JP6722548B2 - Soft magnetic flat powder, magnetic sheet and method for producing the same - Google Patents

Soft magnetic flat powder, magnetic sheet and method for producing the same Download PDF

Info

Publication number
JP6722548B2
JP6722548B2 JP2016167757A JP2016167757A JP6722548B2 JP 6722548 B2 JP6722548 B2 JP 6722548B2 JP 2016167757 A JP2016167757 A JP 2016167757A JP 2016167757 A JP2016167757 A JP 2016167757A JP 6722548 B2 JP6722548 B2 JP 6722548B2
Authority
JP
Japan
Prior art keywords
powder
magnetic
flat powder
soft magnetic
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016167757A
Other languages
Japanese (ja)
Other versions
JP2018035385A (en
Inventor
滉大 三浦
滉大 三浦
澤田 俊之
俊之 澤田
哲嗣 久世
哲嗣 久世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016167757A priority Critical patent/JP6722548B2/en
Publication of JP2018035385A publication Critical patent/JP2018035385A/en
Application granted granted Critical
Publication of JP6722548B2 publication Critical patent/JP6722548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、RFID技術を用いた非接触ICタグや非接触充電/給電用電子機器などに用いられる軟磁性扁平粉末、磁性シートおよびその製造方法に関する。 The present invention relates to a soft magnetic flat powder, a magnetic sheet, and a method for manufacturing the same, which are used in a non-contact IC tag using RFID technology, a non-contact charging/power feeding electronic device, and the like.

従来、軟磁性扁平粉末を含有する磁性シートは、電磁波吸収体、RFID(Radio Frequency Identification)用アンテナとして用いられてきた。RFID用アンテナやタグの設計のし易さなどの特性のバランスの良さから、13.56MHzの周波数領域が日本において広く使用されている。また、近年では、デジタイザと呼ばれる位置検出装置にも用いられるようになってきている。このデジタイザには、例えば、特開2011−22661号公報(特許文献1)のような電磁誘導型のものがあり、ペン形状の位置指示器の先に内蔵されるコイルより発信された高周波信号を、パネル状の位置検出器に内蔵されたループコイルにより読み取ることで指示位置を検出する。 Conventionally, a magnetic sheet containing a soft magnetic flat powder has been used as an electromagnetic wave absorber and an antenna for RFID (Radio Frequency Identification). The frequency range of 13.56 MHz is widely used in Japan because of its good balance of characteristics such as ease of designing RFID antennas and tags. Further, in recent years, it has come to be used also in a position detection device called a digitizer. This digitizer includes, for example, an electromagnetic induction type as disclosed in Japanese Unexamined Patent Application Publication No. 2011-22661 (Patent Document 1). The pointed position is detected by reading with the loop coil built in the panel-shaped position detector.

ここで、検出感度を高める目的で、ループコイルの背面には高周波信号の磁路となるシートが配置される。この磁路となるシートとしては、軟磁性扁平粉末を樹脂やゴム中に配向させた磁性シートや軟磁性アモルファス合金箔を貼り合わせたものなどが適用される。磁性シートを用いる場合は、検出パネル全体を1枚のシートに出来るため、アモルファス箔のような貼り合せ部での検出不良などがなく優れた均一性が得られる。 Here, for the purpose of increasing the detection sensitivity, a sheet that serves as a magnetic path for high-frequency signals is arranged on the back surface of the loop coil. As the magnetic path sheet, a magnetic sheet obtained by orienting soft magnetic flat powder in resin or rubber, or a sheet obtained by laminating a soft magnetic amorphous alloy foil is used. When a magnetic sheet is used, the entire detection panel can be made into a single sheet, so that excellent uniformity can be obtained without detection failure at a bonded portion such as an amorphous foil.

また、従来、磁性シートには、Fe−Si−Al合金、Fe−Si合金、Fe−Ni合金、Fe−Al合金、Fe−Cr合金などからなる粉末を、アトリッションミル(アトライタ)などにより扁平化したものが添加されてきた。これは、高い透磁率の磁性シートを得るために、いわゆる「Ollendorffの式」からわかるように、透磁率の高い軟磁性粉末を用いること、反磁界を下げるため磁化方向に高いアスペクト比を持つ扁平粉末を用いること、磁性シート中に軟磁性粉末を高充填することが重要であるためである。 Further, conventionally, powders made of Fe-Si-Al alloys, Fe-Si alloys, Fe-Ni alloys, Fe-Al alloys, Fe-Cr alloys, etc. have been applied to magnetic sheets by an attrition mill or the like. Flattened ones have been added. This is because in order to obtain a magnetic sheet having a high magnetic permeability, as can be seen from the so-called "Ollendorff's equation", soft magnetic powder having a high magnetic permeability is used, and a flat surface having a high aspect ratio in the magnetization direction is used to reduce the demagnetizing field. This is because it is important to use the powder and to highly fill the magnetic sheet with the soft magnetic powder.

また、上記に加え、RFIDのような用途においては、磁壁共鳴による損失を防ぐ必要があり、粉末の透磁率μの構成成分である、透磁率の実数部μ’と透磁率の虚数部μ’’のうち、μ’’を低くする必要がある。しかし、一般的には、μ’’を低く抑えるような製法では、μ’も低下する傾向にある。これを解決するために、例えば、特許第4420235号公報(特許文献2)では、Fe−Si−Cr合金系における扁平粉末の必要特性として、扁平粉末の平均粒径D50が5〜30μmかつ高いアスペクト比を有し、飽和磁化の値と保磁力の値の比率が一定である粉末の製造方法が開示されている。 Further, in addition to the above, in applications such as RFID, it is necessary to prevent loss due to domain wall resonance, which is a constituent component of the magnetic permeability μ of the powder, the real part μ′ of magnetic permeability and the imaginary part μ′ of magnetic permeability. Of these, μ'' needs to be lowered. However, generally, in a manufacturing method in which μ″ is kept low, μ′ also tends to be lowered. In order to solve this, for example, in Japanese Patent No. 4420235 (Patent Document 2), an average particle diameter D50 of the flat powder is 5 to 30 μm and a high aspect as a necessary characteristic of the flat powder in the Fe—Si—Cr alloy system. Disclosed is a method of producing a powder having a ratio and a constant ratio of a saturation magnetization value and a coercive force value.

また、特開2016−89242号公報(特許文献3)では、平均粒径30μm以上でもあっても、高い透磁率の実数部μ’と低い透磁率の虚数部μ’’を有する軟磁性扁平粉末及びその製造方法が開示されている。 Further, in JP-A-2016-89242 (Patent Document 3), a soft magnetic flat powder having a high permeability real part μ′ and a low permeability imaginary part μ″ even if the average particle size is 30 μm or more. And a manufacturing method thereof are disclosed.

