JP4870116B2 - Method for producing Fe-Co-V alloy material - Google Patents
Method for producing Fe-Co-V alloy material Download PDFInfo
- Publication number
- JP4870116B2 JP4870116B2 JP2008125524A JP2008125524A JP4870116B2 JP 4870116 B2 JP4870116 B2 JP 4870116B2 JP 2008125524 A JP2008125524 A JP 2008125524A JP 2008125524 A JP2008125524 A JP 2008125524A JP 4870116 B2 JP4870116 B2 JP 4870116B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- variation
- less
- crystal grain
- alloy material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000956 alloy Substances 0.000 title claims description 29
- 229910020516 Co—V Inorganic materials 0.000 title claims description 19
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 239000013078 crystal Substances 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 8
- 238000001125 extrusion Methods 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 3
- 230000004907 flux Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 3
- 229910017061 Fe Co Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000005495 investment casting Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000700 radioactive tracer Substances 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、Fe−Co−V系合金材料の製造方法に関するものである。 The present invention relates to a method for producing an Fe—Co—V alloy material.
従来、Fe−49%Co−2%Vを代表するFe−Co−V合金が飽和磁束密度が得られる合金として知られている。このFe−Co−V合金材は飽和磁束密度が大きいため、分析機としてのTEM、SEM等の対物レンズ、分析計のポールピース等の用途に使用されている。一方、一般的にこれらのFe−Co−V合金材は鋳造法により製造され、一部焼結による検討もされている。しかしながら、鋳造材では磁気特性が部位によってばらつくため製品の精度不良を引起こす場合がある。また、結晶粒の粗大化、不均一性に起因して切削加工性に課題が生じる場合があった。また、焼結体では強度不足であり、かつポア等によって磁気特性がばらつく等の問題がある。 Conventionally, an Fe-Co-V alloy representing Fe-49% Co-2% V is known as an alloy capable of obtaining a saturation magnetic flux density. Since this Fe—Co—V alloy material has a high saturation magnetic flux density, it is used for applications such as an objective lens such as TEM and SEM as an analyzer, and a pole piece of an analyzer. On the other hand, these Fe—Co—V alloy materials are generally manufactured by a casting method, and are also studied by partial sintering. However, since the magnetic properties of cast material vary depending on the part, there may be a case where the accuracy of the product is deteriorated. In addition, there is a case where a problem occurs in cutting workability due to coarsening and non-uniformity of crystal grains. Further, the sintered body has a problem that the strength is insufficient and the magnetic properties vary due to pores or the like.
上述したような問題を解消するべき、例えば特開2000−45050号公報(特許文献1)が提案されている。この特許文献1は、重量比で、Co45〜55%、V:1.7〜3.0%を含有し、さらにB:15〜50ppm、N:100ppm以下を含有し、残部実質的にFeおよび不可避的元素からなることを特徴とする精密鋳造用Fe−Co系合金、特に鋳造応力に抗するため靱性を改善した鋳造用Fe−Co系合金にある。
上述した特許文献1は靱性を改善し、割れの発生の少ない精密鋳造用Fe−Co−V系合金であるが、しかしながら、鋳造材であるために、どうしても磁気特性が部位によってばらつくため製品の精度不良を引起こす場合がある。また、結晶粒の粗大化、不均一性に起因して切削加工性が十分と言うことができない。そのために、対物レンズ等に用いた場合には、画像精度が落ち、また、分析計に用いた場合には、分析精度が悪くなるという問題がある。 Patent Document 1 described above is an Fe-Co-V alloy for precision casting with improved toughness and less cracking. However, since it is a cast material, the magnetic characteristics inevitably vary depending on the part, so that the accuracy of the product. It may cause defects. Further, it cannot be said that the machinability is sufficient due to the coarsening and non-uniformity of crystal grains. Therefore, when used for an objective lens or the like, there is a problem that the image accuracy is lowered, and when used for an analyzer, the analysis accuracy is deteriorated.
