JP2003017307A - Solid material for magnet and method of fabricating the magnet - Google Patents

Solid material for magnet and method of fabricating the magnet

Info

Publication number
JP2003017307A
JP2003017307A JP2001197889A JP2001197889A JP2003017307A JP 2003017307 A JP2003017307 A JP 2003017307A JP 2001197889 A JP2001197889 A JP 2001197889A JP 2001197889 A JP2001197889 A JP 2001197889A JP 2003017307 A JP2003017307 A JP 2003017307A
Authority
JP
Japan
Prior art keywords
magnet
solid material
magnetic
nitrogen
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001197889A
Other languages
Japanese (ja)
Other versions
JP4790933B2 (en
Inventor
Etsuji Kakimoto
悦二 柿本
Kiyotaka Doke
清孝 道家
Ichiro Shibazaki
一郎 柴崎
Nobuyoshi Imaoka
伸嘉 今岡
Takashi Chiba
昂 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001197889A priority Critical patent/JP4790933B2/en
Priority to KR10-2003-7013844A priority patent/KR100524340B1/en
Priority to CNB028088182A priority patent/CN100501881C/en
Priority to EP02722754.5A priority patent/EP1383143B1/en
Priority to US10/475,617 priority patent/US7364628B2/en
Priority to PCT/JP2002/004089 priority patent/WO2002089153A1/en
Publication of JP2003017307A publication Critical patent/JP2003017307A/en
Application granted granted Critical
Publication of JP4790933B2 publication Critical patent/JP4790933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a solid material for magnet which is given the density of 6.15 to 7.45 g/cm<3> and assures excellent higher magnetic characteristics and thermal stability. SOLUTION: Magnetic powder of the rare-earth-iron-nitrogen-hydrogen system is pressed and molded in the magnetic field and thereafter it is compressed within the water using the impulse wave having pressure of 3 to 22 GPa.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、軽量でありなが
ら高磁気特性を有し、熱安定性に優れた希土類−鉄−窒
素−水素系磁石用固形材料、及びそれを用いてなる磁石
を利用した装置並びに部品に関する。この発明は、又、
磁場中で圧粉成形後、衝撃圧縮して分解や脱窒を防止し
ながら高磁気特性の磁石用固形材料を得る製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention utilizes a solid material for a rare earth-iron-nitrogen-hydrogen-based magnet, which has a high magnetic property while being lightweight, and is excellent in thermal stability, and a magnet using the same. Device and parts. This invention also
The present invention relates to a manufacturing method for obtaining a solid material for a magnet having high magnetic properties while preventing compaction and denitrification by impact compression after compacting in a magnetic field.

【0002】ここで言う固形材料とは、塊状の材料のこ
とを指す。さらに、ここで言う磁石用固形材料とは、塊
状の磁性材料のことを指し、磁石用固形材料を構成する
磁性材料の粉末同士が直接、または金属相若しくは無機
物相を介して、連続的に結合し、全体として塊状を成し
ている状態の磁性材料である。
[0002] The solid material referred to here is a lump-shaped material. Furthermore, the solid material for a magnet referred to here means a lump-shaped magnetic material, and the powders of the magnetic material forming the solid material for a magnet are directly bonded to each other or continuously through a metal phase or an inorganic phase. However, it is a magnetic material in a state of forming a lump as a whole.

【0003】[0003]

【従来の技術】高性能の希土類磁石として、例えばSm
−Co系磁石、Nd−Fe−B系磁石が知られている。
前者は高い熱安定性と耐食性等により、また、後者は極
めて高い磁気特性、低コスト、原料供給の安定性等によ
りそれぞれ広く用いられている。今日、更に高い熱安定
性と高い磁気特性とを併せ持ち、軽量で原料コストの安
価な希土類磁石が、電装用や各種FA用のアクチュエー
タ、あるいは回転機用の磁石として要望されている。
2. Description of the Related Art As a high-performance rare earth magnet, for example, Sm
-Co type magnets and Nd-Fe-B type magnets are known.
The former is widely used due to its high thermal stability and corrosion resistance, while the latter is widely used due to its extremely high magnetic properties, low cost, and stable supply of raw materials. Nowadays, a rare earth magnet which has both higher thermal stability and higher magnetic properties and which is light in weight and low in raw material cost is demanded as an actuator for electric equipment or various FA, or a magnet for a rotating machine.

【0004】一方、菱面体晶又は六方晶の結晶構造を有
する希土類−鉄化合物をNH3とH2の混合ガス等の中で
400℃〜600℃の比較的低温にて反応させる時、N
原子及びH原子が上記結晶、例えばTh2Zn17型化合
物の格子間位置に侵入し、キュリー温度や磁気異方性の
顕著な増加を招来することが報告されている(米国特許
第5186766号)。近年、かかる希土類−鉄−窒素
系磁性材料を用いた高性能固形磁石が前記要望に沿う新
磁石材料としてその実用化の期待が高まっている。
On the other hand, when a rare earth-iron compound having a rhombohedral or hexagonal crystal structure is reacted in a mixed gas of NH 3 and H 2 at a relatively low temperature of 400 ° C. to 600 ° C., N
It has been reported that atoms and H atoms penetrate into interstitial sites of the above-mentioned crystal, for example, Th 2 Zn 17 type compound, resulting in a remarkable increase in Curie temperature and magnetic anisotropy (US Pat. No. 5,186,766). . In recent years, high-performance solid magnets using such rare earth-iron-nitrogen based magnetic materials are expected to be put into practical use as new magnet materials meeting the above-mentioned demand.

【0005】[0005]

【発明が解決しようとする課題】窒素と水素とを金属間
化合物の格子間に含有し、菱面体晶又は六方晶の結晶構
造を有する希土類−鉄−窒素−水素系材料(以下R−F
e−N−H系磁性材料という)は、一般に粉体状態にて
得られるが、常圧下約600℃以上の温度ではα−Fe
分解相と希土類窒化物相とに分解し易いため、自己焼結
により焼結して磁石用固形材料として得ることは、通常
の工業的方法では非常に困難である。
A rare earth-iron-nitrogen-hydrogen material (hereinafter R-F) containing nitrogen and hydrogen in the intermetallic compound lattice and having a rhombohedral or hexagonal crystal structure.
(e-N-H magnetic material) is generally obtained in a powder state, but α-Fe at a temperature of about 600 ° C or higher under normal pressure.
Since it is easy to decompose into a decomposed phase and a rare earth nitride phase, it is very difficult to sinter by self-sintering to obtain a solid material for a magnet by an ordinary industrial method.

【0006】そこで、R−Fe−N−H系磁性材料を用
いた磁石としては、樹脂をバインダとしたボンド磁石が
製造され使用されている。しかし、この材料を用いて作
られた磁石は、400℃以上のキュリー温度を有し、本
来200℃以上の温度でも磁化を失わない磁性粉体を使
用しているにもかかわらず、12−ナイロン樹脂などの
バインダの耐熱温度が低いことと保磁力の温度係数が−
0.5%/℃程度であるのに対し保磁力が0.6MA/
mと小さい(電気学会技術報告第729号、電気学会
編、第41頁参照)ことが主な原因となって不可逆減磁
率が大きくなり、概ね100℃未満の温度でしか使用さ
れていない。すなわち、最近ヘビーデューティーの要求
から、150℃以上の高温の環境下で使用される動力源
としてのブラシレスモータ等を作る場合、このボンド磁
石は使用することができないという問題があった。
Therefore, as the magnet using the R—Fe—N—H magnetic material, a bond magnet using a resin as a binder is manufactured and used. However, a magnet made of this material has a Curie temperature of 400 ° C. or higher, and although it uses magnetic powder that does not lose its magnetization even at a temperature of 200 ° C. or higher, 12-nylon The low heat resistance temperature of the binder such as resin and the temperature coefficient of coercive force
0.5% / ° C, but coercive force 0.6MA /
The irreversible demagnetization rate becomes large mainly due to the small m (see Technical Report No. 729 of the Institute of Electrical Engineers of Japan, edited by The Institute of Electrical Engineers, p. 41), and it is used only at a temperature of less than about 100 ° C. That is, recently, due to the requirement of heavy duty, there has been a problem that this bond magnet cannot be used when making a brushless motor or the like as a power source used in a high temperature environment of 150 ° C. or higher.

【0007】また、樹脂をバインダとした圧縮成形ボン
ド磁石を製造する場合、充填率を向上させ高性能化する
には、工業的に難しい10重量トン/cm2以上の成形
圧力が必要であり、金型寿命等を考慮すると、混合比率
は体積比にて80%未満にせざるを得ない場合が多く、
圧縮成形ボンド磁石によってはR−Fe−N−H系磁性
材料の優れた基本磁気特性を十分に発揮できないという
問題があった。
Further, in the case of producing a compression-molded bonded magnet using a resin as a binder, a molding pressure of 10 weight ton / cm 2 or more, which is industrially difficult, is required in order to improve the filling rate and improve the performance. Considering the mold life, etc., the mixing ratio is often less than 80% by volume,
There is a problem that the excellent basic magnetic characteristics of the R—Fe—N—H magnetic material cannot be sufficiently exhibited depending on the compression-molded bonded magnet.

【0008】以上の問題点を解決するために、樹脂バイ
ンダを用いない希土類−鉄−窒素系永久磁石の製造方法
が特許第3108232号公報に提案されている。しか
しながら、当該方法によると、衝撃圧縮後の残留温度を
Th2Zn17型希土類−鉄−窒素系磁性材料の分解温度
以下に抑制するためには、衝撃圧縮の際の圧力を一定の
狭い範囲に限定しなければならないという欠点があっ
た。さらに、当該方法によれば、希土類−鉄−窒素系磁
性材料の分解を十分に押さえられないため、保磁力も最
高で0.21MA/mと低くとどまるものであった。
In order to solve the above problems, Japanese Patent No. 3108232 proposes a method for manufacturing a rare earth-iron-nitrogen permanent magnet which does not use a resin binder. However, according to the method, in order to suppress the residual temperature after impact compression to a temperature not higher than the decomposition temperature of the Th 2 Zn 17 type rare earth-iron-nitrogen based magnetic material, the pressure during impact compression is set to a certain narrow range. There was a drawback that it had to be limited. Further, according to this method, the decomposition of the rare earth-iron-nitrogen based magnetic material could not be sufficiently suppressed, so the coercive force remained at a low value of 0.21 MA / m at maximum.

【0009】また、特開2001−6959には、大型
でヒビや欠けのない成形体を得る目的で、円筒収束衝撃
波を用いてTh2Zn17型希土類−鉄−窒素系磁性材料
を圧縮固化する方法が開示されているが、当該方法によ
り得られる磁石においても、保磁力の最高値は0.62
MA/mと、まだ満足できるものではなかった。
Further, in Japanese Patent Laid-Open No. 2001-6959, for the purpose of obtaining a large-sized molded body without cracks or chips, a Th 2 Zn 17 type rare earth-iron-nitrogen based magnetic material is compressed and solidified by using a cylindrical converging shock wave. Although a method is disclosed, the maximum value of coercive force of the magnet obtained by the method is 0.62.
MA / m was still unsatisfactory.

【0010】他に、衝撃波圧縮により成形したTh2
17型希土類−鉄−窒素系磁性材料の例としては、J.
Appl.Phys.第80巻、第1号、356頁に報
告されたものがあるが、10GPaでは充填率が低く2
0GPaではα−Fe分解相とSmN相への分解が進む
ため、各衝撃圧縮条件での磁気特性の最高値は保磁力
0.57MA/m、(BH)max=134kJ/m3と、
Th2Zn17型R−Fe−N−H系ボンド磁石に対して
十分高い磁気特性を有しているとは言えないものであっ
た。
Besides, Th 2 Z formed by shock wave compression
Examples of the n 17 type rare earth-iron-nitrogen based magnetic material are described in J.
Appl. Phys. There is one reported in Volume 80, No. 1, 356, but at 10 GPa, the filling rate is low and 2
At 0 GPa, the decomposition into α-Fe decomposition phase and SmN phase proceeds, so the maximum values of magnetic characteristics under each shock compression condition are coercive force 0.57 MA / m, (BH) max = 134 kJ / m 3 ,
Were those not be said with respect to Th 2 Zn 17 type R-Fe-N-H-based bonded magnet has a sufficiently high magnetic properties.

【0011】さらに、家電・OA機器や電気自動車への
用途において、軽量高性能化が求められているが、Sm
−Co系磁石の密度が8.4g/cm3程度、Nd−F
e−B系磁石の密度が7.5g/cm3程度とこれらの
磁石を搭載すると重量が大きくなりがちであった。ま
た、用途によっては磁気特性に余裕があるため磁石の小
型化による軽量化が可能であっても、加工による歩留ま
りを考慮するとコスト的に必ずしも有利とは言えないも
のであった。例えば、切削屑は切削面積に比例するので
体積が小さくなるほど製品の単位体積当たりの歩留まり
は悪くなってしまう。
Further, in applications for home electric appliances, office automation equipment and electric vehicles, light weight and high performance are required.
Density of -Co-based magnet 8.4 g / cm 3 approximately, Nd-F
When the density of the e-B magnet is about 7.5 g / cm 3 , the weight tends to increase when these magnets are mounted. Further, even if the magnet can be made smaller and lighter due to the margin of magnetic characteristics depending on the application, it is not necessarily advantageous in terms of cost considering the yield due to processing. For example, since the cutting waste is proportional to the cutting area, the smaller the volume, the worse the yield per unit volume of the product.

【0012】その欠点を補う各種ボンド磁石は上述のよ
うに熱安定性に劣るものなので、軽量でありながら高磁
気特性であり、熱安定性に優れ、コストパフォーマンス
の高い磁石はまだ開発されていない。
Since various bonded magnets that make up the drawbacks are inferior in thermal stability as described above, a magnet which is lightweight yet has high magnetic characteristics, excellent thermal stability and high cost performance has not yet been developed. .

【0013】[0013]

【発明が解決しようとする課題】本発明は、菱面体晶ま
たは六方晶の結晶構造を有したR−Fe−N−H系磁性
材料を80〜97体積%含有し、6.15〜7.45g
/cm3と小さな密度を有しながら磁気特性とその安定
性が優れることを特徴とする磁石用固形材料を提供する
ことを目的とする。本発明はまた、前記磁石用固形材料
を製造する方法を提供することを他の目的とする。本発
明はさらに、前記磁石用固形材料を利用した装置、部品
を提供することを更に他の目的とする。
DISCLOSURE OF THE INVENTION The present invention contains 80 to 97% by volume of an R—Fe—N—H magnetic material having a rhombohedral or hexagonal crystal structure, and 6.15 to 7. 45 g
An object of the present invention is to provide a solid material for a magnet, which has a small density of / cm 3 and excellent magnetic characteristics and stability. Another object of the present invention is to provide a method for producing the solid material for a magnet. Still another object of the present invention is to provide a device and a part using the solid material for a magnet.

【0014】[0014]

【課題を解決するための手段】本発明者らは、菱面体晶
または六方晶の結晶構造を有するR−Fe−N−H系磁
性材料を含有し、軽量で磁気特性とその安定性が高い磁
石用固形材料を得るために、原料組成と含有率、その製
造方法について鋭意検討したところ、窒素だけでなく水
素をも含む磁性材料粉体を用い、その体積分率を80〜
97体積%として、磁場中で圧粉成形体にした後、前記
圧粉体を一定の衝撃波圧力を有する水中衝撃波で衝撃圧
縮し、衝撃圧縮の持つ超高圧剪断性、活性化作用、短時
間作用現象などの特徴を活かして衝撃圧縮後の残留温度
をR−Fe−N−H系磁性材料の分解温度(常圧で約6
00℃)以下に抑制することにより、分解を防ぎなが
ら、密度6.15〜7.45g/cm3で100℃以上
でも使用可能な、金属結合により固化したR−Fe−N
−H系磁石用固形材料を容易に得ることができるという
知見を得て、この発明を完成した。
The inventors of the present invention contain an R—Fe—N—H magnetic material having a rhombohedral or hexagonal crystal structure, are lightweight, and have high magnetic properties and stability. In order to obtain a solid material for a magnet, the raw material composition, the content rate, and the manufacturing method thereof have been studied earnestly. As a result, a magnetic material powder containing not only nitrogen but also hydrogen is used, and the volume fraction thereof is 80 to
97% by volume, after compacting into a compact in a magnetic field, the compact is shock-compressed with an underwater shock wave having a constant shock wave pressure, and the ultra-high-pressure shear property of shock compression, activation action, and short-time action Taking advantage of the characteristics such as the phenomenon, the residual temperature after impact compression is determined by the decomposition temperature of the R-Fe-NH magnetic material (about 6 at normal pressure).
(00 ° C) or less, while preventing decomposition, it can be used even at 100 ° C or higher at a density of 6.15 to 7.45 g / cm 3 , and is solidified by a metal bond to R-Fe-N.
The present invention has been completed based on the finding that a solid material for -H magnets can be easily obtained.

【0015】すなわち、本発明の態様は以下のとおりで
ある。 (1)菱面体晶又は六方晶の結晶構造を有する希土類−
鉄−窒素−水素系磁性材料を80〜97体積%含有する
ことを特徴とする磁石用固形材料。 (2)密度が6.15〜7.45g/cm3であること
を特徴とする菱面体晶又は六方晶の結晶構造を有する希
土類−鉄−窒素−水素系の磁石用固形材料。 (3)前記(1)又は(2)記載の磁石用固形材料であ
って、常温の残留磁束密度Br、常温の保磁力HcJ、磁
石として使用するときのパーミアンス係数Pc及び最高
使用温度Tmaxの関係が、μ0を真空の透磁率とすると
き、 Br≦μ0cJ(Pc+1)(11000−50Tmax)/
(10000−6Tmax) であることを特徴とする磁石用固形材料。 (4)前記(1)〜(3)のいずれかに記載の磁石用固
形材料であって、保磁力HcJが0.76MA/m以上
で、しかも角形比Br/Jsが95%以上であることを特
徴とする磁石用固形材料。 (5)前記(1)〜(4)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−窒素−水素系磁性材料以
外の成分が密度6.5g/cm3以下の元素、化合物ま
たはそれらの混合物であることを特徴とする磁石用固形
材料。 (6)前記(1)〜(5)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−窒素−水素系磁性材料以
外の部分に大気、不活性ガスのうち少なくとも1種を含
有することを特徴とする磁石用固形材料。 (7)前記(1)〜(6)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−窒素−水素系磁性材料以
外の部分に酸化物、フッ化物、炭化物、窒化物、水素化
物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩のう
ち少なくとも1種を含有することを特徴とする磁石用固
形材料。 (8)前記(1)〜(7)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−窒素−水素系磁性材料以
外の部分に有機物を含有することを特徴とする磁石用固
形材料。 (9)前記(1)〜(8)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−窒素−水素系磁性材料又
はこれと他の構成成分との混合物を衝撃波圧力が3〜2
2GPaの水中衝撃波を用いて圧縮固化してなることを
特徴とする請求項1〜8のいずれかに記載の磁石用固形
材料。 (10)前記(1)〜(9)のいずれかに記載の磁石用
固形材料を製造する方法であって、希土類−鉄−窒素−
水素系磁性粉体を磁場中で圧粉成形した後、水中衝撃波
を用いて圧縮固化することを特徴とする磁石用固形材料
の製造方法。 (11)磁石の静磁場を利用する装置に使用するための
部品であって、上記(1〜9)のいずれかに記載の磁石
用固形材料を用いたことを特徴とする部品。 (12)磁石の静磁場を利用する最高使用温度Tmax
100℃以上の装置であって、その部品として上記(1
1)に記載の部品を使用することを特徴とする装置。
That is, the aspects of the present invention are as follows. (1) Rare earth having a rhombohedral or hexagonal crystal structure-
A solid material for a magnet, comprising 80 to 97% by volume of an iron-nitrogen-hydrogen based magnetic material. (2) A rare earth-iron-nitrogen-hydrogen-based solid material for magnets having a rhombohedral or hexagonal crystal structure, which has a density of 6.15 to 7.45 g / cm 3 . (3) (1) or (2) a solid material for a magnet according, room temperature remanence B r, room temperature coercivity H cJ, permeance coefficient P c and the maximum use temperature when used as a magnet The relation of T max is Br r ≤ μ 0 H cJ (P c +1) (11000-50T max ) /, where μ 0 is the magnetic permeability of vacuum
Solid material for a magnet, which is a (10000-6T max). (4) The solid material for a magnet according to any one of (1) to (3) above, which has a coercive force H cJ of 0.76 MA / m or more and a squareness ratio B r / J s of 95% or more. A solid material for a magnet, which is (5) The solid material for a magnet according to any one of (1) to (4) above, wherein a component other than the rare earth-iron-nitrogen-hydrogen based magnetic material has an element density of 6.5 g / cm 3 or less, A solid material for a magnet, which is a compound or a mixture thereof. (6) The solid material for a magnet according to any one of (1) to (5), wherein at least one of the atmosphere and an inert gas is provided in a portion other than the rare earth-iron-nitrogen-hydrogen based magnetic material. A solid material for a magnet, characterized by containing. (7) The solid material for a magnet as set forth in any one of (1) to (6) above, wherein an oxide, a fluoride, a carbide, a nitride are added to a portion other than the rare earth-iron-nitrogen-hydrogen magnetic material. A solid material for a magnet, comprising at least one selected from a hydride, a carbonate, a sulfate, a silicate, a chloride and a nitrate. (8) The solid material for a magnet according to any one of (1) to (7), wherein the organic material is contained in a portion other than the rare earth-iron-nitrogen-hydrogen based magnetic material. Solid material. (9) The solid material for a magnet as set forth in any one of (1) to (8), wherein the rare earth-iron-nitrogen-hydrogen magnetic material or a mixture of the magnetic material and other constituents has a shock wave pressure of 3 or less. ~ 2
The solid material for magnets according to any one of claims 1 to 8, wherein the solid material is compressed and solidified by using an underwater shock wave of 2 GPa. (10) A method for producing the solid material for a magnet according to any one of (1) to (9) above, which comprises rare earth-iron-nitrogen-
A method for producing a solid material for a magnet, comprising compacting hydrogen-based magnetic powder in a magnetic field and then compressing and solidifying it using an underwater shock wave. (11) A component for use in a device that utilizes a static magnetic field of a magnet, characterized by using the solid material for a magnet according to any one of the above (1 to 9). (12) An apparatus having a maximum operating temperature T max of 100 ° C. or higher, which utilizes the static magnetic field of a magnet, and which has the above-mentioned (1
An apparatus using the component described in 1).

【0016】[0016]

【発明の実施の形態】本発明の磁石用固形材料に用いら
れるR−Fe−N−H系磁性材料としては、次の(1)
〜(7)から選ばれた少なくとも一つの磁性材料が挙げ
られる。 (1)一般式RαFe100―α-β-γβγで表さ
れ、菱面体晶又は六方晶の結晶構造を有する磁性材料で
あり、又、RはYを含む希土類元素から選ばれた少なく
とも一種の元素であり、又、α、β、γは原子百分率
で、3≦α≦20、5≦β≦30、0.01≦γ≦10
であることを特徴とする磁性材料。 (2)一般式RαFe100―α-β-γ-δβγδ
表され、菱面体晶又は六方晶の結晶構造を有する磁性材
料であり、又、RはYを含む希土類元素から選ばれた少
なくとも一種の元素であり、又、α、β、γ、δは原子
百分率で、5≦α≦20、10≦β≦25、0.01≦
γ≦5、1≦δ≦10であることを特徴とする磁性材
料。 (3)R及び又はFeの20原子%以下をNi、Ti、
V、 Cr、Mn、Zn、Zr、Nb、Mo、Ta、
W、Ru、Rh、Pd、Hf、Re、Os、Ir、Bか
ら選ばれた少なくとも一種の元素と置換した上記(1)
又は(2)の磁性材料。 (4)N及び又はHの10原子%以下をC、P、Si、
S、Alから選ばれる少なくとも一種の元素と置換した
上記(1)〜(3)のいずれか磁性材料。 (5)上記(1)〜(4)のいずれかの磁性材料の成分
のうち、Rの50原子%以上がSmであることを特徴と
する磁性材料。 (6)上記(1)〜(5)のいずれかの磁性材料の成分
のうち、Feの0.01〜50原子%をCoで置換した
ことを特徴とする磁性材料。 (7)上記(1)〜(6)のいずれかの磁性材料の粒界
又は表面にZnを反応させた磁性材料。
BEST MODE FOR CARRYING OUT THE INVENTION The R—Fe—N—H based magnetic material used in the solid material for a magnet of the present invention includes the following (1).
At least one magnetic material selected from (7) to (7). (1) A magnetic material represented by the general formula R α Fe 100-α-β-γ N β H γ , having a rhombohedral or hexagonal crystal structure, and R is selected from rare earth elements including Y. At least one element, and α, β and γ are atomic percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 30, 0.01 ≦ γ ≦ 10
A magnetic material characterized by: (2) A magnetic material represented by the general formula R α Fe 100-α-β-γ-δ N β H γ O δ , having a rhombohedral or hexagonal crystal structure, and R contains Y. It is at least one element selected from rare earth elements, and α, β, γ, δ are atomic percentages, 5 ≦ α ≦ 20, 10 ≦ β ≦ 25, 0.01 ≦
A magnetic material having γ ≦ 5 and 1 ≦ δ ≦ 10. (3) Ni, Ti, and 20 atomic% or less of R and / or Fe
V, Cr, Mn, Zn, Zr, Nb, Mo, Ta,
The above (1) substituted with at least one element selected from W, Ru, Rh, Pd, Hf, Re, Os, Ir and B
Alternatively, the magnetic material according to (2). (4) 10 atomic% or less of N and / or H is C, P, Si,
The magnetic material according to any one of (1) to (3) above, which is substituted with at least one element selected from S and Al. (5) Among the components of the magnetic material according to any of (1) to (4) above, 50 atom% or more of R is Sm. (6) A magnetic material, characterized in that, of the components of the magnetic material according to any one of (1) to (5), 0.01 to 50 atomic% of Fe is replaced with Co. (7) A magnetic material obtained by reacting Zn with the grain boundaries or the surface of the magnetic material according to any one of (1) to (6) above.

【0017】これらの磁性材料は、公知の方法(例え
ば、米国特許第5186766号、米国特許第5164
104号、特許第2703281号公報、特許第270
5985号公報、特許第2708568号公報、特許第
2739860号公報、特許2857476号公報等)
により調製される。
These magnetic materials can be obtained by known methods (for example, US Pat. No. 5,186,766 and US Pat. No. 5,164).
No. 104, Japanese Patent No. 2703281, Japanese Patent No. 270
No. 5,985, No. 2,708,568, No. 2,739,860, No. 2,857,476, etc.)
Is prepared by.

【0018】これらのR−Fe−N−H系磁性材料は、
0.1〜100μmの平均粒径を有する粉体状で得ら
れ、磁石用固形材料の原料として供給される。平均粒径
が0.1μm未満であると、磁場配向性が悪くなり、残
留磁束密度が低くなる。逆に平均粒径が100μmを越
えると保磁力が低くなり、実用性に乏しくなる。優れた
磁場配向性を付与させるために、更に好ましい平均粒径
の範囲は1〜100μmであり、2〜80μmであれ
ば、最も好ましい。また、R−Fe−N−H系材料は、
高い飽和磁化、高いキュリー点と共に、大きな磁気異方
性を有することが特徴である。従って、粒径2μm以上
の単結晶粉体とすれば外部磁場により容易に磁場配向す
ることができ、高い磁気特性を持つ異方性磁石とするこ
とができる。
These R-Fe-N-H magnetic materials are
It is obtained in the form of powder having an average particle size of 0.1 to 100 μm, and is supplied as a raw material of a solid material for magnets. If the average particle size is less than 0.1 μm, the magnetic field orientation becomes poor and the residual magnetic flux density becomes low. On the other hand, if the average particle size exceeds 100 μm, the coercive force becomes low and the practicality becomes poor. In order to impart excellent magnetic field orientation, the range of the more preferable average particle diameter is 1 to 100 μm, and the most preferable range is 2 to 80 μm. Further, the R-Fe-N-H-based material is
It is characterized by high saturation magnetization, high Curie point, and large magnetic anisotropy. Therefore, if a single crystal powder having a particle size of 2 μm or more is used, the magnetic field can be easily oriented by an external magnetic field, and an anisotropic magnet having high magnetic characteristics can be obtained.

【0019】R−Fe−N−H系磁性材料の大きな特徴
の一つは、耐酸化性が高く、錆が発生しにくい点であ
る。Nd−Fe−B系の焼結磁石は、磁気特性が極めて
高く、VCM等のアクチュエータや各種モータに多用さ
れているが、表面が常温の大気中でも容易に酸化してし
まうため、錆落ち防止の目的でニッケルメッキやエポキ
シ樹脂コーティングなどにより表面処理することが必須
となる。
One of the major characteristics of the R-Fe-N-H type magnetic material is that it has high oxidation resistance and does not easily generate rust. Nd-Fe-B based sintered magnets have extremely high magnetic properties and are widely used in actuators such as VCMs and various motors, but their surface easily oxidizes even in the atmosphere at room temperature, and therefore prevents rust removal. For the purpose, surface treatment by nickel plating or epoxy resin coating is essential.

【0020】これに対して、R−Fe−N−H系磁性材
料を用いた磁石の場合、上記の表面処理を必要としない
か、或いは簡便なものとすることができる。このこと
は、コスト的に有利であって、しかも、磁性の低い表面
層がない分アクチュエータやモータとして使用する場合
に磁石の磁力を最大限活かすことができるため、例えば
(BH)max値がNd−Fe−B系焼結磁石より劣る場
合であっても同様なコストパフォーマンスを発揮するこ
とができる。
On the other hand, in the case of the magnet using the R—Fe—N—H type magnetic material, the above-mentioned surface treatment is not necessary or can be simplified. This is a cost effective, yet, because it can make the most of the magnetic force of the magnet when used as a partial actuator or motor is no magnetic low surface layer, for example, (BH) max value Nd Even if it is inferior to the -Fe-B system sintered magnet, similar cost performance can be exhibited.

【0021】ところで、水素を含有しないTh2Zn17
型R−Fe−N系磁性材料は、磁気特性の最適化を図ろ
うとした場合、窒素量がR2Fe17当たり3個より少な
くなり、熱力学的に不安定なR2Fe173-Δ相が生じ
る。この相は、熱的、機械的なエネルギーにより容易に
α−Fe分解相と窒化希土類とへ分解する結果、従来の
衝撃波圧縮によっては高性能な磁石用固形材料とはなり
得ない。
By the way, Th 2 Zn 17 containing no hydrogen
In the R-Fe-N-based magnetic material, the amount of nitrogen is less than 3 per R 2 Fe 17 when attempting to optimize the magnetic properties, and thermodynamically unstable R 2 Fe 17 N 3- Δ phase occurs. This phase is easily decomposed into an α-Fe decomposition phase and a rare earth nitride by thermal and mechanical energy, and as a result, conventional shock wave compression cannot provide a high-performance solid material for magnets.

【0022】これに対し、R−Fe−N−H系磁性材料
においては、水素が上記で規定される範囲内に制御され
れば、通常、その主相は熱力学的に安定なR2Fe173
x相又は余剰な窒素を含むR2Fe173+Δx相(通
常xは0.01〜2程度の範囲)になって熱的、機械的
なエネルギーによるα−Fe分解相及び窒化希土類相へ
の分解は、Hを含まないTh2Zn17型R−Fe−N系
磁性材料に比べて顕著に抑制される。このことは、高磁
気特性で、熱安定性、耐酸化性の優れた磁石用固形材料
を得るための重要な知見に他ならない。
On the other hand, in the R—Fe—N—H type magnetic material, if hydrogen is controlled within the range defined above, the main phase thereof is usually thermodynamically stable R 2 Fe. 17 N 3
The H x phase or the R 2 Fe 17 N 3 + Δ H x phase containing excess nitrogen (usually x is in the range of about 0.01 to 2) becomes an α-Fe decomposition phase by thermal and mechanical energy, and Decomposition into a rare earth nitride phase is significantly suppressed as compared with the Th 2 Zn 17 type R—Fe—N based magnetic material containing no H. This is nothing but an important finding for obtaining a magnetic solid material having high magnetic properties and excellent thermal stability and oxidation resistance.

【0023】本発明の磁石用固形材料は、R−Fe−N
−H系磁性材料を80〜97体積%含有した材料であ
る。R−Fe−N−H系材料以外の3〜20体積%の部
分は真空であっても良いし、密度6.5g/cm3以下
の元素、化合物、またはそれらの混合物であってもよ
い。
The solid material for magnets of the present invention is R-Fe-N.
A material containing 80 to 97% by volume of an H-based magnetic material. A portion of 3 to 20% by volume other than the R—Fe—N—H-based material may be vacuum, or may be an element, a compound, or a mixture thereof having a density of 6.5 g / cm 3 or less.

【0024】本発明の磁石用固形材料の密度は6.15
〜7.45g/cm3とすることが好ましい。6.15
g/cm3未満であってもR−Fe−N−H系磁性材料
の成分が80体積%以上となる場合は好ましい場合があ
る。また、R−Fe−N−H系磁性材料を97体積%以
下としても7.45g/cm3を越える場合があり、既
存の固形磁石に比べ軽量である本発明の磁石用固形材料
の特徴が活かせなくなることもある。例えば、Sm2
1730.1磁性材料の真密度は7.69g/cm
3(IEEE Trans.Magn.、MAG−2
8、2326頁、及びICDDによるPowder D
iffraction File WZ1430を参
照)であるが、磁性材料以外の部分が充分無視できるほ
ど密度の低いガスなどであったとして、磁性材料の含有
率が80〜97体積%のとき、密度は6.15〜7.4
6となる。
The density of the solid material for magnets of the present invention is 6.15.
It is preferably set to be about 7.45 g / cm 3 . 6.15
Even if it is less than g / cm 3 , it may be preferable if the component of the R—Fe—N—H magnetic material is 80% by volume or more. Further, even if the R-Fe-N-H based magnetic material is 97% by volume or less, it may exceed 7.45 g / cm 3, and thus the characteristics of the solid magnetic material of the present invention which are lighter than existing solid magnets are characterized. Sometimes it can not be used. For example, Sm 2 F
e 17 N 3 H 0.1 true density of magnetic material is 7.69 g / cm
3 (IEEE Trans. Magn., MAG-2
8, pages 2326, and Powder D by ICDD
However, if the content of the magnetic material is 80 to 97% by volume, the density is 6.15 to 100% by volume, assuming that the gas other than the magnetic material has a sufficiently low density such that it can be ignored. 7.4
It becomes 6.

【0025】ここに言う真密度とは、X線から求められ
る、R−Fe−N−Hユニットセルの体積vと、そのユ
ニットセルを構成する原子の原子量の総和wから求めら
れる密度w/vのことであり、一般にX線密度Dxと呼
ばれるものである。また、磁石用固形材料の密度D
mは、アルキメデス法や体積法などのマクロな方法で求
めることができる。
The true density referred to here is the density w / v obtained from the volume v of the R—Fe—N—H unit cell obtained from X-rays and the total w of the atomic weights of the atoms constituting the unit cell. And is generally called X-ray density D x . Also, the density D of the solid material for magnets
m can be obtained by a macro method such as the Archimedes method or the volume method.

【0026】R−Fe−N−H系材料の組成や磁性材料
以外の部分の種類により、R−Fe−N−H系材料の体
積分率と密度の関係は変わるが、熱安定性の良い磁石用
固形材料とするために80体積%以上の磁性材料含有率
が求められ、軽量である磁石用固形材料とするために
7.45g/cm3以下の密度が求められるので、より
好ましい磁石用固形材料は、R−Fe−N−H系磁性材
料を80〜97体積%含有し、しかも密度が6.15〜
7.45g/cm3の範囲にあるものである。
Although the relationship between the volume fraction and the density of the R—Fe—N—H-based material changes depending on the composition of the R—Fe—N—H-based material and the type of portion other than the magnetic material, it has good thermal stability. A magnetic material content of 80% by volume or more is required to obtain a solid material for magnets, and a density of 7.45 g / cm 3 or less is required to obtain a lightweight solid material for magnets. The solid material contains R-Fe-N-H based magnetic material in an amount of 80 to 97% by volume and has a density of 6.15 to.
It is in the range of 7.45 g / cm 3 .

【0027】さらに好ましいR−Fe−N−H系磁性材
料の体積分率または磁石用固形材料の密度の範囲を述べ
ると、特に熱安定性が要求される用途には83〜97体
積%であって密度6.35〜7.45g/cm3の範囲
が選ばれ、機械的強度、磁気特性、熱安定性に非常に優
れる軽量な磁石とするためには、85〜96体積%であ
って密度6.50〜7.40g/cm3の範囲が選ばれ
る。
The more preferable range of the volume fraction of the R—Fe—N—H magnetic material or the density of the solid material for magnets is 83 to 97% by volume for the use where heat stability is required. A density of 6.35 to 7.45 g / cm 3 is selected, and in order to obtain a lightweight magnet having excellent mechanical strength, magnetic properties and thermal stability, the density is 85 to 96% by volume. A range of 6.50 to 7.40 g / cm 3 is selected.

【0028】本発明の磁石用固形材料は、常温の残留磁
束密度Br、常温の保磁力HcJ、磁石として使用すると
きのパーミアンス係数Pc及び最高使用温度Tmaxの関係
が、μ0を真空の透磁率とするとき、 Br≦μ0cJ(Pc+1)(11000−50Tmax)/
(10000−6Tmax) であれば更に望ましい。上記の関係式は、磁石が顕著な
減磁をしない条件を定める式であるが、その意味につい
て以下に補足する。ここに顕著な減磁とは、不可逆でか
つ大きな減磁のことを指し、例えば1000時間以内に
不可逆減磁率で−20%を越えるような減磁を言う。
In the solid material for a magnet of the present invention, the relationship between the residual magnetic flux density B r at room temperature, the coercive force H cJ at room temperature, the permeance coefficient P c when used as a magnet and the maximum operating temperature T max is μ 0 . Assuming that the magnetic permeability is in vacuum, B r ≤ μ 0 H cJ (P c +1) (11000-50T max ) /
(10000-6T max ) is more desirable. The above relational expression is an expression that defines the condition under which the magnet does not significantly demagnetize, and its meaning will be supplemented below. Here, the remarkable demagnetization refers to irreversible and large demagnetization, for example, demagnetization such that the irreversible demagnetization rate exceeds −20% within 1000 hours.

【0029】磁石の逆磁場に対する磁化の変化を表すB
−H曲線上における屈曲点のH座標は、角形比がほぼ1
00%であるとき、ほぼHcJの値となる。磁石の動作点
が、屈曲点より高磁場側に来ると急激に減磁して、磁石
の有する性能を有効に発揮させることができないので、
動作点は屈曲点よりも低磁場側にあるべきである。従っ
て、磁石の形状によって決まる反磁場に対する磁束密度
の比を内部パーミアンス係数Pc0、磁石として磁気回路
や装置に組み込んだ後、運転中磁石に掛かる逆磁場の大
きさによって定まる各動作点でのパーミアンス係数の中
で最小のパーミアンス係数をPcとするとき、Pc0とPc
のうち小さい方の値をPcminとすれば、少なくとも下記
式(1)でなければ、顕著な減磁が生じてしまう。
B representing the change in magnetization with respect to the reverse magnetic field of the magnet
-The H coordinate of the bending point on the -H curve has a squareness ratio of about 1
When it is 00%, the value is almost H cJ . When the operating point of the magnet is on the higher magnetic field side than the bending point, it is demagnetized rapidly and the performance of the magnet cannot be effectively exhibited.
The operating point should be on the lower magnetic field side than the inflection point. Therefore, the ratio of the magnetic flux density to the demagnetizing field determined by the shape of the magnet is the internal permeance coefficient P c0 , and the permeance at each operating point, which is determined by the magnitude of the reverse magnetic field applied to the magnet during operation, after being incorporated as a magnet in a magnetic circuit or device. When the smallest permeance coefficient among the coefficients is P c , P c0 and P c
If the smaller one of them is set to P cmin , significant demagnetization will occur unless it is at least the following expression (1).

【0030】[0030]

【数1】 [Equation 1]

【0031】(1)式は室温における条件式であり、温
度T℃においては、残留磁束密度の温度係数[α
(Br)]、保磁力の温度係数[α(HcJ)]を用い
て、下記式(2)と書き改めることにより、大幅な減磁
が生じない条件が決定される。
Equation (1) is a conditional equation at room temperature, and at temperature T ° C., the temperature coefficient of residual magnetic flux density [α
(B r )] and the temperature coefficient of coercive force [α (H cJ )], it is rewritten as the following equation (2) to determine the condition under which significant demagnetization does not occur.

【0032】[0032]

【数2】 [Equation 2]

【0033】ここでPc0がPcより小さく、着磁しても
磁場を取り去るとすぐに減磁してしまう場合は、予めヨ
ークなどに磁石を組み込んでから着磁することによって
顕著な減磁を回避することができるが、少なくとも
(2)式によって定める条件を満たしていなくては磁石
の使用による顕著な減磁を免れることはできない。
If P c0 is smaller than P c and demagnetized immediately after the magnetic field is removed even if magnetized, it is possible to remarkably demagnetize the magnet by previously incorporating it in a yoke or the like. However, if the condition defined by the equation (2) is not satisfied at least, the demagnetization due to the use of the magnet cannot be avoided.

【0034】R−Fe−N−H系材料の組成や温度領域
によってα(Br)、α(HcJ)の値は変わるが、ほぼ
α(Br)は−0.06%/℃、α(HcJ)は−0.5
%/℃である。α(Br)の値に比べてα(HcJ)の値
の方が絶対値が大きく、両者とも負の値なので、Tが高
いほど(2)式を満たす正の値の組み合わせ(Br、H
cJ)の領域は小さくなる。従って、本発明の磁石用固形
材料を用いて成る磁石が、パーミアンス係数Pcの条件
で使用される場合、動作中最も高くなる温度Tm ax℃に
より決定される(2)式の範囲にBr及びHcJを制御す
ることにより、磁石の減磁を緩和することができること
になる。(2)式にT=Tmax、α(Br)=−0.0
6、α(HcJ)=−0.5を代入し、整理すると下記式
(3)のようになる。
[0034] by R-Fe-N-H-based composition and temperature range of the material α (B r), α ( H cJ) is the value varies substantially alpha (B r) is -0.06% / ° C., α (H cJ ) is -0.5
% / ° C. Since the absolute value of α (H cJ ) is larger than the value of α (B r ) and both are negative values, the higher T is, the combination of positive values (B r , H
The area of cJ ) becomes small. Accordingly, magnet made using a magnet for solid materials of the present invention, when used under the condition of permeance coefficient P c, B in a range that is determined in (2) below the temperature T m ax ° C. which is greatest during operation By controlling r and H cJ , demagnetization of the magnet can be alleviated. In the equation (2), T = T max , α (B r ) = − 0.0
Substituting 6 and α (H cJ ) = − 0.5 and rearranging gives the following formula (3).

【0035】[0035]

【数3】 [Equation 3]

【0036】即ち、磁石としたとき、Br、HcJ、Pc
max が(3)式を満たせば、顕著な減磁が起こらない
磁石であるということができる。また、(3)式によれ
ば、HcJが大きいほど、Brの取りうる値は大きくな
る。熱安定性が高く、高磁気特性の磁石とするために
は、HcJが0.62MA/mを越える磁石用固形材料と
する方が好ましい。
That is, when a magnet is used, B r , H cJ , P c ,
If T max satisfies the expression (3), it can be said that the magnet does not cause significant demagnetization. According to the equation (3), the larger the value of H cJ , the larger the value that B r can take. In order to obtain a magnet having high thermal stability and high magnetic properties, it is preferable to use a solid material for magnet having H cJ exceeding 0.62 MA / m.

【0037】ところで、磁性材料の体積分率を上げるこ
とにより、Brを大きくして常温の最大エネルギー積
(BH)maxが高い磁石用固形材料としたとしても、T
maxが例えば100℃以上であるような高い温度であっ
て(3)式の範囲を逸脱すれば、減磁が顕著となり、磁
性材料の体積分率が低くBrの小さい磁石用固形材料と
パフォーマンスが変わらなくなってしまう場合がある。
つまり、PcとTmaxの組み合わせと磁石用固形材料のH
cJによっては、R−Fe−N−H系磁性材料の体積分率
を上げてBrを大きく取る意味がない。むしろ、磁性材
料の体積分率を下げた方が軽量でコストパフォーマンス
の高い磁石用固形材料となるのである。
By the way, even if B r is increased by increasing the volume fraction of the magnetic material to obtain a solid material for magnet having a high maximum energy product (BH) max at room temperature, T
When the temperature is high such that max is, for example, 100 ° C. or more and deviates from the range of the equation (3), demagnetization becomes remarkable, the volume fraction of the magnetic material is low, and the solid material for magnet with small B r and performance are May not change.
That is, the combination of P c and T max and H of the solid material for magnets
Depending on cJ , there is no point in increasing the volume fraction of the R—Fe—N—H magnetic material and increasing B r . Rather, lowering the volume fraction of the magnetic material results in a solid material for magnets that is lightweight and has high cost performance.

【0038】具体的な例を挙げて説明する。HcJ=0.
62MA/mであるようなR−Fe−N−H系磁性粉体
を原料とし、衝撃波圧縮を用いれば、ある条件でほぼ1
00%の体積分率を有する磁石用固形材料とすることが
できる。このときのBrは1.2Tを越える。しかし、
c=1、Tmax=100℃である用途の場合、(3)式
から、Brを0.99T以上とする必要はない。即ち、
この場合、0.99Tより高いBrを有した磁石用固形
材料であったとしても磁石の動作又は使用によって減磁
して、0.99TのBrを有した磁石とパフォーマンス
は変わらなくなるのである。従って、磁性体の体積分率
をむしろ83%〜85%程度に下げて、Br=0.99
T程度の磁石とし、軽量かつコストの安い磁石とする方
が好ましい。
A specific example will be described. H cJ = 0.
If R-Fe-N-H based magnetic powder of 62 MA / m is used as a raw material and shock wave compression is used, it is almost 1 under certain conditions.
It can be a solid material for magnets having a volume fraction of 00%. At this time, B r exceeds 1.2T. But,
In the case of applications where P c = 1 and T max = 100 ° C., it is not necessary to set B r to 0.99 T or more from the equation (3). That is,
In this case, even if the solid material for magnet has B r higher than 0.99 T, it will be demagnetized by the operation or use of the magnet, and the performance will be the same as that of the magnet having B r of 0.99 T. . Therefore, by lowering the volume fraction of the magnetic substance to about 83% to 85%, B r = 0.99
It is preferable to use a magnet having a size of about T, which is lightweight and inexpensive.

【0039】上記は、磁石の形状または磁気回路、動作
によって決まる最小のパーミアンス係数、及びBr、H
cJ、α(Br)、α(HcJ)といった磁性材料の磁気的
な特性によって決まる熱安定性について述べたものであ
り、一般に磁石の温度特性とも言われる性質である。
The above is the minimum permeance coefficient determined by the shape or magnetic circuit of the magnet, the operation, and B r , H.
The thermal stability is determined by the magnetic characteristics of the magnetic material such as cJ , α (B r ), and α (H cJ ), which is a property generally called the temperature characteristic of the magnet.

【0040】この他に、熱安定性が低下する大きな原因
としては、磁性粉体同士が、充分金属結合により接合し
て固化していないことが挙げられる。本来、永久磁石は
外界に静磁ポテンシャルを作るために、結晶の容易磁化
方向を揃えているが、磁気的に非平衡な状態であるた
め、磁性粉体同士が充分結合され固定されていない状態
であると、各磁性粉がマトリックスの中で回転するなど
して容易磁化方向の向きを変え、蓄えられた静磁エネル
ギーが徐々に小さくなっていく。
In addition to the above, a major cause of the decrease in thermal stability is that the magnetic powders are not sufficiently solidified by being bonded by a metal bond. Originally, permanent magnets have the easy magnetization directions of the crystals aligned in order to create a magnetostatic potential in the external world, but because they are in a magnetically non-equilibrium state, magnetic powders are not sufficiently bonded and fixed. Then, each magnetic powder rotates in the matrix to change the direction of the easy magnetization direction, and the stored magnetostatic energy gradually decreases.

【0041】磁性粉充填率が80%未満の材料、例えば
ボンド磁石などは、100℃以上の高温で樹脂が軟化あ
るいは劣化すると比較的容易に上記のような緩和が起こ
り、顕著な減磁が生じることになる。ボンド磁石は、そ
の名のとおり、バインダによりボンディングされている
磁石であって、金属結合により固化された磁石ではな
い。熱安定性の不足はそのことに起因する問題点である
といえる。
For a material having a magnetic powder filling rate of less than 80%, for example, a bonded magnet, when the resin is softened or deteriorated at a high temperature of 100 ° C. or higher, the above-mentioned relaxation occurs relatively easily and remarkable demagnetization occurs. It will be. As its name implies, a bonded magnet is a magnet that is bonded with a binder, not a magnet that is solidified by metal bonding. It can be said that the lack of thermal stability is a problem resulting from that.

【0042】一方、本発明の材料であれば、体積分率が
80%以上或いは83%以上であるために、磁性粉同士
が金属結合で固化しており、このような緩和は起こらな
い。以上のように、100℃以上で満足する熱安定性を
達成するためにも、磁性材料の体積分率の下限と上限を
特定の範囲に制御する必要がある。
On the other hand, in the case of the material of the present invention, since the volume fraction is 80% or more or 83% or more, the magnetic powders are solidified by the metal bond and such relaxation does not occur. As described above, in order to achieve satisfactory thermal stability at 100 ° C. or higher, it is necessary to control the lower limit and the upper limit of the volume fraction of the magnetic material within a specific range.

【0043】本発明の磁石用固形材料は、特別な方法に
よらなくとも、磁石としたときの保磁力HcJが0.76
MA/m以上で、しかも角形比Br/Jsが95%以上で
ある磁石用固形材料とすることもできる。但し、Js
常温の飽和磁化であり、本発明においては外部磁場を
1.2MA/mとしたときの磁化の値とする。
The solid material for a magnet according to the present invention has a coercive force H cJ of 0.76 when formed into a magnet without using a special method.
A solid material for magnets having a MA / m or more and a squareness ratio B r / J s of 95% or more can also be used. However, J s is a saturation magnetization at room temperature, and is a magnetization value in the present invention when the external magnetic field is 1.2 MA / m.

【0044】例えば、Sm2Fe1730.1材料は、ニ
ュークリエーション型の磁場反転機構を持つため粒径と
保磁力HcJがほぼ反比例するような関係を持つ。2μm
未満になると保磁力が0.76MA/mを越えるが、こ
の領域では、磁性粉の粒径が小さくなるに従って凝集し
やすくなり、通常工業的に利用されている磁場では磁性
粉体の磁場配向度が急激に落ちて、角形比が低下する。
For example, the Sm 2 Fe 17 N 3 H 0.1 material has a nucleation-type magnetic field reversal mechanism, so that the grain size and the coercive force H cJ have a relationship that is substantially inversely proportional. 2 μm
When it is less than 1.0, the coercive force exceeds 0.76 MA / m, but in this region, the magnetic powder tends to aggregate as the particle size of the magnetic powder becomes smaller. Falls sharply and the squareness ratio decreases.

【0045】図1は、ボールミルでSm2Fe173
0.1粉体を粉砕して得た様々な粒径の磁性粉体を外部磁
場1.2MA/m、成形圧力14重量トン/cm2で圧
縮成形し、それらの保磁力HcJと角形比Br/Jsの関係
(図中●)を示したものである。HcJが0.73MA/
mを越えると角形比が急激に低下し、HcJが0.76M
A/m以上で95%以下となる。
FIG. 1 shows a ball mill using Sm 2 Fe 17 N 3 H
Magnetic powders of various particle sizes obtained by pulverizing 0.1 powders were compression-molded under an external magnetic field of 1.2 MA / m and a molding pressure of 14 ton / cm 2 , and their coercive force H cJ and squareness ratio B r were obtained. The relationship between / J s (● in the figure) is shown. H cJ is 0.73 MA /
When it exceeds m, the squareness ratio drops sharply and H cJ is 0.76M.
It becomes 95% or less at A / m or more.

【0046】本発明の磁石用固形材料であると、衝撃波
圧縮固化した際に組織を微細化することができるため
に、保磁力が0.76MA/m未満の磁性粉体を用いて
角形比の高い圧粉体を調製し、これを衝撃波圧縮固化す
ると同時に保磁力を向上させ、高い角形比と高い保磁力
を併せ持つ磁石用固形材料とすることができる。保磁力
が0.8〜1.2MA/mの範囲の場合、角形比を95
%から、磁場配向の方法と磁性材料の成分などの工夫を
加えることによりほぼ100%の範囲で調整することが
可能である。
The solid material for a magnet of the present invention can make the structure fine when shock-wave-compressed and solidified. Therefore, a magnetic powder having a coercive force of less than 0.76 MA / m is used to obtain a squareness ratio It is possible to prepare a high green compact, compress and solidify it by shock waves, and at the same time improve the coercive force to obtain a solid magnet material having both a high squareness ratio and a high coercive force. When the coercive force is in the range of 0.8 to 1.2 MA / m, the squareness ratio is 95
%, It is possible to adjust in a range of almost 100% by adding a method such as a magnetic field orientation method and a component of a magnetic material.

【0047】本発明の磁石用固形材料において、R−F
e−N−H系磁性材料以外の成分は密度6.5g/cm
3以下の元素、化合物またはそれらの混合物であること
が好ましい。密度が6.5g/cm3を越える元素など
であると、磁性材料の体積分率を80%に限定しても、
磁石用固形材料全体の密度が7.45g/cm3を越え
る場合が多く、軽量である本発明の特徴が活かせなくな
るので好ましくない。
In the solid material for magnet of the present invention, R-F
Components other than the e-N-H magnetic material have a density of 6.5 g / cm.
It is preferably an element, a compound or a mixture of 3 or less. Even if the volume fraction of the magnetic material is limited to 80% if the density of the element exceeds 6.5 g / cm 3 ,
In many cases, the total density of the solid material for magnets exceeds 7.45 g / cm 3 , which is not preferable because the lightweight feature of the present invention cannot be utilized.

【0048】密度6.5g/cm3以下の元素として
は、Al、Ar、B、Be、Br、C、Ca、Cl、
F、Ga、Ge、H、He、Kr、Mg、N、Ne、
O、P、S、Se、Si、Te、Ti、V、Y、Zrな
どが挙げられる。また、これらの化合物、合金や、密度
6.5g/cm3以上の元素が含まれていても、Mn−
Al−CやAl−Cu−Mg合金などのように化合物や
合金において密度6.5g/cm3以下となるもの、或
いは体積比で1:1のBi−Alなどの混合物におい
て、密度6.5g/cm3以下となるものも好ましい。
Elements having a density of 6.5 g / cm 3 or less include Al, Ar, B, Be, Br, C, Ca, Cl,
F, Ga, Ge, H, He, Kr, Mg, N, Ne,
Examples thereof include O, P, S, Se, Si, Te, Ti, V, Y and Zr. Even if these compounds or alloys or elements having a density of 6.5 g / cm 3 or more are contained, Mn-
A compound or alloy having a density of 6.5 g / cm 3 or less such as Al-C or Al-Cu-Mg alloy, or a mixture having a volume ratio of 1: 1 such as Bi-Al has a density of 6.5 g. It is also preferable that it is less than / cm 3 .

【0049】R−Fe−N−H系磁性材料以外の部分が
密度6.5g/cm3以下であるガス、例えば大気、窒
素ガス、He、Ar、Neなどの不活性ガスのうち少な
くとも1種であっても良い。これらの磁性材−ガス複合
磁石用固形材料は軽量であることが特徴である。
At least one kind of gas having a density of 6.5 g / cm 3 or less in the portion other than the R—Fe—N—H magnetic material, for example, inert gas such as air, nitrogen gas, He, Ar and Ne. May be These solid materials for magnetic material-gas composite magnets are characterized by being lightweight.

【0050】また、R−Fe−N−H系磁性材料以外の
部分が密度6.5g/cm3以下のMgO、Al23
ZrO2、SiO2、フェライトなどの酸化物、Ca
2、AlF3などのフッ化物、TiC、SiC、ZrC
などの炭化物、Si34、ZnN、AlNなどの窒化物
などであっても好ましく、その他、水素化物、炭酸化
物、硫酸塩、ケイ酸塩、塩化物、硝酸塩またはそれらの
混合物であっても良い。この中で、特にBaO・6Fe
23系、SrO・6Fe23系、La添加フェライト系
などの硬磁性フェライト、場合によってはMn−Zn
系、Ni−Zn系軟磁性フェライトなどを含有させるこ
とにより、磁気特性やその安定性を向上させることがで
きる。これらの磁性材−無機物複合磁石用固形材料は機
械的強度が高く、熱安定性や磁気特性に優れる。
Further, the portions other than the R—Fe—N—H magnetic material are MgO, Al 2 O 3 , and the density of 6.5 g / cm 3 or less.
ZrO 2 , SiO 2 , oxides such as ferrite, Ca
Fluorides such as F 2 and AlF 3 , TiC, SiC, ZrC
And the like, and nitrides such as Si 3 N 4 , ZnN, and AlN are preferable, and also hydrides, carbonates, sulfates, silicates, chlorides, nitrates, and mixtures thereof. good. Among these, especially BaO ・ 6Fe
2 O 3 series, SrO · 6Fe 2 O 3 series, hard magnetic ferrite such as La-added ferrite series, and in some cases Mn-Zn
Incorporation of Ni-Zn system soft magnetic ferrite and the like can improve magnetic characteristics and stability thereof. These solid materials for magnetic material-inorganic composite magnet have high mechanical strength and excellent thermal stability and magnetic properties.

【0051】さらに、R−Fe−N−H系磁性材料以外
の部分が密度6.5g/cm3以下の有機物であっても
良い。例えば、ポリアミド、ポリイミド、ポリフェニレ
ンオキシド、全芳香族ポリエステルなどエンジニアリン
グ樹脂と呼称される樹脂や液晶ポリマー、エポキシ樹
脂、フェノール変性エポキシ樹脂、不飽和ポリエステル
樹脂、アルキド樹脂、弗素樹脂など、耐熱性の熱可塑性
或いは熱硬化性樹脂を初め、シリコーンゴムなどの有機
ケイ素化合物、カップリング剤や滑剤などの有機金属化
合物など、ガラス転移点、軟化点、融点、分解点が10
0℃以上の有機物であるならば本発明の磁石用固形材料
の成分として用いることができる。但し、その体積分率
は20%以下好ましくは17%以下であって、R−Fe
−N−H系磁性材料の金属結合による固化を妨げるもの
であってはならない。この磁性材−有機物複合磁石用固
形材料は、軽量なわりに耐衝撃性に優れる。但し、高温
高湿度の過酷な環境においては、磁性材−有機物複合磁
石用固形材料を用いない方が良い場合がある。
Further, the portion other than the R—Fe—N—H magnetic material may be an organic substance having a density of 6.5 g / cm 3 or less. For example, resins called engineering resins such as polyamide, polyimide, polyphenylene oxide, and wholly aromatic polyester, liquid crystal polymers, epoxy resins, phenol-modified epoxy resins, unsaturated polyester resins, alkyd resins, fluororesins, and other heat-resistant thermoplastics. Alternatively, thermosetting resins, organosilicon compounds such as silicone rubber, organometallic compounds such as coupling agents and lubricants, and the like have glass transition points, softening points, melting points, and decomposition points of 10 or less.
Any organic substance having a temperature of 0 ° C. or higher can be used as a component of the magnet solid material of the present invention. However, the volume fraction thereof is 20% or less, preferably 17% or less, and R-Fe
It should not interfere with the solidification of the —N—H magnetic material due to the metal bond. This magnetic material-organic compound magnet solid material is excellent in impact resistance in spite of being lightweight. However, in a severe environment of high temperature and high humidity, it may be better not to use the solid material for magnetic material-organic compound magnet.

【0052】本発明の磁石用固形材料のR−Fe−N−
H系磁性材料以外の部分に、上記のガス、無機物、有機
物のうち2種以上を同時に含有することができる。例え
ば、大気である空隙を有し、シリカを分散したシリコー
ンゴムを含有したR−Fe−N−H系磁性材−ガス−無
機物−有機物複合磁石用固形材料などであり、それぞれ
の成分の特徴を活かして、用途により使い分けることが
望ましい。
R-Fe-N- of the magnet solid material of the present invention
Two or more kinds of the above-mentioned gas, inorganic substance, and organic substance can be contained at the same time in the portion other than the H-based magnetic material. For example, it is a solid material for R-Fe-NH magnetic material-gas-inorganic-organic compound magnet having voids which are air and containing silicone rubber in which silica is dispersed. It is desirable to make the most of it and use it properly according to the purpose.

【0053】次に、本発明の磁石用固形材料の製造法に
ついて述べる。但し、本発明の製造法は、これに限定さ
れるわけではない。水中衝撃波を用いた、本発明の衝撃
圧縮法による固化工程では、衝撃波の持つ超高圧剪断
性、活性化作用は、粉体の金属的結合による固化作用と
組織の微細化作用を誘起し、固化と共に高保磁力化を可
能とする。このとき、衝撃圧力自体の持続時間は、従来
の衝撃波を用いた場合よりも長いが、体積圧縮と衝撃波
の非線型現象に基づくエントロピーの増加による温度上
昇は極めて短時間(数μs以下)に消失し、その結果、
分解や脱窒は殆ど起こらない。
Next, the method for producing the solid material for a magnet of the present invention will be described. However, the production method of the present invention is not limited to this. In the solidification step by the shock compression method of the present invention using shock waves in water, the ultrahigh-pressure shearing property and the activation effect of the shock waves induce the solidification effect due to the metallic bond of the powder and the micronization effect of the structure, and the solidification occurs. Along with this, high coercive force is possible. At this time, the duration of the shock pressure itself is longer than in the case of using the conventional shock wave, but the temperature rise due to the volume compression and the increase in entropy due to the non-linear phenomenon of the shock wave disappears in a very short time (several μs or less). And as a result,
Almost no decomposition or denitrification occurs.

【0054】水中衝撃波を用いて圧縮した後も残留温度
は存在する。この残留温度が分解温度(常圧で約600
℃)以上になると、R−Fe−N−H系化合物等の分解
が開始され、磁気特性を劣化するので好ましくない。し
かし、水中衝撃波による場合は、従来の衝撃波による場
合よりも、残留温度を低く保つことが非常に容易であ
る。
The residual temperature is present even after compression with underwater shock waves. This residual temperature is the decomposition temperature (about 600 at normal pressure).
(° C.) or higher, decomposition of the R—Fe—N—H-based compound or the like will start and the magnetic characteristics will deteriorate, which is not preferable. However, it is much easier to keep the residual temperature lower when using the underwater shock wave than when using the conventional shock wave.

【0055】さらに、圧粉成形を80kA/m以上、好
ましくは800kA/m以上の定常磁場、若しくはパル
ス磁場中で行うことにより、粉体の磁化容易軸を一方向
に揃えることができ、得られた圧粉体を衝撃圧縮によ
り、 固化しても、配向性は損なわれず、磁気的に一軸
性の異方性をもつ磁石用固形材料体が得られる。
Further, by carrying out the powder compacting in a stationary magnetic field of 80 kA / m or more, preferably 800 kA / m or more, or a pulsed magnetic field, the easy axis of magnetization of the powder can be aligned in one direction, and thus obtained. Even if the green compact is impact-compressed and solidified, the orientation is not impaired, and a solid magnetic material body having magnetic uniaxial anisotropy can be obtained.

【0056】本発明において、衝撃圧縮時の圧粉体の温
度上昇を抑制するために、衝撃圧縮には、衝撃波圧力3
〜22GPaの水中衝撃波を用いる必要がある。衝撃波
圧力が3GPaより低いと、必ずしも密度6.15g/
cm3以上の磁石用固形材料が得られない。衝撃波圧力
が40GPaより高いと、α−Fe分解相等の分解物が
生じることがあって好ましくない。さらに、密度が6.
35〜7.45g/cm3の範囲、さらに6.50〜
7.40g/cm3の範囲の磁石用固形材料を再現性良
く得るには水中衝撃波の衝撃波圧力を3〜20GPa、
さらに衝撃波圧力を4〜15GPaとすることで達成さ
れる。但し、磁性材−ガス複合磁石用固形材料において
は、衝撃圧力が高すぎると容易に密度が7.45g/c
3を越える磁石用固形材料となってしまうので衝撃波
圧力3〜15GPaの水中衝撃波を用いる方が好まし
い。
In the present invention, the shock wave pressure is set to 3 in order to suppress the temperature rise of the green compact during shock compression.
It is necessary to use an underwater shock wave of ~ 22 GPa. If the shock wave pressure is lower than 3 GPa, the density is not always 6.15 g /
A solid material for a magnet having a size of cm 3 or more cannot be obtained. If the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase may occur, which is not preferable. Furthermore, the density is 6.
In the range of 35 to 7.45 g / cm 3 , further 6.50 to
In order to obtain a solid material for magnet in the range of 7.40 g / cm 3 with good reproducibility, the shock wave pressure of the underwater shock wave is 3 to 20 GPa,
Further, it is achieved by setting the shock wave pressure to 4 to 15 GPa. However, in the magnetic material-gas composite magnet solid material, if the impact pressure is too high, the density easily becomes 7.45 g / c.
It is preferable to use an underwater shock wave having a shock wave pressure of 3 to 15 GPa because it becomes a solid material for a magnet exceeding m 3 .

【0057】水中衝撃波による衝撃圧縮方法としては、
二重管の最内部に当該粉体を圧粉成形し中間部に水を入
れ、外周部に爆薬を配置し、爆薬を爆轟させることで、
前記中間部の水中に衝撃波を導入し、最内部の当該粉体
を圧縮する方法や、当該粉体を密閉容器中へ圧粉成形
し、水中へ投入し、爆薬を水中にて爆轟させ、その衝撃
波により当該粉体を圧縮する方法や、特許第29513
49号公報又は、特開平6−198496号公報による
方法が選択できるが、いずれの方法においても、次に挙
げる水中衝撃波による衝撃圧縮の利点を得ることができ
る。
As a shock compression method using an underwater shock wave,
By powder compacting the powder inside the double tube, putting water in the middle part, placing explosives on the outer periphery, and detonating the explosives,
Introducing a shock wave into the water in the middle part, a method of compressing the powder in the innermost part, compacting the powder into a closed container, putting it into water, and detonating the explosive in water, A method of compressing the powder by the shock wave, and Japanese Patent No. 29513
The method according to Japanese Patent Laid-Open No. 49 or Japanese Patent Application Laid-Open No. 6-198496 can be selected, and in any method, the following advantages of shock compression by an underwater shock wave can be obtained.

【0058】即ち、 (1)水中衝撃波の圧力は、爆薬と水のユゴニオ関係に
よって決まり、圧力Pは概略次式で示される。 P=288(MPa){(ρ/ρ07.25−1} 上式より、水中衝撃波を用いた場合には、水の密度ρの
基準時密度ρ0に対する変化に関して圧力Pの増加量が
非常に大きいため、爆薬量の調節により容易に超高圧が
得られ、その際の磁性材料の温度は従来の衝撃波を用い
た場合に比べて容易に低温度に保持される。 (2)衝撃圧力自体の持続時間が従来の衝撃波を用いた
場合よりも長い。 (3)体積圧縮と衝撃波の非線型現象に基づくエントロ
ピーの増加による磁性材料の温度上昇は極めて短時間に
消失する。 (4)磁性材料の温度は、その後高く保持されることが
少なく、又、長く保持されることが少ない。 (5)衝撃圧力が被圧縮体に対して均一に負荷される。 水中衝撃波のもつ、これらの優れた特徴によって、R−
Fe−N−H系材料が熱分解を起こさず、容易に金属結
合により圧縮固化される。
That is, (1) The pressure of the underwater shock wave is determined by the Yugonio relationship between the explosive and the water, and the pressure P is roughly expressed by the following equation. P = 288 (MPa) {(ρ / ρ 0 ) 7.25 −1} From the above equation, when the underwater shock wave is used, the increase amount of the pressure P is extremely large with respect to the change of the water density ρ with respect to the reference time density ρ 0 . Because of its large size, it is possible to easily obtain an ultrahigh pressure by adjusting the amount of explosive, and the temperature of the magnetic material at that time is easily kept at a low temperature as compared with the case of using a conventional shock wave. (2) The duration of the impact pressure itself is longer than that when the conventional shock wave is used. (3) The temperature rise of the magnetic material due to the volume compression and the increase in entropy due to the nonlinear phenomenon of the shock wave disappears in an extremely short time. (4) The temperature of the magnetic material is rarely kept high thereafter, and is rarely kept long. (5) Impact pressure is evenly applied to the object to be compressed. Due to these excellent characteristics of underwater shock waves, R-
The Fe-N-H-based material does not cause thermal decomposition and is easily compressed and solidified by the metal bond.

【0059】以上述べてきたように、磁性粉体として熱
的に安定でα−Fe分解相を析出しにくいR−Fe−N
−H系磁性材料を選び、上記の衝撃波圧縮法にて成形す
ることにより初めて、前記磁性材料の体積分率が80〜
97%で、密度が6.15〜7.45g/cm3である
磁石用固形材料を作製することができるのであり、この
磁石用固形材料は、高磁気特性で金属結合により固化さ
れているため、熱安定性に優れた特徴を有するのであ
る。
As described above, R-Fe-N, which is thermally stable as a magnetic powder and is hard to precipitate an α-Fe decomposition phase.
The volume fraction of the magnetic material is 80 to 80 for the first time by selecting the -H magnetic material and molding it by the shock wave compression method.
It is possible to produce a solid material for magnets having a density of 97% and a density of 6.15 to 7.45 g / cm 3. Since the solid material for magnets has a high magnetic property and is solidified by metal bonding. In addition, it has excellent heat stability.

【0060】次に、本発明の装置又は部品について述べ
る。最高使用温度Tmaxが100℃以上である用途に
は、従来のR−Fe−N−H系ボンド磁石であると、樹
脂成分を含みかつ磁性粉体同士が金属結合で固化してい
ないために、熱安定性に劣り、使用することが難しかっ
た。本発明の磁石用固形材料であれば、よしんば樹脂成
分を含んでいてもR−Fe−N−H系磁性粉同士が金属
結合で固化しているので熱安定性に優れる。さらに磁石
用固形材料のB r、HcJが、磁石としたときのPcとT
max及び(3)式で規定される領域にあれば、大きく減
磁せず、軽量でコストパフォーマンスが高い上に熱安定
性がさらに優れた磁石とすることができる。
Next, the apparatus or parts of the present invention will be described.
It Maximum operating temperature TmaxFor applications where the temperature is 100 ° C or higher
Is a conventional R-Fe-N-H based bonded magnet.
It contains a fat component and the magnetic powders are solidified by metal bonding.
Therefore, it has poor thermal stability and is difficult to use.
It was If the solid material for a magnet of the present invention is a yoshinba resin
R-Fe-N-H magnetic powders are metallic even if they contain
Has excellent thermal stability because it is solidified by bonding. Further magnet
Solid material B r, HcJIs P when magnet is usedcAnd T
maxAnd if it is in the area defined by equation (3), it will be greatly reduced.
Non-magnetism, light weight, high cost performance and heat stability
It is possible to obtain a magnet having excellent properties.

【0061】Tmaxの上限はR−Fe−N−H系材料の
キュリー点付近であり、400℃を越えるが、磁石用固
形材料磁石の組成や成分、磁石としての使われ方により
ma x上限は400℃以下の様々な値をとる。例えば、
Znで被覆したHcJ=1.6MA/mであるR−Fe−
N−H系材料を用いたとしても、Tmaxが220℃以上
のとき、本発明の磁石として使用することは不可能であ
る。
[0061] The upper limit of T max is the vicinity of the Curie point of the R-Fe-N-H-based materials, but exceeding 400 ° C., the composition and components of the solid material magnet for a magnet, T ma x by people used as a magnet The upper limit takes various values of 400 ° C. or lower. For example,
Zn coated Rc -Fe- with HcJ = 1.6 MA / m
Even if the N—H-based material is used, it cannot be used as the magnet of the present invention when T max is 220 ° C. or higher.

【0062】本発明の磁石用固形材料により得られた磁
石のPc0は、0.01〜100、さらに好ましくは0.
1〜10であり、Pc0、Br、HcJの値の組み合わせが
(1)式の範囲を逸脱するときは、ヨークなどを装着し
てのちPc0を高めてから、着磁を行うことが好ましい。
The P c0 of the magnet obtained by the solid material for a magnet of the present invention is 0.01 to 100, more preferably 0.
1 to 10, and when the combination of the values of P c0 , B r , and H cJ deviates from the range of the formula (1), the yoke is mounted and then P c0 is increased, and then the magnetization is performed. Is preferred.

【0063】本発明の磁石用固形材料により得られた磁
石の静磁場を用いた、各種アクチュエータ、ボイスコイ
ルモータ、リニアモータ、ロータ又はステータとして回
転機用モータ、その中で特に産業機械や自動車用モー
タ、医療用装置や金属選別機の磁場発生源のほかVSM
装置、ESR装置、加速器などの分析機用磁場発生源、
マグネトロン進行波管、プリンタヘッドや光ピックアッ
プなどOA機器、アンジュレータ、ウイグラ、リター
ダ、マグネットロール、マグネットチャック、各種マグ
ネットシートなどの装置並びに部品は、Pcの極めて小
さなステッピングモータなどの特殊な用途を除いて、1
00℃以上の環境においても顕著な減磁が生ずることな
く安定に使用することができる。
Various actuators, voice coil motors, linear motors, motors for rotating machines as rotors or stators using the static magnetic field of magnets obtained from the solid material for magnets of the present invention, among them, especially for industrial machines and automobiles In addition to magnetic field sources for motors, medical equipment and metal sorters, VSM
Generator, ESR device, magnetic field generator for analyzer such as accelerator,
Devices and parts such as magnetron traveling wave tube, OA equipment such as printer heads and optical pickups, undulators, wigglers, retarders, magnet rolls, magnet chucks, and various magnet sheets, except for special applications such as stepping motors with extremely small P c. 1
Even in an environment of 00 ° C. or higher, it can be used stably without significant demagnetization.

【0064】用途によっては125℃以上の温度でも使
用でき、例えばHcJ>0.7(MA/m)かつPc>1
であるような場合が挙げられる。さらに、150℃以上
での使用も可能で、例えばHcJ>0.8(MA/m)か
つPc>2であるような場合が挙げられる。また、これ
らの装置又は部品に用いるとき、本発明の磁石用固形材
料を各種加工を施してから、各形状のヨークやホールピ
ース、各種整磁材料を接着、密着、接合した上で組み合
わせて用いても良い。
Depending on the application, it can be used at a temperature of 125 ° C. or higher. For example, H cJ > 0.7 (MA / m) and P c > 1.
There is a case where Furthermore, use at 150 ° C. or higher is also possible, and for example, there is a case where H cJ > 0.8 (MA / m) and P c > 2. When used in these devices or parts, after subjecting the solid material for magnets of the present invention to various processes, the yokes and hole pieces of various shapes and various magnetic shunting materials are bonded, adhered, and joined together before use. May be.

【0065】以下、本発明を実施例に基づいて説明す
る。なお、R−Fe−N−H系磁性材料の分解の度合い
は、成形した磁石用固形材料のX線回折図(Cu−Kα
線)をもとに、菱面体晶又は六方晶の結晶構造由来の回
折線における最強線の高さaに対する、回折角2θが4
4度付近のα−Fe分解相由来の回折線の高さbの比b
/aをもって判断した。この値が0.2以下なら分解の
度合いは小さいと言える。好ましくは0.1以下であ
る。さらに好ましくは0.05以下で、この場合、分解
は略無いと言える。
The present invention will be described below based on examples. The degree of decomposition of the R-Fe-N-H magnetic material is determined by the X-ray diffraction diagram (Cu-Kα) of the molded solid material for magnet.
Line), the diffraction angle 2θ is 4 with respect to the height a of the strongest line in the diffraction lines derived from the rhombohedral or hexagonal crystal structure.
Ratio b of heights b of diffraction lines derived from α-Fe decomposition phase near 4 degrees
Judged by / a. If this value is 0.2 or less, it can be said that the degree of decomposition is small. It is preferably 0.1 or less. More preferably, it is 0.05 or less, and in this case, it can be said that there is almost no decomposition.

【0066】[0066]

【実施例1】図2は、水中衝撃波を用いた衝撃圧縮法を
実施するための手段の一例を示す説明図である。平均粒
径60μmのSm2Fe17母合金をNH3分圧0.35a
tm、H2分圧0.65atmのアンモニア−水素混合
ガス気流中、450℃で9ks窒化水素化を行った後、
アルゴン気流中で3.6ksアニールを行い、その後ジ
ェットミルにより2μmに粉砕した。この粉体を1.2
MA/mの磁場中で磁場配向させながら圧粉成形を行う
ことにより得た成形体を、図2に示す如く、銅製パイプ
1に入れて銅製プラグ2に固定した。さらに銅製パイプ
3を銅製プラグ2に固定して、更に、この間隙に水を充
填し、外周部に均一な間隙を設け、紙筒4を配置し、前
記間隙中に200gの硝酸アンモニウム系爆薬5を装填
し、起爆部6より前記爆薬を起爆し、爆薬を爆轟させ
た。この時の衝撃波圧力は、14GPaであった。衝撃
圧縮後、パイプ1から固化したSm9.0Fe76.113.4
1.5なる組成の磁石用固形材料を取り出し、4.0M
A/mのパルス磁場で着磁し、常温での磁気特性を測定
した結果、飽和磁化Js=1.21T、残留磁束密度Br
=1.19T、保磁力HcJ=0.73MA/m、最大エ
ネルギー積(BH)max=243kJ/m3であった。
又、アルキメデス法により密度を測定した結果、7.4
0g/cm3であった。このときのR−Fe−N−H系
磁性材料の体積分率は96.2%であった。また、X線
回折法で解析した結果、固化した磁石用固形材料は殆ど
α−Fe分解相の析出は起きておらず、Th2Zn17
菱面体晶の結晶構造を有していることが確認された。
[Embodiment 1] FIG. 2 is an explanatory view showing an example of means for carrying out an impact compression method using an underwater shock wave. A Sm 2 Fe 17 mother alloy having an average particle size of 60 μm was applied to NH 3 partial pressure of 0.35a.
After performing hydrogen nitridation at 450 ° C. for 9 ks in an ammonia-hydrogen mixed gas stream having a tm and H 2 partial pressure of 0.65 atm,
It was annealed for 3.6 ks in an argon stream and then pulverized to 2 μm by a jet mill. 1.2 of this powder
As shown in FIG. 2, the compact obtained by performing the powder compacting while orienting the magnetic field in the magnetic field of MA / m was put in the copper pipe 1 and fixed to the copper plug 2. Further, the copper pipe 3 is fixed to the copper plug 2, and further, the gap is filled with water, a uniform gap is provided in the outer peripheral portion, the paper cylinder 4 is arranged, and 200 g of the ammonium nitrate-based explosive 5 is placed in the gap. It was loaded and the above explosive was detonated from the detonator 6 to detonate the explosive. The shock wave pressure at this time was 14 GPa. Sm 9.0 Fe 76.1 N 13.4 solidified from pipe 1 after impact compression
Take out the magnet solid material of composition H 1.5 , 4.0M
It was magnetized with a pulsed magnetic field of A / m and the magnetic characteristics at room temperature were measured. As a result, the saturation magnetization J s = 1.21T and the residual magnetic flux density B r
= 1.19 T, coercive force H cJ = 0.73 MA / m, and maximum energy product (BH) max = 243 kJ / m 3 .
Moreover, as a result of measuring the density by the Archimedes method, 7.4
It was 0 g / cm 3 . At this time, the volume fraction of the R—Fe—N—H magnetic material was 96.2%. Further, as a result of analysis by X-ray diffraction, it is found that the solidified solid material for magnet has almost no precipitation of α-Fe decomposition phase and has a crystal structure of Th 2 Zn 17 type rhombohedral crystal. confirmed.

【0067】爆薬量を調整して同様の実験を多数回繰り
返した。衝撃波圧力が15GPaより高いと、密度は
7.45g/cm3を越える場合が多く、又、衝撃波圧
力が40GPaより高いとα−Fe分解相等の分解物が
生じることが確認された。又、この衝撃波圧力は、密度
が6.15〜7.45g/cm3である磁石用固形材料
をより再現性良く得るためには、衝撃波圧力を3〜15
GPaとすることが好ましいことも分かった。
The same experiment was repeated many times by adjusting the amount of explosive. It has been confirmed that when the shock wave pressure is higher than 15 GPa, the density often exceeds 7.45 g / cm 3, and when the shock wave pressure is higher than 40 GPa, decomposition products such as α-Fe decomposition phase are generated. In order to obtain a magnet solid material having a density of 6.15 to 7.45 g / cm 3 with good reproducibility, the shock wave pressure is set to 3 to 15%.
It has also been found that it is preferable to use GPa.

【0068】[0068]

【実施例2】R−Fe−N−H系磁性材料の粉砕法をボ
ールミルとすることと、R−Fe−N−H系磁性材料以
外の成分、衝撃波圧力を表1に示したとおりとする以外
は、実施例1と同様にして磁石用固形材料を作製し、
4.0MA/mのパルス磁場で着磁してから、Br、H
cJ、角形比Br/Js、(BH)maxを測定した。その結
果を表1に示した。HcJが0.81MA/mと大きい値
であるにも関わらず、角形比が96%であった。その結
果を図1中○で示し、通常の圧縮成形体の場合と比較し
た。
EXAMPLE 2 A ball mill was used as the crushing method for the R—Fe—N—H magnetic material, and the components other than the R—Fe—N—H magnetic material and the shock wave pressure were as shown in Table 1. Except for the above, a solid material for a magnet was prepared in the same manner as in Example 1,
After magnetized with a pulse magnetic field of 4.0MA / m, B r, H
The cJ , squareness ratio B r / J s , and (BH) max were measured. The results are shown in Table 1. The squareness ratio was 96%, even though H cJ was a large value of 0.81 MA / m. The results are shown by ◯ in FIG. 1 and compared with the case of a normal compression molded body.

【0069】[0069]

【実施例3〜5】R−Fe−N−H系磁性材料以外の成
分、衝撃波圧力を表1に示したとおりとする以外は、実
施例1と同様にして磁石用固形材料を作製し、実施例2
と同様にしてそれらの各種磁気特性を測定した。その結
果を表1に示した。
[Examples 3 to 5] Solid materials for magnets were prepared in the same manner as in Example 1 except that the components other than the R-Fe-NH magnetic material and the shock wave pressure were as shown in Table 1. Example 2
The various magnetic properties were measured in the same manner as in. The results are shown in Table 1.

【0070】[0070]

【表1】 [Table 1]

【0071】[0071]

【比較例1】平均粒径20μmのSm2Fe17母合金を
2ガス気流中、495℃で72ks窒化を行う以外は
実施例1と同様な操作によりSm9.1Fe77.913.0
性材料を得た。この粉体を2μmに粉砕し、実施例1と
同様な方法により磁石用固形材料を作製した。この磁石
を4.0MA/mのパルス磁場で着磁し常温での磁気特
性を測定した結果、飽和磁化Js=1.22T、残留磁
束密度Br=0.93T、保磁力HcJ=0.34MA/
m、最大エネルギー積(BH)max=113kJ/m3
あった。また,アルキメデス法により密度を測定した結
果、7.23g/cm3であった。この材料のX線回折
図には、Th2Zn17型菱面体晶の結晶構造以外にα−
Fe分解相由来の回折線も観察された。回折角2θが4
4度付近におけるα−Fe分解相の回折線とTh2Zn
17型菱面体晶の結晶構造を示す(303)最強線との強
度比b/aは0.22であった。
Comparative Example 1 A Sm 9.1 Fe 77.9 N 13.0 magnetic material was obtained by the same operation as in Example 1 except that Sm 2 Fe 17 mother alloy having an average particle diameter of 20 μm was nitrided in N 2 gas stream at 495 ° C. for 72 ks. It was This powder was pulverized to 2 μm, and a solid material for magnet was produced by the same method as in Example 1. The magnet was magnetized with a pulse magnetic field of 4.0 MA / m and the magnetic characteristics at room temperature were measured. As a result, the saturation magnetization J s = 1.22T, the residual magnetic flux density B r = 0.93T, and the coercive force H cJ = 0. .34 MA /
m, maximum energy product (BH) max = 113 kJ / m 3 . The density was measured by Archimedes' method and found to be 7.23 g / cm 3 . In the X-ray diffraction pattern of this material, in addition to the crystal structure of Th 2 Zn 17 type rhombohedral crystal, α-
A diffraction line derived from the Fe decomposition phase was also observed. Diffraction angle 2θ is 4
Diffraction line of α-Fe decomposition phase and Th 2 Zn around 4 degrees
The intensity ratio b / a to the (303) strongest line showing the crystal structure of the 17- type rhombohedral crystal was 0.22.

【0072】[0072]

【比較例2】図3に示す如く、実施例1における平均粒
径2μmのR−Fe−N−H系磁性粉体を銅製パイプ1
に入れて銅製プラグ2に固定し、外周部に均一な間隙を
設け、紙筒4を配置し、前記間隙中に実施例1と同量の
硝酸アンモニウム系爆薬5を装填し、起爆部6より前記
爆薬を起爆し、爆薬を爆轟させた。衝撃圧縮後、パイプ
1から固化した試料を取り出し、X線回折法により解析
した結果、衝撃圧縮後はSmN相と多量のα−Fe分解
相が生成していることが認められ、出発原料のSm−F
e−N−H化合物が分解していることが分かった。この
ときの強度比b/aは3.2であった。
COMPARATIVE EXAMPLE 2 As shown in FIG. 3, a copper pipe 1 was prepared by using the R—Fe—N—H magnetic powder having an average particle diameter of 2 μm in Example 1 as an example.
And then fixed to a copper plug 2 with a uniform gap provided on the outer periphery, a paper cylinder 4 is placed, and the same amount of ammonium nitrate-based explosive 5 as in Example 1 is loaded into the gap, and the initiator 6 is used to I detonated explosives and detonated them. After impact compression, the solidified sample was taken out of the pipe 1 and analyzed by X-ray diffraction. As a result, it was confirmed that an SmN phase and a large amount of α-Fe decomposition phase were produced after impact compression, and the starting material Sm -F
It was found that the e-N-H compound was decomposed. The strength ratio b / a at this time was 3.2.

【0073】[0073]

【実施例6及び比較例3、4】平均粒径を2.5μmと
したSm9.0Fe76.413.51.1なる磁性粉体を用いる
ことと衝撃波圧力を3GPa(実施例6)並びに23G
Pa(比較例3)としたこと以外は実施例1と同様にし
て磁石用固形材料を作製した。これらの磁石用固形材料
の磁気特性を実施例1と同様にして測定した。その結果
を表2に示した。
Example 6 and Comparative Examples 3 and 4 Using magnetic powder of Sm 9.0 Fe 76.4 N 13.5 H 1.1 having an average particle size of 2.5 μm and shock wave pressure of 3 GPa (Example 6) and 23 G
A solid material for a magnet was produced in the same manner as in Example 1 except that Pa (Comparative Example 3) was used. The magnetic characteristics of these solid materials for magnets were measured in the same manner as in Example 1. The results are shown in Table 2.

【0074】また、これらの磁石用固形材料を正確に同
形状の円盤に加工し、4.8MA/mのパルス磁場で着
磁して、Pc0が2の磁石とした。これらの磁石を、12
5℃の恒温槽中で極力逆磁場が掛からないように注意し
て3.6Ms放置した。試料引き抜き式磁束測定装置を
用いて、恒温槽放置前後の磁束の値を測定し、磁束の変
化率、即ち不可逆減磁率(%)を求めた。結果を表2に
示した。不可逆減磁率は絶対値が小さいほど熱安定性が
良いと判断できる。また、公知の方法により磁性粉体積
率60%でPc0が2の12−ナイロンをバインダとした
射出成形ボンド磁石(比較例4)について、上記と同様
にして不可逆減磁率を求めた。結果を表2に示した。
Further, these solid materials for magnets were processed into discs of exactly the same shape and magnetized with a pulse magnetic field of 4.8 MA / m to obtain magnets with P c0 of 2. 12 these magnets
It was left for 3.6 Ms in a thermostat bath at 5 ° C, taking care not to apply a reverse magnetic field as much as possible. Using a sample pull-out type magnetic flux measuring device, the value of the magnetic flux before and after being left in a constant temperature bath was measured, and the change rate of the magnetic flux, that is, the irreversible demagnetization rate (%) was obtained. The results are shown in Table 2. It can be judged that the smaller the absolute value of the irreversible demagnetization rate, the better the thermal stability. Further, the irreversible demagnetization ratio was determined in the same manner as above for the injection-molded bonded magnet (Comparative Example 4) using a binder of 12-nylon having a magnetic powder volume ratio of 60% and a P c0 of 2 by a known method. The results are shown in Table 2.

【0075】[0075]

【表2】 [Table 2]

【0076】以上の評価によって得られた結果は、Pc
がPc0と等しく、Tmax=125℃であるような用途を
考えたとき、動作又は使用前後の減磁の度合いを調べる
のに適切である。
The result obtained by the above evaluation is P c
Is equal to P c0 and T max = 125 ° C., it is appropriate to examine the degree of demagnetization before and after operation or use.

【0077】表2に示したとおり、比較例4のようにR
−Fe−N−H系磁性材料の体積分率が80%未満であ
ると磁性粉体同士が金属結合で固化していないために非
常に低い熱安定性を示した。また、磁性粉体同士が金属
結合で固化しているにも関わらず、Pc、Tmax、Br
cJが(3)式を満たさない比較例3の熱安定性につい
ても、[3]式を満たす実施例6よりかなり悪いことが
判った。
As shown in Table 2, as in Comparative Example 4, R
When the volume fraction of the —Fe—N—H-based magnetic material was less than 80%, the magnetic powders did not solidify with each other due to metal bonds, and thus showed extremely low thermal stability. Further, even though the magnetic powders are solidified by the metal bond, P c , T max , B r ,
It was also found that the thermal stability of Comparative Example 3 in which H cJ did not satisfy the expression (3) was considerably worse than that of Example 6 in which the expression [3] was satisfied.

【0078】[0078]

【実施例7及び比較例5】実施例6の磁石を2個、ヨー
クを用いず固定してステータとしたブラシ付のDCモー
タを組み立て、コイルに一定の大きさの電力を与えなが
ら100℃での環境下で36ks運転した(実施例
7)。また、比較例3の磁石を用いて上記と同様にモー
タを組み立て同様に運転した(比較例5)。36ks後
の回転数は、初期回転数が安定した直後に比べ、実施例
7のモータで約2%、比較例5のモータでは約10%変
化し、36ks後の回転数はどちらもほぼ510rpm
で同等であった。比較例5のモータで用いた比較例3の
磁石は、実施例7のモータで用いた実施例6の磁石より
密度が17%も高く、R−Fe−N−H系磁石の体積分
率が高いのにも関わらず上記モータとしたときのパフォ
ーマンスは同じであった。
Example 7 and Comparative Example 5 A DC motor with a brush was assembled by fixing two magnets of Example 6 without using a yoke and using a stator, and applying a certain amount of electric power to the coil at 100 ° C. Was operated for 36 ks under the environment (Example 7). In addition, a motor was assembled using the magnet of Comparative Example 3 in the same manner as above and operated in the same manner (Comparative Example 5). The rotation speed after 36 ks changed by about 2% in the motor of Example 7 and about 10% in the motor of Comparative Example 5 as compared with immediately after the initial rotation speed stabilized, and the rotation speed after 36 ks was almost 510 rpm in both cases.
Was the same. The magnet of Comparative Example 3 used in the motor of Comparative Example 5 has a density 17% higher than that of the magnet of Example 6 used in the motor of Example 7, and the volume fraction of the R—Fe—N—H magnet is higher. Despite the high price, the performance with the above motor was the same.

【0079】[0079]

【実施例8】実施例6において、R−Fe−N−H系磁
性材料以外の成分をZrO2とし、衝撃波圧力を14G
Paとする以外は同様にして密度7.38g/cm3
磁石を作製し、実施例7と同様にしてモータを組み立
て、100℃の環境下で運転した。その結果、実施例7
と同等な成績が得られた。
[Embodiment 8] In Embodiment 6, the components other than the R—Fe—N—H magnetic material are ZrO 2 , and the shock wave pressure is 14 G.
A magnet having a density of 7.38 g / cm 3 was prepared in the same manner except that the pressure was changed to Pa, and a motor was assembled in the same manner as in Example 7 and operated in an environment of 100 ° C. As a result, Example 7
The result was equivalent to.

【0080】[0080]

【発明の効果】この発明は、特定組成、結晶構造の希土
類−鉄−窒素−水素系磁性粉体等を圧粉成形し、水中衝
撃波により衝撃圧縮することにより、自己焼結によらず
に、分解、脱窒を防ぎ、軽量で高性能、特に熱安定性の
高い希土類−鉄−窒素−水素系磁石用固形材料を得るこ
とを可能にする。
INDUSTRIAL APPLICABILITY According to the present invention, rare earth-iron-nitrogen-hydrogen system magnetic powder having a specific composition and crystal structure is compacted by compaction and shock-compressed by an underwater shock wave, so that self-sintering can be performed. It is possible to obtain a solid material for a rare earth-iron-nitrogen-hydrogen-based magnet, which prevents decomposition and denitrification, is lightweight, has high performance, and particularly has high thermal stability.

【図面の簡単な説明】[Brief description of drawings]

【図1】Sm2Fe1730.1磁性材料をボールミル粉
砕して得た様々な粒径の磁性粉体を磁場圧縮成形した磁
石用固形材料(●)及び実施例2の磁石用固形材料
(○)の保磁力と角形比の関係を示した図である。
FIG. 1 is a magnetic solid material (●) obtained by magnetic field compression molding magnetic powders of various particle sizes obtained by ball-milling an Sm 2 Fe 17 N 3 H 0.1 magnetic material, and a solid magnetic material of Example 2. It is a figure showing the relation between coercive force of (○) and squareness ratio.

【図2】水中衝撃波を用いた衝撃圧縮法を実施するため
の手段の一例を示す説明図である。
FIG. 2 is an explanatory view showing an example of means for carrying out an impact compression method using an underwater shock wave.

【図3】比較例で使用した、爆薬の爆轟波を直接用いた
衝撃圧縮法を実施するための手段を示す説明図である。
FIG. 3 is an explanatory view showing a means for carrying out an impact compression method directly using a detonation wave of explosive used in a comparative example.

【符号の説明】[Explanation of symbols]

1 銅製パイプ(粉体を保持する為に使用) 2 銅製プラグ 3 銅製パイプ(水を保持するために使用) 4 紙筒(爆薬を保持するために使用) 5 爆薬 6 起爆部 1 Copper pipe (used to hold powder) 2 Copper plug 3 Copper pipe (used to hold water) 4 paper cylinders (used to hold explosives) 5 explosives 6 detonator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 柴崎 一郎 静岡県富士市鮫島2番地の1 旭化成株式 会社内 (72)発明者 今岡 伸嘉 静岡県富士市鮫島2番地の1 旭化成株式 会社内 (72)発明者 千葉 昂 熊本県熊本市水前寺2丁目2−29−605 Fターム(参考) 5E040 AA03 AA19 BB01 CA01 HB06 NN04 NN12 NN13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Ichiro Shibasaki             Asahi Kasei Co., Ltd. 1 No. 2 Samejima, Fuji City, Shizuoka Prefecture             In the company (72) Inventor Nobuyoshi Imaoka             Asahi Kasei Co., Ltd. 1 No. 2 Samejima, Fuji City, Shizuoka Prefecture             In the company (72) Inventor Akira Chiba             2-29-605, Suizenji 2-chome, Kumamoto City, Kumamoto Prefecture F term (reference) 5E040 AA03 AA19 BB01 CA01 HB06                       NN04 NN12 NN13

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 菱面体晶又は六方晶の結晶構造を有する
希土類−鉄−窒素−水素系磁性材料を80〜97体積%
含有することを特徴とする磁石用固形材料。
1. A rare earth-iron-nitrogen-hydrogen based magnetic material having a rhombohedral or hexagonal crystal structure in an amount of 80 to 97% by volume.
A solid material for a magnet, characterized by containing.
【請求項2】 密度が6.15〜7.45g/cm3
あることを特徴とする菱面体晶又は六方晶の結晶構造を
有する希土類−鉄−窒素−水素系の磁石用固形材料。
2. A rare earth-iron-nitrogen-hydrogen based solid material for magnets having a rhombohedral or hexagonal crystal structure, which has a density of 6.15 to 7.45 g / cm 3 .
【請求項3】 常温の残留磁束密度Br、常温の保磁力
cJ、磁石として使用するときのパーミアンス係数Pc
及び最高使用温度Tmaxの関係が、μ0を真空の透磁率と
するとき、 Br≦μ0cJ(Pc+1)(11000−50Tmax)/
(10000−6Tmax) であることを特徴とする請求項1又は2に記載の磁石用
固形材料。
3. A residual magnetic flux density B r at room temperature, a coercive force H cJ at room temperature, and a permeance coefficient P c when used as a magnet.
And the maximum operating temperature T max , where μ 0 is the magnetic permeability of vacuum, B r ≦ μ 0 H cJ (P c +1) (11000-50T max ) /
(10000-6T max) solid material for a magnet according to claim 1 or 2, characterized in that a.
【請求項4】 保磁力HcJが0.76MA/m以上で、
しかも角形比Br/Jsが95%以上であることを特徴と
する請求項1〜3のいずれかに記載の磁石用固形材料。
4. A coercive force H cJ of 0.76 MA / m or more,
Moreover, the solid material for magnet according to any one of claims 1 to 3, wherein the squareness ratio B r / J s is 95% or more.
【請求項5】 希土類−鉄−窒素−水素系磁性材料以外
の成分が密度6.5g/cm3以下の元素、化合物また
はそれらの混合物であることを特徴とする請求項1〜4
のいずれかに記載の磁石用固形材料。
5. The element other than the rare earth-iron-nitrogen-hydrogen based magnetic material is an element or compound having a density of 6.5 g / cm 3 or less, or a mixture thereof.
The solid material for a magnet according to any one of 1.
【請求項6】 希土類−鉄−窒素−水素系磁性材料以外
の部分に大気、不活性ガスのうち少なくとも1種を含有
することを特徴とする請求項1〜5のいずれかに記載の
磁石用固形材料。
6. The magnet according to claim 1, wherein at least one of the atmosphere and an inert gas is contained in a portion other than the rare earth-iron-nitrogen-hydrogen based magnetic material. Solid material.
【請求項7】 希土類−鉄−窒素−水素系磁性材料以外
の部分に酸化物、フッ化物、炭化物、窒化物、水素化
物、炭酸化物、硫酸塩、ケイ酸塩、塩化物、硝酸塩のう
ち少なくとも1種を含有することを特徴とする請求項1
〜6のいずれかに記載の磁石用固形材料。
7. An oxide, a fluoride, a carbide, a nitride, a hydride, a carbonate, a sulfate, a silicate, a chloride and a nitrate of at least a portion other than the rare earth-iron-nitrogen-hydrogen based magnetic material. It contains 1 type, Claim 1 characterized by the above-mentioned.
7. The solid material for magnets according to any one of to 6.
【請求項8】 希土類−鉄−窒素−水素系磁性材料以外
の部分に有機物を含有することを特徴とする請求項1〜
7のいずれかに記載の磁石用固形材料。
8. The organic material is contained in a portion other than the rare earth-iron-nitrogen-hydrogen based magnetic material.
7. The solid material for magnets according to any of 7.
【請求項9】 希土類−鉄−窒素−水素系磁性材料又は
これと他の構成成分との混合物を衝撃波圧力が3〜22
GPaの水中衝撃波を用いて圧縮固化してなることを特
徴とする請求項1〜8のいずれかに記載の磁石用固形材
料。
9. A rare earth-iron-nitrogen-hydrogen based magnetic material or a mixture of the magnetic material and other constituents having a shock wave pressure of 3 to 22.
The solid material for magnets according to any one of claims 1 to 8, wherein the solid material is compressed and solidified using an underwater shock wave of GPa.
【請求項10】 希土類−鉄−窒素−水素系磁性粉体を
磁場中で圧粉成形した後、水中衝撃波を用いて圧縮固化
することを特徴とする請求項1〜9のいずれかに記載の
磁石用固形材料の製造方法。
10. The rare earth-iron-nitrogen-hydrogen based magnetic powder is compacted in a magnetic field and then compressed and solidified using an underwater shock wave. A method for manufacturing a solid material for a magnet.
【請求項11】 磁石の静磁場を利用する装置に使用す
るための部品であって、請求項1〜9のいずれかに記載
の磁石用固形材料を用いた部品。
11. A component for use in an apparatus utilizing a static magnetic field of a magnet, which component uses the solid material for a magnet according to any one of claims 1 to 9.
【請求項12】 磁石の静磁場を利用する最高使用温度
maxが100℃以上の装置であって、その部品として
請求項11記載の部品を使用することを特徴とする装
置。
12. An apparatus having a maximum operating temperature T max of 100 ° C. or higher utilizing a static magnetic field of a magnet, characterized by using the component according to claim 11 as a component thereof.
JP2001197889A 2001-04-24 2001-06-29 Solid material for magnet and method for producing the same Expired - Lifetime JP4790933B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001197889A JP4790933B2 (en) 2001-06-29 2001-06-29 Solid material for magnet and method for producing the same
KR10-2003-7013844A KR100524340B1 (en) 2001-04-24 2002-04-24 Solid Material for Magnet
CNB028088182A CN100501881C (en) 2001-04-24 2002-04-24 Solid material for magnet
EP02722754.5A EP1383143B1 (en) 2001-04-24 2002-04-24 Method of producing a solid material for magnet
US10/475,617 US7364628B2 (en) 2001-04-24 2002-04-24 Solid material for magnet
PCT/JP2002/004089 WO2002089153A1 (en) 2001-04-24 2002-04-24 Solid material for magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001197889A JP4790933B2 (en) 2001-06-29 2001-06-29 Solid material for magnet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003017307A true JP2003017307A (en) 2003-01-17
JP4790933B2 JP4790933B2 (en) 2011-10-12

Family

ID=19035421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001197889A Expired - Lifetime JP4790933B2 (en) 2001-04-24 2001-06-29 Solid material for magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4790933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH05222483A (en) * 1990-12-19 1993-08-31 Nkk Corp Production of iron nitride based high density sintered compact
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH06124812A (en) * 1992-10-12 1994-05-06 Asahi Chem Ind Co Ltd Nitride magnet powder and its synthesizing method
JPH0864449A (en) * 1994-08-22 1996-03-08 Tokai Univ Manufacture of magnet by impact compression
JPH08191006A (en) * 1994-11-08 1996-07-23 Toshiba Corp Magnetic material
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JP2000294416A (en) * 1999-04-08 2000-10-20 Hitachi Metals Ltd Rare earth bonded magnet
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH05222483A (en) * 1990-12-19 1993-08-31 Nkk Corp Production of iron nitride based high density sintered compact
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH06124812A (en) * 1992-10-12 1994-05-06 Asahi Chem Ind Co Ltd Nitride magnet powder and its synthesizing method
JPH0864449A (en) * 1994-08-22 1996-03-08 Tokai Univ Manufacture of magnet by impact compression
JPH08191006A (en) * 1994-11-08 1996-07-23 Toshiba Corp Magnetic material
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JP2000294416A (en) * 1999-04-08 2000-10-20 Hitachi Metals Ltd Rare earth bonded magnet
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method

Also Published As

Publication number Publication date
JP4790933B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
KR100524340B1 (en) Solid Material for Magnet
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP5165785B2 (en) Solid material for magnet
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
WO2003038845A1 (en) Permanent magnet manufacturing method and press apparatus
JP6484994B2 (en) Sm-Fe-N magnet molded body and method for producing the same
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JP4970693B2 (en) Solid material for magnet
JP5339644B2 (en) Manufacturing method of solid material for magnet
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP4873516B2 (en) Solid material for magnet and method for producing the same
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP2004146543A (en) Solid material for magnet and its manufacturing method
JP6513623B2 (en) Method of manufacturing isotropic bulk magnet
JP3357421B2 (en) Method for forming magnetic field of magnet powder and method for manufacturing magnet
JP4370877B2 (en) Method for orienting permanent magnet powder and method for producing permanent magnet
JP3643215B2 (en) Method for producing laminated permanent magnet
JP2004146432A (en) Solid material for magnet
JP3432858B2 (en) Method for producing Fe-BR bonded magnet
JP6666228B2 (en) Manufacturing method of rare earth iron-based permanent magnet
JP3040895B2 (en) Rare earth bonded magnet and its manufacturing method
JPH0636916A (en) Fe-b-r base bond magnet
JP3032385B2 (en) Fe-BR bonded magnet
JPH0661027A (en) Rare earth magnet, rare earth magnet alloy powder and manufacture thereof
JP2006328517A (en) Method for producing rare earth alloy powder molding

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4790933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term