特開2011−22661号公報JP, 2011-22661, A 特許第4420235号公報Japanese Patent No. 4420235 特開2016−89242号公報JP, 2016-89242, A

従来の電磁波吸収用またはRFID用の磁性シートは、Fe−Si−Al合金、Fe−Si合金、Fe−Ni合金、Fe−Al合金、Fe−Cr合金が用いられてきた。これら合金を用いた扁平粉末または磁性シートにおいて使用環境下における発銹が問題となっている。扁平粉または磁性シートにおいて発銹が発生すると、軟磁性特性の劣化を引き起こす。そのため、高い磁気特性を有したまま、耐食性向上が求められている。 For a conventional magnetic sheet for electromagnetic wave absorption or RFID, an Fe-Si-Al alloy, an Fe-Si alloy, an Fe-Ni alloy, an Fe-Al alloy, or an Fe-Cr alloy has been used. In the flat powder or magnetic sheet using these alloys, rusting under the use environment is a problem. If rusting occurs in the flat powder or the magnetic sheet, the soft magnetic properties are deteriorated. Therefore, it is required to improve corrosion resistance while maintaining high magnetic properties.

そこで、本発明は、RFID用部材に主に用いられる軟磁性扁平粉末であって、高い磁気特性を維持し、かつ高い耐食性を有する軟磁性扁平粉末、磁性シートおよび製造方法を提供することを目的とする。その発明の要旨とするところは、
(1)軟磁性粉末を扁平化処理することにより得られた扁平粉末であって、その組成が、Si:15mass%以下(0は含まない)、Cr:6mass%超〜18mass%、Ni、Cu、Moのうち1種類または2種類以上の合計:0.3mass%超〜6mass%、残部がFeおよび不可避的微量不純物からなるFe―Si−Cr系合金であることを特徴とする軟磁性扁平粉末を用いることで実現できる。
Therefore, the present invention is to provide a soft magnetic flat powder that is mainly used for RFID members, which maintains high magnetic properties and has high corrosion resistance, a magnetic sheet, and a manufacturing method. And The gist of the invention is
(1) A flat powder obtained by flattening a soft magnetic powder, the composition of which is Si: 15 mass% or less (0 is not included), Cr: more than 6 mass% to 18 mass%, Ni, Cu. , A total of one or more kinds of Mo: more than 0.3 mass% to 6 mass%, the balance being Fe—Si—Cr alloy containing Fe and unavoidable trace impurities, soft magnetic flat powder Can be realized by using.

(2)扁平粉末の長手方向に磁場を印加して測定した保磁力が240〜720A/mの範囲にあり、かつ飽和磁化が1.0T以上であることを特徴とする前記(1)に記載された軟磁性扁平粉末。
(3)前記(1)または(2)に記載された軟磁性扁平粉末を用いて成形された磁性シートであって、RFID用途または、13.56MHz帯域における磁性シートに成形した際の磁気特性である実数透磁率μ’が40以上かつ虚数透磁率μ’’が10以下(0は含まない)であることを特徴とする磁性シート。
(2) The coercive force measured by applying a magnetic field in the longitudinal direction of the flat powder is in the range of 240 to 720 A/m, and the saturation magnetization is 1.0 T or more. Soft magnetic flat powder.
(3) A magnetic sheet formed by using the soft magnetic flat powder described in (1) or (2) above, which has magnetic properties when used for RFID or when formed into a magnetic sheet in the 13.56 MHz band. A magnetic sheet having a certain real magnetic permeability μ′ of 40 or more and an imaginary magnetic permeability μ″ of 10 or less (0 is not included).

(4)原料粉末作製工程と、前記原料粉末を扁平化する扁平加工工程により、前記(1)〜(3)のいずれか1に記載した軟磁性扁平粉末を得ることを特徴とする軟磁性扁平粉末の製造方法。
(5)ガスアトマイズ法による原料粉末作製工程と、前記原料粉末を扁平化する扁平加工工程と、前記扁平加工された粉末を真空またはアルゴン雰囲気で、500℃〜900℃で熱処理する工程により、前記(1)〜(3)のいずれか1に記載した軟磁性扁平粉末を得ることを特徴とする軟磁性扁平粉末の製造方法。
(4) A soft magnetic flat powder characterized by obtaining the soft magnetic flat powder according to any one of (1) to (3) by a raw powder preparation step and a flattening step of flattening the raw powder. Powder manufacturing method.
(5) By a raw material powder production step by a gas atomizing method, a flattening step of flattening the raw material powder, and a step of heat treating the flattened powder at 500° C. to 900° C. in a vacuum or argon atmosphere, 1) A soft magnetic flat powder according to any one of 1 to 3 is obtained, which is a method for producing a soft magnetic flat powder.

以上のようにして得られた軟磁性扁平粉末は、高い飽和磁化を有し、かつ扁平粉末の長
手方向に磁場を印加して測定される保磁力の値が低い粉末は、μ’の上昇幅に対し、μ’’が低い粉末となり、かつ耐食性に優れたRFID用粉末を得ることを可能とした。なお、実数透磁率μ’は交流磁場を印加したときの透磁率を表し、虚数透磁率μ’’は、交流磁場よりも位相が90°遅れた透磁率であり、磁気損失の指標となる。
The soft magnetic flat powder obtained as described above has a high saturation magnetization, and the powder having a low coercive force value measured by applying a magnetic field in the longitudinal direction of the flat powder has a rise width of μ′. On the other hand, it became possible to obtain a powder for RFID having a low μ″ and excellent corrosion resistance. The real magnetic permeability μ′ represents the magnetic permeability when an alternating magnetic field is applied, and the imaginary magnetic permeability μ″ is the magnetic permeability whose phase is delayed by 90° from the alternating magnetic field and serves as an index of magnetic loss.

以下、本発明に係わる成分組成の限定理由を説明する。
Si:15mass%以下(0は含まない)
Siは結晶の磁気異方性を低下し、磁歪定数を低下することができる。しかし、その量が過剰であると、材料が硬くなるため、軟磁性扁平粉末の平均粒径が増大しなくなる。また、飽和磁化の値が低くなるため、μ’’に対するμ’の値が低くなる傾向にある。したがって、15mass%以下であることが好ましく、12mass%以下がより好ましく、8mass%以下がさらに好ましい(ただし0は含まない)。
The reasons for limiting the component composition of the present invention will be described below.
Si: 15 mass% or less (0 is not included)
Si can reduce the magnetic anisotropy of the crystal and the magnetostriction constant. However, if the amount is excessive, the material becomes hard and the average particle diameter of the soft magnetic flat powder does not increase. Further, since the value of saturation magnetization is low, the value of μ′ with respect to μ″ tends to be low. Therefore, it is preferably 15% by mass or less, more preferably 12% by mass or less, and further preferably 8% by mass or less (however, 0 is not included).

Cr:6mass%超〜18mass%
Crは結晶の磁気異方性を低下し、耐食性を向上させることができる。しかし、その量が過剰であると、軟磁性扁平粉末の保磁力が、加工条件や熱処理条件で調整できる上限を超え好ましくない。そのため、18mass%以下が好ましく、16.5mass%以下がより好ましく、15mass%以下がさらに好ましい(ただし0は含まない)。
Cr: more than 6 mass% to 18 mass%
Cr can reduce the magnetic anisotropy of the crystal and improve the corrosion resistance. However, if the amount is excessive, the coercive force of the soft magnetic flat powder exceeds the upper limit that can be adjusted under processing conditions and heat treatment conditions, which is not preferable. Therefore, 18 mass% or less is preferable, 16.5 mass% or less is more preferable, and 15 mass% or less is further preferable (however, 0 is not included).

Ni、Cu、Moのうち1種類または2種類以上の合計:0.3mass%超〜6mass%
Niは強磁性を示すため、Feへ置換固溶しても、大きく飽和磁化を減少させない。また、Cr酸化膜を有する合金に添加することで、Cr酸化膜を強化し、硫酸、塩酸に対する耐食性を改善する。しかし、Niはオーステナイトフォーマー元素であるため、オーステナイトを安定化させる効果がある。これにより、その量が過剰であると、強磁性Feのα相中にγの非磁性相を析出させ、保磁力の増加を招く。そのため、6mass%以下が望ましく、4mass%以下がより望ましい。
One or two or more of Ni, Cu, and Mo in total: more than 0.3 mass% to 6 mass%
Since Ni exhibits ferromagnetism, saturation substitution with Fe does not significantly reduce the saturation magnetization. Further, by adding to the alloy having a Cr oxide film, the Cr oxide film is strengthened and the corrosion resistance to sulfuric acid and hydrochloric acid is improved. However, since Ni is an austenite former element, it has an effect of stabilizing austenite. As a result, when the amount is excessive, a nonmagnetic phase of γ is precipitated in the α phase of ferromagnetic Fe, which causes an increase in coercive force. Therefore, 6 mass% or less is desirable, and 4 mass% or less is more desirable.

また、Cuは、Cr酸化膜を有する合金に添加することで、Cr酸化膜を強化し、硫酸
に対する耐食性を改善する。しかし、その量が過剰であると、熱処理時にCuリッチ相が析出するため、保磁力の増加を招く。そのため、6mass%以下が望ましく、4mass%以下がより望ましい。
Further, Cu is added to the alloy having the Cr oxide film to strengthen the Cr oxide film and improve the corrosion resistance to sulfuric acid. However, if the amount is excessive, a Cu-rich phase precipitates during heat treatment, which causes an increase in coercive force. Therefore, 6 mass% or less is desirable, and 4 mass% or less is more desirable.

また、MoはCr酸化膜を有する合金に添加することで、Cr酸化膜を強化し、硫酸、
塩酸に対する耐食性を改善する。しかし、その量が過剰であると、熱処理時にMoリッチ相が析出するため、保磁力の増加を招く。そのため、6mass%以下が望ましく、4mass%以下がより望ましい。
Further, Mo is added to the alloy having a Cr oxide film to strengthen the Cr oxide film, and sulfuric acid,
Improves corrosion resistance to hydrochloric acid. However, if the amount is excessive, a Mo-rich phase precipitates during heat treatment, which causes an increase in coercive force. Therefore, 6 mass% or less is desirable, and 4 mass% or less is more desirable.

保磁力が240〜720A/m
720A/mを超える保磁力では、μ’の値を確保できず、シート成型を工夫しても、求める特性を得ることが難しくなるため好ましくない。また、極端に低い保磁力であると、μ’’の最大値の増加に引きずられるようにして、13.56MHz帯におけるμ’’が増加するため好ましくない。240A/m未満の保磁力では、13.56MHz帯におけるμ’’の値が大きくなり好ましくない。
Coercive force of 240-720A/m
If the coercive force exceeds 720 A/m, the value of μ′ cannot be secured, and even if the sheet molding is devised, it is difficult to obtain the desired characteristics, which is not preferable. Also, if the coercive force is extremely low, μ″ in the 13.56 MHz band increases due to the increase in the maximum value of μ″, which is not preferable. If the coercive force is less than 240 A/m, the value of μ″ in the 13.56 MHz band becomes large, which is not preferable.

飽和磁化が1.0T以上
RFID用途においては、μ’の値を高く、μ’’の値を低くする必要がある。13.56MHz帯においては、磁壁共鳴による損失を抑えるとよい。磁壁共鳴損失は周波数によって異なるが、材料の物性値によって、ピークとなる周波数の位置が移動する。ゆえに、磁壁共鳴周波数が高い場合、13.56MHzにおける損失の値は低くなると考えられる。
In RFID applications where the saturation magnetization is 1.0 T or more, it is necessary to increase the value of μ′ and decrease the value of μ″. In the 13.56 MHz band, it is preferable to suppress the loss due to domain wall resonance. The domain wall resonance loss varies depending on the frequency, but the position of the peak frequency moves depending on the physical property value of the material. Therefore, it is considered that when the domain wall resonance frequency is high, the value of loss at 13.56 MHz is low.

この磁壁共鳴周波数は{飽和磁化/(透磁率の1/2乗)}に比例するとされる(磁気工学の基礎II共立全書)。RFID用途として必要な特性を得るためには透磁率は極力下げない方が良いので、飽和磁化を高くすることが有効である。また、透磁率は飽和磁化が高く、保磁力が低いと高くなる傾向がある。結局のところ、磁壁共鳴周波数を高く、透磁率を高くするためには、飽和磁化の値を高く、保磁力の値を低くすればよいことが分かる。そのため、飽和磁化の値は1.0T以上であることが好ましく、1.3T以上であることがより好ましい。飽和磁化の値が低いと、μ’の値を確保できず、シート成型を工夫しても、求める特性を得ることが難しくなるため好ましくない。 This domain wall resonance frequency is said to be proportional to {saturation magnetization/(magnetic permeability 1/2 power)} (Basics of Magnetic Engineering II Kyoritsu Zensho). In order to obtain the characteristics required for RFID applications, it is better not to lower the magnetic permeability as much as possible, so increasing the saturation magnetization is effective. Further, the magnetic permeability tends to increase when the saturation magnetization is high and the coercive force is low. After all, it can be seen that in order to increase the domain wall resonance frequency and increase the magnetic permeability, it is sufficient to increase the saturation magnetization value and decrease the coercive force value. Therefore, the value of saturation magnetization is preferably 1.0 T or more, and more preferably 1.3 T or more. If the value of saturation magnetization is low, the value of μ′ cannot be secured, and even if the sheet molding is devised, it is difficult to obtain the desired characteristics, which is not preferable.

実数透磁率μ’が40以上かつ虚数透磁率μ’’が10以下(0は含まない)
透磁率の数値は、シート成型後の透磁率測定によって評価されるが、この値は粉末そのものの特性だけでなく、粉末の充填率や配向状態など、シートの成型条件により左右される。この粉末を用いて、透磁率の虚数部μ’’が1〜10以下のシートを作製した際に、粉末の実数部μ’は、40以上であることが好ましく、55以上であることがより好ましく、60以上であることがさらに好ましい。
Real magnetic permeability μ'is 40 or more and imaginary magnetic permeability μ'' is 10 or less (0 is not included)
The numerical value of the magnetic permeability is evaluated by measuring the magnetic permeability after molding the sheet. This value depends not only on the characteristics of the powder itself but also on the molding conditions of the sheet such as the filling rate and orientation state of the powder. When a sheet having an imaginary part μ″ of magnetic permeability of 1 to 10 or less is produced using this powder, the real part μ′ of the powder is preferably 40 or more, and more preferably 55 or more. It is preferably 60 or more, and more preferably 60 or more.

原料粉末作製工程
原料粉末作製工程は、水アトマイズ法、ガスアトマイズ法やディスクアトマイズ法が考えられる。特にガスアトマイズ法は、他の粉末作製方法と比較し、酸素、窒素含有量の低い合金粉末を製造することができる。また、作製される合金粉末の形状が球状であることからアトライタ加工により粉砕よりも扁平化が進行しやすいため、ガスアトマイズ法が望ましい。また、扁平化された扁平粉末の平均粒径は30〜200μmとした。平均粒径が30μm未満では、アスペクト比の高い扁平粉は得られ難く、μ’が小さくなる傾向にある。また、平均粒径の小さい粒径は平均粒径の大きい粉末よりも、保磁力の値が高くなる傾向にある。しかし、平均粒径が大きくなると、シート成型が困難になるため、30〜200μmのものを採用した。
Raw Material Powder Manufacturing Step The raw material powder manufacturing step may be a water atomizing method, a gas atomizing method, or a disk atomizing method. In particular, the gas atomizing method can produce alloy powders having a low oxygen and nitrogen content as compared with other powder producing methods. Further, since the alloy powder to be produced has a spherical shape, flattening is more likely to proceed than crushing by attritor processing, and thus the gas atomizing method is preferable. The average particle size of the flattened flat powder was 30 to 200 μm. If the average particle size is less than 30 μm, it is difficult to obtain a flat powder having a high aspect ratio, and μ′ tends to be small. Further, the particle size with a small average particle size tends to have a higher coercive force value than the powder with a large average particle size. However, if the average particle size becomes large, it becomes difficult to form a sheet, and therefore, a sheet having a particle size of 30 to 200 μm was adopted.

原料粉末を扁平化する扁平加工工程
本発明において、扁平加工方法は、特に制限は無く、例えば、アトライタ、ボールミル、振動ミル等を用いて行うことができる。中でも、比較的扁平加工能力に優れる、アトライタを用いることが好ましい。乾式で加工を行う場合は、不活性ガスを用いることが好ましい。湿式で加工する場合は、加工中の酸化を抑制できる有機溶媒を用いることが好ましいが、有機溶媒の種類については特に限定されない。
In the present invention, the flattening method is not particularly limited and may be performed using, for example, an attritor, a ball mill, a vibration mill or the like. Above all, it is preferable to use an attritor having relatively excellent flattening capability. When dry processing is performed, it is preferable to use an inert gas. In the case of wet processing, it is preferable to use an organic solvent that can suppress oxidation during processing, but the type of organic solvent is not particularly limited.

有機溶媒の添加量は、軟磁性合金粉末100質量部に対して、100質量部以上であることが好ましく、200質量部以上であることがより好ましい。有機溶媒の上限は特に限定されず、求める扁平粉の大きさ・形状と、生産性のバランスに応じて適宜調整が可能である。有機溶媒とともに扁平化助剤を用いてもよいが、酸化を抑えるために、軟磁性合金粉末100質量部に対して、5質量部以下であることが好ましい。 The addition amount of the organic solvent is preferably 100 parts by mass or more, and more preferably 200 parts by mass or more with respect to 100 parts by mass of the soft magnetic alloy powder. The upper limit of the organic solvent is not particularly limited, and can be appropriately adjusted depending on the desired size and shape of the flat powder and the balance of productivity. Although the flattening aid may be used together with the organic solvent, it is preferably 5 parts by mass or less with respect to 100 parts by mass of the soft magnetic alloy powder in order to suppress oxidation.

真空またはアルゴン雰囲気
本発明に用いられる軟磁性扁平粉末においては、酸化を抑えるために、真空中あるいは不活性ガス中で熱処理されることが好ましい。例えば、表面処理の観点から、大気や窒素中で熱処理されてもよいが、その場合は、粉末の保磁力の値が上昇し、透磁率の値が低くなる傾向にあり好ましくない。
Vacuum or Argon Atmosphere The soft magnetic flat powder used in the present invention is preferably heat-treated in vacuum or in an inert gas in order to suppress oxidation. For example, from the viewpoint of surface treatment, it may be heat-treated in the atmosphere or nitrogen, but in that case, the value of the coercive force of the powder increases and the value of the magnetic permeability tends to decrease, which is not preferable.

500℃〜900℃で熱処理
本発明において、熱処理工程はアトライタ加工により導入された扁平粉末中の格子欠陥を回復し、保磁力を低下させるための工程であり、500℃未満では保磁力の低下が十分ではなく、900℃を超えると焼結し、これが粗大な塊となって、シート表面の突起を増加させてしまう。好ましくは730を超え880℃未満、より好ましくは750を超え850℃未満である。
Heat treatment at 500° C. to 900° C. In the present invention, the heat treatment step is a step for recovering lattice defects in the flat powder introduced by the attritor processing and lowering the coercive force. It is not sufficient, and if it exceeds 900° C., it will sinter, and this will become a coarse lump, and will increase the protrusion on the sheet surface. It is preferably higher than 730 and lower than 880°C, more preferably higher than 750 and lower than 850°C.

以下、本発明について、実施例によって具体的に説明する。
(扁平粉末の作製)
ガスアトマイズ法により所定の成分の粉末を作製し150μm以下に分級した。ガスアトマイズは、アルミナ製坩堝を溶解に用い、坩堝下の直径5mmのノズルから合金溶湯を出湯し、これに高圧アルゴンを噴霧することで実施した。これを原料粉末としアトライタにより扁平加工した。得られた扁平粉末の平均粒径は30〜200μmのものを用いた。なお、アトライタは、SUJ2製の直径4.8mmのボールを使用し、原料粉末と工業エタノールとともに攪拌容器に投入し、羽根の回転数を300rpmとして実施した。工業エタノールの添加量は、原料粉末100質量部に対し、200〜500質量部とした。扁平化助剤は、添加しないか、もしくは、原料粉末100質量部に対し、1〜5質量部とした。扁平加工後に攪拌容器から取り出した扁平粉末と工業エタノールをステンレス製の皿に移し、80℃で24時間乾燥させた。このようにして得た扁平粉末を真空中あるいはアルゴン中で、500〜900℃で2時間熱処理し、各種の評価に用いた。
Hereinafter, the present invention will be specifically described with reference to Examples.
(Preparation of flat powder)
A powder of a predetermined component was prepared by a gas atomizing method and classified to 150 μm or less. The gas atomization was carried out by using an alumina crucible for melting, discharging a molten alloy from a nozzle having a diameter of 5 mm below the crucible, and spraying high-pressure argon onto the molten alloy. This was used as a raw material powder and flattened by an attritor. The obtained flat powder had an average particle size of 30 to 200 μm. As the attritor, balls made of SUJ2 and having a diameter of 4.8 mm were used, the raw material powder and industrial ethanol were put into a stirring container, and the rotation speed of the blade was set to 300 rpm. The amount of industrial ethanol added was 200 to 500 parts by mass with respect to 100 parts by mass of the raw material powder. The flattening aid was not added, or was 1 to 5 parts by mass with respect to 100 parts by mass of the raw material powder. The flattened powder and industrial ethanol taken out from the stirring container after the flattening were transferred to a stainless steel dish and dried at 80° C. for 24 hours. The flat powder thus obtained was heat-treated at 500 to 900° C. for 2 hours in vacuum or argon and used for various evaluations.

(扁平粉末の評価)
得られた扁平粉末の保磁力を評価した。保磁力は直径6mm、高さ8mmの樹脂製容器に扁平粉末を充填し、この容器の高さ方向に磁化した場合と、直径方向に磁化した場合の値を測定した。なお、扁平粉末は充填された円柱の高さ方向が厚さ方向となっているため、容器の高さ方向に磁化した場合が扁平粉末の厚さ方向、容器の直径方向に磁化した場合が扁平粉末の長手方向の保磁力となる。印加磁場は144kA/mで実施した。
(Evaluation of flat powder)
The coercive force of the obtained flat powder was evaluated. The coercive force was measured by filling a resin container having a diameter of 6 mm and a height of 8 mm with flat powder, and magnetizing the container in the height direction and magnetizing it in the diameter direction. In addition, since the height direction of the filled cylinder is the thickness direction of the flat powder, the flat powder is magnetized in the height direction of the container and the flat powder is magnetized in the diameter direction of the container. It becomes the coercive force in the longitudinal direction of the powder. The applied magnetic field was 144 kA/m.

溶出試験は、扁平粉末を0.02±0.0001gで秤量し、各種10%酸溶液10mlにて60分溶出した後、定溶25mlとしICP分析(Intactively Coupled Plasma)によりFe、Cr、Siの溶出量を測定した。 In the dissolution test, the flat powder was weighed at 0.02±0.0001 g and eluted with 10 ml of various 10% acid solutions for 60 minutes, and then fixed to 25 ml with ICP analysis (Inactively Coupled Plasma) for Fe, Cr, and Si. The elution amount was measured.

(磁性シートの作製および評価)
トルエンに塩素化ポリエチレンを溶解し、これに得られた扁平粉末を混合、分散した。この分散液をポリエステル樹脂に厚さ1mm程度に塗布し、常温常湿で乾燥させた。その後、130℃、15MPaの圧力でプレス加工し、磁性シートを得た。磁性シートのサイズは150mm×150mmで厚さは100μmである。なお、磁性シート中の扁平粉末の体積充填率はいずれも約50%であった。次に、この磁性シートを、外径7mm、内径3mmのドーナツ状に切り出し、インピーダンス測定器により、室温で1MHzにおけるインピーダンス特性を測定し、その結果から透磁率(複素透磁率の実数部および虚数部:μ’およびμ’’)を算出した。以上、本発明を実施例に基づいて説明したが、本発明はこの実施例に特に限定されない。
(Preparation and evaluation of magnetic sheet)
Chlorinated polyethylene was dissolved in toluene, and the resulting flat powder was mixed and dispersed. This dispersion was applied to a polyester resin to a thickness of about 1 mm and dried at room temperature and normal humidity. Then, it pressed at 130 degreeC and the pressure of 15 MPa, and obtained the magnetic sheet. The size of the magnetic sheet is 150 mm×150 mm and the thickness is 100 μm. The volume filling rate of the flat powder in each magnetic sheet was about 50%. Next, this magnetic sheet was cut into a donut shape with an outer diameter of 7 mm and an inner diameter of 3 mm, and the impedance characteristic at 1 MHz was measured at room temperature with an impedance measuring device. From the result, the magnetic permeability (real part and imaginary part of complex magnetic permeability) was measured. : Μ′ and μ″) were calculated. The present invention has been described above based on the embodiment, but the present invention is not particularly limited to this embodiment.

硫酸および塩酸に対する溶出量が600ppm以下の少ない例を耐食性良好とした。 An example in which the elution amount with respect to sulfuric acid and hydrochloric acid was 600 ppm or less was regarded as good corrosion resistance.

表1に示すNo.2〜6、11〜13、18〜26、表2に示すNo.30〜34、38〜42、46〜54、表3に示すNo.58〜62、66〜70、74〜82、85〜88が本発明例であり、表1に示すNo.1、7〜10、14〜17、27〜29、表2に示すNo.35〜37、43〜45、55〜57、表3に示す63〜65、71〜73、83〜84は比較例である。 No. shown in Table 1 2-6, 11-13, 18-26, No. 2 shown in Table 2. 30 to 34, 38 to 42, 46 to 54, and Nos. Nos. 58 to 62, 66 to 70, 74 to 82, and 85 to 88 are examples of the present invention. Nos. 1, 7 to 10, 14 to 17, 27 to 29, and Nos. 35-37, 43-45, 55-57, 63-65, 71-73, and 83-84 shown in Table 3 are comparative examples.

表1に示すように、比較例No.1は、Ni含有量が低いために、硫酸に対する流出量および塩酸に対する流出量が多いことから、耐食性が悪い。これに対して、本発明例であるNo.2〜6は、本発明の条件を満たしていることから、硫酸、塩酸に対する流出量が少なく、耐食性に優れている。また、比較例No.7は、Ni含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、シート成型を工夫しても、求める磁気特性を得ることが出来ない。比較例No.8は、No.7と同様に、Ni含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、シート成型を工夫しても、求める磁気特性を得ることが出来ない。 As shown in Table 1, Comparative Example No. No. 1 has a low Ni content, and therefore has a large outflow amount to sulfuric acid and a large outflow amount to hydrochloric acid, and thus has poor corrosion resistance. On the other hand, No. 1 which is an example of the present invention. Since Nos. 2 to 6 satisfy the conditions of the present invention, the amount of outflow to sulfuric acid and hydrochloric acid is small, and the corrosion resistance is excellent. In addition, Comparative Example No. No. 7 has a high Ni content, which causes an increase in the holding force in the longitudinal direction, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained even if the sheet molding is devised. .. Comparative Example No. No. 8 is No. As in No. 7, since the Ni content is high, the holding force in the longitudinal direction is increased, the value of the real permeability μ′ cannot be secured, and the desired magnetic characteristics can be obtained even if the sheet molding is devised. Can not.

比較例No.9は、Cu含有量が低いために、硫酸、塩酸に対する流出量が多く耐食性が悪い。比較例No.10は、扁平加工された粉末を空気中で400℃と低い温度で熱処理することにより、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。これに対して、本発明例であるNo.11〜13は、本発明の条件を満たしていることから優れた磁気特性および耐食性を得ることができる。比較例No.14は、扁平加工された粉末を空気中で処理されることから、飽和磁化が得られず、長手方向の保持力の増加を招き、求める磁気特性を得ることが出来ない。 Comparative Example No. No. 9 has a low Cu content, and therefore has a large outflow amount with respect to sulfuric acid and hydrochloric acid, and has poor corrosion resistance. Comparative Example No. In No. 10, the flattened powder is heat-treated in air at a low temperature of 400° C., which causes an increase in the holding force in the longitudinal direction, the value of the real permeability μ′ cannot be secured, and the desired magnetic properties are obtained. I can't. On the other hand, No. 1 which is an example of the present invention. Since Nos. 11 to 13 satisfy the conditions of the present invention, excellent magnetic characteristics and corrosion resistance can be obtained. Comparative Example No. In No. 14, since the flattened powder is processed in air, saturation magnetization cannot be obtained, the coercive force in the longitudinal direction is increased, and desired magnetic characteristics cannot be obtained.

比較例No.15は、Cu含有量が高いために、熱処理時にCuリッチ相が析出するために、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。比較例No.16は、No.15と同様に、Cu含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.17は、Mo含有量が少ないために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、本発明例であるNo.18〜26は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. No. 15 has a high Cu content, so that a Cu-rich phase precipitates during heat treatment, resulting in an increase in coercive force, and it is not possible to secure the value of the real magnetic permeability μ′, and the desired magnetic characteristics cannot be obtained. .. Comparative Example No. No. 16 is No. Similarly to No. 15, since the Cu content is high, the holding force in the longitudinal direction is increased, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. Since No. 17 has a small Mo content, it has a large outflow amount with respect to sulfuric acid and hydrochloric acid and has poor corrosion resistance. On the other hand, No. 1 which is an example of the present invention. Since Nos. 18 to 26 satisfy the conditions of the present invention, excellent magnetic properties and corrosion resistance can be obtained.

比較例No.27は、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.28は、比較例No.27と同様に、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.29は、Ni含有量が少ないために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、表2に示す、本発明例であるNo.30〜34は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. In No. 27, since the Mo content is high, the Mo-rich phase is precipitated during the heat treatment, which causes an increase in coercive force, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. 28 is a comparative example No. As in No. 27, since the Mo content is high, the Mo-rich phase is precipitated during the heat treatment, which causes an increase in coercive force and cannot secure the value of the real magnetic permeability μ′, and the desired magnetic properties can be obtained. Absent. Comparative Example No. Since No. 29 has a small Ni content, it has a large outflow amount with respect to sulfuric acid and hydrochloric acid and has poor corrosion resistance. On the other hand, as shown in Table 2, No. Since Nos. 30 to 34 satisfy the conditions of the present invention, excellent magnetic characteristics and corrosion resistance can be obtained.

表2に示すように、比較例No.35は、Ni含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。比較例No.36は、比較例No.35と同様に、Ni含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。比較例No.37は、Cu含有量が低いために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、本発明例であるNo.38〜42は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 As shown in Table 2, Comparative Example No. In No. 35, since the Ni content is high, the coercive force in the longitudinal direction is increased, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. 36 is a comparative example No. Similarly to No. 35, since the Ni content is high, the holding force in the longitudinal direction is increased, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. Since No. 37 has a low Cu content, it has a large amount of outflow to sulfuric acid and hydrochloric acid and has poor corrosion resistance. On the other hand, No. 1 which is an example of the present invention. Nos. 38 to 42 satisfy the conditions of the present invention, and therefore excellent magnetic properties and corrosion resistance can be obtained.

比較例No.43は、Cu含有量が高いために、熱処理時にCuリッチ相が析出するために、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。比較例No.44は、No.43と同様に、Cu含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.45は、Mo含有量が少ないために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、本発明例であるNo.46〜54は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. No. 43 has a high Cu content, so that a Cu-rich phase precipitates during heat treatment, resulting in an increase in coercive force, and it is not possible to secure the value of the real magnetic permeability μ′, and the desired magnetic characteristics cannot be obtained. .. Comparative Example No. No. 44 is No. Similar to No. 43, since the Cu content is high, the coercive force in the longitudinal direction is increased, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. No. 45, which has a small Mo content, has a large outflow amount to sulfuric acid and hydrochloric acid, and has poor corrosion resistance. On the other hand, No. 1 which is an example of the present invention. Since Nos. 46 to 54 satisfy the conditions of the present invention, excellent magnetic properties and corrosion resistance can be obtained.

比較例No.55は、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.56は、比較例No.55と同様に、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.57は、Ni含有量が少ないために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、表3に示す、本発明例であるNo.58〜62は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. In No. 55, the Mo content is high, so that the Mo-rich phase is precipitated during the heat treatment, which causes an increase in coercive force and cannot secure the value of the real magnetic permeability μ′, and the desired magnetic properties cannot be obtained. Comparative Example No. 56 is a comparative example No. Similar to 55, since the Mo content is high, the Mo-rich phase is precipitated during the heat treatment, resulting in an increase in coercive force, and it is not possible to secure the value of the real permeability μ′, and the desired magnetic properties can be obtained. Absent. Comparative Example No. No. 57, which has a small Ni content, has a large outflow amount with respect to sulfuric acid and hydrochloric acid, and has poor corrosion resistance. On the other hand, as shown in Table 3, No. Since Nos. 58 to 62 satisfy the conditions of the present invention, excellent magnetic properties and corrosion resistance can be obtained.

比較例No.63は、Ni含有量が高いために、長手方向の保持力の増加を招き、かつ実数透磁率μ’の値および虚数透磁率μ’’を確保できないために、求める磁気特性を得ることが出来ない。比較例No.64は、比較例No.63と同様に、Ni含有量が高いために、長手方向の保持力の増加を招き、かつ実数透磁率μ’の値および虚数透磁率μ’’を確保できないために、求める磁気特性を得ることが出来ない。比較例No.65は、Cu含有量が低いために、硫酸、塩酸に対する流出量が多く耐食性が悪い。また、いずれも、偏平加工された粉末が空気中で処理されることから、粉末の保磁力の値が上昇し、透磁率の値が低下するものである。これに対して、本発明例であるNo.66〜70は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. No. 63 has a high Ni content, which causes an increase in the coercive force in the longitudinal direction, and cannot secure the value of the real magnetic permeability μ′ and the imaginary magnetic permeability μ″, so that the desired magnetic properties can be obtained. Absent. Comparative Example No. 64 is a comparative example No. Similar to No. 63, the high Ni content causes an increase in the holding force in the longitudinal direction, and since the value of the real magnetic permeability μ′ and the imaginary magnetic permeability μ″ cannot be secured, the required magnetic properties are obtained. I can't. Comparative Example No. Since No. 65 has a low Cu content, it has a large outflow amount with respect to sulfuric acid and hydrochloric acid, and has poor corrosion resistance. Further, in both cases, since the flattened powder is treated in air, the value of the coercive force of the powder increases and the value of magnetic permeability decreases. On the other hand, No. 1 which is an example of the present invention. Since 66 to 70 satisfy the conditions of the present invention, excellent magnetic properties and corrosion resistance can be obtained.

比較例No.71は、Cu含有量が高いために、熱処理時にCuリッチ相が析出するために、保磁力の増加を招き、実数透磁率μ’の値を確保できず、求める磁気特性を得ることが出来ない。比較例No.72は、No.71と同様に、Cu含有量が高いために、長手方向の保持力の増加を招き、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.73は、Mo含有量が少ないために、硫酸、塩酸に対する流出量が多く耐食性が悪い。これに対して、本発明例であるNo.74〜82は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. No. 71, which has a high Cu content, causes a Cu-rich phase to precipitate during heat treatment, which leads to an increase in coercive force, failing to secure the value of the real magnetic permeability μ′, and the desired magnetic properties cannot be obtained. .. Comparative Example No. No. 72 is No. Similar to No. 71, since the Cu content is high, the holding force in the longitudinal direction is increased, the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic characteristics cannot be obtained. Comparative Example No. Since No. 73 has a small Mo content, it has a large outflow amount with respect to sulfuric acid and hydrochloric acid, and has poor corrosion resistance. On the other hand, No. 1 which is an example of the present invention. Since 74 to 82 satisfy the conditions of the present invention, excellent magnetic characteristics and corrosion resistance can be obtained.

比較例No.83は、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加が極めて大きく、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。比較例No.84は、比較例No.83と同様に、Mo含有量が高いために、熱処理時にMoリッチ相が析出するため、保磁力の増加が極めて大きく、実数透磁率μ’の値を確保できず、求める磁性特性を得ることが出来ない。これに対して、本発明例であるNo.85〜88は、本発明の条件を満たしていることから、優れた磁気特性および耐食性を得ることができる。 Comparative Example No. In No. 83, since the Mo content is high and the Mo rich phase is precipitated during the heat treatment, the coercive force is extremely increased, the value of the real permeability μ′ cannot be secured, and the desired magnetic properties cannot be obtained. .. Comparative Example No. 84 is a comparative example No. Similar to No. 83, since the Mo content is high, the Mo rich phase is precipitated during the heat treatment, so that the coercive force is extremely increased and the value of the real magnetic permeability μ′ cannot be secured, and the desired magnetic properties can be obtained. Can not. On the other hand, No. 1 which is an example of the present invention. Since Nos. 85 to 88 satisfy the conditions of the present invention, excellent magnetic properties and corrosion resistance can be obtained.

以上述べたように、Fe−Si−Cr系合金の軟磁性偏平粉末にNi、Cu、Moの1種または2種以上を添加することで、Cr酸化皮膜を有する合金にNi、CuまたはMoの添加により、Cr酸化被膜を強化し、酸化被膜と素地の密着性を向上させ、磁気特性の劣化を抑制し、耐蝕性を向上させるものである。


出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, by adding one or more of Ni, Cu and Mo to the soft magnetic flat powder of the Fe—Si—Cr alloy, Ni, Cu or Mo of the alloy having the Cr oxide film can be added. By adding, the Cr oxide film is strengthened, the adhesion between the oxide film and the substrate is improved, the deterioration of magnetic properties is suppressed, and the corrosion resistance is improved.


Applicant Sanyo Special Steel Co., Ltd.
Attorney Attorney Shiina Akira

Claims (5)

軟磁性粉末を扁平化処理することにより得られた扁平粉末であって、軟磁性扁平粉末が、Si:15mass%以下(0は含まない)、Cr:6mass%超〜18mass%、Ni、Cu、Moのうち1種類または2種類以上の合計:0.3mass%超〜6mass%、残部がFeおよび不可避的微量不純物からなるFe―Si−Cr系合金であることを特徴とする軟磁性扁平粉末。 A flat powder obtained by flattening a soft magnetic powder, wherein the soft magnetic flat powder is Si: 15 mass% or less (not including 0), Cr: more than 6 mass% to 18 mass%, Ni, Cu, One or two or more kinds of Mo in total: more than 0.3 mass% to 6 mass%, and the balance being Fe—Si—Cr alloy containing Fe and inevitable trace impurities, a soft magnetic flat powder. 扁平粉末の長手方向に磁場を印加して測定した保磁力が240〜720
A/mの範囲にあり、かつ飽和磁化が1.0T以上であることを特徴とする請求項1に記載された軟磁性扁平粉末。
The coercive force measured by applying a magnetic field in the longitudinal direction of the flat powder is 240 to 720.
The soft magnetic flat powder according to claim 1, which has an A/m range and a saturation magnetization of 1.0 T or more.
請求項1または2に記載された軟磁性扁平粉末を用いて成形された磁性シートであって、RFID用途または、13.56MHz帯域における磁性シートに成形した際の磁気特性である実数透磁率μ’が40以上かつ虚数透磁率μ’’が10以下(0は含まない)であることを特徴とする磁性シート。 A magnetic sheet formed by using the soft magnetic flat powder according to claim 1 or 2, which is a magnetic property when used for RFID or when formed into a magnetic sheet in a 13.56 MHz band. Is 40 or more and the imaginary magnetic permeability μ″ is 10 or less (0 is not included), and a magnetic sheet. 原料粉末作製工程と、前記原料粉末を扁平化する扁平加工工程により、請求項1〜3のいずれか1項に記載した軟磁性扁平粉末を得ることを特徴とする軟磁性扁平粉末の製造方法。 A method for producing a soft magnetic flat powder, characterized in that the soft magnetic flat powder according to any one of claims 1 to 3 is obtained by a raw powder preparation step and a flattening step of flattening the raw powder. ガスアトマイズ法による原料粉末作製工程と、前記原料粉末を扁平化する扁平加工工程と、前記扁平加工された粉末を真空またはアルゴン雰囲気で、500℃〜900℃で熱処理する工程により、請求項1〜3のいずれか1項に記載した軟磁性扁平粉末を得ることを特徴とする軟磁性扁平粉末の製造方法。 The raw material powder preparation step by a gas atomization method, the flattening step of flattening the raw material powder, and the step of heat-treating the flattened powder at 500° C. to 900° C. in a vacuum or argon atmosphere. 10. A method for producing a soft magnetic flat powder, which comprises obtaining the soft magnetic flat powder according to any one of 1.
JP2016167757A 2016-08-30 2016-08-30 Soft magnetic flat powder, magnetic sheet and method for producing the same Active JP6722548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016167757A JP6722548B2 (en) 2016-08-30 2016-08-30 Soft magnetic flat powder, magnetic sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016167757A JP6722548B2 (en) 2016-08-30 2016-08-30 Soft magnetic flat powder, magnetic sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018035385A JP2018035385A (en) 2018-03-08
JP6722548B2 true JP6722548B2 (en) 2020-07-15

Family

ID=61565509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016167757A Active JP6722548B2 (en) 2016-08-30 2016-08-30 Soft magnetic flat powder, magnetic sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP6722548B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109811268A (en) * 2019-01-23 2019-05-28 江西理工大学 A kind of spherical FeSiCr magnetic Nano absorbing material and preparation method thereof
CN110273114B (en) * 2019-08-06 2021-04-09 华北理工大学 Wear-resistant iron-silicon-chromium alloy and preparation method thereof
CN112908605A (en) * 2021-02-20 2021-06-04 深圳市普乐华科技有限公司 Metal self-rust-proof magnetic powder core and manufacturing method thereof
KR102637894B1 (en) * 2022-09-23 2024-02-20 국방과학연구소 Plate-shaped magnetic particle with controlled magnetic anisotropy and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3708562B2 (en) * 1993-10-20 2005-10-19 東北特殊鋼株式会社 Powder sintered electromagnetic stainless steel
JPH07238352A (en) * 1994-02-28 1995-09-12 Sumitomo Metal Mining Co Ltd Sintered compact of highly corrosion resistant silicon stainless steel
JP4573918B2 (en) * 1997-09-22 2010-11-04 三菱マテリアル株式会社 Flat Fe-based alloy powder for magnetic shield
JP4717754B2 (en) * 2006-08-23 2011-07-06 山陽特殊製鋼株式会社 Flat powder for electromagnetic wave absorber and electromagnetic wave absorber
JP5289807B2 (en) * 2007-06-11 2013-09-11 日本ピストンリング株式会社 Soft magnetic iron-based sintered material
JP6442236B2 (en) * 2014-11-10 2018-12-19 山陽特殊製鋼株式会社 Soft magnetic flat powder and method for producing the same

Also Published As

Publication number Publication date
JP2018035385A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6722548B2 (en) Soft magnetic flat powder, magnetic sheet and method for producing the same
US10804014B2 (en) Flat soft magnetic powder and production method therefor
JP6442236B2 (en) Soft magnetic flat powder and method for producing the same
JP6788328B2 (en) Flat soft magnetic powder and its manufacturing method
JP6757117B2 (en) Soft magnetic flat powder and its manufacturing method
KR20160009525A (en) Soft-Magnetic Flat Powder For Magnetic Sheet, Magnetic Sheet Using Same, and Production Method for Soft-Magnetic Flat Powder
JP2014204051A (en) Soft magnetic flat-particle powder, and magnetic sheet arranged by use thereof
JP2010272608A (en) Flat soft magnetic powder and magnetic body
JP2017008376A (en) Fe-BASED ALLOY COMPOSITION, SOFT MAGNETIC POWDER, COMPOSITE MAGNETIC BODY AND MANUFACTURING METHOD OF SOFT MAGNETIC POWDER
EP2985881A1 (en) Wireless charging apparatus
WO2018143427A1 (en) Magnetic flat powder and magnetic sheet containing same
KR20190099389A (en) Soft magnetic flat powder
US11081267B2 (en) Flat powder for high frequency applications and magnetic sheet
KR102393236B1 (en) soft magnetic flat powder
JP6592424B2 (en) Soft magnetic flat powder and magnetic sheet using the same
JP6882905B2 (en) Soft magnetic flat powder
JP2019023346A (en) Soft magnetic flat powder and production method thereof
JP6738502B2 (en) Method for producing soft magnetic flat powder
JP7165690B2 (en) Method for producing flat soft magnetic powder

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171020

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200622

R150 Certificate of patent or registration of utility model

Ref document number: 6722548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250