上述したような問題を解消するために、発明者らは鋭意開発を進めた結果、十分な分析精度と良好な切削加工性を有するための条件として平均結晶粒径ならびにそのばらつきとの相関を見出し、かつアトマイズ粉末を用いることにより、この結晶粒を有する製品を容易に得られ、ばらつきも最小限に抑えることが可能なFe−Co−V系合金材料を提供するものである。 In order to solve the problems as described above, the inventors have made extensive developments and, as a result, found a correlation between the average crystal grain size and its variation as a condition for having sufficient analysis accuracy and good machinability. In addition, by using atomized powder, a product having this crystal grain can be easily obtained, and an Fe—Co—V based alloy material capable of minimizing variation is provided.
その発明の要旨とするところは、
質量%で、Co:40〜60%、V:1.5〜3.5%、B:10〜40ppm、Si:0.01〜1.00%、Mn:0.01〜1.00%、C:0.1%以下、残部Feおよび不可避的不純物元素からなるFe−Co−V系合金を溶製し、この合金をアトマイズ法により粉末に作製し、該合金をHIPまたは押出し法により固化成形し、該固化成形した合金材料の任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)がいずれも5〜100μmであり、かつその10箇所におけるDaの標準偏差が10個のDaの平均値に対して10%以下であることを特徴とするFe−Co−V系合金材料の製造方法にある。
The gist of the invention is that
In mass%, Co: 40-60%, V: 1.5-3.5%, B: 10-40 ppm , Si: 0.01-1.00%, Mn: 0.01-1.00% C: 0.1% or less, Fe—Co—V alloy composed of Fe and unavoidable impurity elements is melted, this alloy is made into powder by atomizing method, and the alloy is solidified by HIP or extrusion method The average value (Da) of the crystal grain size in the field of view at 10 arbitrary locations (1 mm × 1 mm) of the molded and solidified alloy material is 5 to 100 μm, and the standard of Da at the 10 locations The deviation is 10% or less with respect to the average value of 10 Das, in the method for producing an Fe—Co—V alloy material.
以上述べたように、本発明による平均結晶粒径を5〜100μmで、かつばらつきが20%以下に抑えることが可能となり、強度にも優れたFe−Co−V系合金の製造を可能にしたことは工業上極めて優れた効果を奏するものである。 As described above, the average crystal grain size according to the present invention is 5 to 100 μm and the variation can be suppressed to 20% or less, and it is possible to produce an Fe—Co—V alloy having excellent strength. This has a very excellent industrial effect.
以下、本発明に係るFe−Co−V系合金材料の成分組成についての限定理由について述べる。なお、本発明に係るFe−Co−V系合金材料の成分組成は特に限定されるものではないが、以下の成分組成のものが望ましい。質量%で、Co:40〜60%、V:1.5〜3.5%、残部Feおよび不可避的不純物元素からなり、さらに、微量元素として、B:10〜40ppm、Si:0.01〜1.00%、Mn:0.01〜1.00%、C:0.1%の1種または2種以上を含有させたFe−Co−V系合金材料にある。 Hereinafter, the reason for limitation about the component composition of the Fe—Co—V alloy material according to the present invention will be described. In addition, although the component composition of the Fe-Co-V type alloy material which concerns on this invention is not specifically limited, The thing of the following component compositions is desirable. In mass%, Co: 40-60%, V: 1.5-3.5%, balance Fe and unavoidable impurity elements, B: 10-40 ppm, Si: 0.01- The Fe-Co-V alloy material contains one or more of 1.00%, Mn: 0.01 to 1.00%, and C: 0.1%.
Co:40〜60%
Coは、高い磁束密度を得るFe−Co−V系合金の主要元素であり、40%未満では高い磁束密度を得るに十分でなく、また、60%を超える添加はその効果が飽和することから、好ましくはその範囲を40〜60%とした。より好ましくは45〜55%とする。
V:1.5〜3.5%
Vは、靱性および保持力を向上させる元素であり、そのためには1.5%以上必要である。しかし、3.5%を超えると飽和磁束密度を低下させるので、その範囲を1.5〜3.5%とした。
Co: 40-60%
Co is a main element of an Fe-Co-V alloy that obtains a high magnetic flux density, and if it is less than 40%, it is not sufficient to obtain a high magnetic flux density, and addition of more than 60% saturates its effect. The range is preferably 40 to 60%. More preferably, it is 45 to 55%.
V: 1.5-3.5%
V is an element that improves toughness and holding power, and for that purpose, 1.5% or more is necessary. However, if it exceeds 3.5%, the saturation magnetic flux density is lowered, so the range was made 1.5 to 3.5%.
B:10〜40ppm
Bは、結晶粒を微細化させ靱性を向上させる元素である。しかし、10ppm以下ではその効果が十分でなく、40ppmを超えると結晶粒界に析出物が多くなり、逆に靱性が低下することから、その範囲を10〜40ppmとした。
Si:0.01〜1.00%
Siは、脱酸剤としての元素である。また、保磁力を低減させる元素でもある。しかし、0.01%未満ではその効果が十分でなく、1.00%を超える添加は飽和磁束密度を低下させるので、その範囲を0.01〜1.00%とした。
B: 10 to 40 ppm
B is an element that refines crystal grains and improves toughness. However, if it is 10 ppm or less, the effect is not sufficient, and if it exceeds 40 ppm, precipitates increase at the grain boundaries and conversely the toughness decreases, so the range was made 10 to 40 ppm.
Si: 0.01-1.00%
Si is an element as a deoxidizer. It is also an element that reduces the coercive force. However, if less than 0.01%, the effect is not sufficient, and addition exceeding 1.00% lowers the saturation magnetic flux density, so the range was made 0.01 to 1.00%.
Mn:0.01〜1.00%
Mnは、Siと同様に、脱酸剤としての元素である。しかし、0.01%未満ではその効果が十分でなく、1.00%を超える添加は飽和磁束密度を低下させるので、その範囲を0.01〜1.00%とした。
C:0.1%
Cは、0.1%を超えると飽和磁束密度が低下するため、その上限を0.1%とした。
Mn: 0.01 to 1.00%
Mn, like Si, is an element as a deoxidizer. However, if less than 0.01%, the effect is not sufficient, and addition exceeding 1.00% lowers the saturation magnetic flux density, so the range was made 0.01 to 1.00%.
C: 0.1%
When C exceeds 0.1%, the saturation magnetic flux density decreases, so the upper limit was made 0.1%.
上述したような成分組成のもとに、本発明者らは、磁気特性のばらつきと結晶粒径のばらつきの間に相関関係のあることを見出し、ある数値を満たせば磁気特性のばらつきは十分に小さくなることを見出したものである。すなわち、本発明に係る結晶粒径の平均値(Damean)を5〜100μmとした。結晶粒径の平均値が100μmを超えると磁気特性のばらつきが大きくなる。また、5μm未満では保磁力の値そのものが高くなるため不可能である。従って、その範囲を5〜100μmとした。好ましくは、10〜30μmとする。 Based on the component composition as described above, the present inventors have found that there is a correlation between the variation in the magnetic properties and the variation in the crystal grain size. It has been found that it becomes smaller. That is, the average value (Damean) of the crystal grain size according to the present invention was set to 5 to 100 μm. When the average value of the crystal grain size exceeds 100 μm, the variation in magnetic characteristics increases. On the other hand, if the thickness is less than 5 μm, the coercive force value itself becomes high, which is impossible. Therefore, the range was set to 5 to 100 μm. Preferably, it shall be 10-30 micrometers.
また、任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)の標準偏差が10%以下において磁気特性のばらつきが十分に小さくなり、磁気特性のばらつきが飽和することを見出したものである。Daのばらつきが10%を超えると磁気特性のばらつきがそれに応じて著しく大きくなる。また、結晶粒を微細にし、そのばらつきを制御する方法としてアトマイズ法により粉末を作製し、それを固化成形することが有効であることを見出した。アトマイズ法は急冷凝固であるため、組織は微細均一となる。この成形方法としては、HIPもしくは押出し法を用いれば、高圧下で成形できるため、成形後は100%密度となり、組織に欠陥がなくなるため、磁気特性が良好となりばらつきも低減することができる。 In addition, when the standard deviation of the average value (Da) of the crystal grain diameter in the field of view at 10 arbitrary locations (1 mm × 1 mm) is 10% or less, the variation in magnetic properties becomes sufficiently small and the variation in magnetic properties is saturated. This is what we found. If the variation of Da exceeds 10%, the variation of the magnetic characteristics will be remarkably increased accordingly. Further, it has been found that it is effective to produce a powder by an atomizing method and to solidify and mold the crystal grain as a method for controlling the variation. Since the atomization method is rapid solidification, the structure becomes fine and uniform. As this forming method, if HIP or an extrusion method is used, forming can be performed under high pressure. Therefore, after forming, the density becomes 100%, and the structure is free from defects. Therefore, magnetic characteristics are improved and variation can be reduced.
以下、本発明について実施例によって具体的に説明する。
表1に示す成分組成Fe−Co−V合金を真空誘導溶解し、アトマイズ法による溶湯ノズル径φ6mm、出湯温度1773K、噴霧圧4MPaにてArガスを用いて、噴霧量20kg/分にてアトマイズを行い、その後急冷してFe−Co−V系合金粉末を得た。この合金粉末を押出成形の場合は、押出温度:1473K、圧力:430MPa、減面率:6.55(φ210mm→φ82mm)で成形した。また、HIP法の場合は、HIP温度:1427K×5hr、圧力:150MPaで成形した。さらに、真空中で結晶粒径を意図的に変化させるため、熱処理:1073K〜1373K×3hrで処理した。その時の処理条件とその結果を表2に示す。
Hereinafter, the present invention will be specifically described with reference to examples.
The component composition Fe-Co-V alloy shown in Table 1 is melted by vacuum induction and atomized at a spray rate of 20 kg / min using Ar gas at a molten metal nozzle diameter of 6 mm by an atomizing method, a hot water temperature of 1773 K and a spray pressure of 4 MPa. Then, it was rapidly cooled to obtain an Fe—Co—V alloy powder. In the case of extrusion molding, this alloy powder was molded at an extrusion temperature of 1473 K, a pressure of 430 MPa, and a surface area reduction ratio of 6.55 (φ210 mm → φ82 mm). In the case of the HIP method, molding was performed at a HIP temperature: 1427 K × 5 hr and a pressure: 150 MPa. Further, in order to intentionally change the crystal grain size in a vacuum, the heat treatment was performed at 1073 K to 1373 K × 3 hr. Table 2 shows the processing conditions and the results at that time.
また、磁気特性は、上述したリング試料に巻数20T、および10Tで被膜銅線を巻き、BHトレーサーにより800A/mにおける磁束密度(B10)を測定し、10個の試料を測定した際の平均値(Bmean)と平均値に対する偏差の割合(σb)を測定した。さらに、密度は、湿式法により各試料の比重を測定し、真比重に対する測定値の割合を相対密度として算出した。 In addition, the magnetic characteristics are average values obtained by winding a coated copper wire around the above-described ring sample at 20T and 10T, measuring the magnetic flux density (B10) at 800 A / m with a BH tracer, and measuring 10 samples. (Bmean) and the ratio of deviation to the average value (σb) were measured. Furthermore, the density measured the specific gravity of each sample with the wet method, and computed the ratio of the measured value with respect to true specific gravity as a relative density.
比較例No.9〜16は粉末成形方法が鋳造方法によるものであり、また、比較例No.9はV含有量が少なく、比較例No.10はV含有量が多い場合である。比較例No.11はB含有量が少なく、比較例No.12はB含有量が多い場合である。比較例No.13はSi含有量が少なく、比較例No.14はSi含有量が多い場合である。さらに、比較例No.15はMn含有量が少なく、比較例No.16はMn含有量が多い場合である。これらいずれも、サンプル10個のDaの最大、最小値が大きく結晶粒にばらつきの大きく、かつ、サンプル10個のBの最大、最小値も大きく磁気特性に大きくばらつきのあることが分かる。 Comparative Example No. In Nos. 9 to 16, the powder molding method is a casting method. No. 9 has a low V content. 10 is the case where the V content is large. Comparative Example No. No. 11 has a low B content. 12 is the case where the B content is large. Comparative Example No. No. 13 has a low Si content. 14 is the case where the Si content is high. Further, Comparative Example No. 15 has a low Mn content. 16 is the case where the Mn content is large. It can be seen that in both cases, the maximum and minimum values of Da of 10 samples are large and the crystal grains vary greatly, and the maximum and minimum values of B of 10 samples are large and the magnetic characteristics vary greatly.
さらに、比較例No.17の場合は粉末成形方法が焼結の場合であり、比較例No.9〜16と同様に、結晶粒径の平均値にばらつきが大きく、磁気特性での磁束密度での平均値に対する偏差の割合が大きくばらつきのあることが分かる。これに対し、本発明例であるNo.1〜8のいずれも、サンプル10個のDaの最大、最小の差が小さく結晶粒にばらつきの小さく、また、サンプル10個のBの最大、最小も小さく磁気特性にばらつきの小さいことが分かる。 Further, Comparative Example No. In the case of No. 17, the powder forming method is sintering. As in 9 to 16, it can be seen that the average value of the crystal grain size varies greatly, and the ratio of the deviation with respect to the average value of the magnetic flux density in the magnetic characteristics varies greatly. On the other hand, No. which is an example of the present invention. In any of 1 to 8, it can be seen that the difference between the maximum and minimum values of Da of 10 samples is small and the variation in crystal grains is small, and the maximum and minimum values of 10 samples of B are small and the variation in magnetic characteristics is small.
以上述べたように、本発明による平均結晶粒径を5〜100μmで、かつばらつきが20%以下に抑えることが可能となり、特に分析機器としてのTEM、SEM等の対物レンズ、分析計のポールピース等の用途に適した、強度にも優れたFe−Co−V系合金の製造を可能にしたことにある。
特許出願人 山陽特殊製鋼株式会社
代理人 弁理士 椎 名 彊
As described above, the average crystal grain size according to the present invention can be suppressed to 5 to 100 μm and the variation can be suppressed to 20% or less. In particular, an objective lens such as a TEM or SEM as an analytical instrument, or a pole piece of an analyzer This makes it possible to produce an Fe—Co—V alloy that is suitable for such applications and has excellent strength.
Patent Applicant Sanyo Special Steel Co., Ltd.
Attorney: Attorney Shiina
Claims (1)
Co:40〜60%、
V:1.5〜3.5%、
B:10〜40ppm、
Si:0.01〜1.00%、
Mn:0.01〜1.00%、
C:0.1%以下、
残部Feおよび不可避的不純物元素からなるFe−Co−V系合金を溶製し、この合金をアトマイズ法により粉末に作製し、該合金をHIPまたは押出し法により固化成形し、該固化成形した合金材料の任意の部位10箇所(1mm×1mm)の視野内における結晶粒径の平均値(Da)がいずれも5〜100μmであり、かつその10箇所におけるDaの標準偏差が10個のDaの平均値に対して10%以下であることを特徴とするFe−Co−V系合金材料の製造方法。 % By mass
Co: 40-60%
V: 1.5-3.5%
B: 10 to 40 ppm ,
Si: 0.01 to 1.00%,
Mn: 0.01 to 1.00%,
C: 0.1% or less,
An Fe-Co-V alloy composed of the remaining Fe and inevitable impurity elements is melted, this alloy is made into a powder by an atomizing method, the alloy is solidified by HIP or extrusion, and the solidified alloy material The average value (Da) of the crystal grain size in the field of view at any 10 sites (1 mm × 1 mm) is 5 to 100 μm, and the standard deviation of Da at the 10 sites is the average value of 10 Das. The manufacturing method of the Fe-Co-V type alloy material characterized by being 10% or less with respect to this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008125524A JP4870116B2 (en) | 2008-05-13 | 2008-05-13 | Method for producing Fe-Co-V alloy material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008125524A JP4870116B2 (en) | 2008-05-13 | 2008-05-13 | Method for producing Fe-Co-V alloy material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003073141A Division JP2004277842A (en) | 2003-03-18 | 2003-03-18 | Fe-Co-V BASED ALLOY MATERIAL |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008248392A JP2008248392A (en) | 2008-10-16 |
JP2008248392A5 JP2008248392A5 (en) | 2009-12-24 |
JP4870116B2 true JP4870116B2 (en) | 2012-02-08 |
Family
ID=39973669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008125524A Expired - Lifetime JP4870116B2 (en) | 2008-05-13 | 2008-05-13 | Method for producing Fe-Co-V alloy material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4870116B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7087558B2 (en) | 2018-03-29 | 2022-06-21 | セイコーエプソン株式会社 | Manufacturing method of soft magnetic powder and sintered body |
JP7099006B2 (en) * | 2018-03-29 | 2022-07-12 | セイコーエプソン株式会社 | Manufacturing method of soft magnetic powder and sintered body |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000045050A (en) * | 1998-07-28 | 2000-02-15 | Hmy Ltd | Fe-Co MAGNETIC ALLOY FOR PRECISION CASTING |
JP2000087194A (en) * | 1998-09-16 | 2000-03-28 | Hitachi Powdered Metals Co Ltd | Alloy for electromagnet and its manufacture |
JP2003068514A (en) * | 2001-08-28 | 2003-03-07 | Daido Steel Co Ltd | Powder magnetic core and method for manufacturing the same |
-
2008
- 2008-05-13 JP JP2008125524A patent/JP4870116B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2008248392A (en) | 2008-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104889379B (en) | Metal powder for powder metallurgy, composite, granulated powder, and sintered body | |
CN104942278B (en) | Metal powder for powder metallurgy, composite, granulated powder, and sintered body | |
SE533866C2 (en) | High-strength iron powder composition and sintered detail made therefrom | |
JP2007092162A (en) | Highly compressive iron powder, iron powder for dust core using the same and dust core | |
JP2009544841A (en) | Iron-based powder | |
JP2022084836A (en) | Iron-based powder | |
JP2019065359A (en) | Compressor component for aluminum powder alloy-made transport excellent in mechanical property at high temperature, and manufacturing method therefor | |
JP6309215B2 (en) | Sintered machine part manufacturing method and mixed powder used therefor | |
JP2008533295A (en) | Use to infiltrate copper alloys and their powder metal parts | |
KR101584599B1 (en) | Iron powder for dust cores | |
KR102068972B1 (en) | Soft magnetic metal powder and soft magnetic metal dust core | |
JP4870116B2 (en) | Method for producing Fe-Co-V alloy material | |
JP4712443B2 (en) | Manufacturing method of high magnetic flux density material with excellent machinability | |
JP6523778B2 (en) | Dust core and manufacturing method of dust core | |
JP6155894B2 (en) | Iron-based sintered material and method for producing the same | |
JP6690781B2 (en) | Alloy steel powder | |
CN110238379B (en) | Metal powder for powder metallurgy, composite, granulated powder, and sintered body | |
JP2006521472A (en) | Cobalt-based metal powder and method for producing the same | |
KR102647464B1 (en) | Iron alloy sintered body and iron mixed powder for powder metallurgy | |
JP4907597B2 (en) | Method for producing Fe-Co-V alloy material | |
JP6930590B2 (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
JP2004277842A (en) | Fe-Co-V BASED ALLOY MATERIAL | |
JP4751227B2 (en) | Method for producing soft magnetic material | |
JP5786755B2 (en) | Method for producing ferrous sintered material | |
JP2018206835A (en) | Soft magnetic alloy particle and electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111026 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4870116 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141125 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |