B is a metalloid or halogen element, x, y, z, a, b, c, u, v, and w are positive numbers, satisfy x + y> z ≧ 0, u + v> w ≧ 0, and the volume fraction of the first phase is the volume of the second phase. Greater than rate. The first phase of Fe x Co y M z is the most high saturation magnetic flux density phase the value is not less than 1.7 T, or is covered by a T a F b O c of the second phase, the first phase A second phase is formed between the third phase, a cubic crystal is formed in a part of each of the first phase and the second phase, and a part of the cubic crystal is a regular phase. A specific orientation relationship is recognized in the crystal orientation between the two phases or between the first phase and the third phase, and the first phase crystal has a lattice strain. The lattice distortion can be confirmed by electron diffraction, and a strain of 0.01 to 10% is recognized on the outer periphery of the crystal grain. There is a magnetic coupling between the first phase and the third phase. That is, the demagnetization curve can be measured as a curve of one magnet, and no demagnetization part corresponding to the low coercivity part of the soft magnetic component is recognized. In particular, cubic crystals and tetragonal crystals are distorted, M elements are unevenly distributed in the distorted crystals, and the volume of the distorted phase is larger than the volume of the second phase, which leads to improved magnetic properties. Such a strain appears near the interface between the first phase and the second phase or near the interface between the first phase and the third phase. Here, the vicinity of the interface refers to a distance within 20 nm from the interface. When the Fe x Co y M z lattice strain is less than 0.01%, the magnetocrystalline anisotropy energy does not become maximum. Some elements of the first-phase M or third-phase RE elements are unevenly distributed in the vicinity of the grain boundaries, contributing to improved lattice strain stability, increased magnetocrystalline anisotropy energy, and improved interface stability. Therefore, the lattice strain of the first phase in the vicinity of the grain boundary where the uneven distribution of the RE element is recognized is larger than the lattice strain in the vicinity of the grain boundary where the uneven distribution is small.

希土類元素の焼結磁石全体に占める濃度は0.1〜5原子%であり、従来の希土類焼結磁石よりも小さく原料コストが低いばかりでなく希土類元素濃度が低いために資源セキュリティを確保できる。上記3種の相以外に、酸化物,フッ化物,炭化物,窒化物,ホウ化物などが含有していても体積率が上記第二相の体積率よりも少ない場合、同等の磁気特性が得られる。また不可避的に混入する酸素,水素,窒素,炭素,リン,銅などは第二相のフッ素などのハロゲン元素濃度よりも少ない範囲であれば問題はない。上記少なくとも三相から構成された焼結磁石は最高で100MGOeのエネルギー積が確認できる。   The concentration of the rare earth element in the entire sintered magnet is 0.1 to 5 atomic%, which is not only lower than the conventional rare earth sintered magnet but also lower in raw material cost, and can secure resource security because the rare earth element concentration is low. If the volume fraction is smaller than the volume fraction of the second phase, even if oxide, fluoride, carbide, nitride, boride, etc. are contained in addition to the above three phases, equivalent magnetic properties can be obtained. . Inevitable mixing of oxygen, hydrogen, nitrogen, carbon, phosphorus, copper, etc. is not a problem as long as the concentration is less than the concentration of halogen elements such as fluorine in the second phase. The sintered magnet composed of at least three phases can confirm an energy product of 100 MGOe at the maximum.

この最高値よりも低いエネルギー積で20℃において60〜100MGOeの焼結磁石は、主に三つの相から構成され、第一相に飽和磁束密度が1.6T以上のFe系高飽和磁束密度材料、第二相はフッ素含有相、第三相は希土類含有鉄化合物であり、第一相あるいは第二相の一部が立方晶規則格子で第一相と第二相間あるいは第一相と第三相間の界面の一部に結晶方位関係が認められ、その界面近傍に格子歪みが発生しており、第一相の粒界面近傍のフッ素濃度が第三相間の二粒子粒界近傍の結晶粒界のフッ素濃度よりも高く、希土類元素の一部が第三相の粒界近傍に偏在しており、第一相と第三相間が磁気的に結合していることで達成できる。   A sintered magnet of 60 to 100 MGOe at 20 ° C. with an energy product lower than this maximum value is mainly composed of three phases, and a Fe-based high saturation magnetic flux density material having a saturation magnetic flux density of 1.6 T or more in the first phase. The second phase is a fluorine-containing phase, the third phase is a rare earth-containing iron compound, and the first phase or a part of the second phase is a cubic regular lattice and is between the first phase and the second phase or between the first phase and the third phase. There is a crystal orientation relationship at a part of the interface between the phases, lattice distortion occurs near the interface, and the fluorine concentration near the grain interface of the first phase is the grain boundary near the two-grain boundary between the third phase. This is achieved by the fact that a part of the rare earth element is unevenly distributed near the grain boundary of the third phase and the first phase and the third phase are magnetically coupled.

酢酸コバルト四水和物(Co(OCOCH3))2・4H2O,塩化鉄四水和物(FeCl2・4H2O),水酸化ナトリウム(NaOH)及びポリビニルピロリドンをエチレングリコールに溶解し、TbF系ゲルをアルコール溶液に溶解したフッ化アンモニウム1%添加液と10kOeの磁場中で反応させ、TbF系膜で被覆された立方体形状のFeCo系ナノ粒子がアルコールに分散した溶液を作成する。FeCo系ナノ粒子の平均寸法は15×14.8×15.1nm3であり、TbF系膜の平均膜厚は0.2〜1nmである。この溶液をNd2Fe14B磁粉表面に15wt%塗布後、磁場中仮成形、1010℃で磁場中焼結後、磁場中時効処理を施すことによりNd2Fe14B焼結体を得た。 Cobalt acetate tetrahydrate (Co (OCOCH 3 )) 2 · 4H 2 O, iron chloride tetrahydrate (FeCl 2 · 4H 2 O), sodium hydroxide (NaOH) and polyvinylpyrrolidone are dissolved in ethylene glycol, The TbF-based gel is reacted with a 1% ammonium fluoride additive solution dissolved in an alcohol solution in a magnetic field of 10 kOe to prepare a solution in which cubic FeCo-based nanoparticles covered with a TbF-based film are dispersed in alcohol. The average size of the FeCo-based nanoparticles is 15 × 14.8 × 15.1 nm 3 , and the average thickness of the TbF-based film is 0.2 to 1 nm. This solution was applied to the surface of the Nd 2 Fe 14 B magnetic powder at 15 wt%, then subjected to temporary forming in a magnetic field, sintered in a magnetic field at 1010 ° C., and then subjected to aging treatment in a magnetic field to obtain a Nd 2 Fe 14 B sintered body.

Nd2Fe14B焼結体には、フッ素含有相に覆われたFeCo系結晶が形成されており、Nd2Fe14B系結晶粒界近傍にTbの偏在が確認でき、Nd2Fe14B系結晶粒とFeCo系結晶の間にフッ素含有粒界相が認められる。フッ素含有粒界にはNdOF,(Nd,Tb)OF,(Nd,Tb,Fe)OF,(Nd,Tb,Fe)(O,C)F,NdF2,NdF3,TbF2,TbF3などが成長し、TbとNd2Fe14B系結晶内のNdが相互拡散により組成変化を起こしている。 In the Nd 2 Fe 14 B sintered body, an FeCo-based crystal covered with a fluorine-containing phase is formed, and the uneven distribution of Tb can be confirmed in the vicinity of the Nd 2 Fe 14 B-based grain boundary, and Nd 2 Fe 14 B A fluorine-containing grain boundary phase is observed between the system crystal grains and the FeCo crystal. The fluorine-containing grain boundary NdOF, (Nd, Tb) OF , (Nd, Tb, Fe) OF, (Nd, Tb, Fe) (O, C) F, such as NdF 2, NdF 3, TbF 2 , TbF 3 And Tb and Nd in the Nd 2 Fe 14 B-based crystal undergo a composition change due to mutual diffusion.

その結果、Nd2Fe14B系結晶がフッ素含有相と隣接している粒界近傍では粒界に沿ってTbの偏在が確認できた。焼結後の磁場中時効急冷処理により酸フッ化物の一部は立方晶構造になり、隣接するFeCo系結晶粒と特定の結晶方位関係を有し、界面には格子歪みが認められる。焼結体中のFeCo系結晶は(00n)が磁場方向に垂直な面であり、bctの結晶はそのc軸方向が磁場印加方向でありNd2Fe14B系結晶のc軸とほぼ平行となる。FeCo系結晶の容易磁化方向と、Nd2Fe14B系結晶の磁化容易軸方向がほぼ平行になることにより、FeCo系結晶磁気異方性が増大し、Nd2Fe14B系結晶とFeCo系結晶との磁気的結合が強くなることから、減磁曲線の角型性向上,飽和磁化増加,エネルギー積増加,キュリー温度上昇,着磁性向上,熱減磁低減のいずれかの効果が確認できる。 As a result, it was confirmed that Tb was unevenly distributed along the grain boundary in the vicinity of the grain boundary where the Nd 2 Fe 14 B-based crystal was adjacent to the fluorine-containing phase. A part of the oxyfluoride has a cubic structure due to the aging and quenching treatment in the magnetic field after sintering, and has a specific crystal orientation relationship with the adjacent FeCo-based crystal grains, and lattice strain is recognized at the interface. The FeCo-based crystal in the sintered body has a plane (00n) perpendicular to the magnetic field direction, and the bct crystal has its c-axis direction being the magnetic field application direction and substantially parallel to the c-axis of the Nd 2 Fe 14 B-based crystal. Become. When the easy magnetization direction of the FeCo-based crystal and the easy magnetization axis direction of the Nd 2 Fe 14 B-based crystal are substantially parallel, the FeCo-based crystal magnetic anisotropy increases, and the Nd 2 Fe 14 B-based crystal and the FeCo-based crystal Since the magnetic coupling with the crystal becomes stronger, any of the effects of improving the squareness of the demagnetization curve, increasing the saturation magnetization, increasing the energy product, increasing the Curie temperature, improving the magnetization, and reducing the thermal demagnetization can be confirmed.

本実施例の焼結磁石はエネルギー積が70MGOeであり、NdFeB系焼結磁石の理論値を超える。焼結磁石全体の組成はNd10at%,Co7.6at%,Tb0.2at%,B4.7at%,Fe77.0at%,F0.5at%であった。FeCo系結晶の体積率を増加させることでさらに大きなエネルギー積となり、NdFeB系焼結磁石の理論値を超える組成範囲は、Nd1〜11at%,Co0.01〜15at%,Tb0.01〜2at%,B2〜5.2at%,Fe60〜79.0at%,F0.001〜5at%である。ここでNdやTbの一部または全てを他の希土類元素で置き換えても良い。   The sintered magnet of this example has an energy product of 70 MGOe, which exceeds the theoretical value of the NdFeB-based sintered magnet. The composition of the entire sintered magnet was Nd 10 at%, Co 7.6 at%, Tb 0.2 at%, B 4.7 at%, Fe 77.0 at%, and F 0.5 at%. Increasing the volume fraction of the FeCo-based crystal results in a larger energy product, and the composition ranges exceeding the theoretical values of the NdFeB-based sintered magnet are Nd 1-11 at%, Co 0.01-15 at%, Tb 0.01-2 at%, B2 to 5.2 at%, Fe60 to 79.0 at%, and F 0.001 to 5 at%. Here, some or all of Nd and Tb may be replaced with other rare earth elements.

不可避的に混入する不純物や微量偏在元素は上記組成とは別に含有していても良い。FeCo系結晶に格子歪みを導入して結晶磁気異方性を増大させることにより、上記組成範囲よりもさらに希土類元素使用量を低減することができる。焼結あるいは時効熱処理などのNdFeB系化合物のキュリー点よりも高温でFeCo系結晶のキュリー点よりも低い温度領域(588K〜1350K)で熱処理する工程において、1〜100kOeの磁場印加により、誘導磁気異方性をFeCo系結晶粒子に付加することでFeCo系結晶に格子歪みを導入できる。その格子歪みの量は0.1〜25%である。このような格子変形や格子歪み導入によりFeCo系結晶磁気異方性エネルギーが増加し、液相焼結法の液相として希土類元素を使用し、その希土類元素使用量を1at%以下にすることが可能となる。   Impurities that are inevitably mixed and trace unevenly distributed elements may be contained separately from the above composition. By introducing lattice strain into the FeCo-based crystal and increasing the magnetocrystalline anisotropy, the amount of rare earth element used can be further reduced from the above composition range. In a process of heat treatment in a temperature range (588 K to 1350 K) higher than the Curie point of the FeCo-based crystal at a temperature higher than the Curie point of the NdFeB-based compound, such as sintering or aging heat treatment, by applying a magnetic field of 1-100 kOe, Lattice distortion can be introduced into the FeCo-based crystal by adding isotropic properties to the FeCo-based crystal particles. The amount of lattice distortion is 0.1 to 25%. FeCo-based magnetocrystalline anisotropy energy increases due to such lattice deformation and lattice strain introduction, and rare earth elements are used as the liquid phase in the liquid phase sintering method, and the amount of rare earth elements used can be reduced to 1 at% or less. It becomes possible.

MgO(001)単結晶基板上にFe60Co40の不連続膜をスパッタリング法により作成した。不連続膜には平均粒径10nmの結晶粒が成長する。スパッタリング中に基板面内に10kOeの磁場を印加して誘導磁気異方性を付加している。この結晶粒をリフトオフ法により除去後、NdF溶液処理によりNdF系薄膜を結晶粒表面に形成する。NdF系薄膜の平均膜厚は0.1nmである。これを磁場中で仮成形後、磁場中で加熱成形することにより一軸異方性の成形磁石が得られる。Fe60Co40の結晶格子は粒界にNdOFやNdF3,NdF2が成長し、一部のフッ化物がFe60Co40の結晶に特定の方位関係で成長するためにFe60Co40の結晶格子が変形し、正方晶や斜方晶が成長する。方位関係はFe60Co40の面指数(abc)//NdOFの面指数(hkl)、a,b,c,h,k,lは正数で示される。正方晶のa軸とc軸の比は1.01〜1.25であった。c軸方向が加熱成形時の磁場方向とほぼ平行であった。このような磁性材料は格子歪みのために結晶磁気異方性が増大し、エネルギー積が110MGOeの磁石が得られた。格子歪みはキュリー温度近傍で解放されやすいが、キュリー温度近傍から磁場中急冷することで再度格子歪みを付加することが可能である。このような100MGOeのエネルギー積を示す磁石は以下の条件を満足する必要がある。1)希土類元素濃度が0.1〜5at%であること。2)粒界にフッ素含有相が形成され、FeCo系結晶と特定の方位関係があり、FeCo系結晶は軸比1.01〜1.25であること。軸比は粒界近傍で大きく、粒内で小さくなる傾向があること。また単一粒子において軸比が異なるFeCo系結晶格子には整合性があり、結晶格子には整合歪みが認められること。3)FeCo系結晶の体積が90〜99%であり、結晶粒の大きさは平均100nm以下5nm以上であること。尚、このFeCo系結晶は格子が歪んでいることが電子線回折や中性子線回折などの構造解析により確認できる。4)成形後の磁場印加工程により一軸磁気異方性が付加されていること。5)粒界に成長するフッ素含有相の幅が平均0.1〜5nmであること。FeCo系結晶には種々の遷移元素を含有でき、その一部はフッ素含有相にも拡散し、一部の粒界近傍に偏在化する。不可避的な不純物である水素,酸素,炭素,窒素,リン,硫黄,塩素,ホウ素,銅,ガリウム,ニッケル,アルミニウムが含有していても上記条件が大きく変わらなければ同等の磁気特性をもった焼結磁石が得られる。 A discontinuous film of Fe 60 Co 40 was formed on a MgO (001) single crystal substrate by a sputtering method. Crystal grains having an average grain size of 10 nm grow on the discontinuous film. During sputtering, a magnetic field of 10 kOe is applied to the substrate surface to add induced magnetic anisotropy. After removing the crystal grains by the lift-off method, an NdF-based thin film is formed on the crystal grain surface by NdF solution treatment. The average film thickness of the NdF-based thin film is 0.1 nm. A uniaxially anisotropic shaped magnet is obtained by pre-molding this in a magnetic field and then heat-molding in a magnetic field. Fe 60 Co 40 crystal lattice grain boundaries NdOF and NdF 3, NdF 2 grows, the crystal in order to grow the Fe 60 Co 40 part of fluoride in a specific orientation relationship to the crystal of Fe 60 Co 40 The lattice is deformed, and tetragonal and orthorhombic crystals grow. Regarding the orientation relationship, the plane index (abc) of Fe 60 Co 40 // the plane index (hkl) of NdOF, and a, b, c, h, k, and l are shown as positive numbers. The ratio of tetragonal a-axis to c-axis was 1.01 to 1.25. The c-axis direction was almost parallel to the magnetic field direction during heat forming. Such a magnetic material has increased magnetocrystalline anisotropy due to lattice distortion, and a magnet having an energy product of 110 MGOe was obtained. Although the lattice strain is easily released near the Curie temperature, it can be added again by quenching in the magnetic field from near the Curie temperature. Such a magnet having an energy product of 100 MGOe needs to satisfy the following conditions. 1) The rare earth element concentration is 0.1 to 5 at%. 2) A fluorine-containing phase is formed at the grain boundary, and there is a specific orientation relationship with the FeCo-based crystal, and the FeCo-based crystal has an axial ratio of 1.01 to 1.25. The axial ratio should be large near the grain boundary and small within the grain. In addition, FeCo-based crystal lattices with different axial ratios in a single particle must be consistent, and matching strain should be observed in the crystal lattice. 3) The volume of the FeCo-based crystal is 90 to 99%, and the size of the crystal grains is an average of 100 nm or less and 5 nm or more. It can be confirmed by structural analysis such as electron diffraction and neutron diffraction that the lattice of the FeCo-based crystal is distorted. 4) Uniaxial magnetic anisotropy is added by the magnetic field application step after molding. 5) The width of the fluorine-containing phase grown on the grain boundary is 0.1 to 5 nm on average. FeCo-based crystals can contain various transition elements, part of which also diffuses into the fluorine-containing phase and is unevenly distributed in the vicinity of some grain boundaries. Even if the inevitable impurities such as hydrogen, oxygen, carbon, nitrogen, phosphorus, sulfur, chlorine, boron, copper, gallium, nickel, and aluminum are contained, if the above conditions do not change greatly, the sintering with equivalent magnetic properties A magnetized magnet is obtained.

(Nd90Dy10)2Fe14Bの焼結用磁粉を非磁性金型に挿入し磁場配向後密度が40〜70%の仮成形体を作成する。磁粉の平均粒径は2〜7μmである。磁場中配向条件は10kOeの磁場で1t/cm2の荷重である。この工程は酸化防止のため不活性ガス雰囲気中で進めた。金型から仮成形体を取りださずに、FeCo系結晶のナノ粒子が分散されて含有したフッ化物溶液の混合溶液を仮成形体の隙間に注入する。FeCo系結晶の組成はFe60%−Co40%であり、ナノ粒子の平均粒径は5nmである。混合溶液を仮成形体の内部の隙間や磁粉のクラック部に注入後、仮成形体に磁場20kOeを印加してナノ粒子と(Nd90Dy10)2Fe14B粉を配向させる。この仮成形体を大気に曝すことなく焼結炉に挿入し、磁場中焼結を施す。焼結温度は1050℃である。次に磁場中時効処理によりFeCo系結晶近傍の構造や組成を制御し、焼結体を得た。 A magnetic powder for sintering of (Nd 90 Dy 10 ) 2 Fe 14 B is inserted into a nonmagnetic mold to prepare a temporary molded body having a density after magnetic field orientation of 40 to 70%. The average particle size of the magnetic powder is 2 to 7 μm. The orientation condition in the magnetic field is a load of 1 t / cm 2 with a magnetic field of 10 kOe. This process proceeded in an inert gas atmosphere to prevent oxidation. Without removing the temporary molded body from the mold, a mixed solution of fluoride solution containing dispersed FeCo-based crystal nanoparticles is poured into the gaps of the temporary molded body. The composition of the FeCo-based crystal is Fe 60% -Co 40%, and the average particle size of the nanoparticles is 5 nm. After injecting the mixed solution into a gap inside the temporary molded body or a crack portion of the magnetic powder, a magnetic field of 20 kOe is applied to the temporary molded body to orient the nanoparticles and (Nd 90 Dy 10 ) 2 Fe 14 B powder. The temporary molded body is inserted into a sintering furnace without being exposed to the atmosphere, and sintered in a magnetic field. The sintering temperature is 1050 ° C. Next, the structure and composition in the vicinity of the FeCo crystal were controlled by aging treatment in a magnetic field to obtain a sintered body.

FeCo系結晶のナノ粒子添加量が焼結磁石全体に対して10体積%の時、FeCo系結晶の容易磁化方向と(Nd90Dy10)2Fe14Bの容易磁化方向が直行あるいは平行、または方向関係がない場合の3種類を作成し、その特性の評価をした結果、FeCo系結晶の容易磁化方向と(Nd90Dy10)2Fe14Bの容易磁化方向が平均して平行である場合が最もエネルギー積が高い結果が得られ、いずれの場合も(Nd90Dy10)2Fe14B焼結磁石よりも高いエネルギー積である50MGOeを実現できた。FeCo系ナノ粒子添加による高エネルギー積の効果はFeCo系結晶でCo濃度が0.1〜90%の範囲、FeCo系結晶の平均粒子径が1〜200nm、焼結磁石に対する添加量が0.1〜50%で確認できた。 When the amount of FeCo-based crystal nanoparticles added is 10% by volume with respect to the entire sintered magnet, the easy magnetization direction of the FeCo-based crystal and the easy magnetization direction of (Nd 90 Dy 10 ) 2 Fe 14 B are perpendicular or parallel, or As a result of making three types when there is no directional relationship and evaluating the characteristics, the easy magnetization direction of FeCo-based crystal and the easy magnetization direction of (Nd 90 Dy 10 ) 2 Fe 14 B are parallel on average The result with the highest energy product was obtained, and in each case, 50 MGOe, which was a higher energy product than the (Nd 90 Dy 10 ) 2 Fe 14 B sintered magnet, could be realized. The effect of the high energy product by adding FeCo-based nanoparticles is that the Fe concentration is 0.1 to 90% in the FeCo-based crystal, the average particle size of the FeCo-based crystal is 1 to 200 nm, and the added amount to the sintered magnet is 0.1. It was confirmed at ˜50%.

Co濃度が0.1%未満ではFeCo系ナノ粒子の磁化が溶液中の炭素や酸素などにより減少するためにエネルギー積が増加しにくい。Co濃度が90%以上ではbccやbct構造以外の結晶構造をもった飽和磁化の小さい結晶が成長し易くなり磁化が増加しにくい。平均粒子径が1nm未満ではフッ化物で被覆されたFeCo系結晶の飽和磁化が小さく、エネルギー積が増加しにくい。平均粒子径が200nmを超えると本実施例のような仮成形体への隙間や亀裂部への注入が困難となり粒子寸法は小さいことが必要になる。仮成形体の密度を低下させた条件においてもナノ粒子の添加量は最大50%であり、50%を超えると仮成形体の中央部までナノ粒子を注入することが困難である。添加量が0.1%未満ではナノ粒子の添加効果による保磁力増大効果は確認できるが、エネルギー積の増大効果は確認できていない。仮成形体へのナノ粒子含有溶液の注入処理は、仮成形体があらかじめフッ化物で被覆されたFeCo系結晶のナノ粒子とNdFeB系粉の混合体であってもエネルギー積が増加した焼結磁石を得ることができる。   If the Co concentration is less than 0.1%, the magnetization of the FeCo-based nanoparticles decreases due to carbon, oxygen, etc. in the solution, so that the energy product is difficult to increase. When the Co concentration is 90% or more, a crystal with a small saturation magnetization having a crystal structure other than the bcc or bct structure is likely to grow and the magnetization is difficult to increase. When the average particle diameter is less than 1 nm, the saturation magnetization of the FeCo crystal coated with fluoride is small, and the energy product is difficult to increase. When the average particle diameter exceeds 200 nm, it becomes difficult to inject into the gaps and cracks in the temporary molded body as in this example, and the particle size needs to be small. Even under conditions where the density of the temporary molded body is reduced, the amount of nanoparticles added is 50% at the maximum, and if it exceeds 50%, it is difficult to inject the nanoparticles to the center of the temporary molded body. If the addition amount is less than 0.1%, the effect of increasing the coercive force due to the effect of adding nanoparticles can be confirmed, but the effect of increasing the energy product has not been confirmed. The injection process of the nanoparticle-containing solution into the temporary molded body is a sintered magnet with an increased energy product even if the temporary molded body is a mixture of FeCo-based crystal nanoparticles and NdFeB-based powder previously coated with fluoride. Can be obtained.

エネルギー積はNd2Fe14B粉に平均粒子径10nmのFe65%Co35%ナノ粒子を50%添加してTbF系溶液を用いた場合に120MGOeとなった。このような高エネルギー積焼結磁石は、次のような特徴がある。1)TbがNd2Fe14B系結晶の粒界近傍に偏在し、粒界の一部が立方晶の酸フッ化物であること。2)FeCo系結晶が酸フッ化物粒界に覆われて形成しており、FeCo系結晶とNd2Fe14B系結晶の間には酸フッ化物が成長し、FeCo系結晶内の平均酸素濃度は100ppm以下であること。3)FeCo系結晶の一部はNd2Fe14B系結晶のc軸方向に(001)あるいは(110)が平行であること。4)FeCo系結晶粒の一部の粒界近傍には格子歪みが認められること。5)FeCo系結晶の平均結晶粒径は200nm以下1nm以上であること。6)結晶粒界には重希土類元素以外にCu,Zrなどの遷移元素の偏在が認められること。 The energy product was 120 MGOe when 50% Fe65% Co35% nanoparticles with an average particle size of 10 nm were added to Nd 2 Fe 14 B powder and a TbF-based solution was used. Such a high energy product sintered magnet has the following characteristics. 1) Tb is unevenly distributed in the vicinity of the grain boundary of the Nd 2 Fe 14 B-based crystal, and a part of the grain boundary is a cubic oxyfluoride. 2) FeCo-based crystals are formed so as to be covered with oxyfluoride grain boundaries, and oxyfluoride grows between the FeCo-based crystals and the Nd 2 Fe 14 B-based crystals, and the average oxygen concentration in the FeCo-based crystals Is 100 ppm or less. 3) A part of the FeCo-based crystal has (001) or (110) parallel to the c-axis direction of the Nd 2 Fe 14 B-based crystal. 4) Lattice distortion is observed in the vicinity of some grain boundaries of the FeCo-based crystal grains. 5) The average crystal grain size of the FeCo-based crystal is 200 nm or less and 1 nm or more. 6) In addition to heavy rare earth elements, uneven distribution of transition elements such as Cu and Zr is recognized at the grain boundaries.

Fe70Co30合金のナノ粒子を高周波プラズマ法により作成する。プラズマ条件を制御して平均35nmのFe70Co30合金のナノ粒子を作成する。このナノ粒子の表面に平均で1nmのTbF系膜を溶液処理により塗布する。溶液処理後1100℃に加熱し、FeCo系結晶内の不純物をフッ化物に拡散吸収させる。この熱処理によりフッ化物の一部は酸フッ化物や炭素含有フッ化物となり、フッ化物の融点が上昇する。このフッ化物処理FeCo系結晶ナノ粒子を解砕後、(Nd90Dy10)2Fe14B粉と混合し金型に挿入する。混合比率はFeCo系ナノ粒子が10%、(Nd90Dy10)2Fe14B粉90%である。金型で磁場10kOe印加し1t/cm2の荷重により仮成形体を作成後、1050℃で焼結する。焼結後10kOeの磁界中にて500℃で時効処理後急冷し焼結体を得た。この焼結体を着磁後、磁気特性を評価した結果、(Nd90Dy10)2Fe14B粉のみの場合よりもエネルギー積が約20%増加した。 Fe 70 Co 30 alloy nanoparticles are prepared by a high-frequency plasma method. By controlling the plasma conditions, nanoparticles of Fe 70 Co 30 alloy having an average of 35 nm are prepared. An average of 1 nm of TbF film is applied to the surface of the nanoparticles by solution treatment. After the solution treatment, the solution is heated to 1100 ° C. to diffuse and absorb impurities in the FeCo crystal. By this heat treatment, a part of the fluoride becomes an oxyfluoride or a carbon-containing fluoride, and the melting point of the fluoride rises. The fluoride-treated FeCo-based crystal nanoparticles are crushed, mixed with (Nd 90 Dy 10 ) 2 Fe 14 B powder, and inserted into a mold. The mixing ratio is 10% for FeCo-based nanoparticles and 90 % for (Nd 90 Dy 10 ) 2 Fe 14 B powder. After applying a magnetic field of 10 kOe with a mold and preparing a temporary molded body with a load of 1 t / cm 2 , sintering is performed at 1050 ° C. After sintering, an aging treatment was performed at 500 ° C. in a magnetic field of 10 kOe, followed by rapid cooling to obtain a sintered body. As a result of evaluating the magnetic properties after magnetizing the sintered body, the energy product increased by about 20% compared to the case of (Nd 90 Dy 10 ) 2 Fe 14 B powder alone.

エネルギー積を増加させるために必要な条件は以下の通りである。1)Tbが(Nd90Dy10)2Fe14B結晶粒の粒界近傍に偏在すること。2)FeCo系ナノ粒子の結晶粒界にはフッ素含有相が形成され、フッ素含有相から(Nd90Dy10)2Fe14B結晶にTbが拡散していること。3)フッ化物のTbと(Nd90Dy10)2Fe14B結晶のNdが交換される相互拡散が進行すること。4)(Nd90Dy10)2Fe14B結晶粒よりもFeCo系結晶粒の方が小さいこと。5)FeCo系ナノ粒子は一部凝集しているが、その平均粒径は焼結前後で変動が少ないこと。本実施例では焼結後の平均粒径は焼結前の0.5倍から2倍である。6)Tb及びフッ素の濃度はFeCo系結晶粒界近傍で高く、(Nd90Dy10)2Fe14Bの二粒子界面では低い傾向がある。7)酸フッ化物の結晶構造は主に立方晶であり、その一部は(Nd90Dy10)2Fe14B結晶やFeCo系結晶と整合性があること。8)FeCo系結晶のCo濃度は0.1〜90%の範囲であること。9)FeCo系結晶と(Nd90Dy102Fe14Bの間には磁気的な結合が働いていること。このため着磁後の減磁曲線は一つの磁石のような曲線を示す。10)焼結体の磁化消失温度であるキュリー温度は(Nd90Dy10)2Fe14Bのキュリー温度よりも高いこと。11)(Nd90Dy10)2Fe14B粉と混合するフッ化物塗布FeCo粉の飽和磁化が200〜250emu/gであること。 The conditions necessary to increase the energy product are as follows. 1) Tb is unevenly distributed near the grain boundary of the (Nd 90 Dy 10 ) 2 Fe 14 B crystal grains. 2) A fluorine-containing phase is formed at the grain boundary of the FeCo-based nanoparticle, and Tb diffuses from the fluorine-containing phase into the (Nd 90 Dy 10 ) 2 Fe 14 B crystal. 3) Interdiffusion in which Tb of fluoride and Nd of (Nd 90 Dy 10 ) 2 Fe 14 B crystal are exchanged proceeds. 4) FeCo-based crystal grains are smaller than (Nd 90 Dy 10 ) 2 Fe 14 B crystal grains. 5) FeCo-based nanoparticles are partially agglomerated, but the average particle size is less variable before and after sintering. In this embodiment, the average particle size after sintering is 0.5 to 2 times that before sintering. 6) The concentration of Tb and fluorine tends to be high near the FeCo grain boundary and low at the (Nd 90 Dy 10 ) 2 Fe 14 B two-particle interface. 7) The crystal structure of the oxyfluoride is mainly cubic, and part of it is compatible with (Nd 90 Dy 10 ) 2 Fe 14 B crystal and FeCo crystal. 8) The Co concentration of the FeCo-based crystal is in the range of 0.1 to 90%. 9) Magnetic coupling is acting between the FeCo-based crystal and (Nd 90 Dy 10 ) 2 Fe 14 B. For this reason, the demagnetization curve after magnetization shows a curve like one magnet. 10) The Curie temperature that is the magnetization disappearance temperature of the sintered body is higher than the Curie temperature of (Nd 90 Dy 10 ) 2 Fe 14 B. 11) The saturation magnetization of the fluoride-coated FeCo powder mixed with the (Nd 90 Dy 10 ) 2 Fe 14 B powder is 200 to 250 emu / g.

本発明ではフッ化物が重要な役割を担っており、FeCo系ナノ粒子が焼結時に拡散や反応で消失しないようにしていること、FeCo系ナノ粒子を酸化等から保護していること、FeCo系ナノ粒子内の不純物を除去して磁化を増加させていること、FeCo系ナノ粒子表面に塗布したフッ化物中の重希土類元素がNdFeB系結晶に拡散偏在すること、FeCo系ナノ粒子の近傍にあるNdFeB系結晶粒の異方性エネルギーを増加させ保磁力を増加させていること、この保磁力増加によりFeCo系ナノ粒子の磁化も反転しにくくしていること、一部の酸フッ化物やフッ化物はFeCo系ナノ粒子と整合界面を形成して格子を歪ませることによりFeCo系結晶磁気異方性エネルギーを増加させていること、NdFeB系結晶粒とFeCo系結晶粒との間にフッ化物が成長することでNdFeB系結晶の磁区とFeCo系結晶の磁区を適度に分離していること。これらのことが焼結磁石のエネルギー積増加に繋がっている。   In the present invention, fluoride plays an important role, and prevents FeCo-based nanoparticles from being lost by diffusion or reaction during sintering, protects FeCo-based nanoparticles from oxidation, etc., FeCo-based The removal of impurities in the nanoparticles increases the magnetization, the heavy rare earth elements in the fluoride coated on the surface of the FeCo nanoparticles are diffusely distributed in the NdFeB crystals, and in the vicinity of the FeCo nanoparticles. Increasing the coercive force by increasing the anisotropy energy of NdFeB-based crystal grains, making the magnetization of FeCo-based nanoparticles difficult to reverse due to this increase in coercive force, and some oxyfluorides and fluorides Increases the FeCo-based magnetocrystalline anisotropy energy by forming a coherent interface with the FeCo-based nanoparticles and distorting the lattice, and NdFeB-based crystal grains and Fe That it is appropriately separated magnetic domains of the magnetic domain and the FeCo crystal NdFeB-based crystal by fluoride between the o based crystal grains grow. These have led to an increase in the energy product of the sintered magnet.

上記のようなフッ化物塗布FeCo系結晶ナノ粒子の効果を使用することによりエネルギー積増加と保磁力増加及びキュリー点上昇,希土類元素使用量低減をすべて満足した焼結磁石が得られ、NdFeB系やSmCo系,MnAl系,MnBi系の中の少なくとも1種の材料系から構成されたすべての磁石に適用できる。また、FeCo系ナノ粒子をスラリー化した塗布溶液をボンド磁石粉に塗布拡散させ、エネルギー積増加あるいは耐熱性向上を実現できる。   By using the effects of the above-described fluoride-coated FeCo-based crystal nanoparticles, a sintered magnet satisfying all of an increase in energy product, an increase in coercive force, an increase in Curie point, and a decrease in the amount of rare earth elements used can be obtained. The present invention can be applied to all magnets composed of at least one material system among SmCo, MnAl, and MnBi. In addition, the coating solution in which FeCo-based nanoparticles are slurried can be applied and diffused in the bond magnet powder to increase the energy product or improve the heat resistance.

FeCo系結晶ナノ粒子は規則相,不規則相のどちらの場合でも上記磁気特性向上効果が確認できるが、規則相でかつ格子歪みが0.1〜25%の範囲でFeCo系結晶磁気異方性エネルギーが増加するため、NdFeB系結晶が必ずしも必要ではない。すなわちフッ化物の塗布熱処理を使用することでFeCo系結晶のみで磁石材料を作成できる。   FeCo-based crystal nanoparticles can confirm the above-mentioned effect of improving magnetic properties in both the regular phase and the disordered phase, but the FeCo-based crystal magnetic anisotropy is in the regular phase and the lattice strain is in the range of 0.1 to 25%. Since energy increases, NdFeB-based crystals are not always necessary. That is, a magnet material can be created only with FeCo-based crystals by using a fluoride heat treatment.

本実施例で使用しているFeCo系結晶はフッ化物塗布後熱処理により酸素や炭素濃度が50ppm以下であり、フッ化物層との界面近傍には格子歪みが導入される。フッ化物を多層にし、FeCo系結晶粒にFeやCoあるいは添加元素の濃度勾配を形成し、さらに格子歪み増大のための添加物や磁歪定数の絶対値が2×10-6よりも大きな磁歪材料の形成により10〜25%の格子歪みを導入してFeCo系結晶が主相の50〜150MGOeのエネルギー積をもった磁石を得ることが可能である。 The FeCo-based crystal used in this example has an oxygen or carbon concentration of 50 ppm or less by heat treatment after fluoride application, and lattice strain is introduced near the interface with the fluoride layer. Magnetostrictive material in which fluoride is multilayered, Fe, Co or additive element concentration gradient is formed in FeCo crystal grains, and the additive and magnetostriction constant absolute value for increasing lattice strain is larger than 2 × 10 −6 It is possible to obtain a magnet having an energy product of 50 to 150 MGOe of FeCo-based crystal as a main phase by introducing a lattice strain of 10 to 25% by the formation of.

1 ナノ粒子
2 希土類含有化合物
3 フッ素含有相
1 Nanoparticle 2 Rare earth-containing compound 3 Fluorine-containing phase

Claims (9)

FeCo系結晶とNdFeB系結晶の間に粒界相としてフッ素含有相が形成された焼結磁石において、
前記FeCo系結晶のCo濃度が0.1〜90原子%であり、
前記FeCo系結晶は立方晶構造または正方晶構造を有することを特徴とする焼結磁石。
In a sintered magnet in which a fluorine-containing phase is formed as a grain boundary phase between an FeCo-based crystal and an NdFeB-based crystal,
The Co concentration of the FeCo-based crystal is 0.1 to 90 atomic%;
The FeCo-based crystal has a cubic structure or a tetragonal structure, and is a sintered magnet.
請求項1に記載の焼結磁石において、
前記フッ素含有相は立方晶構造を有することを特徴とする焼結磁石。
The sintered magnet according to claim 1, wherein
The sintered magnet, wherein the fluorine-containing phase has a cubic structure.
請求項1または2に記載の焼結磁石において、
前記NdFeB系結晶の結晶粒界近傍に重希土類元素が偏在していることを特徴とする焼結磁石。
The sintered magnet according to claim 1 or 2,
A sintered magnet characterized in that heavy rare earth elements are unevenly distributed in the vicinity of a grain boundary of the NdFeB-based crystal.
請求項1から3のいずれか1項に記載の焼結磁石において、
前記FeCo系結晶の平均結晶粒径は、前記NdFeB系結晶の平均結晶粒径より小さいことを特徴とする焼結磁石。
In the sintered magnet according to any one of claims 1 to 3,
The sintered magnet according to claim 1, wherein an average crystal grain size of the FeCo-based crystal is smaller than an average crystal grain size of the NdFeB-based crystal.
請求項1から4のいずれか1項に記載の焼結磁石において、
前記FeCo系結晶近傍の粒界におけるフッ素濃度は、前記NdFeB系結晶間で形成された粒界におけるフッ素濃度よりも高いことを特徴とする焼結磁石。
In the sintered magnet according to any one of claims 1 to 4,
A sintered magnet, wherein a fluorine concentration at a grain boundary near the FeCo-based crystal is higher than a fluorine concentration at a grain boundary formed between the NdFeB-based crystals.
請求項1から5のいずれか1項に記載の焼結磁石において、
キュリー点が850〜1230Kであることを特徴とする焼結磁石。
In the sintered magnet according to any one of claims 1 to 5,
A sintered magnet having a Curie point of 850 to 1230K.
請求項1から6のいずれか1項に記載の焼結磁石において、
前記NdFeB系結晶のキュリー点よりも50K高温側における温度での磁化が0.1emu/g〜150emu/gであることを特徴とする焼結磁石。
The sintered magnet according to any one of claims 1 to 6,
A sintered magnet characterized in that the magnetization at a temperature 50K higher than the Curie point of the NdFeB-based crystal is 0.1 emu / g to 150 emu / g.
請求項1から7のいずれか1項に記載の焼結磁石において、
前記FeCo系結晶の焼結磁石全体に対する割合は、0.1重量%から90重量%の範囲であることを特徴とする焼結磁石。
In the sintered magnet according to any one of claims 1 to 7,
The ratio of the FeCo-based crystal to the entire sintered magnet is in the range of 0.1% to 90% by weight.
請求項1から8のいずれか1項に記載の焼結磁石において、
前記FeCo系結晶の飽和磁化は、前記NdFeB系結晶の飽和磁化よりも高いことを特徴とする焼結磁石。
The sintered magnet according to any one of claims 1 to 8,
A sintered magnet, wherein the saturation magnetization of the FeCo-based crystal is higher than the saturation magnetization of the NdFeB-based crystal.
JP2010271025A 2010-12-06 2010-12-06 Sintered magnet Pending JP2012124189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010271025A JP2012124189A (en) 2010-12-06 2010-12-06 Sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010271025A JP2012124189A (en) 2010-12-06 2010-12-06 Sintered magnet

Publications (1)

Publication Number Publication Date
JP2012124189A true JP2012124189A (en) 2012-06-28

Family

ID=46505367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010271025A Pending JP2012124189A (en) 2010-12-06 2010-12-06 Sintered magnet

Country Status (1)

Country Link
JP (1) JP2012124189A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176655A1 (en) * 2011-06-21 2012-12-27 株式会社日立製作所 Sintered magnet
JP2013069738A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Sintered magnet
JP2013106016A (en) * 2011-11-17 2013-05-30 Hitachi Chemical Co Ltd Alcoholic solution and sintered magnet
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
JP2015204343A (en) * 2014-04-11 2015-11-16 株式会社Ihi Nano composite magnet and method for manufacturing nano composite magnet
KR101585483B1 (en) * 2015-04-29 2016-01-15 엘지전자 주식회사 Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
JP2017157625A (en) * 2016-02-29 2017-09-07 Tdk株式会社 Rare-earth sintered magnet
CN111430143A (en) * 2020-04-22 2020-07-17 安徽吉华新材料有限公司 Preparation process of rare earth neodymium iron boron permanent magnet
CN112466652A (en) * 2020-12-10 2021-03-09 泮敏翔 Preparation method of high-coercivity manganese bismuth magnet
CN113539664A (en) * 2021-07-27 2021-10-22 泮敏翔 Preparation method of Sm-based anisotropic composite magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012176655A1 (en) * 2011-06-21 2012-12-27 株式会社日立製作所 Sintered magnet
JP2013069738A (en) * 2011-09-21 2013-04-18 Hitachi Ltd Sintered magnet
JP2013106016A (en) * 2011-11-17 2013-05-30 Hitachi Chemical Co Ltd Alcoholic solution and sintered magnet
JP2015023243A (en) * 2013-07-23 2015-02-02 Tdk株式会社 Rare earth magnet, electric motor, and device with electric motor
JP2015204343A (en) * 2014-04-11 2015-11-16 株式会社Ihi Nano composite magnet and method for manufacturing nano composite magnet
WO2016175377A1 (en) * 2015-04-29 2016-11-03 엘지전자 주식회사 Manganese bismuth-based sintered magnet having improved thermal stability and preparation method therefor
KR101585483B1 (en) * 2015-04-29 2016-01-15 엘지전자 주식회사 Sintered Magnet Based on MnBi Having Improved Heat Stability and Method of Preparing the Same
CN107077934A (en) * 2015-04-29 2017-08-18 Lg电子株式会社 Sintered magnet based on MnBi of heat endurance with raising and preparation method thereof
US10695840B2 (en) 2015-04-29 2020-06-30 Lg Electronics Inc. Sintered magnet based on MnBi having improved heat stability and method of preparing the same
JP2017157625A (en) * 2016-02-29 2017-09-07 Tdk株式会社 Rare-earth sintered magnet
CN111430143A (en) * 2020-04-22 2020-07-17 安徽吉华新材料有限公司 Preparation process of rare earth neodymium iron boron permanent magnet
CN112466652A (en) * 2020-12-10 2021-03-09 泮敏翔 Preparation method of high-coercivity manganese bismuth magnet
CN112466652B (en) * 2020-12-10 2022-04-19 中国计量大学 Preparation method of high-coercivity manganese bismuth magnet
CN113539664A (en) * 2021-07-27 2021-10-22 泮敏翔 Preparation method of Sm-based anisotropic composite magnet

Similar Documents

Publication Publication Date Title
JP2012124189A (en) Sintered magnet
JP5247754B2 (en) Magnetic material and motor using the magnetic material
JP5948033B2 (en) Sintered magnet
US20180114614A1 (en) Rare Earth-Free Permanent Magnetic Material
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP4564993B2 (en) Rare earth magnet and manufacturing method thereof
KR101250673B1 (en) Magnetic material for high frequency wave, and method for production thereof
US10695840B2 (en) Sintered magnet based on MnBi having improved heat stability and method of preparing the same
WO2012176655A1 (en) Sintered magnet
US20120145944A1 (en) Magnetic material and motor obtained using same
US11732336B2 (en) Magnetic material and method for producing same
JP2013254756A (en) Sintered magnet
JP2013135542A (en) Sintered magnet motor
JP2013106016A (en) Alcoholic solution and sintered magnet
WO2003085683A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet and method for preparation thereof
JP2008060241A (en) High resistance rare-earth permanent magnet
JPH0678582B2 (en) Permanent magnet material
JP4970693B2 (en) Solid material for magnet
JP5339644B2 (en) Manufacturing method of solid material for magnet
JPH03170643A (en) Alloy for permanent magnet
Lewis et al. Rare earth-free permanent magnetic material
Mirtaheri et al. Advances in Developing Permanent Magnets with Less or No Rare-Earth Elements
CN116110707B (en) Sintered Nd-Fe-B permanent magnet and preparation method thereof
JP2004146543A (en) Solid material for magnet and its manufacturing method
JP2010109184A (en) MANUFACTURING METHOD OF Fe/FePd NANO COMPOSITE MAGNET

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120521