JP2011035006A - Magnetic material, magnet, and method of manufacturing magnetic material - Google Patents

Magnetic material, magnet, and method of manufacturing magnetic material Download PDF

Info

Publication number
JP2011035006A
JP2011035006A JP2009176945A JP2009176945A JP2011035006A JP 2011035006 A JP2011035006 A JP 2011035006A JP 2009176945 A JP2009176945 A JP 2009176945A JP 2009176945 A JP2009176945 A JP 2009176945A JP 2011035006 A JP2011035006 A JP 2011035006A
Authority
JP
Japan
Prior art keywords
magnetic
magnet
magnetic material
phase
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009176945A
Other languages
Japanese (ja)
Other versions
JP5347146B2 (en
Inventor
Toshiya Takarazumi
敏也 寳角
Shuichiro Irie
周一郎 入江
Tetsuya Chiba
哲也 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2009176945A priority Critical patent/JP5347146B2/en
Publication of JP2011035006A publication Critical patent/JP2011035006A/en
Application granted granted Critical
Publication of JP5347146B2 publication Critical patent/JP5347146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a nano composite magnet without using a rare-earth element. <P>SOLUTION: A magnetic particle 10 includes a hard-magnetic-phase core part 11 containing ε-Fe<SB>2</SB>O<SB>3</SB>and a soft-magnetic-phase shell part 12 containing Fe and covering at least a part of the core part 11. The magnetic particle 10 is manufactured by reducing surfaces of powder of ε-Fe<SB>2</SB>O<SB>3</SB>. Thus, the magnetic particle 10 can be manufactured by reducing an oxide of Fe without using a rare-earth element. When a sintered magnet or a bond magnet is manufactured using the magnetic particles 10, a nano composite magnet without using a rare-earth element can be manufactured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、いわゆるナノコンポジット磁石に関する。   The present invention relates to a so-called nanocomposite magnet.

磁石は、広範な分野で用いられている。現在、高性能磁石としてはネオジム磁石(NdFe14B化合物)が広く用いられているが、近年においてはさらなる高性能化が要求されている。そのような高性能化の1つの手段として、磁化の高い軟磁性相と保磁力の高い硬磁性相とが同一組織内に均一に分布するとともに、交換相互作用によって両者が磁気的に結合したナノコンポジット磁石が注目されている。 Magnets are used in a wide range of fields. At present, neodymium magnets (Nd 2 Fe 14 B compounds) are widely used as high-performance magnets, but in recent years, higher performance has been demanded. One means of achieving such high performance is a nano-structure in which a soft magnetic phase with high magnetization and a hard magnetic phase with high coercive force are uniformly distributed in the same structure and both are magnetically coupled by exchange interaction. Composite magnets are attracting attention.

例えば、特許文献1には、NdFe14B化合物の硬磁性相をコアとし、Feの軟磁性相をシェルとするコア−シェル構造を有するナノコンポジット磁石が開示されている。また、特許文献1には、NdFe14B化合物の粒子を、界面活性剤を含む溶媒中に加え分散させた後、Fe先駆物質を添加し、NdFe14B化合物の粒子の表面上にFe粒子を析出させ、乾燥、焼結することにより、NdFe14B化合物の硬磁性相をコアとし、Feの軟磁性相をシェルとするコア−シェル構造を有するナノコンポジット磁石を製造する方法が開示されている。 For example, Patent Document 1 discloses a nanocomposite magnet having a core-shell structure in which a hard magnetic phase of an Nd 2 Fe 14 B compound is a core and an Fe soft magnetic phase is a shell. In Patent Document 1, Nd 2 Fe 14 B compound particles are added and dispersed in a solvent containing a surfactant, and then an Fe precursor is added to the surface of the Nd 2 Fe 14 B compound particles. A nanocomposite magnet having a core-shell structure in which the hard magnetic phase of the Nd 2 Fe 14 B compound is used as a core and the soft magnetic phase of Fe is used as a shell is produced by precipitating Fe particles on the substrate, drying, and sintering. A method is disclosed.

特開2008−117855号公報JP 2008-117855 A

ところで、特許文献1に開示されている技術は、硬磁性相に希土類元素であるNdを用いる。しかしながら、希土類元素は高価であるとともに供給が不安定になるおそれがあるので、できる限り希土類元素の使用量を抑制したいという要請がある。本発明は、上記に鑑みてなされたものであって、希土類元素を用いないでナノコンポジット磁石を作製することを目的とする。   By the way, the technique disclosed in Patent Document 1 uses Nd, which is a rare earth element, in the hard magnetic phase. However, since rare earth elements are expensive and their supply may become unstable, there is a demand to suppress the amount of rare earth elements used as much as possible. The present invention has been made in view of the above, and an object thereof is to produce a nanocomposite magnet without using rare earth elements.

上述した課題を解決し、目的を達成するために、本発明に係る磁性材料は、ε−Feを含む硬磁性相のコア部と、Feを含み、かつ前記コア部の少なくとも一部を被覆する軟磁性相のシェル部と、を有する磁性粒子を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a magnetic material according to the present invention includes a core portion of a hard magnetic phase containing ε-Fe 2 O 3 , Fe, and at least a part of the core portion. And a magnetic particle having a shell portion of a soft magnetic phase covering the surface.

本発明の望ましい態様としては、前記磁性材料において、前記コア部を構成するε−FeのFeの一部が、CoとNiとのうち少なくとも一方と置換されていることが好ましい。 As a desirable mode of the present invention, in the magnetic material, it is preferable that a part of Fe of ε-Fe 2 O 3 constituting the core portion is substituted with at least one of Co and Ni.

本発明の望ましい態様としては、前記磁性材料において、前記シェル部を構成するFeの一部が、CoとNiとのうち少なくとも一方と置換されていることが好ましい。   As a desirable mode of the present invention, in the magnetic material, it is preferable that a part of Fe constituting the shell portion is substituted with at least one of Co and Ni.

本発明の望ましい態様としては、前記磁性材料において、前記コア部は、ε−Fe以外の金属酸化物を含むことが好ましい。 As a desirable aspect of the present invention, in the magnetic material, the core portion preferably contains a metal oxide other than ε-Fe 2 O 3 .

本発明の望ましい態様としては、前記磁性材料において、前記シェル部の表面の少なくとも一部には、SiO層が設けられることが好ましい。 As a desirable mode of the present invention, in the magnetic material, it is preferable that an SiO 2 layer is provided on at least a part of the surface of the shell portion.

上述した課題を解決し、目的を達成するために、本発明に係る磁石は、前記磁性材料を含んで構成されることを特徴とする。   In order to solve the above-described problems and achieve the object, a magnet according to the present invention includes the magnetic material.

上述した課題を解決し、目的を達成するために、本発明に係る磁性材料の製造方法は、ε−Feの粉末を製造する粉末製造工程と、前記ε−Feの粉末の表面を還元する還元工程と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, a method for producing a magnetic material according to the present invention includes a powder production process for producing ε-Fe 2 O 3 powder, and the ε-Fe 2 O 3 powder. And a reduction step for reducing the surface of the substrate.

本発明の望ましい態様としては、前記磁性材料の製造方法において、前記粉末製造工程において製造された前記ε−Feの粉末は、表面の少なくとも一部がSiOで覆われていることが好ましい。 As a desirable mode of the present invention, in the method for manufacturing a magnetic material, at least a part of the surface of the ε-Fe 2 O 3 powder manufactured in the powder manufacturing process is covered with SiO 2. preferable.

本発明の望ましい態様としては、前記磁性材料の製造方法において、前記還元工程の後、又は前記還元工程の前に、前記ε−Feの粉末の表面から前記SiOを除去する工程を含むことが好ましい。 As a desirable aspect of the present invention, in the method for producing the magnetic material, the step of removing the SiO 2 from the surface of the ε-Fe 2 O 3 powder after the reduction step or before the reduction step. It is preferable to include.

本発明は、希土類元素を用いないでナノコンポジット磁石を作製できる。   The present invention can produce a nanocomposite magnet without using rare earth elements.

図1は、本実施形態に係る磁性材料を用いて構成される磁石の組織を示す模式図である。FIG. 1 is a schematic diagram showing a structure of a magnet configured using the magnetic material according to the present embodiment. 図2は、本実施形態に係る磁性材料を構成する磁性体粒子を示す模式図である。FIG. 2 is a schematic view showing magnetic particles constituting the magnetic material according to the present embodiment. 図3−1は、本実施形態に係る磁性粒子で構成される磁石において、隣接する磁性粒子同士を示す模式図である。FIG. 3A is a schematic diagram illustrating adjacent magnetic particles in a magnet composed of the magnetic particles according to the present embodiment. 図3−2は、Feをコア部とし、ε−Feをシェル部とした磁性粒子で構成される磁石において、隣接する磁性粒子同士を示す模式図である。FIG. 3-2 is a schematic diagram showing adjacent magnetic particles in a magnet composed of magnetic particles having Fe as a core portion and ε-Fe 2 O 3 as a shell portion. 図4は、本実施形態に係る磁性材料の製造方法の工程を示すフローチャートである。FIG. 4 is a flowchart showing the steps of the magnetic material manufacturing method according to this embodiment. 図5−1は、本実施形態に係る磁性材料の製造方法の工程を示す図である。FIGS. 5-1 is a figure which shows the process of the manufacturing method of the magnetic material which concerns on this embodiment. 図5−2は、本実施形態に係る磁性材料の製造方法の工程を示す図である。FIGS. 5-2 is a figure which shows the process of the manufacturing method of the magnetic material which concerns on this embodiment.

以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下実施形態という)により本発明が限定されるものではない。また、下記の実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。   Hereinafter, the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by the form (henceforth embodiment) for implementing the following invention. In addition, constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those in a so-called equivalent range.

本実施形態に係る磁性材料は、ε−Feを含む硬磁性相のコア部と、Feを含み、かつ前記コア部の少なくとも一部を被覆する軟磁性相のシェル部と、を有する粒子を含む点に特徴がある。また、本実施形態に係る磁石は、本実施形態に係る磁性材料を含んで構成される点に特徴があり、例えば、本実施形態に係る磁性材料を焼結したり、本実施形態に係る磁性材料を結合剤で固めたりすることによって得られる。 The magnetic material according to the present embodiment has a hard magnetic phase core portion containing ε-Fe 2 O 3 and a soft magnetic phase shell portion containing Fe and covering at least a part of the core portion. It is characterized in that it contains particles. In addition, the magnet according to the present embodiment is characterized in that it includes the magnetic material according to the present embodiment. For example, the magnetic material according to the present embodiment can be sintered or the magnet according to the present embodiment can be sintered. It is obtained by hardening the material with a binder.

図1は、本実施形態に係る磁性材料を用いて構成される磁石の組織を示す模式図である。図1に示す磁石1は、本実施形態に係る磁性材料で構成されており、ε−Feを含むコア部11と、Feを含み、かつコア部11の少なくとも一部を被覆するシェル部12からなる磁性粒子を緻密化して構成されるナノコンポジット磁石である。ナノコンポジット磁石とは、nm(ナノメートル)オーダーの微細な保磁力の大きい硬磁性相と磁化の高い軟磁性相との2相の複合組織で構成され、これらの両相の間に磁気的な交換結合作用が働いて、あたかも均一で一様な磁石のように振る舞う磁石である。硬磁性相と軟磁性相とが磁性のスプリングで結合されているような磁化挙動を示すことから、交換スプリング磁石とも呼ばれる。 FIG. 1 is a schematic diagram showing a structure of a magnet configured using the magnetic material according to the present embodiment. A magnet 1 shown in FIG. 1 is made of a magnetic material according to this embodiment, and includes a core portion 11 including ε-Fe 2 O 3 and a shell that includes Fe and covers at least a part of the core portion 11. The nanocomposite magnet is formed by densifying the magnetic particles composed of the portion 12. A nanocomposite magnet is composed of a two-phase composite structure of a hard magnetic phase with a large coercive force on the order of nm (nanometers) and a soft magnetic phase with high magnetization. It is a magnet that acts as if it were a uniform and uniform magnet due to the exchange coupling action. Since it exhibits a magnetization behavior in which a hard magnetic phase and a soft magnetic phase are coupled by a magnetic spring, it is also called an exchange spring magnet.

ナノコンポジット磁石は、硬磁性相と軟磁性相との複合組織をnmオーダーにまで微細化すると、軟磁性相と硬磁性相との間に交換結合作用が働いて、反転磁場を与えても軟磁性相の磁化反転が硬磁性相の磁化に交換結合作用で阻止される。このとき磁化曲線は、交換結合作用により軟磁性相と硬磁性相とがあたかも単相磁石であるかのように振る舞う。その結果、軟磁性相からは高い磁化を、硬磁性相からは保磁力を得た磁化曲線が実現されるようになり、結果としてエネルギ積(BH)maxの高い磁性材料が得られるようになる。上述したように、磁石1は、本実施形態に係る磁性材料によって構成されるが、次に、本実施形態に係る磁性材料を構成する磁性粒子について説明する。 In nanocomposite magnets, when the composite structure of a hard magnetic phase and a soft magnetic phase is refined to the order of nanometers, an exchange coupling action works between the soft magnetic phase and the hard magnetic phase, so that a soft magnetic field can be softened even when an inversion magnetic field is applied. The magnetization reversal of the magnetic phase is prevented by the exchange coupling action to the magnetization of the hard magnetic phase. At this time, the magnetization curve behaves as if the soft magnetic phase and the hard magnetic phase are single-phase magnets due to the exchange coupling action. As a result, a magnetization curve having a high magnetization from the soft magnetic phase and a coercive force from the hard magnetic phase is realized, and as a result, a magnetic material having a high energy product (BH) max can be obtained. . As described above, the magnet 1 is made of the magnetic material according to the present embodiment. Next, the magnetic particles constituting the magnetic material according to the present embodiment will be described.

図2は、本実施形態に係る磁性材料を構成する磁性体粒子を示す模式図である。磁性粒子10は、ε−Feを含む硬磁性相のコア部11と、Feを含み、かつコア部11の少なくとも一部を被覆する軟磁性相のシェル部12とを有する。ε−Feは硬磁性材料であり、酸化物磁石で最大の保磁力を有する。このような硬磁性材料と、磁化の大きいFe(軟磁性材料)とを組み合わせて磁性粒子10が構成される。より具体的には、磁性粒子10は、ε−Feを含む硬磁性相をコア部11とし、Feを含むシェル部12でコア部11の少なくとも一部、好ましくは全部を被覆した、コア−シェル構造となる。 FIG. 2 is a schematic view showing magnetic particles constituting the magnetic material according to the present embodiment. The magnetic particle 10 includes a hard magnetic phase core portion 11 containing ε-Fe 2 O 3 and a soft magnetic phase shell portion 12 containing Fe and covering at least a part of the core portion 11. ε-Fe 2 O 3 is a hard magnetic material and is an oxide magnet and has the largest coercive force. The magnetic particle 10 is configured by combining such a hard magnetic material and a highly magnetized Fe (soft magnetic material). More specifically, in the magnetic particle 10, a hard magnetic phase containing ε-Fe 2 O 3 is used as the core portion 11, and at least a part, preferably all, of the core portion 11 is covered with the shell portion 12 containing Fe. It becomes a core-shell structure.

本実施形態に係る磁性材料は、この磁性粒子10を含んで構成される。なお、本実施形態に係る磁性材料は、コア−シェル構造を有する複数の磁性粒子10のみの集合体であってもよい。磁性粒子10は、Feの酸化物及びFeで構成され、希土類元素を含まない。このような磁性粒子10を含む、本実施形態に係る磁性材料を用いて磁石を作製すれば、希土類元素を用いないで、ナノコンポジット磁石を作製できる。   The magnetic material according to the present embodiment includes the magnetic particles 10. The magnetic material according to the present embodiment may be an aggregate of only a plurality of magnetic particles 10 having a core-shell structure. The magnetic particles 10 are made of Fe oxide and Fe and do not contain rare earth elements. If a magnet is produced using the magnetic material according to this embodiment including such magnetic particles 10, a nanocomposite magnet can be produced without using rare earth elements.

ここで、磁性粒子10のコア部11は、ε−Feを含むとともに、これを主成分としているが、これは、コア部11の全体積に占めるε−Feの割合が50vol%よりも大きいことを意味する。また、磁性粒子10は、コア部11を構成するε−FeのFeの一部がCoとNiとのうち少なくとも一方と置換されていてもよい。さらに、磁性粒子10のコア部11は、ε−Feの残部にε−Fe以外の金属酸化物を含んでいてもよい。このように、コア部11のうち、ε−Feの残部に異相としてε−Fe以外の金属酸化物を含ませることにより、磁性粒子10を含んで作製される磁石1の磁気特性を向上させることもできる。 Here, the core part 11 of the magnetic particle 10 contains ε-Fe 2 O 3 and has it as a main component. This is because the ratio of ε-Fe 2 O 3 in the total volume of the core part 11 is the same. It means larger than 50 vol%. In the magnetic particle 10, a part of ε-Fe 2 O 3 Fe constituting the core portion 11 may be substituted with at least one of Co and Ni. Furthermore, the core part 11 of the magnetic particle 10 may contain a metal oxide other than ε-Fe 2 O 3 in the remainder of ε-Fe 2 O 3 . Thus, by including a metal oxide other than ε-Fe 2 O 3 as a different phase in the remainder of ε-Fe 2 O 3 in the core portion 11, Magnetic characteristics can also be improved.

また、磁性粒子10のシェル部12は、Feを含むとともに、これを主成分としているが、これは、シェル部12の全体積に占めるFeの割合が50vol%よりも大きいことを意味する。なお、磁性粒子10のシェル部12は、Feの残部にFe以外の異相、例えば、金属酸化物や金属間化合物等を含んでいてもよい。このように、シェル部12のうち、Feの残部に異相としてFeとは異なる相を含ませることにより、磁性粒子10を含んで作製される磁石1の磁気特性を向上させることもできる。   Further, the shell portion 12 of the magnetic particle 10 contains Fe as a main component, which means that the proportion of Fe in the total volume of the shell portion 12 is larger than 50 vol%. In addition, the shell part 12 of the magnetic particle 10 may contain a different phase other than Fe, for example, a metal oxide, an intermetallic compound, or the like in the remaining part of Fe. As described above, by including a phase different from Fe as a different phase in the remaining part of Fe in the shell portion 12, the magnetic characteristics of the magnet 1 manufactured including the magnetic particles 10 can be improved.

ここで、磁性粒子10は、シェル部12を構成するFeの一部がCoとNiとのうち少なくとも一方と置換されていてもよい。このようにすれば、シェル部12の残留磁束密度Brを向上させることができるので、磁性粒子10を含んで作製される磁石1の磁気特性を向上させることができる。なお、シェル部12を構成するFeの結晶構造は限定されるものではなく、アモルファスであってもよいが、α−Feは、アモルファスと比較すると磁化が大きいので、より好ましい。   Here, in the magnetic particle 10, a part of Fe constituting the shell portion 12 may be replaced with at least one of Co and Ni. In this way, since the residual magnetic flux density Br of the shell portion 12 can be improved, the magnetic characteristics of the magnet 1 manufactured including the magnetic particles 10 can be improved. The crystal structure of Fe constituting the shell portion 12 is not limited and may be amorphous. However, α-Fe is more preferable because it has a larger magnetization than amorphous.

図3−1は、本実施形態に係る磁性粒子で構成される磁石において、隣接する磁性粒子同士を示す模式図である。図3−1に示す磁性粒子10のコア部11及びシェル部12の形状を球形とした場合において、ε−Feを含んで構成されるコア部11の直径(コア径)をDとする。ε−Feを含む硬磁性相は、寸法が小さくなりすぎると十分な保磁力を確保できない。コア径Dは、10nm以上とすることが好ましい。このようにすれば、コア部11を構成するε−Feの保磁力を確保できるので、コア部11を硬磁性相として確実に働かせることができる。 FIG. 3A is a schematic diagram illustrating adjacent magnetic particles in a magnet composed of the magnetic particles according to the present embodiment. When the core part 11 and the shell part 12 of the magnetic particle 10 shown in FIG. 3A are spherical, the diameter (core diameter) of the core part 11 including ε-Fe 2 O 3 is D. To do. The hard magnetic phase containing ε-Fe 2 O 3 cannot secure a sufficient coercive force if the size is too small. The core diameter D is preferably 10 nm or more. In this way, since the coercive force of ε-Fe 2 O 3 constituting the core portion 11 can be ensured, the core portion 11 can be reliably operated as a hard magnetic phase.

磁性粒子10において、軟磁性相であるシェル部12が存在する領域は、硬磁性相と軟磁性相との界面、すなわち、コア部11とシェル部12との界面13から交換結合作用が働く距離(以下、交換結合距離という)a以下の領域であることが好ましい。磁性粒子10は、シェル部12が軟磁性相であるので、シェル部12の厚さ(シェル厚)tが交換結合距離a以下(t≦a)であることが好ましい。このようにすれば、軟磁性相と硬磁性相との間に交換結合作用が確実に働くので、磁性粒子10で構成される磁石は磁気特性が向上し、磁石としての性能が向上する。   In the magnetic particle 10, the region where the shell portion 12, which is a soft magnetic phase, exists is a distance at which the exchange coupling action works from the interface between the hard magnetic phase and the soft magnetic phase, that is, the interface 13 between the core portion 11 and the shell portion 12. It is preferable that the region is a or less (hereinafter referred to as exchange coupling distance). In the magnetic particle 10, since the shell portion 12 is a soft magnetic phase, the thickness (shell thickness) t of the shell portion 12 is preferably equal to or less than the exchange coupling distance a (t ≦ a). In this way, since the exchange coupling action acts reliably between the soft magnetic phase and the hard magnetic phase, the magnet composed of the magnetic particles 10 has improved magnetic properties and improved performance as a magnet.

本実施形態に係る磁性材料を用いて磁石を製造する場合、当該磁石の全体積に対して軟磁性相の体積分率Vc1が大きい方が前記磁石の性能は向上する。したがって、本実施形態に係る磁性材料を構成する磁性粒子10は、上述したコア径Dの下限値を下回らず、かつシェル厚tが交換結合距離a以下という条件を満たしつつ、製造される磁石の全体積に対して軟磁性相の体積分率Vc1がより大きくなるように、コア径D及びシェル厚tが決定される。   When a magnet is manufactured using the magnetic material according to the present embodiment, the performance of the magnet is improved when the volume fraction Vc1 of the soft magnetic phase is larger than the total volume of the magnet. Therefore, the magnetic particles 10 constituting the magnetic material according to the present embodiment are not less than the lower limit value of the core diameter D described above, and the manufactured magnets satisfy the condition that the shell thickness t is the exchange coupling distance a or less. The core diameter D and the shell thickness t are determined so that the volume fraction Vc1 of the soft magnetic phase becomes larger with respect to the total volume.

図3−2は、Feをコア部とし、ε−Feをシェル部とした磁性粒子で構成される磁石において、隣接する磁性粒子同士を示す模式図である。図3−2に示す磁性粒子10aは、図3−1に示す磁性粒子10とは異なり、コア部11aがFeを主成分とした軟磁性相、シェル部12aがε−Feを主成分とした硬磁性相である。この磁性粒子10aは、シェル部12aが硬磁性相なので、シェル厚tは10nm以上とすることが好ましい。また、磁性粒子10aは、コア部11aが軟磁性相なので、コア部11aは、硬磁性相と軟磁性相との界面、すなわち、コア部11aとシェル部12aとの界面13aから交換結合距離a以下の領域に存在することが好ましい。すなわち、界面13aからコア部11aの中心までの距離が交換結合距離a以下であることが好ましく、コア部11aが球形である場合には、コア径D≦2×aとなる。 FIG. 3-2 is a schematic diagram showing adjacent magnetic particles in a magnet composed of magnetic particles having Fe as a core portion and ε-Fe 2 O 3 as a shell portion. Magnetic particles 10a shown in Figure 3-2, unlike the magnetic particles 10 shown in Figure 3-1, a soft magnetic phase core portion 11a has a main component Fe, shell portion 12a is the ε-Fe 2 O 3 main It is a hard magnetic phase as a component. In the magnetic particle 10a, since the shell portion 12a has a hard magnetic phase, the shell thickness t is preferably 10 nm or more. Moreover, since the core part 11a has the soft magnetic phase in the magnetic particle 10a, the core part 11a has an exchange coupling distance a from the interface between the hard magnetic phase and the soft magnetic phase, that is, the interface 13a between the core part 11a and the shell part 12a. It is preferable to exist in the following areas. That is, the distance from the interface 13a to the center of the core portion 11a is preferably equal to or less than the exchange coupling distance a. When the core portion 11a is spherical, the core diameter D ≦ 2 × a.

図3−1に示す磁性粒子10の体積V1と図3−2に示す磁性粒子10aの体積V2とを同じ大きさとして、上述した体積分率Vc1と体積分率Vc2とを比較する。図3−2に示す磁性粒子10aは、硬磁性相のシェル部12aのシェル厚t=bとし、軟磁性相のコア部11aのコア径Dを2×aとする。ここで、コア部11aのコア径Dが2×aを超えると、交換結合作用が不十分となるので、コア部11aのコア径Dは2×aを超えない。ここで、シェル厚tを規定する寸法bは、ε−Feが硬磁性相としての機能を発揮できる程度の保磁力が確保できる寸法である。 The volume fraction Vc1 and the volume fraction Vc2 described above are compared with the volume V1 of the magnetic particle 10 shown in FIG. 3-1 and the volume V2 of the magnetic particle 10a shown in FIG. 3-2 having the same size. The magnetic particle 10a shown in FIG. 3-2 has a shell thickness t = b of the hard magnetic phase shell portion 12a and a core diameter D of the soft magnetic phase core portion 11a of 2 × a. Here, if the core diameter D of the core portion 11a exceeds 2 × a, the exchange coupling action becomes insufficient, so the core diameter D of the core portion 11a does not exceed 2 × a. Here, the dimension b that defines the shell thickness t is a dimension that can secure a coercive force to the extent that ε-Fe 2 O 3 can function as a hard magnetic phase.

上述したように、磁石の性能向上という観点からは、軟磁性相の体積分率をできる限り大きくしたいという要請がある。このため、図3−2に示す磁性粒子10aは、交換結合距離a及び硬磁性相の寸法の制限(シェル厚tを上述した寸法bとすること)を考慮すると、軟磁性相のコア部11aのコア径Dの最大値は2×aとなる。この場合、磁性粒子10aの直径は、2×(a+b)となる。   As described above, from the viewpoint of improving the performance of the magnet, there is a demand for increasing the volume fraction of the soft magnetic phase as much as possible. For this reason, the magnetic particle 10a shown in FIG. 3-2 has a soft magnetic phase core 11a in consideration of the exchange coupling distance a and the limitation on the size of the hard magnetic phase (the shell thickness t is set to the above-described size b). The maximum value of the core diameter D is 2 × a. In this case, the diameter of the magnetic particle 10a is 2 × (a + b).

図3−1に示す磁性粒子10は、軟磁性相のシェル部12のシェル厚t=aとし、硬磁性相のコア部11のコア径Dをb以上にする。すると、磁性粒子10の直径は、2×a+bとなり、図3−2に示す磁性粒子10aの直径よりも小さくなる。図3−1に示す磁性粒子10の直径を図3−2に示す磁性粒子10aの直径と同じ大きさにするためには、軟磁性相のシェル部12aのシェル厚tを交換結合距離aよりも大きくすることはできないので、硬磁性相のコア部11のコア径Dを2×bとする。これによって、図3−1に示す磁性粒子10の直径は2×(a+b)となり、図3−2に示す磁性粒子10aの直径と同じ大きさとなる。   In the magnetic particle 10 shown in FIG. 3A, the shell thickness t of the shell portion 12 of the soft magnetic phase is set to a, and the core diameter D of the core portion 11 of the hard magnetic phase is set to b or more. Then, the diameter of the magnetic particle 10 is 2 × a + b, which is smaller than the diameter of the magnetic particle 10a illustrated in FIG. In order to make the diameter of the magnetic particle 10 shown in FIG. 3-1 the same as the diameter of the magnetic particle 10a shown in FIG. 3-2, the shell thickness t of the shell portion 12a of the soft magnetic phase is determined from the exchange coupling distance a. Therefore, the core diameter D of the core portion 11 of the hard magnetic phase is set to 2 × b. Accordingly, the diameter of the magnetic particle 10 shown in FIG. 3A is 2 × (a + b), which is the same size as the diameter of the magnetic particle 10a shown in FIG. 3-2.

図3−1に示す磁性粒子10の体積V1と図3−2に示す磁性粒子10aの体積V2とは同じ大きさになるので、V1=V2=Vとする。図3−1に示す磁性粒子10における軟磁性相の体積分率Vc1は式(1)で、図3−2に示す磁性粒子10aにおける軟磁性相の体積分率V2は式(2)で求めることができる。式(3)は、Vc1とVc2との差分ΔVcを示す。式(3)から、ΔVc>0なので、Vc1>Vc2となる。   Since the volume V1 of the magnetic particle 10 shown in FIG. 3-1 and the volume V2 of the magnetic particle 10a shown in FIG. 3-2 have the same size, V1 = V2 = V. The volume fraction Vc1 of the soft magnetic phase in the magnetic particle 10 shown in FIG. 3A is obtained by the equation (1), and the volume fraction V2 of the soft magnetic phase in the magnetic particle 10a shown in FIG. 3-2 is obtained by the equation (2). be able to. Equation (3) shows the difference ΔVc between Vc1 and Vc2. From equation (3), ΔVc> 0, so Vc1> Vc2.

Figure 2011035006
Figure 2011035006

Figure 2011035006
Figure 2011035006

Figure 2011035006
Figure 2011035006

次に、図3−1に示す磁性粒子10における軟磁性相の体積分率Vc1と、図3−2に示す磁性粒子10aにおける軟磁性相の体積分率Vc2とを比較する。この比較においては、図3−1に示す磁性粒子10の体積と、図3−2に示す磁性粒子10aの体積とを同じ大きさにするという条件を外し、より一般化した条件で体積分率Vc1と体積分率Vc2とを比較する。   Next, the volume fraction Vc1 of the soft magnetic phase in the magnetic particle 10 shown in FIG. 3A is compared with the volume fraction Vc2 of the soft magnetic phase in the magnetic particle 10a shown in FIG. 3-2. In this comparison, the volume fraction of the volume of the magnetic particles 10 shown in FIG. 3A and the volume of the magnetic particles 10a shown in FIG. Vc1 and volume fraction Vc2 are compared.

ここで、図3−1に示す磁性粒子10においては、硬磁性相のコア部11のコア径Dをb、軟磁性相のシェル部12のシェル厚tを交換結合距離aとする。また、図3−2に示す磁性粒子10においては、軟磁性相のコア部11のコア径Dを交換結合距離aの2倍(2×a)、硬磁性相のシェル部12のシェル厚tをbとする。   Here, in the magnetic particle 10 shown in FIG. 3A, the core diameter D of the core portion 11 of the hard magnetic phase is b, and the shell thickness t of the shell portion 12 of the soft magnetic phase is the exchange coupling distance a. In the magnetic particle 10 shown in FIG. 3-2, the core diameter D of the core portion 11 of the soft magnetic phase is twice the exchange coupling distance a (2 × a), and the shell thickness t of the shell portion 12 of the hard magnetic phase. Is b.

図3−1に示す磁性粒子10における軟磁性相の体積分率Vc1は式(4)で、図3−2に示す磁性粒子10aにおける軟磁性相の体積分率Vc2は上述した式(2)で求めることができる。式(5)は、Vc1とVc2との差分ΔVcを示す。式(5)から、ΔVc>0なので、Vc1>Vc2となる。   The volume fraction Vc1 of the soft magnetic phase in the magnetic particle 10 shown in FIG. 3A is the equation (4), and the volume fraction Vc2 of the soft magnetic phase in the magnetic particle 10a shown in FIG. 3-2 is the equation (2) described above. Can be obtained. Equation (5) shows the difference ΔVc between Vc1 and Vc2. From equation (5), since ΔVc> 0, Vc1> Vc2.

Figure 2011035006
Figure 2011035006

Figure 2011035006
Figure 2011035006

このように、いずれの場合でも、図3−1に示す磁性粒子10における軟磁性相の体積分率Vc1の方が、図3−2に示す磁性粒子10aにおける軟磁性相の体積分率V2よりも大きい。したがって、軟磁性相と硬磁性相とを組み合わせたコア−シェル構造の磁性粒子において、粒子中における軟磁性相の体積分率を大きくするためには、硬磁性相の外側に軟磁性相を配置する磁性粒子10の構成が好適である。また、磁性粒子10のように、硬磁性相であるε−Feをコア部11とすることで、磁性粒子10内における磁化容易軸が一方向となり、異方性磁石を構成しやすくなる。なお、式(4)の分母、分子にb/aを乗じてb/aで整理すると、a、bがともに正の場合、軟磁性相の体積分率Vc1は、b/aが小さくなるほど(すなわち、bが小さくなるほど)大きくなる。ここで、コア部11の直径は、bに相当する。このため、硬磁性相をコア部11とし、軟磁性相をシェル部12とする磁性粒子10は、コア部11の直径を小さくするほど、軟磁性相の体積分率Vc1を大きくすることができる。 Thus, in any case, better volume fraction Vc1 of the soft magnetic phase in the magnetic particles 10 shown in Figure 3-1, the volume fraction V c of the soft magnetic phase in the magnetic particles 10a shown in Figure 3-2 Greater than 2. Therefore, in order to increase the volume fraction of the soft magnetic phase in the core-shell structure magnetic particles combining the soft magnetic phase and the hard magnetic phase, the soft magnetic phase is disposed outside the hard magnetic phase. The configuration of the magnetic particles 10 is suitable. Further, by using ε-Fe 2 O 3 , which is a hard magnetic phase, as the core part 11 as in the magnetic particle 10, the easy axis of magnetization in the magnetic particle 10 becomes one direction, and an anisotropic magnet can be easily formed. Become. When the denominator and numerator of formula (4) are multiplied by b / a 4 and arranged by b / a, the volume fraction Vc1 of the soft magnetic phase decreases as b / a decreases when both a and b are positive. (Ie, as b decreases) it increases. Here, the diameter of the core portion 11 corresponds to b. Therefore, the magnetic particle 10 having the hard magnetic phase as the core portion 11 and the soft magnetic phase as the shell portion 12 can increase the volume fraction Vc1 of the soft magnetic phase as the diameter of the core portion 11 is reduced. .

なお、上記説明では、磁性粒子10及びコア部11及びシェル部12の形状を球形としたが、磁性粒子10及びコア部11及びシェル部12の形状はこれに限定されるものではない。次に、本実施形態に係る磁性材料を構成する磁性粒子10の製造方法、すなわち、本実施形態に係る磁性材料の製造方法を説明する。   In the above description, the magnetic particles 10, the core portion 11, and the shell portion 12 have a spherical shape, but the shapes of the magnetic particles 10, the core portion 11, and the shell portion 12 are not limited thereto. Next, the manufacturing method of the magnetic particle 10 which comprises the magnetic material which concerns on this embodiment, ie, the manufacturing method of the magnetic material which concerns on this embodiment, is demonstrated.

図4は、本実施形態に係る磁性材料の製造方法の工程を示すフローチャートである。図5−1、図5−2は、本実施形態に係る磁性材料の製造方法の工程を示す図である。本実施形態に係る磁性材料を構成する磁性粒子を製造するにあたり、まず、ε−Feの粉末を作製する(ステップS101:粉末製造工程)。ε−Feの粉末は、例えば、硝酸鉄(III)九水和物(Fe(NO・9HO)から、例えば、逆ミセル法やゾルゲル法等を用いて作製される。 FIG. 4 is a flowchart showing the steps of the magnetic material manufacturing method according to this embodiment. FIGS. 5A and 5B are diagrams illustrating the steps of the magnetic material manufacturing method according to the present embodiment. In producing magnetic particles constituting the magnetic material according to the present embodiment, first, a powder of ε-Fe 2 O 3 is produced (step S101: powder production process). powder ε-Fe 2 O 3, for example, are made from iron (III) nitrate nonahydrate (Fe (NO 3) 3 · 9H 2 O), for example, by using a reversed micelle method, a sol-gel method, etc. .

本実施形態において、ε−Feの粉末の作製方法は特に限定されるものではないが、ε−Feの粉末の作製に逆ミセル法やゾルゲル法のような化学的プロセスを用いることにより、物理的、機械的プロセスを用いる場合と比較して、数十nm前後のε−Feの粉末を比較的容易に作製できる。なお、ε−Feの粉末を作製するにあたり、ε−Feの粉末の表面をSiOで被覆する工程を加えてもよい。これによって、ε−Feの粉末を作製する工程において、ε−Feの粉末の粒成長を抑制できるので好ましい。 In this embodiment, the production method of the ε-Fe 2 O 3 powder is not particularly limited, but a chemical process such as a reverse micelle method or a sol-gel method is used for the production of the ε-Fe 2 O 3 powder. By using, ε-Fe 2 O 3 powder of about several tens of nanometers can be produced relatively easily as compared with the case of using a physical and mechanical process. Incidentally, in fabricating a powder of ε-Fe 2 O 3, it may be added a step of coating the surface of the powder of the ε-Fe 2 O 3 in SiO 2. Thereby, in the step of preparing a powder of ε-Fe 2 O 3, it is possible to suppress grain growth of the powder of the ε-Fe 2 O 3 preferred.

ε−Feの粉末が作製されたら、ε−Feの粉末の表面を還元することにより(ステップS102:還元工程)、ε−Feの粉末の外側にFeの層を形成する。これによって、ε−Feを主成分とした硬磁性相のコア部11を形成するとともに、Feを主成分とする軟磁性相のシェル部12でコア部11の表面の少なくとも一部を被覆した磁性粒子10が完成する(ステップS103、図5−1)。この磁性粒子10を所望の形状に成形して焼結したり、樹脂等のバインダで結合したりして、図1に示す磁石1を得る。磁石1は、例えば、次のように作製する。 When the powder of ε-Fe 2 O 3 is prepared, the surface of the powder of ε-Fe 2 O 3 is reduced (step S102: reduction step), whereby a layer of Fe is formed outside the powder of ε-Fe 2 O 3. Form. Thus, the core portion 11 of the hard magnetic phase mainly composed of ε-Fe 2 O 3 is formed, and at least a part of the surface of the core portion 11 is formed by the shell portion 12 of the soft magnetic phase mainly composed of Fe. The coated magnetic particle 10 is completed (step S103, FIG. 5-1). The magnetic particles 10 are molded into a desired shape and sintered, or bonded with a binder such as a resin to obtain the magnet 1 shown in FIG. The magnet 1 is manufactured as follows, for example.

(焼結磁石)
磁性粒子10を所望の形状に成形し、得られた成形体を不活性雰囲気又は真空中で熱処理することで、焼結磁石が得られる。また、プラズマ活性化焼結(PAS:Plasma Activated Sintering)、又は放電プラズマ焼結(SPS:Spark Plasma Sintering)で成形体を焼結することによっても、焼結磁石を得ることができる。また、磁場中で成形することで、異方性焼結磁石が得られる。
(Sintered magnet)
The magnetic particles 10 are molded into a desired shape, and the obtained molded body is heat-treated in an inert atmosphere or vacuum to obtain a sintered magnet. Moreover, a sintered magnet can be obtained also by sintering a molded object by plasma activated sintering (PAS: Plasma Activated Sintering) or discharge plasma sintering (SPS: Spark Plasma Sintering). Moreover, an anisotropic sintered magnet is obtained by shaping in a magnetic field.

(ボンド磁石)
磁性粒子10と結合剤(バインダ)とを配合し、成形することによってボンド磁石が得られる。結合剤としては、熱可塑性樹脂、熱硬化性樹脂等の樹脂材料、又はAl、Pb、Sn、Zn、Mg等の低融点金属、若しくはこれらの低融点金属からなる合金等を用いることができる。磁性粒子10と結合剤との混合物を圧縮成形したり射出成形したりすることによって、磁性粒子10を所望の形状に成形できる。また、磁性粒子10を磁場中で成形することで、異方性ボンド磁石が得られる。
(Bonded magnet)
A bonded magnet is obtained by blending and molding the magnetic particles 10 and a binder (binder). As the binder, a resin material such as a thermoplastic resin or a thermosetting resin, a low melting point metal such as Al, Pb, Sn, Zn, or Mg, or an alloy made of these low melting point metals can be used. The magnetic particles 10 can be formed into a desired shape by compression molding or injection molding a mixture of the magnetic particles 10 and the binder. Moreover, an anisotropic bonded magnet is obtained by shaping the magnetic particles 10 in a magnetic field.

なお、上述した磁性材料の製造方法では、ε−Feの粉末の表面を覆うSiOを除去していないが、ε−Feの粉末の表面を還元した後、又はε−Feの粉末の表面を還元する前(図5−2)のいずれか、すなわち、還元工程の前又は後のいずれかで、SiOを除去してもよい。これによって、磁性粒子10に占める、磁気特性の向上に対する寄与度が高くないSiOの割合を低下させることができるので、磁性粒子10を含んで作製される磁石の磁気特性をより向上させることができる。 Incidentally, after the manufacturing method of the above-mentioned magnetic material, but not to remove the SiO 2 covering the surface of the powder of ε-Fe 2 O 3, which was reduced surface of the powder of the ε-Fe 2 O 3, or ε- SiO 2 may be removed either before reducing the surface of the Fe 2 O 3 powder (FIG. 5-2), that is, either before or after the reduction step. As a result, the proportion of SiO 2 , which does not contribute to the improvement of the magnetic properties in the magnetic particles 10, can be reduced, so that the magnetic properties of the magnet produced including the magnetic particles 10 can be further improved. it can.

ここで、磁気特性の観点からは磁性粒子10からSiOを除去した方が好ましいが、敢えて磁性粒子10の表面、すなわち、シェル部12の表面にSiOを残してもよい。磁性粒子10を焼結することにより磁石を作製する場合、加熱により磁性粒子10同士が結合して組織が粗大化する傾向があるが、磁性粒子10のシェル部12の表面にSiOを残すことにより、組織の粗大化を抑制できる。また、磁性粒子10は、シェル部12がFeで構成されているため、シェル部12の表面にSiO層を設けることにより、シェル部12の酸化が抑制されるので好ましい。なお、磁性粒子10のシェル部12の表面にSiOを残す場合、シェル部12の表面の少なくとも一部にSiOが残され、SiO層が設けられていればよい。 Here, from the viewpoint of magnetic properties, it is preferable to remove the SiO 2 from the magnetic particles 10, but the SiO 2 may be left on the surface of the magnetic particles 10, that is, the surface of the shell portion 12. When a magnet is produced by sintering the magnetic particles 10, the magnetic particles 10 tend to be bonded to each other by heating to coarsen the structure, but SiO 2 is left on the surface of the shell portion 12 of the magnetic particles 10. Thus, the coarsening of the structure can be suppressed. The magnetic particles 10, since the shell portion 12 is constituted by Fe, by providing the SiO 2 layer on the surface of the shell portion 12, since the oxide of the shell portion 12 is suppressed preferred. Note that when leaving the SiO 2 on the surface of the shell portion 12 of the magnetic particles 10, SiO 2 is left on at least part of the surface of the shell portion 12, SiO 2 layers may be provided.

本実施形態に係る磁性材料の製造方法によって作製された磁性粒子10は、ε−Feを主成分とする硬磁性相のコア部11と、Feを主成分とし、かつコア部11の少なくとも一部を被覆する軟磁性相のシェル部12とを有するコア−シェル構造となる。そして、この磁性粒子10は、ε−Feの粉末の表面を還元することにより作製されるので、硬磁性相であるコア部11と軟磁性相であるシェル部12とが界面を介して結合するとともに、両者の間に交換結合作用が働く。これによって、磁化も大きいし保磁力も大きいという磁気特性が得られる。 The magnetic particle 10 produced by the method for producing a magnetic material according to the present embodiment includes a hard magnetic phase core portion 11 mainly composed of ε-Fe 2 O 3 , Fe as a main component, and the core portion 11. A core-shell structure having a soft magnetic phase shell portion 12 covering at least a part thereof is obtained. Since the magnetic particles 10 are produced by reducing the surface of the powder of ε-Fe 2 O 3 , the core portion 11 that is a hard magnetic phase and the shell portion 12 that is a soft magnetic phase are interposed via an interface. And an exchange coupling action works between them. As a result, a magnetic characteristic that the magnetization is large and the coercive force is large can be obtained.

また、磁性粒子10は、Feの酸化物から作製され、希土類元素を用いる必要はないので、この磁性粒子10を含む磁性材料を用いて磁石を作製すれば、希土類元素を用いないナノコンポジット磁石を作製できる。また、上述した製造方法によって作成された磁性粒子10含む磁性材料を用いて作製された磁石は、後述するように、希土類元素を用いた磁石と同等の磁気特性を有するものであると判断できる。 In addition, since the magnetic particles 10 are made of an oxide of Fe and do not need to use rare earth elements, a nanocomposite magnet that does not use rare earth elements can be obtained by making a magnet using a magnetic material containing the magnetic particles 10. Can be made. Further, magnets made of a magnetic material containing magnetic particles 10 created by the manufacturing method described above, as described later, it can be determined that those having a magnet equivalent magnetic properties using a rare earth element .

以上、本実施形態に係る磁性材料及びこの磁性材料から作製される磁石は、高価な希土類元素を用いないため、これらの製造コストを低減できる。また、希土類元素は供給が不安定になるおそれがあるが、本実施形態に係る磁性材料は、安定して供給されるFe系の材料(FeやFeの酸化物)を用いるので、安定した供給が実現できる。さらに、希土類元素は還元するときの工程が特殊であるとともに、還元に要するエネルギが大きくなる。このため、希土類元素を用いた磁石はリサイクルに手間を要する。しかし、本実施形態に係る磁性材料及びこの磁性材料から作製される磁石は希土類元素を用いず、Fe系の材料から作製できるので、リサイクルが容易になるという利点もある。   As mentioned above, since the magnetic material which concerns on this embodiment, and the magnet produced from this magnetic material do not use expensive rare earth elements, these manufacturing costs can be reduced. Although rare earth elements may be unstable in supply, the magnetic material according to the present embodiment uses an Fe-based material (Fe or Fe oxide) that is stably supplied. Can be realized. Furthermore, the process for reducing rare earth elements is special, and the energy required for reduction increases. For this reason, magnets using rare earth elements require labor to recycle. However, since the magnetic material according to the present embodiment and the magnet made from this magnetic material can be made from an Fe-based material without using rare earth elements, there is an advantage that recycling is easy.

また、上述した特許文献1に開示されたナノコンポジット磁石は、硬磁性相のコアの寸法はミクロンオーダーであり、このようなコアの表面に軟磁性相のナノ粒子を生成させてシェルを構成する。その結果、コア寸法がシェル厚に比較して大きいために、軟磁性相の体積分率(Vc1)を大きくすることができない。一方、本実施形態に係る磁性材料を構成する磁性粒子は、後述するように、粒径が数十nmなので、軟磁性相の体積分率Vc1が大きくなる。また、上述した特許文献1では、物理的粉砕によりコアを作製しているが、本実施形態では、上述したように化学的プロセスを用いてコアを作製するとともに、粒成長を抑制するためにSiO層を被覆している。これによって、本実施形態では、硬磁性相のコア部の系を引用文献1と比較して小さくできる。その結果、本実施形態に係る磁性材料から作製される磁石は、希土類元素を用いた磁石と同等の磁気特性を有する。 The nanocomposite magnet disclosed in Patent Document 1 described above has a hard magnetic phase core dimension on the order of microns, and forms a shell by generating soft magnetic phase nanoparticles on the surface of such a core. . As a result, since the core dimension is larger than the shell thickness, the volume fraction (Vc1) of the soft magnetic phase cannot be increased. On the other hand, since the magnetic particles constituting the magnetic material according to the present embodiment have a particle size of several tens of nanometers as will be described later, the volume fraction Vc1 of the soft magnetic phase is increased. Further, in Patent Document 1 described above, the core is manufactured by physical pulverization. However, in this embodiment, the core is manufactured using a chemical process as described above, and SiO 2 is used to suppress grain growth. Two layers are coated. Thereby, in this embodiment, the system of the core part of a hard magnetic phase can be made small compared with the cited reference 1. As a result, the magnet produced from the magnetic material according to the present embodiment has the same magnetic characteristics as a magnet using rare earth elements.

(作製例)
次に、本実施形態に係る磁性材料を作製した例を説明する。この磁性材料は、ε−Feを主成分とする硬磁性相のコア部と、Feを主成分とする軟磁性相のシェル部とを有するコア−シェル構造の磁性粒子である。この磁性粒子は、次の手順で作製した。
(1)ε−Feの粒子を、水素気流中に200℃〜600℃の雰囲気温度で1時間〜100時間放置することにより、ε−Feの粒子の表面を還元した。
(2)その後、雰囲気温度を20℃〜100℃に低下させるとともに、酸素濃度を0.5%以下の雰囲気に変更し、20℃〜100℃の間の一定温度、かつ一定の雰囲気中で、還元後のε−Feの粒子を所定の時間放置することで、表面に保護層を形成した。還元後のε−Feの粒子を放置する時間は24時間以内とした。これによって、ε−Feを主成分とする硬磁性相のコア部と、Feを主成分とする軟磁性相のシェル部とを有するコア−シェル構造の磁性粒子が作製された。
(Production example)
Next, an example in which the magnetic material according to this embodiment is produced will be described. This magnetic material is a magnetic particle having a core-shell structure having a core portion of a hard magnetic phase mainly composed of ε-Fe 2 O 3 and a shell portion of a soft magnetic phase mainly composed of Fe. The magnetic particles were produced by the following procedure.
(1) The surface of the particles of ε-Fe 2 O 3 was reduced by leaving the particles of ε-Fe 2 O 3 in a hydrogen stream at an atmospheric temperature of 200 ° C. to 600 ° C. for 1 hour to 100 hours.
(2) Thereafter, the atmospheric temperature is lowered to 20 ° C. to 100 ° C., the oxygen concentration is changed to an atmosphere of 0.5% or less, and in a constant temperature between 20 ° C. and 100 ° C. and in a constant atmosphere, The protective layer was formed on the surface by allowing the particles of ε-Fe 2 O 3 after reduction to stand for a predetermined time. The time for leaving the reduced ε-Fe 2 O 3 particles was within 24 hours. As a result, magnetic particles having a core-shell structure having a core portion of a hard magnetic phase mainly composed of ε-Fe 2 O 3 and a shell portion of a soft magnetic phase mainly composed of Fe were produced.

ε−Feの粉末は、逆ミセル法を用い、次の手順で作製した。
(1)まず、2種類のミセル溶液(ミセル溶液A及びミセル溶液B)を調整した。
(1−1)ミセル溶液Aは、次のように調整された。イオン交換水54ml、n−オクタン164.7ml及び1−ブタノール33.3mlを混合する。そこに、硝酸鉄(III)九水和物を0.0135mol添加し、室温でよく撹拌しながら溶解させる。さらに、界面活性剤として臭化セチルトリメチルアンモニウムを、イオン交換水/界面活性剤のモル比が30となるような量で添加し、撹拌により溶解させる。これによって、ミセル溶液Aを得た。
(1−2)ミセル溶液Bは、次のように調整された。28%のアンモニア水16.2mlをイオン交換水36mlに混合させて撹拌し、その後に、さらにn−オクタン164.7mlと1−ブタノール33.3mlを加えてよく撹拌する。その溶液に、界面活性剤として臭化セチルトリメチルアンモニウムを、(イオン交換水+アンモニア中の水分)/界面活性剤のモル比が30となるような量で添加し、溶解させる。これによって、ミセル溶液Bを得た。
(2)ミセル溶液A及びミセル溶液Bが調整されたら、ミセル溶液Aをよく撹拌しながらミセル溶液Aに対してミセル溶液Bを滴下する。滴下が終了した後、ミセル溶液Aとミセル溶液Bとの混合液を60分間撹拌し続ける。
(3)得られた混合液を撹拌しながら、当該混合液にテトラエトキシシラン(TEOS)15mlを加える。そのまま、約1日撹拌を継続する。この工程により、鉄化合物の粉末の表面にSiOの層が形成される。
(4)得られた溶液を遠心分離機によって遠心分離処理をする。この処理で得られた沈殿物を回収する。回収された沈殿物は、エタノールによって複数回洗浄される。
(5)得られた沈殿物を乾燥させた後、大気雰囲気中の炉内において熱処理する。熱処理の条件は、1050℃で4時間である。熱処理後の粉末を10mol/lのNaOH水溶液中で24時間撹拌し、粉末表面に存在するSiOを除去する。
(6)SiOを除去した粉末を濾過した後水洗いし、乾燥させてε−Feの粉末が得られた。
The powder of ε-Fe 2 O 3 was prepared by the following procedure using a reverse micelle method.
(1) First, two kinds of micelle solutions (micelle solution A and micelle solution B) were prepared.
(1-1) The micelle solution A was prepared as follows. Mix 54 ml of ion-exchanged water, 164.7 ml of n-octane and 33.3 ml of 1-butanol. Thereto, 0.0135 mol of iron (III) nitrate nonahydrate is added and dissolved with good stirring at room temperature. Further, cetyltrimethylammonium bromide as a surfactant is added in such an amount that the molar ratio of ion-exchanged water / surfactant is 30, and dissolved by stirring. Thereby, micelle solution A was obtained.
(1-2) The micelle solution B was prepared as follows. Mix 16.2 ml of 28% ammonia water in 36 ml of ion-exchanged water and stir. Then, add 164.7 ml of n-octane and 33.3 ml of 1-butanol and stir well. To the solution, cetyltrimethylammonium bromide as a surfactant, was added in an amount such that the molar ratio becomes 30 (water deionized water + ammonia in water) / surfactant is dissolved. Thereby, the micelle solution B was obtained.
(2) When the micelle solution A and the micelle solution B are prepared, the micelle solution B is added dropwise to the micelle solution A while stirring the micelle solution A well. After the dropping is completed, the mixed solution of the micelle solution A and the micelle solution B is continuously stirred for 60 minutes.
(3) While stirring the obtained mixed solution, 15 ml of tetraethoxysilane (TEOS) is added to the mixed solution. The stirring is continued for about 1 day. By this step, a layer of SiO 2 is formed on the surface of the iron compound powder.
(4) The obtained solution is centrifuged by a centrifuge. The precipitate obtained by this treatment is recovered. The collected precipitate is washed several times with ethanol.
(5) After drying the obtained precipitate, it heat-processes in the furnace in an atmospheric condition. The heat treatment condition is 1050 ° C. for 4 hours. The heat-treated powder is stirred in a 10 mol / l NaOH aqueous solution for 24 hours to remove SiO 2 present on the powder surface.
(6) The powder from which SiO 2 was removed was filtered, washed with water, and dried to obtain ε-Fe 2 O 3 powder.

上記手順で得られたε−Feの粉末は、粒径(TEM像から求めた)が10nm〜40nmであった。還元後における磁性粒子は、ε−Feのコア部のコア径が5nm〜35nm、Fe(α−Fe)のシェル部のシェル厚が3nm〜10nmであった。この磁性粒子の磁気特性をVSM(試料振動式磁力計)で測定した。結果は、残留磁束密度Brが85(emu/g)、保磁力HcJが10700(Oe)であった。この結果から、本作製例で作製した磁性粒子を用いて作製された磁石は、希土類元素を用いた磁石と同等の磁気特性を有すると判断してよい。 The powder of ε-Fe 2 O 3 obtained by the above procedure had a particle size (determined from a TEM image) of 10 nm to 40 nm. In the magnetic particles after the reduction, the core diameter of the core portion of ε-Fe 2 O 3 was 5 nm to 35 nm, and the shell thickness of the shell portion of Fe (α-Fe) was 3 nm to 10 nm. The magnetic properties of the magnetic particles were measured with a VSM (sample vibration magnetometer). As a result, the residual magnetic flux density Br was 85 (emu / g), and the coercive force HcJ was 10700 (Oe). From this result, it may be determined that a magnet produced using the magnetic particles produced in this production example has the same magnetic properties as a magnet using a rare earth element.

以上のように、本発明に係る磁性材料及び磁石、並びに磁性材料の製造方法は、希土類元素を用いないで磁石を作製することに有用であり、特に、ナノコンポジット磁石に適している。   As described above, the magnetic material and magnet according to the present invention and the method for producing the magnetic material are useful for producing a magnet without using a rare earth element, and are particularly suitable for a nanocomposite magnet.

1 磁石
10、10a 磁性粒子
11、11a コア部
12、12a シェル部
13、13a 界面
1 Magnet 10, 10a Magnetic particle 11, 11a Core portion 12, 12a Shell portion 13, 13a Interface

Claims (9)

ε−Feを含む硬磁性相のコア部と、
Feを含み、かつ前記コア部の少なくとも一部を被覆する軟磁性相のシェル部と、
を有する磁性粒子を含むことを特徴とする磁性材料。
a core portion of a hard magnetic phase containing ε-Fe 2 O 3 ;
A soft magnetic phase shell portion containing Fe and covering at least a part of the core portion;
Magnetic material comprising magnetic particles having
前記コア部を構成するε−FeのFeの一部が、CoとNiとのうち少なくとも一方と置換されていることを特徴とする請求項1に記載の磁性材料。 2. The magnetic material according to claim 1, wherein a part of Fe of ε-Fe 2 O 3 constituting the core portion is substituted with at least one of Co and Ni. 前記シェル部を構成するFeの一部が、CoとNiとのうち少なくとも一方と置換されていることを特徴とする請求項1又は2に記載の磁性材料。   The magnetic material according to claim 1 or 2, wherein a part of Fe constituting the shell portion is substituted with at least one of Co and Ni. 前記コア部は、ε−Fe以外の金属酸化物を含むことを特徴とする請求項1から3のいずれか1項に記載の磁性材料。 The magnetic material according to claim 1, wherein the core portion includes a metal oxide other than ε-Fe 2 O 3 . 前記シェル部の表面の少なくとも一部には、SiO層が設けられることを特徴とする請求項1から4のいずれか1項に記載の磁性材料。 5. The magnetic material according to claim 1, wherein an SiO 2 layer is provided on at least a part of the surface of the shell portion. 請求項1から5のいずれか1項に記載の磁性材料を含んで構成されることを特徴とする磁石。   A magnet comprising the magnetic material according to claim 1. ε−Feの粉末を製造する粉末製造工程と、
前記ε−Feの粉末の表面を還元する還元工程と、
を含むことを特徴とする磁性材料の製造方法。
a powder production process for producing a powder of ε-Fe 2 O 3 ;
A reduction step of reducing the surface of the ε-Fe 2 O 3 powder;
The manufacturing method of the magnetic material characterized by including.
前記粉末製造工程において製造された前記ε−Feの粉末は、表面の少なくとも一部がSiOで覆われていることを特徴とする請求項7に記載の磁性材料の製造方法。 The method for producing a magnetic material according to claim 7, wherein at least a part of the surface of the ε-Fe 2 O 3 powder produced in the powder production step is covered with SiO 2 . 前記還元工程の後、又は前記還元工程の前に、前記ε−Feの粉末の表面から前記SiOを除去する工程を含むことを特徴とする請求項8に記載の磁性材料の製造方法。 The magnetic material manufacturing method according to claim 8, further comprising a step of removing the SiO 2 from a surface of the ε-Fe 2 O 3 powder after the reduction step or before the reduction step. Method.
JP2009176945A 2009-07-29 2009-07-29 Magnetic material, magnet, and method of manufacturing magnetic material Expired - Fee Related JP5347146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176945A JP5347146B2 (en) 2009-07-29 2009-07-29 Magnetic material, magnet, and method of manufacturing magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176945A JP5347146B2 (en) 2009-07-29 2009-07-29 Magnetic material, magnet, and method of manufacturing magnetic material

Publications (2)

Publication Number Publication Date
JP2011035006A true JP2011035006A (en) 2011-02-17
JP5347146B2 JP5347146B2 (en) 2013-11-20

Family

ID=43763825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176945A Expired - Fee Related JP5347146B2 (en) 2009-07-29 2009-07-29 Magnetic material, magnet, and method of manufacturing magnetic material

Country Status (1)

Country Link
JP (1) JP5347146B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101752A1 (en) * 2011-01-25 2012-08-02 Tdk株式会社 Magnetic material, magnet and method of producing magnetic material
CN104347219A (en) * 2013-08-06 2015-02-11 日立化成株式会社 Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
KR101504734B1 (en) * 2013-02-06 2015-03-23 건국대학교 산학협력단 Metal­ceramic core­shell structured magnetic materials powder prepared by gas phase process and the preparation method thereof
JP2015153918A (en) * 2014-02-17 2015-08-24 日立化成株式会社 Composite magnetic material and method for producing the same
WO2019078321A1 (en) * 2017-10-20 2019-04-25 キヤノン株式会社 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material
WO2019189468A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Magnetic powder production method and magnetic recording medium production method
JP2019215949A (en) * 2014-12-12 2019-12-19 ソニー株式会社 Magnetic recording medium
WO2020032547A1 (en) * 2018-08-10 2020-02-13 주식회사 엘지화학 Magnetic powder and method for producing magnetic powder
KR102172058B1 (en) * 2019-05-21 2020-11-02 한국기계연구원 An magnetic powder and a method of producing of the same
WO2021149717A1 (en) * 2020-01-21 2021-07-29 国立研究開発法人産業技術総合研究所 Composite magnetic powder and method for producing same
US11404793B2 (en) * 2019-12-12 2022-08-02 Lawrence Livermore National Security, Llc Magnetic nanostructures and composites for millimeter wave absorption
US11865623B2 (en) 2018-08-10 2024-01-09 Lg Chem, Ltd. Magnetic powder and method of preparing magnetic powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981783B2 (en) 2017-06-09 2021-12-17 富士フイルム株式会社 Core-shell particles, calcined product of core-shell particles, method for producing core-shell particles, method for producing epsilon-type iron oxide-based compound particles, method for producing epsilon-type iron oxide-based compound particles, magnetic recording medium, and method for producing magnetic recording medium.
JP6900286B2 (en) 2017-09-27 2021-07-07 富士フイルム株式会社 Core-shell particles, calcined product of core-shell particles, method for producing core-shell particles, method for producing epsilon-type iron oxide-based compound particles, method for producing epsilon-type iron oxide-based compound particles, magnetic recording medium, and method for producing magnetic recording medium.

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278470A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Nano composite magnet
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method
JP2007118147A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp Method of manufacturing core/shell conjugated nanoparticle
JP2008100871A (en) * 2006-10-19 2008-05-01 Univ Of Tokyo METHOD OF PRODUCING epsi-IRON OXIDE
JP2008248367A (en) * 2007-03-30 2008-10-16 Kyoto Univ METHOD FOR PRODUCING COMPOSITE NANOPARTICLE HAVING FePt CORE/Co SHELL STRUCTURE
JP2008248364A (en) * 2007-03-30 2008-10-16 Kyoto Univ METHOD FOR PRODUCING COMPOSITE NANOPARTICLE HAVING FePt CORE/Fe SHELL STRUCTURE
WO2012101752A1 (en) * 2011-01-25 2012-08-02 Tdk株式会社 Magnetic material, magnet and method of producing magnetic material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278470A (en) * 2005-03-28 2006-10-12 Toyota Motor Corp Nano composite magnet
JP2006306707A (en) * 2005-03-30 2006-11-09 Toyota Central Res & Dev Lab Inc Oxide composite material and its production method
JP2007118147A (en) * 2005-10-28 2007-05-17 Toyota Motor Corp Method of manufacturing core/shell conjugated nanoparticle
JP2008100871A (en) * 2006-10-19 2008-05-01 Univ Of Tokyo METHOD OF PRODUCING epsi-IRON OXIDE
JP2008248367A (en) * 2007-03-30 2008-10-16 Kyoto Univ METHOD FOR PRODUCING COMPOSITE NANOPARTICLE HAVING FePt CORE/Co SHELL STRUCTURE
JP2008248364A (en) * 2007-03-30 2008-10-16 Kyoto Univ METHOD FOR PRODUCING COMPOSITE NANOPARTICLE HAVING FePt CORE/Fe SHELL STRUCTURE
WO2012101752A1 (en) * 2011-01-25 2012-08-02 Tdk株式会社 Magnetic material, magnet and method of producing magnetic material

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012101752A1 (en) * 2011-01-25 2012-08-02 Tdk株式会社 Magnetic material, magnet and method of producing magnetic material
KR101504734B1 (en) * 2013-02-06 2015-03-23 건국대학교 산학협력단 Metal­ceramic core­shell structured magnetic materials powder prepared by gas phase process and the preparation method thereof
CN104347219A (en) * 2013-08-06 2015-02-11 日立化成株式会社 Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
JP2015032760A (en) * 2013-08-06 2015-02-16 日立化成株式会社 Composite magnetic material, manufacturing method thereof, and raw material set of composite magnetic material
CN104347219B (en) * 2013-08-06 2017-04-12 日立化成株式会社 Composite magnetic material, method for manufacturing same and raw material components of composite magnetic material
JP2015153918A (en) * 2014-02-17 2015-08-24 日立化成株式会社 Composite magnetic material and method for producing the same
JP2019215949A (en) * 2014-12-12 2019-12-19 ソニー株式会社 Magnetic recording medium
US11355270B2 (en) 2014-12-12 2022-06-07 Sony Corporation Magnetic powder, method for production thereof, and magnetic recording medium
WO2019078321A1 (en) * 2017-10-20 2019-04-25 キヤノン株式会社 Composite magnetic material, magnet containing said material, motor using said magnet, and method for producing said composite magnetic material
WO2019189468A1 (en) * 2018-03-30 2019-10-03 ソニー株式会社 Magnetic powder production method and magnetic recording medium production method
JPWO2019189468A1 (en) * 2018-03-30 2021-05-13 ソニーグループ株式会社 Manufacturing method of magnetic powder and manufacturing method of magnetic recording medium
JP7207399B2 (en) 2018-03-30 2023-01-18 ソニーグループ株式会社 Method for manufacturing magnetic powder and method for manufacturing magnetic recording medium
US11830533B2 (en) 2018-03-30 2023-11-28 Sony Corporation Method of producing magnetic powder and method of producing magnetic recording medium
WO2020032547A1 (en) * 2018-08-10 2020-02-13 주식회사 엘지화학 Magnetic powder and method for producing magnetic powder
US11865623B2 (en) 2018-08-10 2024-01-09 Lg Chem, Ltd. Magnetic powder and method of preparing magnetic powder
KR102172058B1 (en) * 2019-05-21 2020-11-02 한국기계연구원 An magnetic powder and a method of producing of the same
US11404793B2 (en) * 2019-12-12 2022-08-02 Lawrence Livermore National Security, Llc Magnetic nanostructures and composites for millimeter wave absorption
WO2021149717A1 (en) * 2020-01-21 2021-07-29 国立研究開発法人産業技術総合研究所 Composite magnetic powder and method for producing same

Also Published As

Publication number Publication date
JP5347146B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5347146B2 (en) Magnetic material, magnet, and method of manufacturing magnetic material
WO2012101752A1 (en) Magnetic material, magnet and method of producing magnetic material
JP4830024B2 (en) Composite magnetic material for magnet and manufacturing method thereof
JP2011032496A (en) Magnetic material, magnet and method for producing the magnetic material
KR101778164B1 (en) Core-Shell Structured Nanoparticle having Hard-soft Magnetic Heterostructure, Magnet Prepared with Said Nanoparticle, and Preparing Method thereof
JP2017523586A (en) Manganese bismuth-based sintered magnet with improved thermal stability and manufacturing method thereof
US9607740B2 (en) Hard-soft magnetic MnBi/SiO2/FeCo nanoparticles
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
WO2003085683A1 (en) Composite rare earth anisotropic bonded magnet, compound for composite rare earth anisotropic bonded magnet and method for preparation thereof
CN104981883A (en) Magnetic material and method for producing same
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
KR101963265B1 (en) Inductor component
JP2018182301A (en) Composite magnetic material and motor
JP4072893B2 (en) PERMANENT MAGNET PARTICLE, PROCESS FOR PRODUCING THE SAME, PERMANENT MAGNET AND MAGNETIC PARTICLE
US20180301255A1 (en) Composite magnetic material and motor
KR102045771B1 (en) An magnetic powder and a method of producing of the same
JP2016066675A (en) Rare earth isotropic bond magnet
JP2005116991A (en) Composite rare earth anisotropic bond magnet, compound for composite rare earth anisotropic bond magnet, and method for manufacturing them
US11657935B2 (en) Iron oxide magnetic powder and manufacturing method therefor
JP2007194463A (en) Permanent magnet and its manufacturing method
JP4466491B2 (en) Power motor
KR102243111B1 (en) An magnetic powder and a method of producing of the same
JP2018182302A (en) Composite magnetic material, motor, and method for manufacturing composite magnetic material
WO2017191790A1 (en) Rare-earth permanent magnet, and method for manufacturing same
KR102172058B1 (en) An magnetic powder and a method of producing of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130716

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5347146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees