JP2002329603A - Magnetic solid material and its manufacturing method - Google Patents

Magnetic solid material and its manufacturing method

Info

Publication number
JP2002329603A
JP2002329603A JP2001131580A JP2001131580A JP2002329603A JP 2002329603 A JP2002329603 A JP 2002329603A JP 2001131580 A JP2001131580 A JP 2001131580A JP 2001131580 A JP2001131580 A JP 2001131580A JP 2002329603 A JP2002329603 A JP 2002329603A
Authority
JP
Japan
Prior art keywords
solid material
magnetic
magnet
magnet according
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001131580A
Other languages
Japanese (ja)
Other versions
JP4873516B2 (en
Inventor
Etsuji Kakimoto
悦二 柿本
Kiyotaka Doke
清孝 道家
Ichiro Shibazaki
一郎 柴崎
Nobuyoshi Imaoka
信嘉 今岡
Takashi Chiba
昂 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001131580A priority Critical patent/JP4873516B2/en
Priority to CNB028088182A priority patent/CN100501881C/en
Priority to EP02722754.5A priority patent/EP1383143B1/en
Priority to US10/475,617 priority patent/US7364628B2/en
Priority to KR10-2003-7013844A priority patent/KR100524340B1/en
Priority to PCT/JP2002/004089 priority patent/WO2002089153A1/en
Publication of JP2002329603A publication Critical patent/JP2002329603A/en
Application granted granted Critical
Publication of JP4873516B2 publication Critical patent/JP4873516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2

Abstract

PROBLEM TO BE SOLVED: To provide a solid material which is used for a solid magnet, has superior magnetic characteristic, is high in density, thermal stability, and oxidation resistance, and solidified by metallic bond. SOLUTION: Material powder consisting rare earth-iron-nitrogen-hydrogen magnetic material that a rhombohedral or a hexagonal crystal structure is formed into a molded body by compaction, and the molded body is shock- compressed and solidified into the solid material for magnet by the use of underwater shock waves.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高密度で高磁気特
性を有し、熱安定性、耐酸化性に優れた希土類−鉄−窒
素−水素系磁石用固形材料に関する。本発明は、更に、
磁性材料粉体を圧粉成形後、更に衝撃圧縮して、分解や
脱窒を防止しながら高密度・高性能の永久磁石を得る、
磁石用固形材料の製造方法に関する。
The present invention relates to a solid material for a rare earth-iron-nitrogen-hydrogen magnet having high density, high magnetic properties, and excellent thermal stability and oxidation resistance. The present invention further provides:
After compacting magnetic material powder, it is further subjected to impact compression to obtain high density and high performance permanent magnet while preventing decomposition and denitrification.
The present invention relates to a method for producing a solid material for a magnet.

【0002】ここで言う高密度とは、原料磁性粉体の真
密度に対し体積比にて80%を超える密度のことであ
る。また、ここで言う高性能とは、飽和磁化、残留磁化
又は残留磁束密度、保磁力、角形比、最大エネルギー積
[(BH)max]の少なくとも一つが従来の希土類−鉄
−窒素系磁石よりも高いこと、或いは、磁気特性の安定
性が従来の希土類−鉄−窒素系磁石よりも高い要素を有
することである。さらに、ここで言う磁石用固形材料と
は、塊状の磁性材料のことを指し、本願では、磁石用固
形材料を構成する磁性材料の粉末同士が直接、または金
属相若しくは無機物相を介して、連続的に結合し、全体
として塊状を成している状態の磁性材料をいう。
[0002] The term "high density" as used herein means a density exceeding 80% by volume relative to the true density of the raw material magnetic powder. The high performance herein means that at least one of saturation magnetization, residual magnetization or residual magnetic flux density, coercive force, squareness, and maximum energy product [(BH) max ] is higher than that of a conventional rare earth-iron-nitrogen magnet. Higher stability, or having higher stability than conventional rare earth-iron-nitrogen magnets. Furthermore, the solid material for a magnet referred to here refers to a massive magnetic material, and in the present application, powders of the magnetic material constituting the solid material for a magnet are continuously connected directly or via a metal phase or an inorganic phase. It is a magnetic material that is in a state of being combined as a whole and forming a lump as a whole.

【0003】[0003]

【従来の技術】高性能の希土類磁石として、例えばSm
−Co系磁石、Nd−Fe−B系磁石が知られている。
前者は高い熱安定性と耐食性等により、後者は極めて高
い磁気特性、低コスト、原料供給の安定性等によりそれ
ぞれ広く用いられている。今日更に高い熱安定性と高い
磁気特性を併せ持ち、原料コストの安価な希土類磁石
が、電装用や各種FA用のアクチュエータ、あるいは回
転機用の磁石として要望されている。
2. Description of the Related Art As a high performance rare earth magnet, for example, Sm
-Co-based magnets and Nd-Fe-B-based magnets are known.
The former is widely used because of its high thermal stability and corrosion resistance, and the latter is widely used because of its extremely high magnetic properties, low cost, and stable supply of raw materials. Today, rare earth magnets having both higher thermal stability and higher magnetic properties and lower raw material costs are demanded as actuators for electrical equipment and various FAs, or as magnets for rotating machines.

【0004】一方、菱面体晶又は六方晶の結晶構造を有
する希土類−鉄化合物をNH3とH2の混合ガス等の中で
400℃〜600℃の比較的低温にて反応させる時、N
原子及びH原子が上記結晶、例えばTh2Zn17型化合
物の格子間位置に侵入し、キュリー温度や磁気異方性の
顕著な増加を招来することが報告されている(米国特許
第5186766号)。近年、かかる希土類−鉄−窒素
系磁性材料が前記要望に沿う新磁石材料としてその実用
化の期待が高まっている。
On the other hand, when a rare earth-iron compound having a rhombohedral or hexagonal crystal structure is reacted at a relatively low temperature of 400 ° C. to 600 ° C. in a mixed gas of NH 3 and H 2 , N
It has been reported that atoms and H atoms penetrate into interstitial positions of the above crystal, for example, a Th 2 Zn 17 type compound, resulting in a remarkable increase in Curie temperature and magnetic anisotropy (US Pat. No. 5,186,766). . In recent years, such rare earth-iron-nitrogen based magnetic materials are expected to be put to practical use as new magnet materials meeting the above demand.

【0005】窒素と水素を金属間化合物の格子間に有
し、菱面体晶又は六方晶構造を有する希土類−鉄−窒素
−水素系材料(以下R−Fe−N−H系磁性材料とい
う)は、一般に粉体状態にて得られるが、常圧下約60
0℃以上の温度ではα−Fe分解相と希土類窒化物とに
分解し易いため、自己焼結により焼結して磁石用固形材
料として得ることは、通常の工業的方法では非常に困難
である。
[0005] Rare earth-iron-nitrogen-hydrogen-based materials (hereinafter referred to as R-Fe-NH-based magnetic materials) having nitrogen and hydrogen between lattices of an intermetallic compound and having a rhombohedral or hexagonal structure are known. , Generally obtained in the form of powder,
At a temperature of 0 ° C. or higher, it is easily decomposed into an α-Fe decomposition phase and a rare earth nitride, and it is extremely difficult to obtain a solid material for a magnet by sintering by self-sintering using ordinary industrial methods. .

【0006】そこで、R−Fe−N−H系磁性材料を用
いた磁石としては、樹脂をバインダとしたボンド磁石が
生産され、使用されている。しかし、当該材料を用いて
作られた磁石は、多くは400℃以上のキュリー温度を
有し、本来200℃以上の温度でも磁化を失わない磁性
粉体を使用しているにもかかわらず、樹脂バインダの耐
熱温度が低いことが一つの大きな原因となって不可逆減
磁率が大きくなり、概ね100℃以下の温度でしか使用
されていない。すなわち、最近高負荷の要求に対して、
150℃以上の高温の環境下で使用される動力源として
のブラシレスモータ等を作る場合、当該ボンド磁石は使
用することができないという問題があった。
Therefore, as a magnet using an R-Fe-NH-based magnetic material, a bonded magnet using a resin as a binder has been produced and used. However, magnets made from such materials often have a Curie temperature of 400 ° C. or higher, and despite the use of magnetic powder that does not lose magnetization even at temperatures of 200 ° C. or higher, resin One of the major reasons is that the heat resistance temperature of the binder is low, and the irreversible demagnetization rate increases. In other words, in response to recently high load requirements,
When producing a brushless motor or the like as a power source used in a high-temperature environment of 150 ° C. or more, there is a problem that the bonded magnet cannot be used.

【0007】また、樹脂をバインダとした圧縮成形ボン
ド磁石を製造する場合、充填率を向上させ、高性能化す
るには、工業的に難しい10重量トン/cm2以上の成
形圧力が必要であり、金型寿命等を考慮すると、混合比
率は体積比にて80%以下にせざるを得ない場合が多
く、圧縮成形ボンド磁石によっては、R−Fe−N−H
系磁性材料の優れた基本磁気特性を十分に発揮できない
という問題があった。すなわち、R−Fe−N−H系磁
性材料を原料とするボンド磁石は、従来のSm−Co
系、Nd−Fe−B系焼結磁石等と比較して、本来の高
い熱安定性及び、磁気特性を十分に発揮できないという
問題があった。
In the case of manufacturing a compression-molded bonded magnet using a resin as a binder, a molding pressure of 10 tons / cm 2 or more, which is industrially difficult, is required to improve the filling rate and improve the performance. In consideration of the mold life and the like, the mixing ratio is often forced to be 80% or less in volume ratio. Depending on the compression-molded bonded magnet, R-Fe-N-H
There is a problem that the excellent basic magnetic properties of the system magnetic material cannot be sufficiently exhibited. That is, a bonded magnet made of an R—Fe—N—H based magnetic material is a conventional Sm—Co
There is a problem that the original high thermal stability and magnetic properties cannot be sufficiently exhibited as compared with the Nd-Fe-B sintered magnet and the like.

【0008】前記問題点を解決するために、特許第31
08232号公報による永久磁石の製造方法が提案され
ている。しかしながら、当該方法によると、衝撃圧縮後
の残留温度をTh2Zn17型希土類−鉄−窒素系磁性材
料の分解温度以下に抑制するためには、衝撃圧縮の際の
最大圧力を一定の狭い範囲に限定しなければならないと
いう問題があった。これは、従来の衝撃波を用いた場合
には、衝撃波自体の持続時間が短いにもかかわらず、磁
性材料の温度が高く且つ長い時間にわたって保持される
結果、磁性材料が非常に分解され易いからである。
[0008] In order to solve the above problems, Japanese Patent No. 31001
No. 08232 proposes a method for manufacturing a permanent magnet. However, according to the method, the residual temperature Th 2 Zn 17 type rare earth after impact compression - iron - to suppress below the decomposition temperature of the nitrogen based magnetic material is smaller the maximum pressure during the impact compression of a range There was a problem that must be limited to. This is because when a conventional shock wave is used, the temperature of the magnetic material is kept high for a long time despite the short duration of the shock wave itself, so that the magnetic material is very easily decomposed. is there.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、高密
度で高磁気特性を有し、熱安定性、耐酸化性に優れた希
土類−鉄−窒素−水素系磁石用固形材料、及びその製造
方法を提供することにある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a solid material for a rare earth-iron-nitrogen-hydrogen magnet having high density, high magnetic properties, excellent thermal stability and oxidation resistance, and a solid material thereof. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
について、鋭意検討した結果、菱面体晶又は六方晶の結
晶構造を有する希土類−鉄−窒素系磁性材料粉体に水素
を含有させ、磁場中若しくは無磁場で圧粉成形体にした
後、水中衝撃波を用いて衝撃圧縮固化し、衝撃圧縮の持
つ超高圧剪断性、活性化作用、短時間現象などの特徴を
活かして、衝撃圧縮後の残留温度をR−Fe−N−H系
磁性材料の分解温度(常圧で約600℃)以下に抑制し
て分解を防ぐことにより、R−Fe−N−H系磁性材料
を主として含有する高密度の磁石用固形材料を得ること
ができることを見出し、本発明を完成した。また、本発
明者等は、更に、上記水中衝撃波を用いた場合、R−F
e−N−H系磁性材料と軟磁性の粉体や固体、或いは非
磁性材料の粉体又は固体を容易に一体化できることも見
出し、本発明を完成した。本発明の磁石用固形材料は樹
脂等のバインダを含まないものである。
Means for Solving the Problems The present inventors have conducted intensive studies on the above-mentioned problems, and as a result, have found that hydrogen is contained in a rare earth-iron-nitrogen based magnetic material powder having a rhombohedral or hexagonal crystal structure. After forming into a green compact in a magnetic field or without a magnetic field, it is shock-compressed and solidified using an underwater shock wave, and takes advantage of the characteristics of shock compression such as ultra-high-pressure shearing properties, activation, and short-time phenomena. Mainly contains the R-Fe-NH-based magnetic material by suppressing the remaining temperature below the decomposition temperature of the R-Fe-N-H-based magnetic material (about 600 ° C at normal pressure) to prevent the decomposition. It has been found that a high-density solid material for magnets can be obtained, and the present invention has been completed. Further, the present inventors further found that when the underwater shock wave was used, RF
The inventors have also found that the e-N-H based magnetic material can be easily integrated with a soft magnetic powder or solid, or a nonmagnetic material powder or solid, and have completed the present invention. The solid material for a magnet of the present invention does not contain a binder such as a resin.

【0011】すなわち、本発明の態様は以下のとおりで
ある。 (1)菱面体晶又は六方晶の結晶構造を有するR−Fe
−N−H系磁性材料を50〜100体積%含有した磁石
用固形材料。 (2)前記(1)記載の磁石用固形材料であって、R−
Fe−N−H系磁性材料が一般式RαFe100-α-β-γ
βγで表され、RはYを含む希土類元素から選ばれ
た少なくとも一種の元素であり、又、α、β、γは原子
百分率で、3≦α≦20、5≦β≦30、0.01≦γ
≦10であることを特徴とする磁石用固形材料。 (3)前記(1)又は(2)記載の磁石用固形材料であ
って、R及び/又はFeの10原子%以下をNi、T
i、V、Cr、Mn、Zn、Cu、Zr、Nb、Mo、
Ta、W、Ru、Rh、Pd、Hf、Re、Os、Ir
から選ばれる少なくとも一種の元素と置換したことを特
徴とする磁石用固形材料。 (4)前記(1)〜(3)のいずれかに記載の磁石用固
形材料であって、N及び/又はHの10原子%以下を
C、P、Si、S、Alから選ばれる少なくとも一種の
元素と置換したことを特徴とする磁石用固形材料。 (5)前記(1)記載の磁石用固形材料であって、一般
式RαFe100-α-β-γ βγδで表され、R
はYを含む希土類元素から選ばれる少なくとも一種の元
素であり、MはLi、Na、K、Mg、Ca、Sr、B
a、Ti、Zr、Hf、V、Nb、Ta、Cr、Mo、
W、Mn、Pd、Cu、Ag、Zn、B、Al、Ga、
In、C、Si、Ge、Sn、Pb、Biから選ばれる
少なくとも一種の元素及び/又はRの酸化物、フッ化
物、炭化物、窒化物、水素化物、炭酸塩、硫酸塩、ケイ
酸塩、塩化物、硝酸塩から選ばれる少なくとも一種であ
り、又、α、β、γ、δはモル百分率で、3≦α≦2
0、5≦β≦30、0.01≦γ≦10、0.1≦δ≦
40であることを特徴とする磁石用固形材料。 (6)前記(1)〜(5)のいずれかに記載の磁石用固
形材料であって、Rの50原子%以上がSmであること
を特徴とする磁石用固形材料。 (7)前記(1)〜(6)のいずれかに記載の磁石用固
形材料であって、Feの0.01〜50原子%をCoで
置換したことを特徴とする磁石用固形材料。(8)前記
(1)〜(7)のいずれかに記載の磁石用固形材料であ
って、Fe、Co、Niから選ばれる少なくとも一種の
元素を含む軟磁性材料が均一に分散され、一体化してい
ることを特徴とする磁石用固形材料。 (9)前記(1)〜(8)のいずれかに記載の磁石用固
形材料であって、希土類−鉄−ほう素系磁性材料、希土
類−コバルト系磁性材料、フェライト系磁性材料から選
ばれる少なくとも一種の磁性材料が均一に添加混合さ
れ、一体化していることを特徴とする磁石用固形材料。 (10)前記(1)〜(9)のいずれかに記載の磁石用
固形材料であって、磁性材料の粒界に非磁性相が存在す
ることを特徴とする磁石用固形材料。 (11)前記(1)〜(10)のいずれかに記載の磁石
用固形材料と軟磁性の固形金属材料とを接合して一体化
したことを特徴とする磁石用固形材料。 (12)前記(1)〜(11)のいずれかに記載の磁石
用固形材料であって、軟磁性層を有し、軟磁性層と交互
に積層されて一体化していることを特徴とする磁石用固
形材料。 (13)前記(1)〜(12)のいずれかに記載の磁石
用固形材料であって、少なくとも一部が非磁性の固形材
料で覆われたことを特徴とする磁石用固形材料。 (14)前記(1)〜(13)のいずれかに記載の磁石
用固形材料であって、磁気異方性を付与したことを特徴
とする磁石用固形材料。 (15)前記(1)〜(14)のいずれかに記載の磁石
用固形材料であって、円柱状又は円筒状又はリング状又
は円板状又は平板状に成形したことを特徴とする磁石用
固形材料。 (16)前記(1)〜(15)のいずれかに記載の磁石
用固形材料であって、水中衝撃波を用いて衝撃圧縮固化
したことを特徴とする磁石用固形材料。 (17)前記(1)〜(15)のいずれかに記載の磁石
用固形材料の製造方法であって、原料粉体の圧粉成形を
磁場中で行うことを特徴とする磁石用固形材料の製造方
法。 (18)前記(16)に記載の磁石用固形材料を製造す
る方法であって、原料粉体を圧粉成形した後、水中衝撃
波を用いて衝撃圧縮固化することを特徴とする磁石用固
形材料の製造方法。 (19)前記(16)に記載の磁石用固形材料を製造す
る方法であって、原料粉体を磁場中で圧粉成形した後、
水中衝撃波を用いて衝撃圧縮固化することを特徴とする
磁石用固形材料の製造方法。 (20)前記(15)に記載の磁石用固形材料を製造す
る方法であって、切削加工及び/又は塑性加工により成
形することを特徴とする磁石用固形材料の製造方法。 (21)前記(17)〜(20)のいずれかに記載の磁
石用固形材料を製造する方法であって、材料を少なくと
も一度100℃以上且つ分解温度より低い温度で熱処理
をする工程を含むことを特徴とする磁石用固形材料の製
造方法。
That is, aspects of the present invention are as follows. (1) R-Fe having a rhombohedral or hexagonal crystal structure
-A solid material for a magnet containing 50 to 100% by volume of an NH magnetic material. (2) The solid material for a magnet according to the above (1), wherein R-
The Fe-NH-based magnetic material has a general formula of R α Fe 100-α-β-γ
Expressed in N β H γ, R is at least one element selected from rare earth elements including Y, also, α, β, γ are in atomic percent, 3 ≦ α ≦ 20,5 ≦ β ≦ 30, 0.01 ≦ γ
A solid material for a magnet, wherein ≦ 10. (3) The solid material for a magnet according to the above (1) or (2), wherein 10 atomic% or less of R and / or Fe is Ni, T
i, V, Cr, Mn, Zn, Cu, Zr, Nb, Mo,
Ta, W, Ru, Rh, Pd, Hf, Re, Os, Ir
A solid material for a magnet, wherein the material is substituted with at least one element selected from the group consisting of: (4) The solid material for a magnet according to any one of (1) to (3), wherein at least 10 atom% of N and / or H is selected from C, P, Si, S, and Al. A solid material for a magnet, characterized by being substituted with the element of (5) wherein (1) a solid material for a magnet according, represented by the general formula R α Fe 100-α-β -γ -δ N β H γ M δ, R
Is at least one element selected from rare earth elements including Y, and M is Li, Na, K, Mg, Ca, Sr, B
a, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo,
W, Mn, Pd, Cu, Ag, Zn, B, Al, Ga,
At least one element selected from In, C, Si, Ge, Sn, Pb, and Bi and / or an oxide, fluoride, carbide, nitride, hydride, carbonate, sulfate, silicate, silicate, or chloride of R And at least one selected from nitrates, and α, β, γ, and δ are mole percentages and 3 ≦ α ≦ 2
0, 5 ≦ β ≦ 30, 0.01 ≦ γ ≦ 10, 0.1 ≦ δ ≦
40. A solid material for a magnet, which is 40. (6) The solid material for a magnet according to any one of the above (1) to (5), wherein 50 atom% or more of R is Sm. (7) The solid material for a magnet according to any one of the above (1) to (6), wherein 0.01 to 50 atomic% of Fe is substituted with Co. (8) The solid material for a magnet according to any one of (1) to (7), wherein the soft magnetic material containing at least one element selected from Fe, Co, and Ni is uniformly dispersed and integrated. A solid material for a magnet, comprising: (9) The solid material for a magnet according to any one of (1) to (8), wherein at least one selected from a rare earth-iron-boron magnetic material, a rare earth-cobalt magnetic material, and a ferrite magnetic material. A solid material for magnets, wherein a kind of magnetic material is uniformly added, mixed and integrated. (10) The solid material for a magnet according to any one of the above (1) to (9), wherein a non-magnetic phase is present at a grain boundary of the magnetic material. (11) A solid magnet material, wherein the solid magnet material according to any one of (1) to (10) and a soft magnetic solid metal material are joined and integrated. (12) The solid material for a magnet according to any one of the above (1) to (11), which has a soft magnetic layer, and is alternately laminated with the soft magnetic layer to be integrated. Solid material for magnets. (13) The solid material for a magnet according to any one of the above (1) to (12), wherein at least a part thereof is covered with a non-magnetic solid material. (14) The solid material for a magnet according to any one of the above (1) to (13), which is provided with magnetic anisotropy. (15) The solid material for a magnet according to any one of the above (1) to (14), which is formed into a columnar shape, a cylindrical shape, a ring shape, a disk shape, or a flat shape. Solid material. (16) The solid material for a magnet according to any one of the above (1) to (15), wherein the solid material for a magnet is subjected to impact compression and solidification using an underwater shock wave. (17) The method for producing a solid material for a magnet according to any one of the above (1) to (15), wherein compaction of the raw material powder is performed in a magnetic field. Production method. (18) The method for producing a solid material for a magnet according to (16), wherein the raw material powder is compacted, and then subjected to impact compression and solidification using an underwater shock wave. Manufacturing method. (19) The method for producing a solid material for a magnet according to (16), wherein the raw material powder is compacted in a magnetic field.
A method for producing a solid material for a magnet, wherein the material is subjected to impact compression and solidification using an underwater shock wave. (20) A method for producing the solid material for a magnet according to the above (15), wherein the solid material for a magnet is formed by cutting and / or plastic working. (21) The method for producing a solid material for a magnet according to any one of the above (17) to (20), comprising a step of heat-treating the material at least once at a temperature of 100 ° C. or higher and lower than a decomposition temperature. A method for producing a solid material for a magnet, comprising:

【0012】以下、本発明について詳細に説明する。本
発明の磁石用固形材料は水中衝撃波の衝撃波圧力を用い
て原料成形体を圧縮固化することにより製造することが
できる。衝撃波圧力が3〜40GPaの水中衝撃波を用
いて圧縮固化することにより、原料磁性粉体の真密度に
対し体積比にて80%を超える密度の磁石用固形材料を
得ることができる。衝撃波圧力が3GPaより低いと、
必ずしも密度が80%を超える磁石用固形材料を得るこ
とができない。また、衝撃波圧力が40GPaより高い
と、α−Fe分解相等の分解物が生じ易く、好ましくな
い。衝撃波圧力が3〜40GPaの水中衝撃波を用いて
圧縮固化する場合は、原料磁性粉体の真密度に対し体積
比にて80%を超える密度の磁石用固形材料を再現性良
く得ることができる。また、衝撃波圧力が6〜40GP
aの水中衝撃波を用いた場合は、密度が90%を超える
密度の磁石用固形材料を得ることができる。
Hereinafter, the present invention will be described in detail. The solid material for a magnet of the present invention can be produced by compressing and solidifying a raw material molded body using a shock wave pressure of an underwater shock wave. By compressing and solidifying using an underwater shock wave having a shock wave pressure of 3 to 40 GPa, a solid material for a magnet having a density exceeding 80% by volume relative to the true density of the raw magnetic powder can be obtained. If the shock wave pressure is lower than 3 GPa,
It is not always possible to obtain a solid material for a magnet having a density exceeding 80%. On the other hand, if the shock wave pressure is higher than 40 GPa, decomposition products such as the α-Fe decomposition phase are easily generated, which is not preferable. When compressing and solidifying using an underwater shock wave having a shock wave pressure of 3 to 40 GPa, a solid material for a magnet having a density exceeding 80% by volume relative to the true density of the raw material magnetic powder can be obtained with good reproducibility. The shock wave pressure is 6 to 40 GP
When the underwater shock wave of a is used, a solid material for a magnet having a density exceeding 90% can be obtained.

【0013】[0013]

【発明の実施の形態】本発明の磁石用固形材料に用いら
れるR−Fe−N−H系磁性材料は、公知の方法(例え
ば、米国特許第5186766号、米国特許第5164
104号、特許第2703281号公報、特許第270
5985号公報、特許第2708568号公報、特許第
2739860号公報、特許第2857476号公報等
参照)により調製される。
BEST MODE FOR CARRYING OUT THE INVENTION The R-Fe-NH-based magnetic material used in the solid material for a magnet of the present invention can be prepared by a known method (for example, US Pat. No. 5,186,766, US Pat. No. 5,164).
No. 104, Japanese Patent No. 2703281, Japanese Patent No. 270
No. 5985, Japanese Patent No. 2708568, Japanese Patent No. 2739860, Japanese Patent No. 2857476, etc.).

【0014】例えば、希土類−鉄合金を高周波法、超急
冷法、R/D法、HDDR法、メカニカルアロイング
法、メカニカルグラインディング法などで調製し、数十
〜数百μm程度に粗粉砕した後、窒素−水素混合ガス、
アンモニア−水素混合ガスなどの雰囲気下で窒化水素化
処理を行って微粉砕を行い、R−Fe−N−H系磁性材
料を調製する。磁性材料の組成、合金の処理法や窒化/
水素化法によっては粗粉砕や微粉砕を必要としない場合
もある。
For example, a rare earth-iron alloy is prepared by a high frequency method, a super-quenching method, an R / D method, an HDDR method, a mechanical alloying method, a mechanical grinding method, etc., and is roughly pulverized to several tens to several hundreds μm. Later, a nitrogen-hydrogen mixed gas,
A hydrogen nitride treatment is performed in an atmosphere of an ammonia-hydrogen mixed gas or the like to perform fine pulverization, thereby preparing an R-Fe-NH-based magnetic material. Composition of magnetic material, processing method of alloy and nitriding /
Depending on the hydrogenation method, coarse grinding or fine grinding may not be required.

【0015】本発明においては、工程のいずれかの段階
で水素ガス、アンモニアガス、水素を含む化合物などの
水素源と接触させ、窒素のみならず水素を導入すること
が重要である。即ち、R−Fe−N−H系磁性材料の水
素量については、0.01原子%以上含むことが好まし
い。この水素量が0.01原子%未満であると、しばし
ばα−Fe分解相及び希土類窒化物分解相が生じ、保磁
力が低くなり、更に耐食性が低下する場合もあり好まし
くない。水素量を0.1原子%以上含有しておれば、さ
らに好ましい磁石用固形材料の原料となる。
In the present invention, it is important that at any stage of the process, a hydrogen source such as a hydrogen gas, an ammonia gas, or a compound containing hydrogen is contacted to introduce not only nitrogen but also hydrogen. That is, the hydrogen content of the R—Fe—N—H-based magnetic material is preferably 0.01 atomic% or more. When the amount of hydrogen is less than 0.01 atomic%, an α-Fe decomposition phase and a rare earth nitride decomposition phase are often generated, which lowers the coercive force and further lowers the corrosion resistance. If the hydrogen content is 0.1 atomic% or more, it is a more preferable raw material for a solid material for a magnet.

【0016】好ましい磁性材料の結晶構造は、Th2
17型結晶構造等又はそれと同様な結晶構造を有する菱
面体晶、又はTh2Ni17、TbCu7、CaZn5型結
晶構造等又はそれと同様な結晶構造を有する六方晶が挙
げられ、そのうち少なくとも一種を含むことが必要であ
る。この中でTh2Zn17型結晶構造等又はそれと同様
な結晶構造を有する菱面体晶が最も好ましい。
The crystal structure of a preferred magnetic material is Th 2 Z
A rhombohedral crystal having an n 17 type crystal structure or the like or a crystal structure similar thereto, or a hexagonal crystal having a Th 2 Ni 17 , TbCu 7 , CaZn 5 type crystal structure or the like or a crystal structure similar thereto, and at least one of them It is necessary to include Among them, a rhombohedral crystal having a Th 2 Zn 17 type crystal structure or the like or a crystal structure similar thereto is most preferable.

【0017】以上のR−Fe−N−H系磁性材料は、
0.1〜100μmの平均粒径を有する粉体状として得
られ、磁石用固形材料の原料として供給される。平均粒
径が0.1μm未満であると、磁場配向性が悪くなり、
残留磁束密度が低くなる。逆に平均粒径が100μmを
超えると保磁力が低くなり、実用性に乏しくなる。優れ
た磁場配向性を付与させるために、更に好ましい平均粒
径の範囲は1〜100μmである。また、R−Fe−N
−H系磁性材料は、高い飽和磁化、高いキュリー点とと
もに、大きな磁気異方性を有することが特徴である。従
って、単結晶粉体とすることができる場合には、外部磁
場により容易に磁場配向することができ、高い磁気特性
を持つ異方性磁石用固形材料とすることができる。
The above R—Fe—N—H based magnetic material is
It is obtained as a powder having an average particle size of 0.1 to 100 μm, and is supplied as a raw material of a solid material for a magnet. When the average particle size is less than 0.1 μm, the magnetic field orientation deteriorates,
The residual magnetic flux density decreases. Conversely, if the average particle size exceeds 100 μm, the coercive force will be low and the practicality will be poor. In order to impart excellent magnetic field orientation, a more preferable range of the average particle diameter is 1 to 100 μm. Also, R-Fe-N
-H-based magnetic materials are characterized by having high magnetic anisotropy as well as high saturation magnetization and high Curie point. Therefore, when a single crystal powder can be obtained, the magnetic field can be easily oriented by an external magnetic field, and a solid material for an anisotropic magnet having high magnetic properties can be obtained.

【0018】R−Fe−N−H系磁性材料の大きな特徴
の一つは、耐酸化性が比較的高く、錆が発生しにくい点
である。Nd−Fe−B系焼結磁石は、磁気特性が極め
て高く、VCMなどのアクチュエータや各種モータに多
用されているが、表面が常温の大気中でも容易に酸化し
てしまうため、錆落ち防止の目的でニッケルメッキやエ
ポキシ樹脂コーティングなどにより表面処理することが
必須となる。これに対して、R−Fe−N−H系磁性材
料を用いた磁石の場合、上記の表面処理を必要としない
か、或いは簡便なものとすることができる。即ち、コス
ト的に有利であるだけでなく、アクチュエータやモータ
として使用する場合、ステータとロータ間のギャップが
磁性の低い表面層分だけ狭く取れるので、回転や反復運
動のトルクを大きく取れる利点があり、磁石の磁力を最
大限活かすことができる。このため、例えば(BH)
max値がNd−Fe−B系磁石より劣る場合であって
も、同様なパフォーマンスを発揮することができる。R
−Fe−N−H系磁性材料を含有した磁石においては、
表面処理を必要としない場合、(BH)max値が200
kJ/m3以上であればコストパフォーマンスの優れた
好ましい磁石となり、240kJ/m3以上であれば更
に好ましい。
One of the major features of the R-Fe-NH-based magnetic material is that it has relatively high oxidation resistance and hardly generates rust. Nd-Fe-B-based sintered magnets have extremely high magnetic properties and are widely used in actuators such as VCM and various motors. It is essential to perform surface treatment with nickel plating or epoxy resin coating. On the other hand, in the case of a magnet using an R—Fe—N—H-based magnetic material, the above-described surface treatment is not required or can be simplified. That is, not only is it advantageous in terms of cost, but also when used as an actuator or a motor, the gap between the stator and the rotor can be narrowed by the surface layer having low magnetism, so that there is an advantage that a large torque can be obtained for rotation and repetitive motion. , It can make the most of the magnetic force of the magnet. Therefore, for example, (BH)
Even when the max value is inferior to that of the Nd-Fe-B magnet, the same performance can be exhibited. R
In the magnet containing the Fe-NH-based magnetic material,
When no surface treatment is required, the (BH) max value is 200
If kJ / m 3 or more an excellent preferred magnet cost performance, further preferably equal to 240kJ / m 3 or more.

【0019】しかし、R−Fe−N−H系磁石材料は微
粉体であるため、連続孔であるボイド等の酸素の通り道
が多く存在すると、微粉体の表面が酸化劣化して保磁力
が低下する要因となる。従って、十分に密度を上昇さ
せ、表面からの酸素の進入を防ぐことが必要である。従
って、充填率は95%以上、好ましくは98%以上であ
ることが要求され、特に表面近くの充填率は100%近
いことが要求される。
However, since the R—Fe—N—H magnet material is a fine powder, if there are many passages of oxygen, such as voids, which are continuous pores, the surface of the fine powder is oxidized and deteriorated, and the coercive force is reduced. It becomes a factor to do. Therefore, it is necessary to sufficiently increase the density and prevent oxygen from entering the surface. Therefore, the filling rate is required to be 95% or more, preferably 98% or more, and particularly the filling rate near the surface is required to be close to 100%.

【0020】ところで、水素を含有しないTh2Zn17
型R−Fe−N系磁性材料は、磁気特性の最適化を図ろ
うとした場合、窒素量がR2Fe17当たり3個より少な
くなり、熱力学的に不安定なR2Fe173-Δ相が生じ
る。この相は、熱的、機械的なエネルギーにより容易に
α−Feと窒化希土類とへ分解する結果、従来の衝撃波
圧縮によっては高性能な磁石用固形材料とはなり得な
い。
By the way, Th 2 Zn 17 containing no hydrogen is used.
When optimizing the magnetic properties, the type R-Fe-N-based magnetic material has a nitrogen content of less than 3 per R 2 Fe 17 , and the thermodynamically unstable R 2 Fe 17 N 3- The Δ phase occurs. This phase is easily decomposed into α-Fe and rare earth nitride by thermal and mechanical energy, so that it cannot be a high-performance magnet solid material by conventional shock wave compression.

【0021】これに対し、水素が上記で規定される範囲
内に制御されれば、通常、その主相は熱力学的に安定な
2Fe173x相又は余剰な窒素を含むR2Fe17
3+Δ x相(通常xは0.01〜2程度の範囲)になっ
て熱的、機械的なエネルギーによるα−Fe及び窒化希
土類への分解は、Hを含まないTh2Zn17型R−Fe
−N系磁性材料に比べて顕著に抑制される。このこと
は、密度が高く、高磁気特性で、熱安定性、耐酸化性の
優れた磁石用固形材料を得るための重要な知見に他なら
ない。
On the other hand, hydrogen is in the range specified above.
If controlled within, the main phase is usually thermodynamically stable
RTwoFe17NThreeHxPhase or R containing excess nitrogenTwoFe17N
3 + ΔH xPhase (usually x is in the range of about 0.01 to 2)
Α-Fe and nitrided nitride by thermal and mechanical energy
Decomposition into earth is H-free ThTwoZn17Type R-Fe
It is significantly suppressed as compared with the -N-based magnetic material. this thing
Has high density, high magnetic properties, thermal stability and oxidation resistance
What is important for obtaining excellent solid materials for magnets
Absent.

【0022】本発明で用いるR−Fe−N−H系磁性材
料は、ニュークリエーション型、ピンニング型、エクス
チェンジスプリング型、交換結合型など磁化反転のメカ
ニズムが異なる各種磁性材料を磁石用固形材料とするこ
とができる。これら全ての磁性材料は、いずれも600
℃を超える温度で分解反応が生じるため、高温で高密度
化する焼結法によっては磁石用固形材料とすることがで
きないものであり、本発明の衝撃圧縮法を用いて成形す
ることが非常に有効な材料群である。
As the R-Fe-NH-based magnetic material used in the present invention, various magnetic materials having different magnetization reversal mechanisms such as nucleation type, pinning type, exchange spring type and exchange coupling type are used as solid materials for magnets. be able to. All of these magnetic materials are 600
Since the decomposition reaction occurs at a temperature exceeding ℃, it cannot be made into a solid material for magnets by a sintering method that densifies at a high temperature, and it is extremely difficult to mold using the impact compression method of the present invention. It is an effective material group.

【0023】上述のように、R−Fe−N−H系磁性材
料はHを含まないR−Fe−N系磁性材料に比べて、熱
的・機械的エネルギーによる分解が顕著に抑制される
が、仮に、これが分解して、100nmを超える粒径の
大きなα−Fe分解相と希土類窒化物相とが生じた場
合、高価な希土類が多く含まれているのにも関わらず、
α−Fe分解相が逆磁区の芽となり、保磁力が大きく低
下して好ましくない。
As described above, the decomposition of R-Fe-N-H-based magnetic material due to thermal and mechanical energy is remarkably suppressed as compared with the R-Fe-N-based magnetic material containing no H. If this is decomposed to form a large α-Fe decomposition phase having a particle size exceeding 100 nm and a rare earth nitride phase, despite the fact that a large amount of expensive rare earth is contained,
The α-Fe decomposition phase becomes buds of the reverse magnetic domain, and the coercive force is greatly reduced, which is not preferable.

【0024】そこで、予めR−Fe−N−H系磁性材料
の副相として、Fe、Co、Fe−Co、パーマロイな
どのFe−Ni、Fe−Co−Ni及びそれらの窒化
物、さらに以上の成分と前記したM成分との合金、化合
物などの軟磁性相を含有させる場合、かかる軟磁性相の
粒径または厚さが5〜100nm程度となるように調製
することによって、実用的な保磁力を維持できる上に、
高価な希土類の量を節約することができ、コストパフォ
ーマンスの高い磁石が得られる。これらの軟磁性副相
は、特にR−Fe−N−H系磁性材料の残留磁束密度を
向上させる効果を有する。しかし、軟磁性相の粒径また
は厚さが5nm未満であると飽和磁化が小さくなってし
まい、又、100nmを超えると軟磁性相と硬磁性相並
びに軟磁性相同士の交換結合による異方性を保持できな
くなり、逆磁区の芽となって保磁力が極端に低くなるの
で、好ましくない。
Therefore, Fe-Ni, Fe-Co-Ni and their nitrides, such as Fe, Co, Fe-Co, and permalloy, as a sub-phase of the R-Fe-NH-based magnetic material, When a soft magnetic phase such as an alloy or a compound of the above component and the M component is contained, a practical coercive force can be obtained by adjusting the particle size or thickness of the soft magnetic phase to about 5 to 100 nm. In addition to maintaining
The amount of expensive rare earth elements can be saved, and a magnet with high cost performance can be obtained. These soft magnetic subphases have the effect of improving the residual magnetic flux density of the R-Fe-NH-based magnetic material. However, if the particle size or thickness of the soft magnetic phase is less than 5 nm, the saturation magnetization becomes small, and if it exceeds 100 nm, anisotropy due to exchange coupling between the soft magnetic phase and the hard magnetic phase and between the soft magnetic phases. Cannot be maintained, and the coercive force becomes extremely low as buds of reverse magnetic domains, which is not preferable.

【0025】このような微構造を達成するために、R−
Fe原料の作製法として、M成分を加え、超急冷法によ
りR−Fe−M原料とする公知の方法や、メカニカルア
ロイング法又はメカニカルグラインディング法などの公
知の方法、又はそれに準じた粉砕法でR−Fe又はR−
Fe−M原料を作製するなどの方法を採用できる。
In order to achieve such a microstructure, R-
As a method for producing an Fe raw material, a known method of adding an M component to obtain an R-Fe-M raw material by a rapid quenching method, a known method such as a mechanical alloying method or a mechanical grinding method, or a pulverizing method according thereto With R-Fe or R-
A method such as producing an Fe-M raw material can be employed.

【0026】また、このとき、軟磁性副相の量は5〜5
0体積%であることが好ましい。5体積%未満である
と、保磁力は比較的高くなるが、残留磁束密度がR−F
e−N−H系材料単独の場合よりさほど高くならず、5
0体積%を超えると逆に残留磁束密度は高くなるが保磁
力が大きく低下し、何れも高い(BH)maxが得られな
い。より好ましい軟磁性相量の範囲は10〜40体積%
である。
At this time, the amount of the soft magnetic subphase is 5 to 5
It is preferably 0% by volume. If it is less than 5% by volume, the coercive force will be relatively high, but the residual magnetic flux density will be less than R-F
It is not so much higher than the case of the e-N-H-based material alone, and 5
If it exceeds 0% by volume, on the contrary, the residual magnetic flux density increases, but the coercive force decreases greatly, and no high (BH) max can be obtained in any case. A more preferable range of the amount of the soft magnetic phase is 10 to 40% by volume.
It is.

【0027】更に、Nd−Fe−B系などの希土類−鉄
−ほう素系磁性材料、SmCo5系やSm2Co17系のよ
うな希土類−コバルト系磁性材料、フェライト系磁性材
料などの硬磁性粉体のうち一種又は二種以上を、50体
積%以下の範囲内で、R−Fe−N−H系磁性材料と混
合することにより、用途に応じて磁気特性、熱安定性、
コストなどの各種実用化要件が最適化された磁石用固形
材料を得ることができる。
Furthermore, rare earth such as Nd-Fe-B system - iron - boron Motokei magnetic material, SmCo 5 type or Sm 2 Co 17 based rare earth such as - cobalt based magnetic material, hard magnetic such as ferrite-based magnetic material By mixing one or more of the powders with the R-Fe-NH-based magnetic material within a range of 50% by volume or less, the magnetic properties, thermal stability,
A solid material for a magnet in which various practical requirements such as cost are optimized can be obtained.

【0028】一般に、希土類−鉄−ほう素系材料を多く
含む程、磁気特性全般が高くなるが、耐食性が低下する
上にコスト高となり、希土類−コバルト系磁性材料を多
く含む程、熱安定性が向上するが、磁気特性が低下し、
コストが高くなり、フェライト系磁性材料を多く含む
程、コストが安くなり、温度特性は向上するが磁気特性
が大きく低下する。R−Fe−N−H系磁性材料と極端
に粒径の異なる他の磁性材料を混合すると、充填率を上
げる条件がより広くなる利点がある。
In general, the more rare-earth-iron-boron-based materials are included, the higher the overall magnetic properties are. However, the corrosion resistance is reduced and the cost is increased. The more rare-earth-cobalt-based materials are included, the higher the thermal stability. Improves, but the magnetic properties decrease,
The higher the cost, the more ferrite-based magnetic material is included, the lower the cost, the better the temperature characteristics, but the lower the magnetic characteristics. Mixing the R-Fe-N-H-based magnetic material with another magnetic material having an extremely different particle size has the advantage that the conditions for increasing the filling rate become wider.

【0029】本発明の磁石用固形材料で、特に保磁力が
高く角形比の高い磁石とすることを目的として、R−F
e−N−H系磁性材料の粒界に非磁相を存在させること
ができる。その方法としては、特許第2705985号
公報を初めとする公知の方法、例えば、磁性粉体と非磁
性成分を混合して熱処理する方法、磁性粉体表面をメッ
キ処理する方法、磁性粉体表面に各種蒸着法により非磁
性成分をコーティングする方法、磁性粉体を有機金属で
処理し該有機金属を光分解させることにより金属成分と
して粉体表面をコーティングする方法等が挙げられる。
さらに、R−Fe−N−H系磁性材料と非磁性成分を混
合し圧縮成形した後、衝撃波により圧縮する方法も可能
である。
The solid material for a magnet of the present invention, in particular, R-F is used for the purpose of producing a magnet having a high coercive force and a high squareness ratio.
A non-magnetic phase can be present at the grain boundaries of the e-N-H-based magnetic material. As the method, there are known methods such as Japanese Patent No. 27059885, for example, a method of mixing and heat-treating a magnetic powder and a non-magnetic component, a method of plating the surface of a magnetic powder, and a method of plating a surface of a magnetic powder. Examples include a method of coating a nonmagnetic component by various vapor deposition methods, and a method of treating a magnetic powder with an organic metal and photodecomposing the organic metal to coat the powder surface as a metal component.
Further, a method of mixing an R—Fe—N—H-based magnetic material and a non-magnetic component, compressing the mixture, and then compressing by a shock wave is also possible.

【0030】非磁性成分としては、Zn、In、Sn、
Ga等の融点が1000℃以下、好ましくは500℃以
下の各低融点金属が好ましく、中でもZnを用いると飛
躍的に保磁力が上昇し、熱安定性も向上する。
The non-magnetic components include Zn, In, Sn,
Each low melting point metal such as Ga having a melting point of 1000 ° C. or lower, preferably 500 ° C. or lower is preferable. In particular, when Zn is used, the coercive force is dramatically increased and the thermal stability is also improved.

【0031】本発明の磁石用固形材料は、軟磁性の固形
金属材料と接合して一体化することにより、より高いコ
ストパフォーマンスを実現することができる。Fe材、
Fe−Co材、珪素鋼板などをR−Fe−N−H系磁石
用固形材料と組み合わせることにより、磁束密度を増強
することができ、更に、表面にそれらの材料やNi若し
くはNiを含有する材料を張り合わせることで、加工性
や耐食性をさらに増すこともできる。
The solid material for a magnet of the present invention can realize higher cost performance by being joined to and integrated with a soft magnetic solid metal material. Fe material,
The magnetic flux density can be enhanced by combining an Fe-Co material, a silicon steel sheet, etc. with a solid material for R-Fe-N-H magnets, and furthermore, those materials or materials containing Ni or Ni on the surface The workability and the corrosion resistance can be further increased by bonding together.

【0032】R−Fe−N−H系磁石用固形材料と軟磁
性材を接合一体化した例を図1、図2に示す。図1は、
R−Fe−N−H系磁性材料(硬磁性層)と軟磁性の固
形状金属(軟磁性層)とを接合して一体化して得られた
磁石用固形材料の断面の一例を示す。図2は、R−Fe
−N−H系磁性材料層(硬磁性層)と軟磁性層が交互に
積層され一体化された磁石用固形材料の断面の一例を示
す。図2のような構成にすると、磁石の表面磁束密度を
損なうことなく、低コスト化が図れる。
FIGS. 1 and 2 show an example in which a solid material for an R—Fe—N—H magnet and a soft magnetic material are joined and integrated. FIG.
An example of a cross section of a solid material for a magnet obtained by joining and integrating a R-Fe-NH-based magnetic material (hard magnetic layer) and a soft magnetic solid metal (soft magnetic layer) is shown. FIG. 2 shows R-Fe
1 shows an example of a cross section of a solid material for a magnet in which -N-H-based magnetic material layers (hard magnetic layers) and soft magnetic layers are alternately laminated and integrated. With the configuration shown in FIG. 2, cost reduction can be achieved without impairing the surface magnetic flux density of the magnet.

【0033】本発明の大きな特徴として、R−Fe−N
−H系磁性材料粉体と軟磁性バルク材又は粉体とを混合
することなく、同時に仕込んで衝撃波圧縮した場合、R
−Fe−N−H系磁性材料の固化と軟磁性材との一体化
を同時に行うことが出来、後工程で一体化の為の、切り
出し、溶接、接着剤などによる接着を行う必要がないた
め、コストメリットが大きい。
A major feature of the present invention is that R-Fe-N
-When the H-based magnetic material powder and the soft magnetic bulk material or powder are mixed and shock-wave compressed simultaneously without mixing, R
-Since the solidification of the Fe-NH-based magnetic material and the integration with the soft magnetic material can be performed simultaneously, there is no need to perform cutting, welding, bonding with an adhesive, etc. for integration in a later process. The cost merit is great.

【0034】本発明の磁石用固形材料は、図3に示すよ
うに、その表面の一部又は全部を非磁性の固形材料で覆
うことができる。図3は、非磁性体で覆われた磁石用固
形材料の断面を例示する。表面全てを非磁性体で覆うよ
うな磁石用固形材料は、耐食性を増す効果もあって、高
温高湿の過酷な環境での用途では磁気特性を若干犠牲に
してでも非磁性体の被覆をした方が好適な場合もある。
非磁性体としては、分解温度や融点の高い有機物、高分
子、無機物、非磁性金属などが挙げられるが、熱安定性
が特に要求される用途では非磁性金属や無機物による被
覆が好ましい。この場合も又、R−Fe−N−H系磁性
材料粉体と非磁性固形材料又は粉体とを混合することな
く同時に仕込んで、衝撃波圧縮した場合、R−Fe−N
−H系磁性材料の固化と非磁性材との一体化を同時に行
うことができる。
As shown in FIG. 3, the solid material for a magnet of the present invention can be partially or entirely covered with a non-magnetic solid material. FIG. 3 illustrates a cross section of a solid material for a magnet covered with a nonmagnetic material. Solid magnet materials that cover the entire surface with a non-magnetic material also have the effect of increasing corrosion resistance, so in applications in harsh environments of high temperature and high humidity, non-magnetic materials are coated even if the magnetic properties are slightly sacrificed. In some cases, it is more preferable.
Examples of the non-magnetic material include an organic material, a polymer, an inorganic material, and a non-magnetic metal having a high decomposition temperature or a high melting point. Also in this case, when the R-Fe-N-H-based magnetic material powder and the non-magnetic solid material or powder are simultaneously charged without being mixed and then subjected to shock wave compression, R-Fe-N
-The solidification of the H-based magnetic material and the integration with the non-magnetic material can be performed simultaneously.

【0035】磁石用固形材料を異方性化し、磁石とする
ために、通常着磁を行うが、この際に磁石用固形材料に
大きな衝撃が加わり、緻密に固化したR−Fe−N−H
系磁石用固形材料をもってしても、割れ欠けの原因とな
る場合がある。そのため、着磁場や着磁方法によって
は、磁石表面の一部又は全部を非磁性の固形材料で覆う
ことにより耐衝撃性の高い磁石用固形材料とすることが
好ましい。
In order to make the solid material for magnet anisotropic and to make a magnet, the magnet is usually magnetized. At this time, a large impact is applied to the solid material for magnet and the solidified R-Fe-N-H
Even a solid material for a system magnet may cause cracking or chipping. For this reason, depending on the magnetic field or the magnetization method, it is preferable to cover a part or the entire surface of the magnet with a nonmagnetic solid material to obtain a solid material for magnets having high impact resistance.

【0036】図4は、本発明の他の磁石用固形材料の断
面の一例を示すものである。即ち、R−Fe−N−H系
磁性材料と軟磁性体及び非磁性体を組み合わせることに
より、図4に示すような磁石用固形材料を形成すること
もできる。
FIG. 4 shows an example of a cross section of another solid material for a magnet according to the present invention. That is, by combining the R-Fe-NH-based magnetic material with the soft magnetic material and the non-magnetic material, a solid material for a magnet as shown in FIG. 4 can be formed.

【0037】本発明の磁石用固形材料は、着磁後の磁気
特性に優れることが特徴である。R−Fe−N−H系材
料が磁気異方性材料であった場合、圧縮成形時に80k
A/m以上、好ましくは800kA/m以上の磁場で、
磁性粉体を磁場配向することが望ましい。更にまた、衝
撃波圧縮成形後に1.6MA/m以上、より好ましくは
2.4MA/m以上の静磁場若しくはパルス磁場で着磁
することにより、残留磁束密度及び保磁力を増加させる
ことが望ましい。R−Fe−N−H系磁性材料が等方性
材料である場合、圧縮成形時の磁場配向は不要である
が、上記のような着磁を行って、充分磁気的に異方化す
ることが必須となる。
The solid material for a magnet according to the present invention is characterized by having excellent magnetic properties after magnetization. When the R-Fe-NH-based material is a magnetic anisotropic material, 80 k
At a magnetic field of at least A / m, preferably at least 800 kA / m,
It is desirable to orient the magnetic powder in a magnetic field. Furthermore, it is desirable to increase the residual magnetic flux density and coercive force by magnetizing with a static magnetic field or pulse magnetic field of 1.6 MA / m or more, more preferably 2.4 MA / m or more after the shock wave compression molding. When the R-Fe-NH-based magnetic material is an isotropic material, the magnetic field orientation at the time of compression molding is unnecessary, but it is necessary to perform the magnetization as described above to sufficiently anisotropy the magnetic field. Is required.

【0038】また、本磁石用固形材料を着磁し、永久磁
石として使用する場合、その用途によっては多種多様な
形状が要求される。本磁石用固形材料は、樹脂バインダ
を含まず、且つ密度が高く、切削加工及び/又は塑性加
工により、任意の形状に、通常の加工機で容易に加工す
ることができる。特に、工業的利用価値の高い円柱状、
円筒状、リング状、円板状又は平板状の形状に、容易に
加工できることが大きな特徴である。ここで言う切削加
工とは、一般的な金属材料の切削加工であり、鋸、旋
盤、フライス盤、ボール盤、砥石などによる機械加工で
あり、塑性加工とは、プレスによる型抜きや成形、圧
延、爆発成形などである。また、冷間加工後のひずみ除
去の為に、当該磁性材料粉体の分解温度以下での焼き鈍
し等の熱処理を行うことができる。磁性材料粉体の組成
によっては、塑性加工により、磁気異方性を付与したり
強化したりすることができ、また熱処理と組み合わせる
ことにより保磁力の調整を行うことも可能である。熱処
理は、後述する衝撃波圧縮の後、生じた歪みを焼鈍した
り、微細組織の調整を行い各種磁気特性を向上させるた
めにも用いることができる。更に、R−Fe−N−H系
磁性材料に低融点金属を含む場合などにおいて、圧粉成
形と同時に或いはその前後に熱処理を行って磁性粉間の
仮結合を強固なものとし、その後の取り扱いを容易にす
ること等にも利用できる。熱処理温度としては100℃
以上且つ分解温度未満の範囲で選ばれる。
When the solid material for a magnet is magnetized and used as a permanent magnet, various shapes are required depending on the use. The solid material for a magnet does not contain a resin binder, has a high density, and can be easily processed into an arbitrary shape by a normal processing machine by cutting and / or plastic working. In particular, cylinders with high industrial utility value,
A great feature is that it can be easily processed into a cylindrical, ring, disk or flat plate shape. The term “cutting” as used herein refers to cutting of general metal materials, and is machining with a saw, a lathe, a milling machine, a drilling machine, a grindstone, and the like. Molding. In addition, heat treatment such as annealing at a temperature lower than the decomposition temperature of the magnetic material powder can be performed to remove the strain after the cold working. Depending on the composition of the magnetic material powder, it is possible to impart or strengthen magnetic anisotropy by plastic working, and it is also possible to adjust the coercive force by combining it with heat treatment. The heat treatment can also be used for annealing various strains generated after the shock wave compression described later or adjusting the fine structure to improve various magnetic properties. Further, when the R-Fe-NH-based magnetic material contains a low melting point metal, heat treatment is performed simultaneously with or before and after compacting to strengthen the temporary bonding between the magnetic powders, and subsequent handling It can also be used for facilitating 100 ℃ as heat treatment temperature
It is selected within the range above and below the decomposition temperature.

【0039】次に、本発明の磁石用固形材料の製造法、
特にその中で本発明の磁石用固形材料の実現を可能とし
た衝撃波圧縮について述べる。水中衝撃波による衝撃圧
縮方法としては、二重管の最内部に当該粉体を圧粉成形
し、中間部に水を入れ、外周部に爆薬を配置し、爆薬を
爆轟させることで、前記中間部の水中に衝撃波を導入
し、最内部の当該粉体を圧縮する方法や、当該粉体を密
閉容器中へ圧粉成形し、水中へ投入し、爆薬を水中にて
爆轟させ、その衝撃波により当該粉体を圧縮する方法
や、特許第2951349号公報又は、特開平6−19
8496号公報による方法が選択できる。いずれの方法
においても、以下に示す水中衝撃波による衝撃圧縮の利
点を得ることができる。
Next, a method for producing a solid material for a magnet of the present invention,
In particular, shock wave compression which enables the realization of the solid material for magnets of the present invention will be described. As a shock compression method using an underwater shock wave, the powder is compacted at the innermost part of a double pipe, water is poured into an intermediate part, an explosive is arranged on an outer peripheral part, and the explosive is detonated. A method of introducing a shock wave into the water of the part, compressing the powder inside the powder, pressing the powder into a closed container, putting it into the water, detonating the explosive in the water, Compression method of the powder, or Japanese Patent No. 2951349 or JP-A-6-19.
No. 8496 can be selected. In either method, the following advantages of shock compression by underwater shock waves can be obtained.

【0040】水中衝撃波を用いた本発明の衝撃圧縮法に
よる圧縮固化工程では、衝撃波の持つ超高圧剪断性、活
性化作用は、粉体の金属的結合による固化作用と組織の
微細化作用を誘起し、バルク固化と共に高保磁力化する
ことも可能である。このとき、衝撃圧力自体の持続時間
は、従来の衝撃波を用いた場合よりも長いが、体積圧縮
と衝撃波の非線型現象に基づくエントロピーの増加によ
る温度上昇は極めて短時間(数μs以下)に消失し、分
解や脱窒は殆ど起こらない。
In the compression-solidification step of the shock compression method of the present invention using an underwater shock wave, the ultra-high pressure shearing property and the activating action of the shock wave induce the solidifying action and the micronizing action of the powder by metallic bonding. However, it is possible to increase the coercive force together with the bulk solidification. At this time, the duration of the shock pressure itself is longer than in the case of using a conventional shock wave, but the temperature rise due to volume compression and an increase in entropy due to the nonlinear phenomenon of the shock wave disappears in a very short time (several μs or less). Decomposition and denitrification hardly occur.

【0041】水中衝撃波を用いて圧縮した後も残留温度
は存在する。この残留温度が分解温度(常圧で約600
℃)以上になると、R−Fe−N−H系化合物等も分解
が開始され、磁気特性を劣化するので好ましくない。し
かし、水中衝撃波による場合は、従来の衝撃波による場
合よりも、残留温度を低く保つことが非常に容易であ
る。
There is still a residual temperature after compression using underwater shock waves. This residual temperature is the decomposition temperature (about 600 at normal pressure).
C) or more, the R-Fe-NH compound and the like also start to decompose, deteriorating the magnetic properties, which is not preferable. However, in the case of the underwater shock wave, it is very easy to keep the residual temperature lower than in the case of the conventional shock wave.

【0042】即ち、水中衝撃波は以下のような特徴を有
する。 (1)水中衝撃波の圧力は、爆薬と水のユゴニオ関係に
よって決まり、圧力Pは概略次式で示される。 P=288(MPa){(ρ/ρ07.25−1} 上式より、水中衝撃波を用いた場合には、水の密度ρの
基準値ρ0に対する変化に関する圧力Pの増加量が非常
に大きいため、爆薬量の調節により容易に超高圧が得ら
れ、その際の磁性材料の温度は従来の衝撃波を用いた場
合に比べて容易に低温度に保持される。 (2)衝撃圧力自体の持続時間が長い。 (3)体積圧縮と衝撃波の非線型現象に基づくエントロ
ピーの増加による磁性材料の温度上昇は極めて短時間に
消失する。 (4)磁性材料の温度は、その後高く保持されることが
少なく、又、長く保持されることが少ない。 (5)衝撃圧力が被圧縮体に均一に負荷される。
That is, the underwater shock wave has the following characteristics. (1) The pressure of the underwater shock wave is determined by the Hugonio relation between the explosive and the water, and the pressure P is roughly expressed by the following equation. P = 288 (MPa) {(ρ / ρ 0 ) 7.25 −1} From the above equation, when the underwater shock wave is used, the amount of increase in the pressure P with respect to the change in the density ρ of water with respect to the reference value ρ 0 is very large. Since it is large, an ultra-high pressure can be easily obtained by adjusting the amount of the explosive, and the temperature of the magnetic material at that time can be easily maintained at a lower temperature than in the case where a conventional shock wave is used. (2) The duration of the impact pressure itself is long. (3) The temperature rise of the magnetic material due to an increase in entropy due to volume compression and a nonlinear phenomenon of a shock wave disappears in a very short time. (4) The temperature of the magnetic material is rarely kept high thereafter, and is rarely kept long. (5) The impact pressure is uniformly applied to the object to be compressed.

【0043】水中衝撃波のもつ、これらの優れた特徴に
よって初めて、R−Fe−N−H系材料が熱分解を起こ
さず、高密度に容易に圧縮固化される。更に、圧粉成形
を磁場中で行うことにより、磁性材料粉体の磁化容易軸
を一方向に揃えることができ、得られた圧粉体を衝撃圧
縮固化により固形化しても、配向性は損なわれず、磁気
的に一軸性の異方性をもつ磁石用固形材料が得られる。
For the first time, due to these excellent characteristics of the underwater shock wave, the R-Fe-N-H-based material does not undergo thermal decomposition and is easily compacted at a high density. Furthermore, by performing compacting in a magnetic field, the axis of easy magnetization of the magnetic material powder can be aligned in one direction, and even if the obtained compact is solidified by impact compression solidification, the orientation is impaired. Instead, a magnetic solid material having magnetically uniaxial anisotropy can be obtained.

【0044】以上述べたように、磁性粉体として熱的に
安定でα−Fe分解相を析出しにくいR−Fe−N−H
系材料を選び、上記水中衝撃波圧縮固化法にて固形化す
ることにより初めて高密度な磁石用固形材料を作製する
ことができるのであり、この磁石用固形材料を用いて製
造する永久磁石は、高磁気特性で、耐酸化性に優れ、ボ
ンド磁石のように磁性粉体の結合材として樹脂成分を含
まないため、熱安定性に優れた特徴を有する。
As described above, R-Fe-N-H is thermally stable as a magnetic powder and hardly precipitates an α-Fe decomposition phase.
By selecting a system material and solidifying it by the above-mentioned underwater shock wave compression solidification method, it is possible to produce a high-density magnet solid material for the first time. It has excellent magnetic stability, excellent oxidation resistance, and excellent thermal stability because it does not contain a resin component as a binder for magnetic powder like a bonded magnet.

【0045】本発明を実施例に基づいて説明する。尚、
R−Fe−N−H系磁性材料の分解の度合いは、成形し
た磁石用固形材料のX線回折図(Cu−Kα線)をもと
に、Th2Zn17型をはじめとする菱面体晶又は六方晶
の結晶構造由来の回折線における最強線の高さaに対す
る、44°付近のα−Fe分解相由来の回折線の高さb
の比b/aをもって判断した。この値が0.2以下なら
分解の度合いは小さいと言える。好ましくは0.1以下
である。さらに好ましくは0.05以下で、この場合、
分解はほぼ無いと言える。但し、上記の判定法は、磁石
用固形材料の原料となるR−Fe−N−H系磁性材料に
もともとFe軟磁性材料のような44°付近にピークを
持つ材料が含有されている場合は適用できない。この場
合、R−Fe−N−H系磁性材料と磁石用固形材料にお
けるb/aの相対比により、分解の有無の目安とするこ
とは可能である。
The present invention will be described based on examples. still,
The degree of decomposition of the R—Fe—N—H-based magnetic material was determined based on the X-ray diffraction pattern (Cu-Kα ray) of the molded solid material for magnets, based on rhombohedral crystals including Th 2 Zn 17 type. Or the height b of the diffraction line derived from the α-Fe decomposition phase around 44 ° with respect to the height a of the strongest line in the diffraction line derived from the hexagonal crystal structure.
The ratio was determined as b / a. If this value is 0.2 or less, it can be said that the degree of decomposition is small. Preferably it is 0.1 or less. More preferably 0.05 or less, in this case,
It can be said that there is almost no decomposition. However, the above determination method is based on the case where a material having a peak near 44 °, such as an Fe soft magnetic material, is originally contained in the R-Fe-NH-based magnetic material that is a raw material of the solid material for the magnet. Not applicable. In this case, the relative ratio of b / a in the R—Fe—N—H-based magnetic material and the solid material for the magnet can be used as a measure of the presence or absence of decomposition.

【0046】[0046]

【実施例】<実施例1>平均粒径60μmのSm2Fe
17母合金をNH3分圧0.35atm、H2分圧0.65
atmのアンモニア−水素混合ガス気流中、465℃で
7.2ks窒化水素化を行った後、アルゴン気流中で
1.8ksアニールを行い、その後ボールミルにより平
均粒径が約2μmとなるように粉砕した。この粉体を、
1.2MA/mの磁場中で磁場配向させながら圧粉成形
を行うことで成形体を得た。図5は水中衝撃波を用いた
衝撃圧縮法を行う装置の一例を示す説明図である。得ら
れた成形体を図5に示す如く銅製パイプ1に入れて銅製
プラグ2に固定した。さらに銅製パイプ3を銅製プラグ
2に固定し、更に、この間隙に水を充填し、外周部に均
一な間隙を設け、紙筒4を配置し、前記間隙中に280
gの硝酸アンモニウム系爆薬5を装填し、起爆部6より
前記爆薬を起爆し、爆薬を爆轟させた。このとき衝撃破
圧力は16GPaであった。
<Example 1> Sm 2 Fe having an average particle size of 60 μm
17 mother alloy, NH 3 partial pressure 0.35 atm, H 2 partial pressure 0.65
After hydrogen nitriding at 465 ° C. for 7.2 ks in an atm ammonia-hydrogen mixed gas flow, annealing was performed in an argon flow for 1.8 ks, and then pulverized by a ball mill to an average particle size of about 2 μm. . This powder,
A compact was obtained by performing green compacting while orienting in a magnetic field of 1.2 MA / m. FIG. 5 is an explanatory diagram showing an example of an apparatus for performing a shock compression method using underwater shock waves. The obtained molded body was put into a copper pipe 1 and fixed to a copper plug 2 as shown in FIG. Further, the copper pipe 3 is fixed to the copper plug 2, and the gap is filled with water, a uniform gap is provided on the outer periphery, the paper cylinder 4 is arranged, and 280 is inserted into the gap.
g of ammonium nitrate-based explosive 5 was charged, the explosive was detonated from the detonating section 6, and the explosive was detonated. At this time, the impact breaking pressure was 16 GPa.

【0047】衝撃圧縮後、パイプ1から固化したSm
8.8Fe75.113.22.9組成を有する磁石用固形材料を
取り出し、4.0MA/mのパルス磁場で着磁し磁気特
性を測定した結果、残留磁束密度Br=1.22T、保
磁力HcJ=0.75MA/m、(BH)max=260k
J/m3の結果を得た。又、アルキメデス法により密度
を測定した結果、充填率は99%であった。更に、X線
回折法で解析した結果、固化した磁石用固形材料はほと
んどα−Fe分解相の析出が起きておらず、Th2Zn
17型菱面体晶の結晶構造を有していることが確認され
た。
After impact compression, Sm solidified from pipe 1
A solid material for a magnet having a composition of 8.8 Fe 75.1 N 13.2 H 2.9 was taken out, magnetized with a pulse magnetic field of 4.0 MA / m, and measured for magnetic properties. As a result, the residual magnetic flux density B r = 1.22 T and the coercive force H cJ = 0.75 MA / m, (BH) max = 260 k
J / m 3 was obtained. The density was measured by the Archimedes method, and as a result, the filling rate was 99%. Furthermore, as a result of analysis by the X-ray diffraction method, the solidified solid material for the magnet hardly caused precipitation of the α-Fe decomposition phase, and Th 2 Zn
It was confirmed to have a 17- type rhombohedral crystal structure.

【0048】爆薬量を調節して同様の実験を多数回繰り
返した。衝撃波圧力が4GPaより低いと、得られた磁
石用固形材料の密度は必ずしも80%を超えず、衝撃波
圧力が40GPaより高いとα−Fe分解相等の分解物
が生じることが確認された。又、密度80%を超える磁
石用固形材料をより再現性良く得るためには、衝撃波圧
力を3〜40GPaとすることが好ましいことも分かっ
た。又、衝撃波圧力を6〜40GPaとすることで、密
度90%を超える磁石用固形材料が再現性良く得られる
ことも確認された。
The same experiment was repeated many times by adjusting the amount of explosive. When the shock wave pressure is lower than 4 GPa, the density of the obtained solid material for magnet does not necessarily exceed 80%, and when the shock wave pressure is higher than 40 GPa, it is confirmed that decomposition products such as α-Fe decomposition phase are generated. It was also found that the shock wave pressure is preferably set to 3 to 40 GPa in order to obtain a magnet solid material having a density exceeding 80% with higher reproducibility. Further, it was also confirmed that by setting the shock wave pressure to 6 to 40 GPa, a solid material for a magnet having a density exceeding 90% can be obtained with good reproducibility.

【0049】<実施例2>所定量のSm及びFeの金属
粉体(重量比16.85:83.15)を振動ボールミ
ルで180ks間メカニカルアロイング処理したのち、
真空中600℃で7.2ks間熱処理した。この粉体に
は、Fe軟磁性材料が約30体積%含まれていた。この
粉体を、NH3分圧0.35atm、H2分圧0.65a
tmのアンモニア−水素混合ガス気流中、380℃、
1.2ksの条件で窒化水素化処理し、続いて同温度で
水素中300sの時間熱処理した。この粉体を用いて、
実施例1と同様に、ただし衝撃波圧力を18GPaとす
ることにより、Sm6.1Fe81. 69.23.1なる組成の
磁石用固形材料を作製した。
Example 2 A predetermined amount of Sm and Fe metal powder (weight ratio 16.85: 83.15) was subjected to mechanical alloying treatment for 180 ks by a vibration ball mill.
Heat treatment was performed at 600 ° C. in a vacuum for 7.2 ks. This powder contained about 30% by volume of an Fe soft magnetic material. This powder is subjected to an NH 3 partial pressure of 0.35 atm and a H 2 partial pressure of 0.65 a
380 ° C. in a tm ammonia-hydrogen mixed gas stream,
Hydrogen nitride treatment was performed under the conditions of 1.2 ks, and then heat treatment was performed in hydrogen at the same temperature for 300 s. Using this powder,
As in Example 1, except by the shock wave pressure and 18 GPa, to prepare a Sm 6.1 Fe 81. 6 N 9.2 H 3.1 becomes magnet solid material composition.

【0050】この磁石用固形材料を4.0MA/mのパ
ルス磁場で着磁し磁気特性を測定した結果、残留磁束密
度Br=1.25T、保磁力HcJ=0.40MA/m、
(BH)max=209kJ/m3の結果を得た。又、アル
キメデス法により密度を測定した結果7.74g/cm
3であった。
As a result of magnetizing the solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density B r = 1.25 T, the coercive force H cJ = 0.40 MA / m,
(BH) max = 209 kJ / m 3 was obtained. In addition, the result of measuring the density by the Archimedes method was 7.74 g / cm.
Was 3 .

【0051】この材料のX線回折図には、Th2Zn17
型菱面体晶の結晶構造以外にα−Fe由来の回折線も観
察されたが、この材料はもともとα−Fe分解相ではな
いFe軟磁性材料を含む材料であるため、固化によって
α−Fe分解相が生じたか否かはX線回折法によって厳
密に判定することができなかった。なお、透過型電子顕
微鏡観察により、Fe軟磁性相の体積分率は約30%、
その結晶粒径は10〜50nm程度であった。
The X-ray diffraction diagram of this material shows that Th 2 Zn 17
Diffraction lines derived from α-Fe were also observed in addition to the crystal structure of the rhombohedral crystal, but since this material was originally a material containing an Fe soft magnetic material that was not an α-Fe decomposition phase, it was decomposed by solidification. Whether or not a phase had occurred could not be determined exactly by X-ray diffraction. In addition, according to transmission electron microscope observation, the volume fraction of the Fe soft magnetic phase was about 30%,
The crystal grain size was about 10 to 50 nm.

【0052】<実施例3>実施例1で得た平均粒径約2
μmのR−Fe−N−H系粉体と、平均粒径約25μm
で組成がSm11.5Co57.6Fe24.8Cu4.4Zr1.7であ
るSm−Co系粉体を、体積比で50:50の割合にな
るようにめのう乳鉢に仕込み、シクロヘキサン中で湿式
混合した。この混合粉体を用いて、実施例1と同様に、
ただし衝撃波圧力を14GPaとすることにより、R−
Fe−N−H系磁石用固形材料を作製した。この磁石用
固形材料を4.0MA/mのパルス磁場で着磁し磁気特
性を測定した結果、残留磁束密度Br=1.10T、保
磁力HcJ=0.83MA/m、(BH)max=209k
J/m3であった。
<Example 3> The average particle size obtained in Example 1 was about 2
μm R-Fe-NH powder and an average particle size of about 25 μm
The Sm-Co-based powder having a composition of Sm 11.5 Co 57.6 Fe 24.8 Cu 4.4 Zr 1.7 was charged into an agate mortar so as to have a volume ratio of 50:50, and wet-mixed in cyclohexane. Using this mixed powder, as in Example 1,
However, by setting the shock wave pressure to 14 GPa, R-
A solid material for an Fe-N-H based magnet was produced. As a result of magnetizing the solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic characteristics, the residual magnetic flux density B r = 1.10 T, the coercive force H cJ = 0.83 MA / m, and (BH) max = 209k
J / m 3 .

【0053】<実施例4>公知のジエチル亜鉛を用いた
光分解法によって、表面にZn金属を被覆した平均粒径
約1μmのSm−Fe−Co−N−H磁性粉体を調製
し、この粉体を用いて、実施例1と同様に、ただし衝撃
波圧力を16GPaとすることにより、Sm 8.4Fe
64.3Co7.112.63.4Zn4.2なる組成の磁石用固形
材料を作製した。この磁石用固形材料を4.0MA/m
のパルス磁場で着磁し磁気特性を測定した結果、残留磁
束密度Br=1.27T、保磁力HcJ=0.76MA/
m、(BH)max=257kJ/m3であった。密度は
7.71g/cm3であった。さらに、X線回折法で解
析した結果、固化した磁石用固形材料は、Th2Zn17
型菱面体晶の結晶構造を有していることが確認された。
44°付近におけるα−Fe分解相の回折線とTh2
17型菱面体晶の結晶構造を示す(303)最強線との
強度比b/aは0.08であった。
Example 4 Using a known diethyl zinc
Average particle size with Zn metal coated on the surface by photolysis method
Preparation of Sm-Fe-Co-NH magnetic powder of about 1 μm
Then, using this powder, as in Example 1,
By setting the wave pressure to 16 GPa, Sm 8.4Fe
64.3Co7.1N12.6H3.4Zn4.2Solids for magnets of different composition
Materials were made. This solid material for magnets was 4.0 MA / m
As a result of magnetizing with a pulse magnetic field of
Bundle density Br= 1.27 T, coercive force HcJ= 0.76 MA /
m, (BH)max= 257kJ / mThreeMet. The density is
7.71 g / cmThreeMet. In addition, the solution
As a result of the analysis, the solidified magnet solid material is ThTwoZn17
It was confirmed to have a rhombohedral crystal structure.
Diffraction line of α-Fe decomposition phase at around 44 ° and ThTwoZ
n17(303) showing the crystal structure of the rhombohedral crystal
The intensity ratio b / a was 0.08.

【0054】<実施例5>公知の方法(特開平8−55
712号公報)により得た、磁化反転機構がピンニング
型である平均粒径30μmのSm−Fe−Co−Mn−
N−H系磁性粉体を用いて、実施例1と同様に、ただし
衝撃波圧力を14GPaとすることにより、Sm
8.5(Fe0.89Co0.1166.8Mn3.618.52.6なる
組成の磁石用固形材料を作製した。この磁石用固形材料
を4.0MA/mのパルス磁場で着磁し磁気特性を測定
した結果、残留磁束密度Br=1.12T、保磁力HcJ
=0.37MA/m、(BH)max=125kJ/m3
あった。体積法で求めた密度は7.70g/cm3であ
った。さらに、この材料のX線回折図には、Th2Zn
17型菱面体晶の結晶構造以外にα−Fe分解相由来の回
折線も観察された。44°付近におけるα−Fe分解相
の回折線とTh2Zn17型菱面体晶の結晶構造を示す
(303)最強線との強度比b/aは0.06であっ
た。
<Embodiment 5> A known method (JP-A-8-55)
712), wherein the magnetization reversal mechanism is a pinning type and has an average particle size of 30 μm and has an average particle size of 30 μm.
The same as in Example 1 except that the shock wave pressure was set to 14 GPa,
A solid material for a magnet having a composition of 8.5 (Fe 0.89 Co 0.11 ) 66.8 Mn 3.6 N 18.5 H 2.6 was prepared. As a result of magnetizing the solid material for a magnet with a pulse magnetic field of 4.0 MA / m and measuring the magnetic properties, the residual magnetic flux density B r = 1.12 T and the coercive force H cJ
= 0.37MA / m, was (BH) max = 125kJ / m 3. The density determined by the volume method was 7.70 g / cm 3 . Further, the X-ray diffraction diagram of this material shows that Th 2 Zn
In addition to the crystal structure of the 17- type rhombohedral, diffraction lines derived from the α-Fe decomposition phase were also observed. The intensity ratio b / a between the diffraction line of the α-Fe decomposition phase and the strongest line (303) showing the crystal structure of the Th 2 Zn 17- type rhombohedral at around 44 ° was 0.06.

【0055】<比較例1>平均粒径20μmのSm2
17母合金をN2ガス気流中、495℃で72ks窒化
を行うこと以外は実施例1と同様に、ただし衝撃波圧力
を18GPaとすることにより、Sm9.1Fe77.7
13.2なる組成の磁石用固形材料を作製した。この磁石用
固形材料を4.0MA/mのパルス磁場で着磁し磁気特
性を測定した結果、残留磁束密度Br=0.96T、保
磁力HcJ=0.36MA/m、(BH)max=120k
J/m3の結果を得た。又、アルキメデス法により密度
を測定した結果7.50g/cm3であった。この材料
のX線回折図には、Th2Zn17型菱面体晶の結晶構造
以外にα−Fe分解相由来の回折線も観察された。44
°付近におけるα−Fe分解相の回折線とTh2Zn17
型菱面体晶の結晶構造を示す(303)最強線との強度
比b/aは0.21であった。
Comparative Example 1 Sm 2 F having an average particle size of 20 μm
e 17 Mother alloy was subjected to nitridation at 495 ° C. for 72 ks in a N 2 gas flow in the same manner as in Example 1, except that the shock wave pressure was set to 18 GPa to obtain Sm 9.1 Fe 77.7 N
A solid material for a magnet having a composition of 13.2 was prepared. The solid material for a magnet magnetized in a pulse magnetic field of 4.0 MA / m results of measurement of the magnetic properties, a residual flux density B r = 0.96T, the coercivity H cJ = 0.36MA / m, ( BH) max = 120k
J / m 3 was obtained. The density was measured by the Archimedes method and found to be 7.50 g / cm 3 . In the X-ray diffraction diagram of this material, diffraction lines derived from the α-Fe decomposition phase were observed in addition to the crystal structure of the Th 2 Zn 17 type rhombohedral. 44
The diffraction line of the α-Fe decomposition phase and the Th 2 Zn 17
The intensity ratio b / a with the (303) strongest line indicating the crystal structure of the rhombohedral crystal was 0.21.

【0056】<比較例2>図6は、爆薬の爆轟波を直接
用いて衝撃圧縮を行う装置の一例を示す説明図である。
この装置を用いて、実施例1で得た平均粒径2μmのR
−Fe−N−H系磁性粉体を銅製パイプ1に入れて銅製
プラグ2に固定し、外周部に均一な間隙を設け、紙筒4
を配置し、前記間隙中に実施例と同量の硝酸アンモニウ
ム系爆薬5を装填し、起爆部6より前記爆薬を起爆し、
爆薬を爆轟させた。衝撃圧縮後、パイプ1から固化した
試料を取り出し、X線回折法により解析した結果、衝撃
圧縮後はSmNと多量のα−Fe分解相が生成している
ことが認められ、出発原料のR−Fe−N−H系化合物
が分解していることが分かった。このときの回折線の強
度比b/aは約3であった。
<Comparative Example 2> FIG. 6 is an explanatory view showing an example of an apparatus for performing impact compression by directly using a detonation wave of an explosive.
Using this apparatus, the R having an average particle diameter of 2 μm obtained in Example 1 was used.
-Fe-N-H-based magnetic powder is put into a copper pipe 1 and fixed to a copper plug 2, a uniform gap is provided on the outer periphery,
Is disposed, and the same amount of the ammonium nitrate explosive 5 as in the embodiment is charged into the gap, and the explosive is detonated from the detonating section 6.
Detonated the explosive. After the impact compression, a solidified sample was taken out of the pipe 1 and analyzed by X-ray diffraction. As a result, it was confirmed that SmN and a large amount of α-Fe decomposition phase were formed after the impact compression. It was found that the Fe-NH compound was decomposed. At this time, the intensity ratio b / a of the diffraction lines was about 3.

【0057】[0057]

【発明の効果】本発明のように、菱面体晶又は六方晶の
結晶構造を有する希土類−鉄−窒素−水素系磁性粉体等
を圧粉成形し、水中衝撃波により衝撃圧縮することによ
り、バインダを必要とせず、自己焼結によらずに、又、
分解、脱窒を防いで、高密度な磁石用固形材料とするこ
とにより、高性能な固形状永久磁石を得ることができ
る。
According to the present invention, a rare earth-iron-nitrogen-hydrogen based magnetic powder having a rhombohedral or hexagonal crystal structure is compacted and subjected to shock compression by an underwater shock wave to form a binder. Without the need for self-sintering,
By using a high-density magnet solid material while preventing decomposition and denitrification, a high-performance solid permanent magnet can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】希土類−鉄−窒素−水素系磁性材料と軟磁性の
固形状金属を接合して一体化して得られた磁石用固形材
料の断面の一例を示す説明図である。
FIG. 1 is an explanatory view showing an example of a cross section of a solid material for a magnet obtained by joining and integrating a rare earth-iron-nitrogen-hydrogen based magnetic material and a soft magnetic solid metal.

【図2】希土類−鉄−窒素−水素系磁性材料層と軟磁性
層が交互に積層され一体化した磁石用固形材料の断面の
一例を示す説明図である。
FIG. 2 is an explanatory view showing an example of a cross section of a solid material for a magnet in which rare earth-iron-nitrogen-hydrogen based magnetic material layers and soft magnetic layers are alternately laminated and integrated.

【図3】希土類−鉄−窒素−水素系磁性材料を主として
含有する層の周辺の一部又は全部を非磁性の固形状材料
で覆った磁石用固形材料の断面の例を示す説明図であ
る。
FIG. 3 is an explanatory view showing an example of a cross section of a solid material for a magnet in which a part or the entire periphery of a layer mainly containing a rare earth-iron-nitrogen-hydrogen magnetic material is covered with a nonmagnetic solid material. .

【図4】磁石用固形材料の断面の一例を示す説明図であ
る。
FIG. 4 is an explanatory view showing an example of a cross section of a solid material for a magnet.

【図5】水中衝撃波を用いた衝撃圧縮法を実施する手段
の一例を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a means for performing a shock compression method using an underwater shock wave.

【図6】比較例で使用した、爆薬の爆轟波を直接用いた
衝撃圧縮法を実施する手段の一例を示す説明図である。
FIG. 6 is an explanatory view showing an example of a means for performing a shock compression method directly using a detonation wave of an explosive used in a comparative example.

【符号の説明】[Explanation of symbols]

1 銅製パイプ(粉体を保持する為に使用) 2 銅製プラグ 3 銅製パイプ(水を保持するために使用) 4 紙筒(爆薬を保持するために使用) 5 爆薬 6 起爆部 1 Copper pipe (used to hold powder) 2 Copper plug 3 Copper pipe (used to hold water) 4 Paper cylinder (used to hold explosive) 5 Explosive 6 Initiator

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 1/08 H01F 41/02 G 41/02 1/04 A (72)発明者 柴崎 一郎 静岡県富士市鮫島2番地の1 旭化成株式 会社内 (72)発明者 今岡 信嘉 静岡県富士市鮫島2番地の1 旭化成株式 会社内 (72)発明者 千葉 昂 熊本県熊本市水前寺2丁目2−29−605 Fターム(参考) 4K018 AA27 CA04 KA45 5E040 AA03 AA11 AA14 CA01 HB11 5E062 CC02 CD04 CE04 CF05 CG02──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 1/08 H01F 41/02 G 41/02 1/04 A (72) Inventor Ichiro Shibasaki Fuji City, Shizuoka Prefecture Asahi Kasei Co., Ltd., 2nd, Samejima (72) Inventor Nobuyoshi Imaoka, 2nd Asahi Kasei Co., Ltd., Fuji City, Shizuoka Prefecture (72) Inventor, Takashi Chiba 2-29-605 F-term (Reference) 4K018 AA27 CA04 KA45 5E040 AA03 AA11 AA14 CA01 HB11 5E062 CC02 CD04 CE04 CF05 CG02

Claims (21)

【特許請求の範囲】[Claims] 【請求項1】 菱面体晶又は六方晶の結晶構造を有する
希土類−鉄−窒素−水素系磁性材料を50〜100体積
%含有した磁石用固形材料。
1. A solid material for a magnet containing 50 to 100% by volume of a rare earth-iron-nitrogen-hydrogen magnetic material having a rhombohedral or hexagonal crystal structure.
【請求項2】 前記希土類−鉄−窒素−水素系磁性材料
が、一般式RαFe 100-α-β-γβγで表され、R
はYを含む希土類元素から選ばれる少なくとも一種の元
素であり、又、α、β、γは原子百分率で、3≦α≦2
0、5≦β≦30、0.01≦γ≦10であることを特
徴とする請求項1に記載の磁石用固形材料。
2. The rare earth-iron-nitrogen-hydrogen magnetic material
Has the general formula RαFe 100-α-β-γNβHγAnd R
Is at least one element selected from rare earth elements including Y
Α, β, and γ are atomic percentages and 3 ≦ α ≦ 2
0, 5 ≦ β ≦ 30, 0.01 ≦ γ ≦ 10
The solid material for a magnet according to claim 1, wherein
【請求項3】 前記R及び/又はFeの10原子%以下
をNi、Ti、V、Cr、Mn、Zn、Cu、Zr、N
b、Mo、Ta、W、Ru、Rh、Pd、Hf、Re、
Os、Irから選ばれる少なくとも一種の元素と置換し
たことを特徴とする請求項1又は2に記載の磁石用固形
材料。
3. The method according to claim 1, wherein 10% by atom or less of said R and / or Fe is Ni, Ti, V, Cr, Mn, Zn, Cu, Zr, N
b, Mo, Ta, W, Ru, Rh, Pd, Hf, Re,
The solid material for a magnet according to claim 1, wherein the solid material is replaced with at least one element selected from Os and Ir.
【請求項4】 前記N及び/又はHの10原子%以下を
C、P、Si、S、Alから選ばれる少なくとも一種の
元素と置換したことを特徴とする請求項1乃至3のいず
れかに記載の磁石用固形材料。
4. The method according to claim 1, wherein 10 atomic% or less of said N and / or H is replaced with at least one element selected from C, P, Si, S and Al. The solid material for a magnet according to the above.
【請求項5】 一般式RαFe100-α-β-γ-δβ
γδで表され、RはYを含む希土類元素から選ばれる
少なくとも一種の元素であり、MはLi、Na、K、M
g、Ca、Sr、Ba、Ti、Zr、Hf、V、Nb、
Ta、Cr、Mo、W、Mn、Pd、Cu、Ag、Z
n、B、Al、Ga、In、C、Si、Ge、Sn、P
b、Biから選ばれる少なくとも一種の元素及び/又は
Rの酸化物、フッ化物、炭化物、窒化物、水素化物、炭
酸塩、硫酸塩、ケイ酸塩、塩化物、硝酸塩から選ばれる
少なくとも一種であり、又、α、β、γ、δはモル百分
率で、3≦α≦20、5≦β≦30、0.01≦γ≦1
0、0.1≦δ≦40であることを特徴とする請求項1
に記載の磁石用固形材料。
5. A compound of the general formula R α Fe 100-α-β-γ-δ N β H
γ M δ , R is at least one element selected from rare earth elements including Y, and M is Li, Na, K, M
g, Ca, Sr, Ba, Ti, Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Mn, Pd, Cu, Ag, Z
n, B, Al, Ga, In, C, Si, Ge, Sn, P
b, at least one element selected from Bi and / or at least one selected from oxides, fluorides, carbides, nitrides, hydrides, carbonates, sulfates, silicates, chlorides, and nitrates of R And α, β, γ, and δ are mole percentages, 3 ≦ α ≦ 20, 5 ≦ β ≦ 30, 0.01 ≦ γ ≦ 1.
2. The method according to claim 1, wherein 0, 0.1.ltoreq..delta..ltoreq.40.
The solid material for magnet according to 1.
【請求項6】 前記Rの50原子%以上がSmであるこ
とを特徴とする請求項1乃至5のいずれかに記載の磁石
用固形材料。
6. The solid material for a magnet according to claim 1, wherein 50% by atom or more of the R is Sm.
【請求項7】 前記Feの0.01〜50原子%をCo
で置換したことを特徴とする請求項1乃至6のいずれか
に記載の磁石用固形材料。
7. The method of claim 1, wherein 0.01 to 50 atomic% of the Fe is Co
The solid material for a magnet according to any one of claims 1 to 6, wherein the solid material is replaced with:
【請求項8】 Fe、Co、Niから選ばれる少なくと
も一種の元素を含む軟磁性材料が均一に分散され、一体
化していることを特徴とする請求項1乃至7のいずれか
に記載の磁石用固形材料。
8. The magnet according to claim 1, wherein the soft magnetic material containing at least one element selected from Fe, Co, and Ni is uniformly dispersed and integrated. Solid material.
【請求項9】 希土類−鉄−ほう素系磁性材料、希土類
−コバルト系磁性材料、フェライト系磁性材料から選ば
れる少なくとも一種の磁性材料が均一に添加混合され、
一体化していることを特徴とする請求項1乃至8のいず
れかに記載の磁石用固形材料。
9. At least one magnetic material selected from a rare earth-iron-boron magnetic material, a rare earth-cobalt magnetic material, and a ferrite magnetic material is uniformly added and mixed,
The solid material for a magnet according to any one of claims 1 to 8, wherein the solid material is integrated.
【請求項10】 磁性材料の粒界に非磁性相が存在する
ことを特徴とする請求項1乃至9のいずれかに記載の磁
石用固形材料。
10. The solid material for a magnet according to claim 1, wherein a non-magnetic phase exists at a grain boundary of the magnetic material.
【請求項11】 請求項1乃至10のいずれかに記載の
磁石用固形材料と軟磁性の固形金属材料とを接合して一
体化したことを特徴とする磁石用固形材料。
11. A solid material for a magnet, wherein the solid material for a magnet according to claim 1 and a soft magnetic solid metal material are joined and integrated.
【請求項12】 軟磁性層を有し、軟磁性層と交互に積
層されて一体化していることを特徴とする請求項1乃至
11のいずれかに記載の磁石用固形材料。
12. The solid material for a magnet according to claim 1, further comprising a soft magnetic layer, wherein the solid material is alternately laminated and integrated with the soft magnetic layer.
【請求項13】 少なくとも一部が非磁性の固形材料で
覆われたことを特徴とする上記請求項1乃至12のいず
れかに記載の磁石用固形材料。
13. The solid material for a magnet according to claim 1, wherein at least a part thereof is covered with a non-magnetic solid material.
【請求項14】 磁気異方性を付与したことを特徴とす
る請求項1乃至13のいずれかに記載の磁石用固形材
料。
14. The solid material for a magnet according to claim 1, wherein a magnetic anisotropy is provided.
【請求項15】 円柱状又は円筒状又はリング状又は円
板状又は平板状に成形したことを特徴とする請求項1乃
至14のいずれかに記載の磁石用固形材料。
15. The solid material for a magnet according to claim 1, wherein the solid material is formed into a columnar shape, a cylindrical shape, a ring shape, a disk shape, or a flat shape.
【請求項16】 水中衝撃波を用いて衝撃圧縮固化した
ことを特徴とする請求項1乃至15のいずれかに記載の
磁石用固形材料。
16. The solid material for a magnet according to claim 1, wherein the solid material is subjected to impact compression and solidification using an underwater shock wave.
【請求項17】 原料粉体の圧粉成形を磁場中で行うこ
とを特徴とする請求項1乃至15のいずれかに記載の磁
石用固形材料の製造方法。
17. The method for producing a solid material for a magnet according to claim 1, wherein the green compacting of the raw material powder is performed in a magnetic field.
【請求項18】 原料粉体を圧粉成形した後、水中衝撃
波を用いて衝撃圧縮固化することを特徴とする請求項1
6に記載の磁石用固形材料の製造方法。
18. The method according to claim 1, wherein after the raw material powder is compacted, the raw material powder is subjected to impact compression and solidification using underwater shock waves.
7. The method for producing a solid material for a magnet according to 6.
【請求項19】 原料粉体を磁場中で圧粉成形した後、
水中衝撃波を用いて衝撃圧縮固化することを特徴とする
請求項16に記載の磁石用固形材料の製造方法。
19. After the raw material powder is compacted in a magnetic field,
17. The method for producing a solid material for a magnet according to claim 16, wherein the underwater shock wave is used for impact compression and solidification.
【請求項20】 切削加工及び/又は塑性加工により成
形することを特徴とする請求項15に記載の磁石用固形
材料の製造方法。
20. The method for producing a solid material for a magnet according to claim 15, wherein the solid material is formed by cutting and / or plastic working.
【請求項21】 請求項1乃至16のいずれかに記載の
磁石用固形材料を製造する方法であって、材料を少なく
とも一度100℃以上且つ分解温度より低い温度で熱処
理をする工程を含むことを特徴とする請求項17乃至2
0のいずれかに記載の磁石用固形材料の製造方法。
21. The method for producing a solid material for a magnet according to any one of claims 1 to 16, comprising a step of heat-treating the material at least once at a temperature of 100 ° C. or higher and lower than a decomposition temperature. 17. The method according to claim 17, wherein:
0. The method for producing a solid material for a magnet according to any one of the above items.
JP2001131580A 2001-04-24 2001-04-27 Solid material for magnet and method for producing the same Expired - Fee Related JP4873516B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001131580A JP4873516B2 (en) 2001-04-27 2001-04-27 Solid material for magnet and method for producing the same
CNB028088182A CN100501881C (en) 2001-04-24 2002-04-24 Solid material for magnet
EP02722754.5A EP1383143B1 (en) 2001-04-24 2002-04-24 Method of producing a solid material for magnet
US10/475,617 US7364628B2 (en) 2001-04-24 2002-04-24 Solid material for magnet
KR10-2003-7013844A KR100524340B1 (en) 2001-04-24 2002-04-24 Solid Material for Magnet
PCT/JP2002/004089 WO2002089153A1 (en) 2001-04-24 2002-04-24 Solid material for magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001131580A JP4873516B2 (en) 2001-04-27 2001-04-27 Solid material for magnet and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011229588A Division JP5165785B2 (en) 2011-10-19 2011-10-19 Solid material for magnet

Publications (2)

Publication Number Publication Date
JP2002329603A true JP2002329603A (en) 2002-11-15
JP4873516B2 JP4873516B2 (en) 2012-02-08

Family

ID=18979741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001131580A Expired - Fee Related JP4873516B2 (en) 2001-04-24 2001-04-27 Solid material for magnet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4873516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
WO2009057742A1 (en) 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha Composite magnetic material for magnet and method for manufacturing such material
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device
WO2021170284A1 (en) * 2020-02-24 2021-09-02 Robert Bosch Gmbh Electrical machine comprising permanent magnets and the control thereof

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935898A (en) * 1972-08-03 1974-04-03
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH02263405A (en) * 1984-04-19 1990-10-26 Seiko Epson Corp Permanent magnet
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH05222483A (en) * 1990-12-19 1993-08-31 Nkk Corp Production of iron nitride based high density sintered compact
JPH062002A (en) * 1992-02-19 1994-01-11 General Motors Corp <Gm> Production of part for magnetic device
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH06124812A (en) * 1992-10-12 1994-05-06 Asahi Chem Ind Co Ltd Nitride magnet powder and its synthesizing method
JPH06260356A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Manufacture of transportation monolithic molding magnetic circuit
JPH0864449A (en) * 1994-08-22 1996-03-08 Tokai Univ Manufacture of magnet by impact compression
JPH08191006A (en) * 1994-11-08 1996-07-23 Toshiba Corp Magnetic material
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JPH09298111A (en) * 1996-04-30 1997-11-18 Tdk Corp Resin-containing rolled sheet magnet and manufacturing method thereof
JP2000294416A (en) * 1999-04-08 2000-10-20 Hitachi Metals Ltd Rare earth bonded magnet
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
JP2001093713A (en) * 1999-09-14 2001-04-06 Peking Univ Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4935898A (en) * 1972-08-03 1974-04-03
JPH02263405A (en) * 1984-04-19 1990-10-26 Seiko Epson Corp Permanent magnet
JPS61502A (en) * 1984-06-13 1986-01-06 Asahi Chem Ind Co Ltd Molding method of powdery body
JPH01283301A (en) * 1988-03-03 1989-11-14 General Motors Corp <Gm> Explosive compression of rare earth/transition alloy in fluid
JPH0479202A (en) * 1990-07-23 1992-03-12 Asahi Chem Ind Co Ltd Permanent magnet consisting of single magnetic domain particle
JPH05222483A (en) * 1990-12-19 1993-08-31 Nkk Corp Production of iron nitride based high density sintered compact
JPH062002A (en) * 1992-02-19 1994-01-11 General Motors Corp <Gm> Production of part for magnetic device
JPH0677027A (en) * 1992-06-24 1994-03-18 Sumitomo Special Metals Co Ltd Rare earth element-fe-n base permanent magnet and manufacture thereof
JPH06124812A (en) * 1992-10-12 1994-05-06 Asahi Chem Ind Co Ltd Nitride magnet powder and its synthesizing method
JPH06260356A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Manufacture of transportation monolithic molding magnetic circuit
JPH0864449A (en) * 1994-08-22 1996-03-08 Tokai Univ Manufacture of magnet by impact compression
JPH08191006A (en) * 1994-11-08 1996-07-23 Toshiba Corp Magnetic material
JPH0957089A (en) * 1995-08-28 1997-03-04 Nippon Oil & Fats Co Ltd Synthesis device using impulse wave and method for synthesizing high pressure-phase material
JPH09298111A (en) * 1996-04-30 1997-11-18 Tdk Corp Resin-containing rolled sheet magnet and manufacturing method thereof
JP2000294416A (en) * 1999-04-08 2000-10-20 Hitachi Metals Ltd Rare earth bonded magnet
JP2001035714A (en) * 1999-05-19 2001-02-09 Toshiba Corp Bonded magnet, manufacture thereof, and actuator using the magnet
JP2001006959A (en) * 1999-06-17 2001-01-12 Sumitomo Special Metals Co Ltd Manufacture of pare-earth-iron-nitrogen permanent magnet
JP2001093713A (en) * 1999-09-14 2001-04-06 Peking Univ Multi-element-based rare earth-iron lattice interstitial permanent magnet material, permanent magnet composed of the material and manufacture of the material and the permanent magnet

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146542A (en) * 2002-10-23 2004-05-20 Asahi Kasei Chemicals Corp Solid material for magnet and its manufacturing method
WO2008136391A1 (en) 2007-04-27 2008-11-13 Asahi Kasei Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
EP2146357A1 (en) * 2007-04-27 2010-01-20 Asahi Kasei Kogyo Kabushiki Kaisha Magnetic material for high frequency wave, and method for production thereof
EP2146357A4 (en) * 2007-04-27 2011-05-04 Asahi Chemical Ind Magnetic material for high frequency wave, and method for production thereof
KR101250673B1 (en) * 2007-04-27 2013-04-03 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 Magnetic material for high frequency wave, and method for production thereof
WO2009057742A1 (en) 2007-11-02 2009-05-07 Asahi Kasei Kabushiki Kaisha Composite magnetic material for magnet and method for manufacturing such material
JP2011009414A (en) * 2009-06-25 2011-01-13 Nidec Sankyo Corp Method of manufacturing magnet, and lens drive device
WO2021170284A1 (en) * 2020-02-24 2021-09-02 Robert Bosch Gmbh Electrical machine comprising permanent magnets and the control thereof

Also Published As

Publication number Publication date
JP4873516B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
KR100524340B1 (en) Solid Material for Magnet
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
KR101250673B1 (en) Magnetic material for high frequency wave, and method for production thereof
WO2011040126A1 (en) Magnetic material and motor obtained using same
US11732336B2 (en) Magnetic material and method for producing same
JP5165785B2 (en) Solid material for magnet
JP5501828B2 (en) R-T-B rare earth permanent magnet
JP2001189206A (en) Permanent magnet
JP2705985B2 (en) MAGNETIC MATERIAL, MAGNET COMPRISING THE SAME, AND PROCESS FOR PRODUCING THEM
WO1988006797A1 (en) Rare earth element-iron base permanent magnet and process for its production
JP4873516B2 (en) Solid material for magnet and method for producing the same
JP5339644B2 (en) Manufacturing method of solid material for magnet
JP4970693B2 (en) Solid material for magnet
JP4790927B2 (en) Solid material for magnet and method for producing the same
JP2000357606A (en) Compound isotropic bonded magnet and rotary machine using the magnet
JP2004146543A (en) Solid material for magnet and its manufacturing method
JP2002043110A (en) Magnetic anisotropic agglomerate of r2t17nx magnet material, its manufacturing method, and bonded magnet
JP4790933B2 (en) Solid material for magnet and method for producing the same
JP3643215B2 (en) Method for producing laminated permanent magnet
JP2004146432A (en) Solid material for magnet
JPH06124812A (en) Nitride magnet powder and its synthesizing method
JPH05175023A (en) Magnet particle, magnet powder and bonded magnet
JPH0845718A (en) Magnetic material and its manufacture
JP3209291B2 (en) Magnetic material and its manufacturing method
JP3295674B2 (en) Method for producing rare earth-iron-cobalt-nitrogen based magnetic material

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111019

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees