JP4870116B2 - Method for producing Fe-Co-V alloy material - Google Patents

Method for producing Fe-Co-V alloy material Download PDF

Info

Publication number
JP4870116B2
JP4870116B2 JP2008125524A JP2008125524A JP4870116B2 JP 4870116 B2 JP4870116 B2 JP 4870116B2 JP 2008125524 A JP2008125524 A JP 2008125524A JP 2008125524 A JP2008125524 A JP 2008125524A JP 4870116 B2 JP4870116 B2 JP 4870116B2
Authority
JP
Japan
Prior art keywords
alloy
variation
less
crystal grain
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2008125524A
Other languages
Japanese (ja)
Other versions
JP2008248392A5 (en
JP2008248392A (en
Inventor
芳和 相川
俊一郎 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2008125524A priority Critical patent/JP4870116B2/en
Publication of JP2008248392A publication Critical patent/JP2008248392A/en
Publication of JP2008248392A5 publication Critical patent/JP2008248392A5/ja
Application granted granted Critical
Publication of JP4870116B2 publication Critical patent/JP4870116B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、Fe−Co−V系合金材料の製造方法に関するものである。   The present invention relates to a method for producing an Fe—Co—V alloy material.

従来、Fe−49%Co−2%Vを代表するFe−Co−V合金が飽和磁束密度が得られる合金として知られている。このFe−Co−V合金材は飽和磁束密度が大きいため、分析機としてのTEM、SEM等の対物レンズ、分析計のポールピース等の用途に使用されている。一方、一般的にこれらのFe−Co−V合金材は鋳造法により製造され、一部焼結による検討もされている。しかしながら、鋳造材では磁気特性が部位によってばらつくため製品の精度不良を引起こす場合がある。また、結晶粒の粗大化、不均一性に起因して切削加工性に課題が生じる場合があった。また、焼結体では強度不足であり、かつポア等によって磁気特性がばらつく等の問題がある。   Conventionally, an Fe-Co-V alloy representing Fe-49% Co-2% V is known as an alloy capable of obtaining a saturation magnetic flux density. Since this Fe—Co—V alloy material has a high saturation magnetic flux density, it is used for applications such as an objective lens such as TEM and SEM as an analyzer, and a pole piece of an analyzer. On the other hand, these Fe—Co—V alloy materials are generally manufactured by a casting method, and are also studied by partial sintering. However, since the magnetic properties of cast material vary depending on the part, there may be a case where the accuracy of the product is deteriorated. In addition, there is a case where a problem occurs in cutting workability due to coarsening and non-uniformity of crystal grains. Further, the sintered body has a problem that the strength is insufficient and the magnetic properties vary due to pores or the like.

上述したような問題を解消するべき、例えば特開2000−45050号公報(特許文献1)が提案されている。この特許文献1は、重量比で、Co45〜55%、V:1.7〜3.0%を含有し、さらにB:15〜50ppm、N:100ppm以下を含有し、残部実質的にFeおよび不可避的元素からなることを特徴とする精密鋳造用Fe−Co系合金、特に鋳造応力に抗するため靱性を改善した鋳造用Fe−Co系合金にある。
特開2000−45050号公報
For example, Japanese Patent Laid-Open No. 2000-45050 (Patent Document 1) has been proposed to solve the above-described problems. This Patent Document 1 contains Co 45 to 55% by weight, V: 1.7 to 3.0%, B: 15 to 50 ppm, N: 100 ppm or less, the balance being substantially Fe and It is an Fe—Co alloy for precision casting characterized by comprising inevitable elements, and in particular, an Fe—Co alloy for casting with improved toughness to resist casting stress.
Japanese Unexamined Patent Publication No. 2000-4450

上述した特許文献1は靱性を改善し、割れの発生の少ない精密鋳造用Fe−Co−V系合金であるが、しかしながら、鋳造材であるために、どうしても磁気特性が部位によってばらつくため製品の精度不良を引起こす場合がある。また、結晶粒の粗大化、不均一性に起因して切削加工性が十分と言うことができない。そのために、対物レンズ等に用いた場合には、画像精度が落ち、また、分析計に用いた場合には、分析精度が悪くなるという問題がある。   Patent Document 1 described above is an Fe-Co-V alloy for precision casting with improved toughness and less cracking. However, since it is a cast material, the magnetic characteristics inevitably vary depending on the part, so that the accuracy of the product. It may cause defects. Further, it cannot be said that the machinability is sufficient due to the coarsening and non-uniformity of crystal grains. Therefore, when used for an objective lens or the like, there is a problem that the image accuracy is lowered, and when used for an analyzer, the analysis accuracy is deteriorated.

上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、十分な分析精度と良好な切削加工性を有するための条件として平均結晶粒径ならびにそのばらつきとの相関を見出し、かつアトマイズ粉末を用いることにより、この結晶粒を有する製品を容易に得られ、ばらつきも最小限に抑えることが可能なFe−Co−V系合金材料を提供するものである。   In order to solve the problems as described above, the inventors have made extensive developments and, as a result, found a correlation between the average crystal grain size and its variation as a condition for having sufficient analysis accuracy and good machinability. In addition, by using atomized powder, a product having this crystal grain can be easily obtained, and an Fe—Co—V based alloy material capable of minimizing variation is provided.

その発明の要旨とするところは、
質量%で、Co:40〜60%、V:1.5〜3.5%、B:10〜40ppm、Si:0.01〜1.00%、Mn:0.01〜1.00%、C:0.1%以下、残部Feおよび不可避的不純物元素からなるFe−Co−V系合金を溶製し、この合金をアトマイズ法により粉末に作製し、該合金をHIPまたは押出し法により固化成形し、該固化成形した合金材料の任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)がいずれも5〜100μmであり、かつその10箇所におけるDaの標準偏差が10個のDaの平均値に対して10%以下であることを特徴とするFe−Co−V系合金材料の製造方法にある。
The gist of the invention is that
In mass%, Co: 40-60%, V: 1.5-3.5%, B: 10-40 ppm , Si: 0.01-1.00%, Mn: 0.01-1.00% C: 0.1% or less, Fe—Co—V alloy composed of Fe and unavoidable impurity elements is melted, this alloy is made into powder by atomizing method, and the alloy is solidified by HIP or extrusion method The average value (Da) of the crystal grain size in the field of view at 10 arbitrary locations (1 mm × 1 mm) of the molded and solidified alloy material is 5 to 100 μm, and the standard of Da at the 10 locations The deviation is 10% or less with respect to the average value of 10 Das, in the method for producing an Fe—Co—V alloy material.

以上述べたように、本発明による平均結晶粒径を5〜100μmで、かつばらつきが20%以下に抑えることが可能となり、強度にも優れたFe−Co−V系合金の製造を可能にしたことは工業上極めて優れた効果を奏するものである。   As described above, the average crystal grain size according to the present invention is 5 to 100 μm and the variation can be suppressed to 20% or less, and it is possible to produce an Fe—Co—V alloy having excellent strength. This has a very excellent industrial effect.

以下、本発明に係るFe−Co−V系合金材料の成分組成についての限定理由について述べる。なお、本発明に係るFe−Co−V系合金材料の成分組成は特に限定されるものではないが、以下の成分組成のものが望ましい。質量%で、Co:40〜60%、V:1.5〜3.5%、残部Feおよび不可避的不純物元素からなり、さらに、微量元素として、B:10〜40ppm、Si:0.01〜1.00%、Mn:0.01〜1.00%、C:0.1%の1種または2種以上を含有させたFe−Co−V系合金材料にある。   Hereinafter, the reason for limitation about the component composition of the Fe—Co—V alloy material according to the present invention will be described. In addition, although the component composition of the Fe-Co-V type alloy material which concerns on this invention is not specifically limited, The thing of the following component compositions is desirable. In mass%, Co: 40-60%, V: 1.5-3.5%, balance Fe and unavoidable impurity elements, B: 10-40 ppm, Si: 0.01- The Fe-Co-V alloy material contains one or more of 1.00%, Mn: 0.01 to 1.00%, and C: 0.1%.

Co:40〜60%
Coは、高い磁束密度を得るFe−Co−V系合金の主要元素であり、40%未満では高い磁束密度を得るに十分でなく、また、60%を超える添加はその効果が飽和することから、好ましくはその範囲を40〜60%とした。より好ましくは45〜55%とする。
V:1.5〜3.5%
Vは、靱性および保持力を向上させる元素であり、そのためには1.5%以上必要である。しかし、3.5%を超えると飽和磁束密度を低下させるので、その範囲を1.5〜3.5%とした。
Co: 40-60%
Co is a main element of an Fe-Co-V alloy that obtains a high magnetic flux density, and if it is less than 40%, it is not sufficient to obtain a high magnetic flux density, and addition of more than 60% saturates its effect. The range is preferably 40 to 60%. More preferably, it is 45 to 55%.
V: 1.5-3.5%
V is an element that improves toughness and holding power, and for that purpose, 1.5% or more is necessary. However, if it exceeds 3.5%, the saturation magnetic flux density is lowered, so the range was made 1.5 to 3.5%.

B:10〜40ppm
Bは、結晶粒を微細化させ靱性を向上させる元素である。しかし、10ppm以下ではその効果が十分でなく、40ppmを超えると結晶粒界に析出物が多くなり、逆に靱性が低下することから、その範囲を10〜40ppmとした。
Si:0.01〜1.00%
Siは、脱酸剤としての元素である。また、保磁力を低減させる元素でもある。しかし、0.01%未満ではその効果が十分でなく、1.00%を超える添加は飽和磁束密度を低下させるので、その範囲を0.01〜1.00%とした。
B: 10 to 40 ppm
B is an element that refines crystal grains and improves toughness. However, if it is 10 ppm or less, the effect is not sufficient, and if it exceeds 40 ppm, precipitates increase at the grain boundaries and conversely the toughness decreases, so the range was made 10 to 40 ppm.
Si: 0.01-1.00%
Si is an element as a deoxidizer. It is also an element that reduces the coercive force. However, if less than 0.01%, the effect is not sufficient, and addition exceeding 1.00% lowers the saturation magnetic flux density, so the range was made 0.01 to 1.00%.

Mn:0.01〜1.00%
Mnは、Siと同様に、脱酸剤としての元素である。しかし、0.01%未満ではその効果が十分でなく、1.00%を超える添加は飽和磁束密度を低下させるので、その範囲を0.01〜1.00%とした。
C:0.1%
Cは、0.1%を超えると飽和磁束密度が低下するため、その上限を0.1%とした。
Mn: 0.01 to 1.00%
Mn, like Si, is an element as a deoxidizer. However, if less than 0.01%, the effect is not sufficient, and addition exceeding 1.00% lowers the saturation magnetic flux density, so the range was made 0.01 to 1.00%.
C: 0.1%
When C exceeds 0.1%, the saturation magnetic flux density decreases, so the upper limit was made 0.1%.

上述したような成分組成のもとに、本発明者らは、磁気特性のばらつきと結晶粒径のばらつきの間に相関関係のあることを見出し、ある数値を満たせば磁気特性のばらつきは十分に小さくなることを見出したものである。すなわち、本発明に係る結晶粒径の平均値(Damean)を5〜100μmとした。結晶粒径の平均値が100μmを超えると磁気特性のばらつきが大きくなる。また、5μm未満では保磁力の値そのものが高くなるため不可能である。従って、その範囲を5〜100μmとした。好ましくは、10〜30μmとする。   Based on the component composition as described above, the present inventors have found that there is a correlation between the variation in the magnetic properties and the variation in the crystal grain size. It has been found that it becomes smaller. That is, the average value (Damean) of the crystal grain size according to the present invention was set to 5 to 100 μm. When the average value of the crystal grain size exceeds 100 μm, the variation in magnetic characteristics increases. On the other hand, if the thickness is less than 5 μm, the coercive force value itself becomes high, which is impossible. Therefore, the range was set to 5 to 100 μm. Preferably, it shall be 10-30 micrometers.

また、任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)の標準偏差が10%以下において磁気特性のばらつきが十分に小さくなり、磁気特性のばらつきが飽和することを見出したものである。Daのばらつきが10%を超えると磁気特性のばらつきがそれに応じて著しく大きくなる。また、結晶粒を微細にし、そのばらつきを制御する方法としてアトマイズ法により粉末を作製し、それを固化成形することが有効であることを見出した。アトマイズ法は急冷凝固であるため、組織は微細均一となる。この成形方法としては、HIPもしくは押出し法を用いれば、高圧下で成形できるため、成形後は100%密度となり、組織に欠陥がなくなるため、磁気特性が良好となりばらつきも低減することができる。   In addition, when the standard deviation of the average value (Da) of the crystal grain diameter in the field of view at 10 arbitrary locations (1 mm × 1 mm) is 10% or less, the variation in magnetic properties becomes sufficiently small and the variation in magnetic properties is saturated. This is what we found. If the variation of Da exceeds 10%, the variation of the magnetic characteristics will be remarkably increased accordingly. Further, it has been found that it is effective to produce a powder by an atomizing method and to solidify and mold the crystal grain as a method for controlling the variation. Since the atomization method is rapid solidification, the structure becomes fine and uniform. As this forming method, if HIP or an extrusion method is used, forming can be performed under high pressure. Therefore, after forming, the density becomes 100%, and the structure is free from defects. Therefore, magnetic characteristics are improved and variation can be reduced.

以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成Fe−Co−V合金を真空誘導溶解し、アトマイズ法による溶湯ノズル径φ6mm、出湯温度1773K、噴霧圧4MPaにてArガスを用いて、噴霧量20kg/分にてアトマイズを行い、その後急冷してFe−Co−V系合金粉末を得た。この合金粉末を押出成形の場合は、押出温度:1473K、圧力:430MPa、減面率:6.55(φ210mm→φ82mm)で成形した。また、HIP法の場合は、HIP温度:1427K×5hr、圧力:150MPaで成形した。さらに、真空中で結晶粒径を意図的に変化させるため、熱処理:1073K〜1373K×3hrで処理した。その時の処理条件とその結果を表2に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
The component composition Fe-Co-V alloy shown in Table 1 is melted by vacuum induction and atomized at a spray rate of 20 kg / min using Ar gas at a molten metal nozzle diameter of 6 mm by an atomizing method, a hot water temperature of 1773 K and a spray pressure of 4 MPa. Then, it was rapidly cooled to obtain an Fe—Co—V alloy powder. In the case of extrusion molding, this alloy powder was molded at an extrusion temperature of 1473 K, a pressure of 430 MPa, and a surface area reduction ratio of 6.55 (φ210 mm → φ82 mm). In the case of the HIP method, molding was performed at a HIP temperature: 1427 K × 5 hr and a pressure: 150 MPa. Further, in order to intentionally change the crystal grain size in a vacuum, the heat treatment was performed at 1073 K to 1373 K × 3 hr. Table 2 shows the processing conditions and the results at that time.

Figure 0004870116
特性調査として、試料採取部位を押出し材もしくはHIP材の棒材中心部から1mm厚さスライスし、その円盤形状の中心部、中周部、外周部から任意に10箇所、1mm角のブロック形状および外径10mm、内径5mm、厚さ1mmのリング状試験片を採取、ブロック材は結晶粒の大きさおよび密度を測定するために使用、リング材は磁気特性測定用に使用した。また、結晶粒は、光学顕微鏡により結晶粒の大きさを測定、1個の試料の結晶粒径の大きさの平均をDaと定義し、10個の試料間のDaの平均値(Damean)とその平均値に対するばらつきの割合(σd)を測定した。
Figure 0004870116
As a characteristic investigation, the sample collection part was sliced 1 mm thick from the center part of the extruded or HIP material bar, and arbitrarily 10 places from the center part, middle part and outer part of the disk shape, 1 mm square block shape and A ring-shaped test piece having an outer diameter of 10 mm, an inner diameter of 5 mm, and a thickness of 1 mm was collected, the block material was used for measuring the size and density of crystal grains, and the ring material was used for measuring magnetic properties. In addition, the crystal grain size is measured by an optical microscope, the average crystal grain size of one sample is defined as Da, and the average value (Damean) of Da between 10 samples is defined as The ratio of variation (σd) to the average value was measured.

また、磁気特性は、上述したリング試料に巻数20T、および10Tで被膜銅線を巻き、BHトレーサーにより800A/mにおける磁束密度(B10)を測定し、10個の試料を測定した際の平均値(Bmean)と平均値に対する偏差の割合(σb)を測定した。さらに、密度は、湿式法により各試料の比重を測定し、真比重に対する測定値の割合を相対密度として算出した。   In addition, the magnetic characteristics are average values obtained by winding a coated copper wire around the above-described ring sample at 20T and 10T, measuring the magnetic flux density (B10) at 800 A / m with a BH tracer, and measuring 10 samples. (Bmean) and the ratio of deviation to the average value (σb) were measured. Furthermore, the density measured the specific gravity of each sample with the wet method, and computed the ratio of the measured value with respect to true specific gravity as a relative density.

Figure 0004870116
表2に示すように、No.1〜8は本発明例であり、No.9〜17は比較例である。
Figure 0004870116
As shown in Table 2, no. 1-8 are examples of the present invention. 9 to 17 are comparative examples.

比較例No.9〜16は粉末成形方法が鋳造方法によるものであり、また、比較例No.9はV含有量が少なく、比較例No.10はV含有量が多い場合である。比較例No.11はB含有量が少なく、比較例No.12はB含有量が多い場合である。比較例No.13はSi含有量が少なく、比較例No.14はSi含有量が多い場合である。さらに、比較例No.15はMn含有量が少なく、比較例No.16はMn含有量が多い場合である。これらいずれも、サンプル10個のDaの最大、最小値が大きく結晶粒にばらつきの大きく、かつ、サンプル10個のBの最大、最小値も大きく磁気特性に大きくばらつきのあることが分かる。   Comparative Example No. In Nos. 9 to 16, the powder molding method is a casting method. No. 9 has a low V content. 10 is the case where the V content is large. Comparative Example No. No. 11 has a low B content. 12 is the case where the B content is large. Comparative Example No. No. 13 has a low Si content. 14 is the case where the Si content is high. Further, Comparative Example No. 15 has a low Mn content. 16 is the case where the Mn content is large. It can be seen that in both cases, the maximum and minimum values of Da of 10 samples are large and the crystal grains vary greatly, and the maximum and minimum values of B of 10 samples are large and the magnetic characteristics vary greatly.

さらに、比較例No.17の場合は粉末成形方法が焼結の場合であり、比較例No.9〜16と同様に、結晶粒径の平均値にばらつきが大きく、磁気特性での磁束密度での平均値に対する偏差の割合が大きくばらつきのあることが分かる。これに対し、本発明例であるNo.1〜8のいずれも、サンプル10個のDaの最大、最小の差が小さく結晶粒にばらつきの小さく、また、サンプル10個のBの最大、最小も小さく磁気特性にばらつきの小さいことが分かる。   Further, Comparative Example No. In the case of No. 17, the powder forming method is sintering. As in 9 to 16, it can be seen that the average value of the crystal grain size varies greatly, and the ratio of the deviation with respect to the average value of the magnetic flux density in the magnetic characteristics varies greatly. On the other hand, No. which is an example of the present invention. In any of 1 to 8, it can be seen that the difference between the maximum and minimum values of Da of 10 samples is small and the variation in crystal grains is small, and the maximum and minimum values of 10 samples of B are small and the variation in magnetic characteristics is small.

以上述べたように、本発明による平均結晶粒径を5〜100μmで、かつばらつきが20%以下に抑えることが可能となり、特に分析機器としてのTEM、SEM等の対物レンズ、分析計のポールピース等の用途に適した、強度にも優れたFe−Co−V系合金の製造を可能にしたことにある。


特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the average crystal grain size according to the present invention can be suppressed to 5 to 100 μm and the variation can be suppressed to 20% or less. In particular, an objective lens such as a TEM or SEM as an analytical instrument, or a pole piece of an analyzer This makes it possible to produce an Fe—Co—V alloy that is suitable for such applications and has excellent strength.


Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina

Claims (1)

質量%で、
Co:40〜60%、
V:1.5〜3.5%、
B:10〜40ppm
Si:0.01〜1.00%、
Mn:0.01〜1.00%、
C:0.1%以下、
残部Feおよび不可避的不純物元素からなるFe−Co−V系合金を溶製し、この合金をアトマイズ法により粉末に作製し、該合金をHIPまたは押出し法により固化成形し、該固化成形した合金材料の任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)がいずれも5〜100μmであり、かつその10箇所におけるDaの標準偏差が10個のDaの平均値に対して10%以下であることを特徴とするFe−Co−V系合金材料の製造方法。
% By mass
Co: 40-60%
V: 1.5-3.5%
B: 10 to 40 ppm ,
Si: 0.01 to 1.00%,
Mn: 0.01 to 1.00%,
C: 0.1% or less,
An Fe-Co-V alloy composed of the remaining Fe and inevitable impurity elements is melted, this alloy is made into a powder by an atomizing method, the alloy is solidified by HIP or extrusion, and the solidified alloy material The average value (Da) of the crystal grain size in the field of view at any 10 sites (1 mm × 1 mm) is 5 to 100 μm, and the standard deviation of Da at the 10 sites is the average value of 10 Das. The manufacturing method of the Fe-Co-V type alloy material characterized by being 10% or less with respect to this.
JP2008125524A 2008-05-13 2008-05-13 Method for producing Fe-Co-V alloy material Expired - Lifetime JP4870116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008125524A JP4870116B2 (en) 2008-05-13 2008-05-13 Method for producing Fe-Co-V alloy material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008125524A JP4870116B2 (en) 2008-05-13 2008-05-13 Method for producing Fe-Co-V alloy material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003073141A Division JP2004277842A (en) 2003-03-18 2003-03-18 Fe-Co-V BASED ALLOY MATERIAL

Publications (3)

Publication Number Publication Date
JP2008248392A JP2008248392A (en) 2008-10-16
JP2008248392A5 JP2008248392A5 (en) 2009-12-24
JP4870116B2 true JP4870116B2 (en) 2012-02-08

Family

ID=39973669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008125524A Expired - Lifetime JP4870116B2 (en) 2008-05-13 2008-05-13 Method for producing Fe-Co-V alloy material

Country Status (1)

Country Link
JP (1) JP4870116B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7087558B2 (en) 2018-03-29 2022-06-21 セイコーエプソン株式会社 Manufacturing method of soft magnetic powder and sintered body
JP7099006B2 (en) * 2018-03-29 2022-07-12 セイコーエプソン株式会社 Manufacturing method of soft magnetic powder and sintered body

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045050A (en) * 1998-07-28 2000-02-15 Hmy Ltd Fe-Co MAGNETIC ALLOY FOR PRECISION CASTING
JP2000087194A (en) * 1998-09-16 2000-03-28 Hitachi Powdered Metals Co Ltd Alloy for electromagnet and its manufacture
JP2003068514A (en) * 2001-08-28 2003-03-07 Daido Steel Co Ltd Powder magnetic core and method for manufacturing the same

Also Published As

Publication number Publication date
JP2008248392A (en) 2008-10-16

Similar Documents

Publication Publication Date Title
CN104889379B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
CN104942278B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
SE533866C2 (en) High-strength iron powder composition and sintered detail made therefrom
JP2007092162A (en) Highly compressive iron powder, iron powder for dust core using the same and dust core
JP2009544841A (en) Iron-based powder
JP2022084836A (en) Iron-based powder
JP2019065359A (en) Compressor component for aluminum powder alloy-made transport excellent in mechanical property at high temperature, and manufacturing method therefor
JP6309215B2 (en) Sintered machine part manufacturing method and mixed powder used therefor
JP2008533295A (en) Use to infiltrate copper alloys and their powder metal parts
KR101584599B1 (en) Iron powder for dust cores
KR102068972B1 (en) Soft magnetic metal powder and soft magnetic metal dust core
JP4870116B2 (en) Method for producing Fe-Co-V alloy material
JP4712443B2 (en) Manufacturing method of high magnetic flux density material with excellent machinability
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP6155894B2 (en) Iron-based sintered material and method for producing the same
JP6690781B2 (en) Alloy steel powder
CN110238379B (en) Metal powder for powder metallurgy, composite, granulated powder, and sintered body
JP2006521472A (en) Cobalt-based metal powder and method for producing the same
KR102647464B1 (en) Iron alloy sintered body and iron mixed powder for powder metallurgy
JP4907597B2 (en) Method for producing Fe-Co-V alloy material
JP6930590B2 (en) Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy
JP2004277842A (en) Fe-Co-V BASED ALLOY MATERIAL
JP4751227B2 (en) Method for producing soft magnetic material
JP5786755B2 (en) Method for producing ferrous sintered material
JP2018206835A (en) Soft magnetic alloy particle and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111116

R150 Certificate of patent or registration of utility model

Ref document number: 4870116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term