JPH0479202A - Permanent magnet consisting of single magnetic domain particle - Google Patents

Permanent magnet consisting of single magnetic domain particle

Info

Publication number
JPH0479202A
JPH0479202A JP2192884A JP19288490A JPH0479202A JP H0479202 A JPH0479202 A JP H0479202A JP 2192884 A JP2192884 A JP 2192884A JP 19288490 A JP19288490 A JP 19288490A JP H0479202 A JPH0479202 A JP H0479202A
Authority
JP
Japan
Prior art keywords
powder
magnetic
atom
rare earth
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2192884A
Other languages
Japanese (ja)
Other versions
JP2857476B2 (en
Inventor
Kurimasa Kobayashi
小林 久理真
Naoko Kashiwatani
柏谷 尚子
Nobuyoshi Imaoka
伸嘉 今岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP2192884A priority Critical patent/JP2857476B2/en
Priority to EP90117488A priority patent/EP0417733B1/en
Priority to DE69007720T priority patent/DE69007720T2/en
Priority to US07/580,556 priority patent/US5164104A/en
Priority to AU62481/90A priority patent/AU624995C/en
Priority to CN 90107665 priority patent/CN1028813C/en
Publication of JPH0479202A publication Critical patent/JPH0479202A/en
Application granted granted Critical
Publication of JP2857476B2 publication Critical patent/JP2857476B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PURPOSE:To improve magnetic properties and enable the application of the powder to a bond magnet by making the grain size of the particles within the range of the single magnetic domain particle diameter, with respect to the magnetic material which has the composition in the line of rare earth-iron- nitrogen-hydrogen-oxygen. CONSTITUTION:Rare earth-iron alloy is composed, and after coarse crushing, nitrification and hydrogenation process is performed under low oxygen partial pressure, and the magnetic powder at this stage is further pulverized into the powder which has the particle diameter equivalent to the single magnetic domain particle diameter of magnetic material. The magnetic material shown by the general formula RealphaFe(1-alpha-beta-gamma-delta)NbetaHgammaOdelta (Re is the rare earth element including yttrium, 5<=alpha<=20 atom %, 10<=beta<=25 atom %, 0.01<=gamma<=5 atom %, 0.01<=delta<=10 atom %) is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は希土類−鉄一窒素一水素一酸素系組成を有する
磁性材料で単磁区粒子径を有することを特徴とする粉体
を用いた永久磁石に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is a permanent magnetic material using a powder having a rare earth-iron-nitrogen-hydrogen-oxygen composition and having a single magnetic domain particle size. Regarding magnets.

[従来の技術] 希土類磁石の磁気発現機構は、その初期磁化曲線の挙動
から核生成型にュークリエーション型)とピニング型に
大別される。これは、それぞれNd−Fe−B系、Sm
 CO5系と、8 m 2 COt 7系の希土類磁石
を区別する有用な考え方となっている。
[Prior Art] The magnetic expression mechanism of rare earth magnets can be broadly classified into nucleation type (eucreation type) and pinning type based on the behavior of the initial magnetization curve. These are Nd-Fe-B system and Sm
This is a useful way to distinguish between CO5-based and 8 m 2 COt 7-based rare earth magnets.

核生成型磁石はNd−Fe−B系磁石て見られるように
、焼結体の微構造中の粒界部に偏析しているNd過剰相
、もしくはB過剰相などが粒子表面に発生し易い“逆磁
区の芽”の発生をおさえる役割をはたすことで磁気物性
が向上するものである。一方、ピニング型は、たとえば
S m 2 Co t□系磁石で観察されるように、微
構造中のSm過剰相が2−17強磁性相の磁壁の末端を
ピニングしており、それが磁気特性の発現機構に関与し
ている。
In nucleation type magnets, as seen in Nd-Fe-B magnets, excess Nd or B excess phases segregated at the grain boundaries in the microstructure of the sintered body tend to occur on the particle surface. It improves magnetic properties by suppressing the generation of "reverse magnetic domain buds." On the other hand, in the pinning type, as observed for example in S m 2 Co t □-based magnets, the excess Sm phase in the microstructure pins the ends of the domain wall of the 2-17 ferromagnetic phase, which affects the magnetic properties. is involved in the expression mechanism.

これらの希土類磁石における磁気特性発現機構は、それ
ぞれより深く理解するための研究か進められているが、
それらの考え方とは別に、古典的な単磁区粒子の考え方
がある。単磁区粒子は1つの粒子中に単一の磁区しか存
在し得ないような粒子径を有する粒子であり、体積を■
、磁気異方性エネルギー(定数)をに1ボルツマン定数
をに1絶対温度をTとすると、 という単純な式か、その粒子の大きさを見っもる1つの
考え方を示している。
Research is currently underway to better understand the mechanisms by which the magnetic properties of these rare earth magnets develop.
Apart from these ideas, there is the classical idea of single-domain particles. Single-domain particles are particles with a particle size such that only a single magnetic domain can exist in one particle, and the volume is
, where the magnetic anisotropy energy (constant) is 1, Boltzmann's constant is 1, and T is the absolute temperature. This is a simple formula, or one way to think about the size of the particle.

との単磁区粒子が作製できで、かつ、完全に配向するよ
うな場合には少なくとも多磁区粒子であるための磁気特
性の低下は見られない。従っで、永久磁石において単磁
区粒子の集合体としで、それを構成することは1つの理
想像である。
In cases where single-domain particles can be produced and are completely oriented, at least no deterioration in magnetic properties due to multi-domain particles is observed. Therefore, it is an ideal idea to construct a permanent magnet as an aggregate of single-domain particles.

しかしながら、従来のSm−Co系、Nd−Fe−B系
ではこのことを完全に達成するには到らなかった。その
理由は、これらの材料における磁気物性の発現機構であ
るピニング型、及び核生成型と呼ばれる機構は焼結体も
しくは熱処理粉体の微構造に依存するからである。
However, this has not been completely achieved with the conventional Sm--Co and Nd--Fe--B systems. The reason for this is that the mechanisms called pinning type and nucleation type, which are the mechanisms by which magnetic properties are expressed in these materials, depend on the microstructure of the sintered body or heat-treated powder.

すなわち、単磁区粒子よりもはるかに大きな粒径を有す
る粒子の粒界部には非磁性相が存在し、この2相構造が
磁気特性発現に関して重要な役割を演じている。従っで
、微粒子化によっで、単磁区粒子径に粒径を近づけよう
とすると、この微構造を破壊することになるため、単磁
区粒子の特性よりも、微構造に依存する特性、たとえば
保磁力の低下が著しくなりさらに、粉砕にともなう粒子
内への歪、欠陥の導入、酸化の進行なども重なり特性は
低下してしまう。
That is, a non-magnetic phase exists at the grain boundaries of grains having a much larger grain size than single-domain grains, and this two-phase structure plays an important role in the expression of magnetic properties. Therefore, if you attempt to make the grain size closer to the single magnetic domain grain size by making fine grains, this microstructure will be destroyed, so properties that depend on the microstructure, such as retention, will be more important than the properties of single magnetic domain grains. The magnetic force is significantly reduced, and the properties are also deteriorated due to distortion, introduction of defects, and progress of oxidation into the particles due to crushing.

ところが、本発明における希土類−鉄一窒素−水素−酸
素系磁性材料は希土類系でありなから、単磁区粒子理論
が予測する微粒子化に伴なう保磁力の伸長、特性の向上
が明らかである。
However, since the rare earth-iron-nitrogen-hydrogen-oxygen magnetic material of the present invention is a rare earth material, it is clear that the coercive force increases and the properties improve as the particles become finer, as predicted by the single domain particle theory. .

このことは、本材料の磁気特性発現機構が新規であると
ともに、ボンド磁石用などの粉体磁性材料としての応用
への大きな可能性を示している。
This indicates that the mechanism of magnetic property development of this material is new, and that it has great potential for application as a powder magnetic material for bonded magnets and the like.

なお、本特許において磁気特性と呼ぶのは、飽和磁化(
4πIs、BM)残留磁化(B  )保磁力(H)、角
型比のことを言う。
Note that in this patent, magnetic properties are referred to as saturation magnetization (
4πIs, BM) refers to residual magnetization (B), coercive force (H), and squareness ratio.

[発明が解決しようとする課題] 本発明は希土類−鉄一窒素一水素一酸素系組成を有する
磁性材料が、従来の希土類系磁石と異なり、いわゆる単
磁区粒子理論に従う、磁気物性を示すことを見い出した
ので、その単磁区粒子径の範囲に粉体の粒度を調製し、
磁気特性を向上させることと、その粉体のボンド磁石へ
の応用方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention is based on the fact that a magnetic material having a rare earth-iron-nitrogen-hydrogen-oxygen composition exhibits magnetic properties in accordance with the so-called single domain particle theory, unlike conventional rare earth magnets. Having found this, we adjusted the particle size of the powder within the range of the single magnetic domain particle size,
The purpose is to improve the magnetic properties and to provide a method for applying the powder to bonded magnets.

[課題を解決するための手段] 上記課題を解決するための本発明における磁性材料は成
分が希土類(Re)−鉄(Fe)窒素(N)−水素(H
)−酸素(O)からなり、下記の一般式で表わされるこ
とを特徴とする磁性材料の粉体であり、その粒子径が、
各組成の磁性材料の単磁区粒子径に相当するものである
[Means for Solving the Problems] The magnetic material of the present invention for solving the above problems has components of rare earth (Re)-iron (Fe) nitrogen (N)-hydrogen (H
)-oxygen (O), is a powder of a magnetic material characterized by being represented by the following general formula, and whose particle size is:
This corresponds to the single magnetic domain particle diameter of the magnetic material of each composition.

一般式 Re a F e x−a−s−v−a+ Ns H,
Oaただし、上記一般式におけるReはイツトリウム(
Y)を含む希土類元素であり、 5≦α≦20原子% 10≦β≦25原子% 0、O1≦γ≦5原子% 0.01≦δ≦10原子%   である。
General formula Re a Fe x-a-s-v-a+ Ns H,
OaHowever, Re in the above general formula is yttrium (
5≦α≦20 atom% 10≦β≦25 atom% 0, O1≦γ≦5 atom% 0.01≦δ≦10 atom%.

本発明は、上記の組成で粒子径が2〜4μm付近にある
粒子が、該磁性材料の単磁区粒子に相当することから、
この単磁区粒子径の粉体により構成される永久磁石、と
くにボンド磁石が高い磁気特性を発現したことに関する
ものである。
In the present invention, since particles having the above composition and a particle size of around 2 to 4 μm correspond to single domain particles of the magnetic material,
This is related to the fact that permanent magnets, especially bonded magnets, made of powder with a single magnetic domain particle size exhibit high magnetic properties.

製造方法 本発明における磁性材料は以下の工程により製造できる
Manufacturing method The magnetic material in the present invention can be manufactured by the following steps.

(1)母合金の合成:希土類−鉄系合金を合成する。(1) Synthesis of master alloy: Synthesize a rare earth-iron alloy.

(2)粗粉砕 (3)窒化、水素化 (4)微粉砕:主に保磁力の最適化処理である。(2) Coarse grinding (3) Nitriding, hydrogenation (4) Fine pulverization: This is mainly a coercive force optimization process.

この(4)微粉砕時に酸素量を制御することができ、さ
らに粒子径、粒子形状、粒子内部に与える欠陥濃度等も
制御することが可能である。
(4) During pulverization, the amount of oxygen can be controlled, and it is also possible to control the particle size, particle shape, defect concentration inside the particles, etc.

又、単磁区粒子径へ粒径を制御することもこの段階で行
なう。
In addition, controlling the particle size to a single magnetic domain particle size is also performed at this stage.

(1)母合金の合成後に組成を均一化するために、更に
(3)窒化、水素化後に組成の均一化と粒子に発生した
機械的応力を取り除くためにアニールを行うことは磁気
特性の向上にとって効果がある。 以下、これらの工程
について説明する。
(1) After synthesis of the master alloy, annealing is performed to make the composition uniform, and (3) after nitriding and hydrogenation, to make the composition uniform and remove the mechanical stress generated in the particles. It is effective for These steps will be explained below.

(1)母合金の合成 原料合金は高周波炉、アーク溶解炉によっても、又液体
超急冷法によっても作製できる。その組成はReが5〜
25原子%、Feが75〜95原子%の範囲にあること
が好ましい。Reが5原子%未満では合金中にα−Fe
相が多く存在し、高保磁力が得られない。また、Reが
25原子%を越えると高い飽和磁束密度が得られない。
(1) Synthesis of master alloy The raw material alloy can be produced by a high frequency furnace, an arc melting furnace, or by a liquid super-quenching method. Its composition is Re 5~
It is preferable that Fe is in the range of 25 at% and 75 to 95 at%. When Re is less than 5 at%, α-Fe is present in the alloy.
There are many phases and high coercive force cannot be obtained. Furthermore, if Re exceeds 25 atomic %, a high saturation magnetic flux density cannot be obtained.

高周波炉及びアーク溶解炉を用いた場合、溶融状態から
合金か凝固する際にFeか析出し易く、このことは磁気
特性、とくに保磁力の低下をひきおこす。そこてFe単
体での相を消失させ、合金の組成の均一化および結晶性
の向上を目的として焼鈍を行うことか有効である。この
焼鈍は800℃〜1280℃で行う場合に効果か顕著で
ある。この方法で作製した合金は液体超急冷法などと比
較して結晶性が良好であり、高い飽和磁化を有している
When a high frequency furnace or an arc melting furnace is used, Fe tends to precipitate when the alloy is solidified from a molten state, which causes a decrease in magnetic properties, particularly coercive force. Therefore, it is effective to perform annealing for the purpose of eliminating the phase of Fe alone, making the alloy composition uniform, and improving crystallinity. This annealing is most effective when performed at 800°C to 1280°C. The alloy produced by this method has better crystallinity and higher saturation magnetization than those produced by the liquid ultra-quenching method.

液体超急冷法、ロール回転法などの合金作製法でも、目
的組成の合金を作製できる。しかも、これらの方法によ
り作製した合金の結晶粒は微細であり、条件によっては
サブミクロンの粒子も調製できる。ただし、冷却速度が
大きい場合には合金の非晶質化が起こり、窒化、水素化
後にも飽和磁化、保磁力が他の方法はど上昇しない。こ
の場合にも焼鈍等の後処理か必要である。
Alloys with the desired composition can also be produced using alloy production methods such as the liquid super-quenching method and the roll rotation method. Moreover, the crystal grains of the alloys produced by these methods are fine, and submicron particles can be prepared depending on the conditions. However, when the cooling rate is high, the alloy becomes amorphous, and even after nitriding and hydrogenation, the saturation magnetization and coercive force do not increase as much as with other methods. In this case as well, post-treatment such as annealing is required.

母合金はいずれの方法で合金にした場合ても300〜5
00ppH程度の酸素を含有している。この段階におけ
るこの程度の酸素含有量は工程中で行う通常の操作で導
入されるものである。
The master alloy is 300-5 no matter which method is used to make the alloy.
Contains oxygen of about 00ppH. This level of oxygen content at this stage is introduced through normal operations during the process.

(2)粗粉砕 この段階の粉砕はショークラッシャー スタンプミルの
ような粗粉のみを調製するような方法でもよいし、ボー
ルミル、ジェットミルによっても条件次第で可能である
。しかし、この粉砕は次の段階における窒化、水素化を
均一に行わしめるためのものであり、その条件とあわせ
て十分な反応性を有し、かつ酸化は進行しない粉体状態
に調製することが重要である。
(2) Coarse pulverization The pulverization at this stage may be performed using a method such as a Shaw Crusher stamp mill that prepares only coarse powder, or may be performed using a ball mill or jet mill depending on the conditions. However, this pulverization is for the purpose of uniformly performing the nitriding and hydrogenation in the next step, and it is necessary to prepare a powder state that has sufficient reactivity and does not progress to oxidation. is important.

この粗粉砕後の材料が含有する酸素量も母合金と大差な
く 11000pp以下である。
The amount of oxygen contained in this coarsely pulverized material is not much different from that of the mother alloy, and is 11,000 pp or less.

(3)窒化、水素化 粉砕された原料母合金中に窒素及び水素を化合もしくは
含浸させる方法としては原料合金粉末をアンモニアガス
或いはアンモニアガスを含む還元性の混合ガス中で加圧
あるいは加熱処理する方法が有効である。合金中に含ま
れる窒素及び水素量はアンモニアガス含有混合ガスの混
合成分比、及び加熱温度、加圧力、処理時間によって制
御し得る。
(3) Nitriding and Hydrogenation A method for combining or impregnating nitrogen and hydrogen into the pulverized raw material master alloy is to pressurize or heat-treat the raw material alloy powder in ammonia gas or a reducing mixed gas containing ammonia gas. The method is valid. The amount of nitrogen and hydrogen contained in the alloy can be controlled by the mixture component ratio of the ammonia gas-containing mixed gas, heating temperature, pressurizing force, and treatment time.

混合ガスとしては水素、ヘリウム、ネオン、窒素及びア
ルゴンのいずれか、もしくは2種以上とアンモニアガス
を混合したガスが有効である。混合比は処理条件との関
連で変化させ得るが、アンモニアガス分圧としては、と
くに0.02〜0.75atmが有効であり、処理温度
は200〜650℃の範囲が好ましい。低温では侵入速
度が小さく、850℃以上の高温では鉄の窒化物が生成
し、磁気特性は低下する。加圧処理では10ati程度
の加圧でも窒素、水素の含有量を変化させ得る。
As the mixed gas, a mixture of hydrogen, helium, neon, nitrogen, and argon, or a mixture of two or more of them and ammonia gas is effective. Although the mixing ratio can be changed in relation to the processing conditions, it is particularly effective for the ammonia gas partial pressure to be from 0.02 to 0.75 atm, and for the processing temperature to be preferably in the range of 200 to 650°C. At low temperatures, the penetration rate is low, and at high temperatures of 850° C. or higher, iron nitrides are produced, and the magnetic properties are degraded. In the pressure treatment, the contents of nitrogen and hydrogen can be changed even with a pressure of about 10 ati.

アンモニアガス以外のガスを窒化、水素化雰囲気の主成
分とすると、反応効率は著しく低下する。しかし、たと
えば水素ガスと窒素ガスの混合ガスを用い長時間反応を
行うと窒素及び水素の導入は可能である。
If a gas other than ammonia gas is used as the main component of the nitriding or hydrogenation atmosphere, the reaction efficiency will be significantly reduced. However, it is possible to introduce nitrogen and hydrogen, for example, by carrying out a long reaction using a mixed gas of hydrogen gas and nitrogen gas.

窒化・水素化工程は低酸素分圧中で行われるが、工程終
了時の酸素量は多少増大し1000pp11前後となる
Although the nitriding/hydrogenation process is performed in a low oxygen partial pressure, the amount of oxygen at the end of the process increases somewhat to around 1000 pp11.

(4)微粒子化 窒化、水素化の後、アニールを行なうと、N。(4) Micronization When annealing is performed after nitriding and hydrogenating, N.

H,Oの組成はそれぞれ、Nが3〜4wt%、Hは10
〜20ppm SOハ11000pp前後の含有量とな
る。この段階の磁性粉体をさらに粉砕するのが微粉化工
程である。微粉化工程では、振動ボールミル、遊星ボー
ルミル、通常のポット型回転ボールミルなどや、ジェッ
トミル等も用いることができる。いづれを用いた場合で
も、粉体へ与える打撃やせん断力ができるだけ小さく、
かつ粉砕は十分に行なわれること、及び、酸化が、とく
に激しく起こらないことが重要である。
The composition of H and O is 3 to 4 wt% of N and 10 wt% of H.
~20ppm SO content is around 11,000pp. The pulverization process further pulverizes the magnetic powder at this stage. In the pulverization step, a vibrating ball mill, a planetary ball mill, a normal pot-type rotary ball mill, a jet mill, etc. can also be used. Regardless of which method is used, the impact and shearing force applied to the powder should be as small as possible.
It is also important that the grinding be carried out sufficiently and that oxidation should not occur particularly violently.

従っで、この工程ではグローブボックス中での操作、そ
の雰囲気中の酸素分圧の制御、又、ボールミル粉砕では
溶媒、例えば、エタノール、水、シクロヘキサン、四塩
化炭素、石油ベンジンなどの選択が重要である。
Therefore, in this process, operation in a glove box, control of the oxygen partial pressure in the atmosphere, and selection of solvents such as ethanol, water, cyclohexane, carbon tetrachloride, petroleum benzine, etc. in ball milling are important. be.

この微粒子化工程の終了後のN、H,Oの含有量はそれ
ぞれ、Nが3〜4wt%、Hは200〜500 ppm
 、0は1w15前後となっている。
The contents of N, H, and O after this atomization step are 3 to 4 wt% for N and 200 to 500 ppm for H, respectively.
, 0 is around 1w15.

この段階で作製された磁性粉体を用いて各種永久磁石を
作製することが可能である。
It is possible to produce various permanent magnets using the magnetic powder produced at this stage.

本特許は該磁性材料の特徴である、微粉砕後に高い磁気
特性が発現する点に注目して検討を進めた結果、該磁性
材料の単磁区粒子径に相当する粒子径を有する粉体の磁
気特性がもっとも高いことを発見したこと、及び、その
粉体を用いて作製した永久磁石が、(BH)   値と
しax て1 gMGOe以上の物性値を示したことに関するも
のである。
This patent was developed by focusing on the characteristic of the magnetic material, which exhibits high magnetic properties after pulverization. This is related to the discovery that the powder has the highest properties, and that a permanent magnet made using the powder exhibits a physical property value of (BH) ax of 1 gMGOe or more.

[本特許中における単磁区粒子の定義]本発明中でいう
単磁区粒子とは本質的には1粒子中に、1つの磁区しか
含んでいない粒子をさすが、現在の技術では粉体の10
0%を単磁区粒子により構成することは工業的には不可
能であるので、体積分率にして50%以上の単磁区粒子
相当(実施例2に示す例では2〜4μ目径)の粒径を有
する粉体であり、単磁区粒子理論から予測されるように
、単磁区径に近づくに従っで、保磁力などの磁気物性が
明らかに向上する挙動を粉体全体の平均物性として示す
粒子集団を単磁区粒子径に相当する粒径を有する粉体と
表現した。
[Definition of single magnetic domain particles in this patent] Single magnetic domain particles in the present invention essentially refer to particles that contain only one magnetic domain in one particle, but with current technology, 10 magnetic domain particles in powder
Since it is industrially impossible to configure 0% by single-domain particles, particles with a volume fraction equivalent to 50% or more of single-domain particles (in the example shown in Example 2, 2 to 4 μm diameter) are used. Particles that exhibit a behavior in which magnetic properties such as coercive force clearly improve as the single domain diameter approaches the average physical properties of the entire powder, as predicted from single-domain particle theory. The population was expressed as a powder having a particle size corresponding to a single magnetic domain particle size.

本発明における単磁区粒子と、それと対極にある多磁区
多結晶粒子のモデルを以下に示す。
Models of a single magnetic domain particle in the present invention and a multi-domain polycrystalline particle, which is the opposite polarity thereof, are shown below.

〔実施例] 以下、実施例によって本発明を具体的に説明する。〔Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例I S m 10.5原子パーセント及びF e 89.5
原子パーセントの組成を有するSm−Fe合金でX線回
折で、均一相と認められるS m 2 F e t□構
造を有するインゴットを粉砕し、20−100μI径の
粉体とした。このような粉体を2バツチ、異なるロット
のS m 2 F e 17合金から作製し、それぞれ
管状炉中で、450℃においで、アンモニアガス 0.
35at+c及び水素ガス0.85atmの混合カス流
中で1時間処理した後、アルゴンガス雰囲気中で1時間
アニールした。
Example I S m 10.5 atomic percent and F e 89.5
An ingot having an S m 2 F e t □ structure, which is recognized as a homogeneous phase by X-ray diffraction using an Sm-Fe alloy having a composition of atomic percent, was ground into a powder having a diameter of 20 to 100 μI. Two batches of such powder were made from different lots of S m 2 Fe 17 alloy and each was heated in a tube furnace at 450° C. with 0.0 ml of ammonia gas.
After processing for 1 hour in a mixed gas flow of 35 atm+c and hydrogen gas at 0.85 atm, annealing was performed for 1 hour in an argon gas atmosphere.

その結果、組成とじて Sm  Fe  N  HO(1)と 8.8    75.1  15.5  0.1  0
.5S m   F e   N   HO(ii)の
208.8    75.0  15.2  0.2 
 0.7〜100μmの粉体を得た。これらの粉体を各
1gづつ、50ccのガラス製容器に入れ、SUS製ポ
ル50gを入れ、シクロヘキサンを分散溶媒として用い
て約35Orl)I!lで1時間から10時間の範囲で
所定時間粉砕しで、所定の保磁力を有する粉体を得た。
As a result, the composition was Sm Fe N HO (1) and 8.8 75.1 15.5 0.1 0
.. 5S m F e N HO (ii) 208.8 75.0 15.2 0.2
A powder of 0.7 to 100 μm was obtained. Put 1 g of each of these powders into a 50 cc glass container, add 50 g of SUS por, and use cyclohexane as a dispersion solvent to approximately 35 Orl) I! 1 for a predetermined time in the range of 1 to 10 hours to obtain a powder having a predetermined coercive force.

 第1図には(i)及び(11)がら、それぞれ所定時
間粉砕して得た粉体の保磁力と(BH)   値を示す
。ボンド磁石は片押しダ■ax イスを用いで、1oton/cd、磁場15kOe中で
粉体を成形して作製した。同圧粉磁石の特性は振動試料
型磁気測定計(VSM)によって測定した。
FIG. 1 shows (i) and (11) the coercive force and (BH) value of the powder obtained by grinding for a predetermined time, respectively. The bonded magnet was produced by molding powder using a single-push die in a magnetic field of 15 kOe at 1 ton/cd. The properties of the powder magnet were measured using a vibrating sample magnetometer (VSM).

これらの結果から、H−7000〜90000eの付近
に(BH)   の極大値が存在することが+max 明らかである。
From these results, it is clear that the maximum value of (BH) exists near H-7000 to 90000e.

第2図a −eは下記試料の走査型電子顕微鏡写真であ
る。
Figures 2a-e are scanning electron micrographs of the following samples.

第2図aは第1図の線り11〉の各試料の出発母合金、 第2図すは、この出発試料を約15分間粉砕し、保磁力
を25000e程度にしたものの粉体微構造、  第2
図c −eはそれぞれ順に線(11)の中の点A(保磁
力58000eの粉体)、点B(保磁力8400 0e
の粉体)、点C(保磁力89000eの粉体)の粉体の
微構造を示すものである。
Figure 2a shows the starting mother alloy of each sample in line 11 in Figure 1. Figure 2 shows the powder microstructure of the starting sample which was crushed for about 15 minutes to have a coercive force of about 25,000e. Second
Figures c-e show point A (powder with coercive force 58000e) and point B (coercive force 8400e) in line (11), respectively.
(powder with a coercive force of 89000e) and point C (powder with a coercive force of 89000e).

粒子径が徐々に細くなっていくことが理解できる。It can be seen that the particle size gradually becomes smaller.

実施例2 前述の実施例(1)中の試料を粉砕し、保磁力を約50
000eとした試料を作製した。又、サブミクロンのマ
グネタイト微粒子(Fe304)をオレイン酸に混入し
、超音波分散させた混濁液を調製した。
Example 2 The sample in Example (1) above was crushed and the coercive force was reduced to about 50
A sample of 000e was prepared. Further, a turbid liquid was prepared by mixing submicron magnetite fine particles (Fe304) into oleic acid and ultrasonically dispersing the mixture.

マグネタイト粒子分散液中に、保磁力50000eの粉
体を分散させで、超音波分散後沈澱させた。この時マグ
ネタイト粒子分散液は透明度が未混入のオレイン酸に対
し、多少減少する程度の低濃度分散液とし、磁粉が混合
後沈澱すると、はぼオレイン酸自体の透明度へもどる。
Powder having a coercive force of 50,000 e was dispersed in a magnetite particle dispersion liquid, and was precipitated after ultrasonic dispersion. At this time, the magnetite particle dispersion is a low-concentration dispersion whose transparency is slightly reduced compared to that of unmixed oleic acid, and when the magnetic particles precipitate after mixing, the transparency returns to that of oleic acid itself.

これらの試料に、Au蒸着をほどこした後、走査型電子
顕微鏡(SEM)で観察した。
After applying Au vapor deposition to these samples, they were observed using a scanning electron microscope (SEM).

保磁力50000eの粉体については、第3図(a)〜
(d)にその代表例を示すかこの方法による単磁区粒子
径は、短軸でほぼ2〜4μ「程度と測定される。
For powder with a coercive force of 50,000e, Fig. 3(a) ~
A representative example is shown in (d).The single magnetic domain particle size obtained by this method is measured to be about 2 to 4 microns along the short axis.

このことから、本実施で用いた5〜10μm程度の粒子
径の試料では、単磁区粒子径が2〜4μm程度であるこ
とが明らかになった。
From this, it was revealed that in the sample having a particle size of about 5 to 10 μm used in this experiment, the single magnetic domain particle size was about 2 to 4 μm.

[発明の効果コ 以上説明したように、7本発明で用いる磁性材料の本質
的特徴としで、従来の希土類磁石では達成できなかった
単磁区粒子径まで微粉砕ができ、かつ、保磁力、磁化の
変化挙動から、単磁区粒子磁石の作製が可能である。
[Effects of the Invention] As explained above, the essential characteristics of the magnetic material used in the present invention are that it can be finely pulverized to a single-domain particle diameter that could not be achieved with conventional rare earth magnets, and that it has high coercive force and magnetization. From the change behavior of , it is possible to create a single domain particle magnet.

この材料はその特性からボンド磁石用磁性粉体としての
特性に優れているので(BH)tnax値が18MGO
eに達することができる。
This material has excellent properties as a magnetic powder for bonded magnets, so (BH) the tnax value is 18MGO.
e can be reached.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1の磁性合金を所定時間粉砕して得た粉
体の保磁力と(BH)   値を示す躇ax グラフ。 第2図a −eは実施例1で説明した試料の粒子構造を
示す走査型電子顕微鏡写真、 第3図a−dは実施例2で説明した試料の粒子構造を示
す走査型電子顕微鏡写真である。 第1図 特許出願人 旭化成工業株式会社 代理人 弁理士 小 松 秀 岳
FIG. 1 is an ax graph showing the coercive force and (BH) value of the powder obtained by crushing the magnetic alloy of Example 1 for a predetermined period of time. Figures 2a-e are scanning electron micrographs showing the particle structure of the sample explained in Example 1, and Figures 3a-d are scanning electron micrographs showing the particle structure of the sample explained in Example 2. be. Figure 1 Patent applicant Asahi Kasei Industries Co., Ltd. Agent Patent attorney Hide Komatsu

Claims (1)

【特許請求の範囲】[Claims] (1)成分が希土類(Re)−鉄(Fe)−窒素(N)
−水素(H)−酸素(O)から成り、下記一般式で表わ
されることを特徴とする磁性材料の粉体で、その粒子径
が、各組成の磁性材料の単磁区粒子径に相当するものを
用いて構成される永久磁石。 一般式 Re_αFe_(_1_−_α_−β_−_γ_−_δ
_)N_βH_γO_δただし、上記一般式におけるR
eはイットリウム(Y)を含む希土類元素 5≦α≦20原子% 10≦β≦25原子% 0.01≦γ≦5原子% 0.01≦δ≦10原子%である。
(1) Ingredients are rare earth (Re) - iron (Fe) - nitrogen (N)
- Powder of a magnetic material consisting of hydrogen (H) - oxygen (O) and characterized by being represented by the following general formula, the particle size of which corresponds to the single domain particle size of the magnetic material of each composition. A permanent magnet constructed using General formula Re_αFe_(_1_-_α_-β_-_γ_-_δ
_)N_βH_γO_δ However, R in the above general formula
e is a rare earth element containing yttrium (Y), 5≦α≦20 atom%, 10≦β≦25 atom%, 0.01≦γ≦5 atom%, and 0.01≦δ≦10 atom%.
JP2192884A 1989-09-13 1990-07-23 Permanent magnet consisting of single domain particles Expired - Lifetime JP2857476B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2192884A JP2857476B2 (en) 1990-07-23 1990-07-23 Permanent magnet consisting of single domain particles
EP90117488A EP0417733B1 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen
DE69007720T DE69007720T2 (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen.
US07/580,556 US5164104A (en) 1989-09-13 1990-09-11 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen and bonded magnet containing the same
AU62481/90A AU624995C (en) 1989-09-13 1990-09-12 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen
CN 90107665 CN1028813C (en) 1989-09-13 1990-09-13 Magnetic material containing rare earth element, iron, nitrogen, hydrogen and oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2192884A JP2857476B2 (en) 1990-07-23 1990-07-23 Permanent magnet consisting of single domain particles

Publications (2)

Publication Number Publication Date
JPH0479202A true JPH0479202A (en) 1992-03-12
JP2857476B2 JP2857476B2 (en) 1999-02-17

Family

ID=16298582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2192884A Expired - Lifetime JP2857476B2 (en) 1989-09-13 1990-07-23 Permanent magnet consisting of single domain particles

Country Status (1)

Country Link
JP (1) JP2857476B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
CN105845306A (en) * 2016-05-26 2016-08-10 安徽宁磁电子科技有限公司 Nd-Fe-B permanent-magnet material for energy-saving motor and fabrication method of Nd-Fe-B permanent-magnet material
CN106098280A (en) * 2016-05-26 2016-11-09 安徽宁磁电子科技有限公司 A kind of rubidium ferrum B permanent magnetic material used for wind power generation and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002089153A1 (en) * 2001-04-24 2002-11-07 Asahi Kasei Kabushiki Kaisha Solid material for magnet
US7364628B2 (en) 2001-04-24 2008-04-29 Asahi Kasei Kabushiki Kaisha Solid material for magnet
JP2002329603A (en) * 2001-04-27 2002-11-15 Asahi Kasei Corp Magnetic solid material and its manufacturing method
JP2003017307A (en) * 2001-06-29 2003-01-17 Asahi Kasei Corp Solid material for magnet and method of fabricating the magnet
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
CN105845306A (en) * 2016-05-26 2016-08-10 安徽宁磁电子科技有限公司 Nd-Fe-B permanent-magnet material for energy-saving motor and fabrication method of Nd-Fe-B permanent-magnet material
CN106098280A (en) * 2016-05-26 2016-11-09 安徽宁磁电子科技有限公司 A kind of rubidium ferrum B permanent magnetic material used for wind power generation and preparation method thereof

Also Published As

Publication number Publication date
JP2857476B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
CN106128668B (en) A kind of preparation method of Nanocomposite rare earth permanent-magnetic material
JPS6187825A (en) Manufacture of permanent magnet material
WO2016136705A1 (en) Method for manufacturing r-t-b based sintered magnet
Su et al. Effect of milling on the structure and magnetic properties in Mn54Al46 flakes prepared by surfactant-assisted ball milling
JPH11186016A (en) Rare-earth element-iron-boron permanent magnet and its manufacture
JPS6110209A (en) Permanent magnet
JPH0479202A (en) Permanent magnet consisting of single magnetic domain particle
JPH0685369B2 (en) Permanent magnet manufacturing method
Yagodkin et al. Structure and magnetic properties of nanocrystalline alloys based on Nd2Fe14B obtained by various techniques
US6352597B1 (en) Method for producing a magnetic alloy powder
Jurczyk et al. Nd2 (Fe, Co, M) 14B-type magnet powders produced by the HDDR process
JP3645312B2 (en) Magnetic materials and manufacturing methods
JPH0620813A (en) Rare earth anisotropic permanent magnet powder and manufacture thereof
JPH11335702A (en) Magnetic powder
JPH06151127A (en) Manufacture of r-fe mother alloy powder for rare earth magnet
CN113416903B (en) Application of alloy powder, hard magnetic material and preparation method and application thereof
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3294645B2 (en) Nitride magnetic powder and its production method
JP3222919B2 (en) Method for producing nitride-based magnetic material
JPH06112019A (en) Nitride magnetic material
JP3209292B2 (en) Magnetic material and its manufacturing method
JP2926161B2 (en) Manufacturing method of permanent magnet
JPH08144024A (en) Magnetic material having stable coercive force and its production
JPH07297013A (en) Manufacture method of magnetic powder
JP3157302B2 (en) Nitride magnetic materials

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081127

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091127

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101127

Year of fee payment: 12