JPS63176427A - Manufacture of grain-oriented high-silicon steel sheet - Google Patents

Manufacture of grain-oriented high-silicon steel sheet

Info

Publication number
JPS63176427A
JPS63176427A JP715087A JP715087A JPS63176427A JP S63176427 A JPS63176427 A JP S63176427A JP 715087 A JP715087 A JP 715087A JP 715087 A JP715087 A JP 715087A JP S63176427 A JPS63176427 A JP S63176427A
Authority
JP
Japan
Prior art keywords
slab
thickness
silicon steel
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP715087A
Other languages
Japanese (ja)
Inventor
Toshiro Tomita
俊郎 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP715087A priority Critical patent/JPS63176427A/en
Publication of JPS63176427A publication Critical patent/JPS63176427A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture a grain-oriented high-silicon steel sheet having low iron loss characteristic and also having a high degree of integration, by subjecting a steel slab of specific thickness containing specific percentages of C, Mn, Si, S, Sb, and Se to cold rolling and annealing under specific conditions. CONSTITUTION:A molten steel consisting of, by weight, 0.0005-0.08% C, 0.03-0.14% Mn, 2.6-6.5% Si, 0.007-0.05% S, further 0.01-0.15% Sb and/or 0.005-0.05% Se, and the balance Fe with accompanying impurities is continuously supplied onto a cooling body (e.g., roll) whose cooling surface is renewedly moving, by which the molten metal is cooled down to about 1,000 deg.C at about 10<2>-10<4> deg.C/sec cooling rate and further subjected to rapid solidification by water cooling and the like so as to be formed into a slab of 0.7-3.5mm thickness. Subsequently, this slab is cold-rolled at >=50% draft and then annealed at 600-1,300 deg.C. In this way, the high-silicon steel sheet of {110}<001> orientation excellent in mechanical properties and magnetic properties can be inexpensively obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Stを2.5〜6.5重量%含有し、すぐれ
た低鉄損特性の得られる(1101 <001>方向に
極めて集積度の高い一方向性高珪素鋼板の製造方法に関
する。
Detailed Description of the Invention (Industrial Application Field) The present invention contains 2.5 to 6.5% by weight of St, and provides excellent low core loss characteristics (extremely concentrated in the 1101 <001> direction). The present invention relates to a method for manufacturing a unidirectional high-silicon steel sheet with a high degree of strength.

(従来の技術) 従来の(110) <001>一方向性珪素鋼板の製造
方法は、■例えば200mm厚程度の鋳片への連続鋳造
工程−〇スラブ高温加熱工程−■熱間圧延工程−■熱間
圧延材焼鈍工程−■冷間圧延工程−■脱炭焼鈍工程−■
最終高温焼鈍工程と非常に多くの工程を要している。こ
れらの工程は上記最終高温焼鈍工程■の最終高温焼鈍時
に(110) <001>方位に結晶粒のみを2次再結
晶をさせるために必要となる。この2次再結晶を起こさ
せるためには、鋼中にMnS、 MnSb等の析出物が
インヒビターとして微細分散していることが必要である
。しかし、上記連続鋳造工程■では、冷却が非常に遅い
ため、鋳造に続く冷却期間中にMnS、MnSb等綱中
0析出物が粗大化してしまう、このように粗大化した析
出物を再固溶した後、微細析出させるためには、工程■
でのスラブ高温加熱および工程■での熱間圧延材焼鈍処
理が必要となる。また、析出物を再固溶させるには、高
温でγ相とする必要があり、それを実現させるために、
γ相生成元素であるCを0.02%程度添加するので、
5ifiも3%程度が上限となってしまうことが常であ
った。さらに、T相域拡大のために添加したCは磁気特
性を悪化させるので上記工程■の脱炭焼鈍を必要とする
(Prior art) The conventional manufacturing method of (110) <001> unidirectional silicon steel plate is as follows: ■ Continuous casting process into slabs of about 200 mm thickness, for example - Slab high temperature heating process - ■ Hot rolling process - ■ Hot rolled material annealing process - ■ Cold rolling process - ■ Decarburization annealing process - ■
It requires a final high-temperature annealing step and a large number of steps. These steps are necessary to cause only the crystal grains to undergo secondary recrystallization in the (110) <001> orientation during the final high temperature annealing in the final high temperature annealing step (2). In order to cause this secondary recrystallization, it is necessary that precipitates such as MnS and MnSb be finely dispersed in the steel as an inhibitor. However, in the above-mentioned continuous casting process (2), since cooling is very slow, MnS, MnSb, etc. are coarsened during the cooling period following casting. After that, in order to make fine precipitation, process ■
It is necessary to heat the slab to a high temperature in Step 2 and to annealing the hot rolled material in Step ①. In addition, in order to redissolve the precipitate, it is necessary to convert it into the γ phase at a high temperature, and in order to achieve this,
Since approximately 0.02% of C, which is a γ phase forming element, is added,
The upper limit of 5ifi has always been about 3%. Furthermore, since C added to expand the T-phase region deteriorates the magnetic properties, decarburization annealing in the above step (2) is required.

このように、従来方法では、2次再結晶に必要なインヒ
ビターの固溶、微細分散のため、複雑な工程を取らざる
を得す、またSiの添加はその増加量とともに磁気特性
が向上し、鉄損値が減少するが、SiMが4%以上にな
ると急激に脆化して圧延が困難になる。したがって、S
i添加量の上限が3%程度に制限されていた。
As described above, in the conventional method, complicated steps are required for solid solution and fine dispersion of the inhibitor necessary for secondary recrystallization.Additionally, as the amount of Si added increases, the magnetic properties improve. Although the iron loss value decreases, when the SiM content exceeds 4%, the steel rapidly becomes brittle and becomes difficult to roll. Therefore, S
The upper limit of the amount of i added was limited to about 3%.

そこで、特公昭61−15mm36号および特公昭60
−38462号に開示されているように、Si 4〜1
0重景%等を含有する溶湯をそのまま冷却面が移動更新
する冷却体上に連続供給して超急冷し、冷間圧延可能な
被圧延性・可撓性を有する磁気特性の優れた高珪素鋼板
の製造法が提案されている。しかしながら、例えば特公
昭60−38462号に開示されている方法によれば、
連続鋳造による1鋳片の厚さは数μ亀ないし数百μ−程
度の範囲にあるものであり、そのように超薄片化するこ
とにより冷間加工性を確保しようとするものである。ま
た、その際の冷間加工も単に成形手段として採用するに
すぎず、これによって磁気特性が改善されるとの示唆は
みられない。
Therefore, Tokuko Sho 61-15mm No. 36 and Tokuko Sho 60
As disclosed in No.-38462, Si 4-1
The molten metal containing 0%, etc. is continuously supplied as it is onto a cooling body whose cooling surface moves and renews, and is ultra-quenched to create a high-silicon material with excellent magnetic properties that can be cold-rolled and has rollability and flexibility. A method for manufacturing steel sheets has been proposed. However, according to the method disclosed in Japanese Patent Publication No. 60-38462, for example,
The thickness of one slab produced by continuous casting is in the range of several micrometers to several hundred micrometers, and by making the slab ultra-thin in this way, cold workability is ensured. Moreover, the cold working used at that time is merely employed as a forming means, and there is no suggestion that the magnetic properties are improved by this.

なお、特公昭61−15mm36号には、Si:4〜1
0%を含有し、その他へQ、Mn、酸素、硫黄、炭素、
窒素の少なくとも1種を含有する高Si鋼を超急冷して
薄帯とすることが開示されている。しかし、この方法は
溶融体から直接に成品もしくはそれに近い生成品にする
のであって、例えば熱間加工、冷間加工は実質上行なわ
ないのであって、仕上げ冷間加工を行なう場合でも圧下
率は5%以下に制限される。
In addition, in Tokuko Sho 61-15mm No. 36, Si: 4 to 1
Contains 0%, and others include Q, Mn, oxygen, sulfur, carbon,
It is disclosed that high-Si steel containing at least one type of nitrogen is ultra-quenched into a ribbon. However, this method directly converts the melt into a finished product or a product close to it; for example, hot working and cold working are virtually not performed, and even when finishing cold working is performed, the reduction rate is low. Limited to 5% or less.

また、特公昭60−32705号にはSi 5.0〜8
.0重量%等を含む保磁力ticが0.10e以下であ
る磁気特性の優れた(100)面内無方向性高珪素鋼薄
帯とその製造方法が開示されている。しかし、この方法
は高速冷却を行って厚みが高々110 μmの薄帯をそ
のま\焼鈍するのであって、得られる磁気特性も無方向
性である。
In addition, in Special Publication No. 60-32705, Si 5.0 to 8
.. A (100) in-plane non-oriented high-silicon steel ribbon with excellent magnetic properties and a coercive force tic of 0.10e or less including 0% by weight, etc., and a method for producing the same are disclosed. However, in this method, a ribbon having a thickness of at most 110 μm is directly annealed by performing high-speed cooling, and the magnetic properties obtained are also non-directional.

これらの従来法による珪=iE板はいずれも高Si含有
で機械的特性および磁気特性の優れたものではあるが、
さらに高度な磁気特性の要望が多く、その要求に対して
不満足のものが多かった。
Although all of these silicon=iE plates produced by conventional methods have high Si content and excellent mechanical and magnetic properties,
There were many requests for even more advanced magnetic properties, and many products were unsatisfactory with these requests.

(発明が解決しようとする問題点) ここに、本発明の目的とするところは、Siを2゜5〜
6.5重量%含有し、低鉄損特性の得られる(1101
 <001>方向に極めて集積度の高い一方向性高珪素
鋼板の製造方法を提供することである。
(Problems to be Solved by the Invention) Here, the purpose of the present invention is to
Contains 6.5% by weight and provides low iron loss characteristics (1101
It is an object of the present invention to provide a method for manufacturing a unidirectional high silicon steel plate having an extremely high degree of integration in the <001> direction.

さらに、本発明の別の目的は、急速冷却法による連続S
h造工程と冷間圧延工程を組み合わせることにより構成
される、低鉄損特性のS:含有量の高い+1101 <
001>方位に集積度の高い一方向性高珪素鋼板の経済
的な製造方法を提イハすることである。
Furthermore, another object of the present invention is to provide continuous S
A steel with low iron loss properties, constructed by combining the h-building process and the cold rolling process, with a high content of +1101<
An object of the present invention is to propose an economical method for manufacturing a unidirectional high-silicon steel plate having a high degree of integration in the 001> direction.

(問題点を解決するための手段) 本発明者らは、かかる従来技術の問題を解決すべく種々
検討を重ねたところ、インヒビターの微細分散を達成す
るには、前述のようにスラブ高温加熱および熱間圧延材
焼鈍工程によるMnSなどのインヒビターの再固溶を行
うことは必要なく、急速冷却による連続鋳造法により得
られた薄鋳片に冷間加工を施すことにより焼鈍過程にお
いてそのようなインヒビターの微細分散が達成されるこ
とを知り、本発明を完成した。
(Means for Solving the Problems) The present inventors have conducted various studies to solve the problems of the prior art, and have found that in order to achieve fine dispersion of the inhibitor, high-temperature heating of the slab and It is not necessary to re-dissolve inhibitors such as MnS in the hot rolled material annealing process, and such inhibitors can be removed during the annealing process by cold working a thin slab obtained by a continuous casting method using rapid cooling. The present invention was completed based on the knowledge that fine dispersion of can be achieved.

すなわち、本発明の要旨とするところは、重量%で、 C:0.0O05〜0.08%、Mn:0.03〜0.
14%、Si: 2.5〜6.5  %、S :0.0
07〜0.05%、を含有し、 さらに、Sb:0.01〜0.15%、およびSe:0
.005〜0.05%のうちの少なくとも1種を含有し
、ならびに所望により、Ni:1%以下、Cu:1%以
下のうちの少なくとも1種、および/またはCo:1%
以下をさらに含有し、 残部Feおよび付随不純物 から成る組成を有する溶湯を冷却面が移動更新する冷却
体上に連続的に供給して急冷凝固し、0.7〜3.5■
厚の鋳片とすること、得られた薄鋳片に圧下率50%以
上の冷間圧延を施し、次いで、600〜1300°Cの
温度で焼鈍することから成る、低鉄損特性をもつ集積度
の高いmol <001>方向性の高珪素鋼板の製造方
法である。
That is, the gist of the present invention is, in weight %, C: 0.0O05-0.08%, Mn: 0.03-0.
14%, Si: 2.5-6.5%, S: 0.0
07 to 0.05%, and further contains Sb: 0.01 to 0.15%, and Se: 0
.. 005 to 0.05%, and optionally at least one of Ni: 1% or less, Cu: 1% or less, and/or Co: 1%
A molten metal containing the following, with the balance consisting of Fe and incidental impurities is continuously fed onto a cooling body whose cooling surface moves and renews, and is rapidly solidified to form a molten metal of 0.7 to 3.5 mm.
An integrated product with low iron loss characteristics, which consists of forming a thick slab, cold rolling the obtained thin slab at a reduction rate of 50% or more, and then annealing at a temperature of 600 to 1300°C. This is a method for producing a high-silicon steel sheet with a high mol <001> orientation.

かくして、4%以上のSiを含有した鋼板を製造する場
合、従来法にあっては、冷間圧延が不可能であったもの
を、本発明によれば、上記mm成とすることにより急速
冷却後の0.7〜3.5 n+m厚の薄鋳片にあっても
冷間圧延を可能とし、これに圧下率50%以上の冷間圧
延を施し焼鈍することによりインヒビターの再固溶等を
行わずに十分にインヒビターを微細分散させることがで
き、したがって再結晶焼鈍によって十分な磁気特性の改
善が可能となるのである。
Thus, when manufacturing a steel sheet containing 4% or more Si, it is impossible to cold-roll it using the conventional method, but according to the present invention, it is possible to rapidly cool it by rolling it to the above-mentioned mm thickness. It is possible to cold-roll even thin slabs with a thickness of 0.7 to 3.5n+m, and by cold-rolling with a rolling reduction of 50% or more and annealing, it is possible to prevent the inhibitor from re-dissolving. It is possible to sufficiently finely disperse the inhibitor without performing recrystallization annealing, and therefore it is possible to sufficiently improve the magnetic properties by recrystallization annealing.

さらに、冷間圧延が可能であることから、冷間圧延が5
0%以上(圧下率)および熱処理をくりかえすことによ
りさらにすぐれた低鉄…特性を有する、極めて集積度の
高い(110}〈001>方位に方向性を示す一方向性
高珪素鋼板が製造されるのである。
Furthermore, since cold rolling is possible, cold rolling
By applying 0% or more (reduction rate) and repeating heat treatment, a unidirectional high-silicon steel sheet with an extremely high degree of integration and orientation in the (110}<001> direction, which has even better low iron characteristics, is manufactured. It is.

換言すれば、急冷したことにより微細結晶となった厚さ
0.7〜3.5mmの薄鋳片であるため、これを50%
以上の圧下率で冷間圧延することによりインヒビターの
微細分散が効果的に行われるのであって、たとえ急冷し
た微細結晶を存していても例えば100μm程度の極薄
帯では圧下率50%以上の冷間加工を施してもそのよう
な効果はみられない。
In other words, since it is a thin slab with a thickness of 0.7 to 3.5 mm that has become fine crystals due to rapid cooling, this is reduced by 50%.
By cold rolling with the above rolling reduction ratio, fine dispersion of the inhibitor is effectively achieved. No such effect is seen even after cold working.

(作用) 次に、本発明において鋼組成および製造条件を上述のよ
うに限定した理由を詳細に説明する。
(Function) Next, the reason why the steel composition and manufacturing conditions are limited as described above in the present invention will be explained in detail.

炭素(C)は製鋼技術においてo、ooos%以下の溶
鋼を製造することが困難なためc :0.0O05%以
上とし、一方、0.08%超では脱炭が困難なため0.
08%以下とした。本発明方法では特にCを含有させる
必要もなく 、o、ooos〜0.01%以下を好適範
囲とし、その場合、脱炭工程を省略することが可能であ
る。
Carbon (C) is set at 0.0005% or more because it is difficult to produce molten steel with a concentration of less than o.
08% or less. In the method of the present invention, there is no particular need to contain C, and the preferred range is from o,oos to 0.01%, in which case the decarburization step can be omitted.

マンガン(Mn)は通常の製鋼において約0.05%含
有されており、固溶しているSと結合してMnSとなり
、Sの鉄損劣化に及ぼす影響を抑制し、さらに圧延加工
性を増すことが知られているので、本発明においてもそ
の効果を好適に示すには、Mn0.03〜0.14%、
好ましくは0.05〜0.12%である。
Manganese (Mn) is contained at about 0.05% in normal steel manufacturing, and combines with solid solution S to form MnS, suppressing the influence of S on iron loss deterioration and further increasing rolling workability. Therefore, in order to suitably exhibit the effect in the present invention, Mn 0.03 to 0.14%,
Preferably it is 0.05 to 0.12%.

珪素(Si)は、2.5%未満では、高温(約1000
〜1300℃)でγ相となり、最終焼鈍温度を1000
℃以上にとれないことと低鉄損値が得られないため、本
発明では2.5%以上とする。一方、6.5%より多い
と脆化して、前記条件下では冷間圧延不能となるため、
6.5%以下とした。、3〜5,5%が好ましい。
If silicon (Si) is less than 2.5%, high temperature (approximately 1000
~1300℃), and the final annealing temperature was 1000℃.
In the present invention, it is set to 2.5% or more because it is impossible to maintain a temperature higher than ℃ and a low iron loss value cannot be obtained. On the other hand, if it exceeds 6.5%, it becomes brittle and cannot be cold rolled under the above conditions.
It was set to 6.5% or less. , 3 to 5.5% is preferred.

硫黄(S)は、本発明にあってはS 0.007〜0.
05%、好ましくは0.01〜0.035%の添加が必
要とされる。本発明にあって、SはMnSとして析出し
、インヒビターの作用をするため、その析出形態は急冷
凝固につづ(冷間圧延時に十分コントロールされなけれ
ばならない。
In the present invention, sulfur (S) is S 0.007 to 0.
An addition of 0.05%, preferably 0.01-0.035% is required. In the present invention, S is precipitated as MnS and acts as an inhibitor, so its precipitation form must be sufficiently controlled during rapid solidification (cold rolling).

アンチモン(Sb)、セレン(Se)は、本発明にあっ
ては、そのうちの少なくとも1種含有される。
In the present invention, at least one of antimony (Sb) and selenium (Se) is contained.

sbは凝固した薄鋳片内に存在することによりより集積
度の高い(110}〈001>珪素鋼が得られるため、
0.O1〜0.15%、好適には0.02〜0.07%
含有させる。
Since sb exists in the solidified thin slab, a higher degree of integration (110}〈001〉 silicon steel can be obtained.
0. O1-0.15%, preferably 0.02-0.07%
Contain.

Seも同様に凝固した薄鋳片内に存在することにより一
層集積度の高い(110}〈001>珪素鋼が得られる
ため0.005〜0.05%、好適には0.01〜0.
03%含有させる。
Similarly, Se is also present in the solidified thin slab to obtain a higher degree of integration (110}<001> silicon steel, so the content is 0.005 to 0.05%, preferably 0.01 to 0.00%).
Contain 03%.

ニッケル(Ni)および銅(Cu)は、延性をさらに向
上させるためにそれぞれが1%以下となる量で少なくと
も1種添加してもよい。
At least one of nickel (Ni) and copper (Cu) may be added in an amount of 1% or less each in order to further improve ductility.

なお、本発明にあっては、さらに磁気特性を向上させる
ために必要に応じCoを1%以下を添加してもよい。
In the present invention, 1% or less of Co may be added as necessary to further improve the magnetic properties.

次いで、本発明によれば、このような鋼組成を有する溶
湯を移動更新する冷却体上に連続的に供給して冷却凝固
し、0.7〜3.5ms+厚の鋳片を製造するが、その
場合、3.5■厚超では多くの場合冷却速度不足で、一
方、0 、7mm厚未満では冷間圧延率不足となり、結
晶粒方位の集積が十分とならない。
Next, according to the present invention, the molten metal having such a steel composition is continuously supplied onto a cooling body that moves and renews, and is cooled and solidified to produce a slab having a thickness of 0.7 to 3.5 ms. In this case, if the thickness exceeds 3.5 mm, the cooling rate will be insufficient in many cases, while if the thickness is less than 0.7 mm, the cold rolling rate will be insufficient, and the accumulation of grain orientations will not be sufficient.

ここに、「移動更新する冷却体」とは、順次操り出され
る新しい冷却面をもった冷却体である。
Here, the "cooling body that moves and updates" is a cooling body that has new cooling surfaces that are sequentially drawn out.

このような連続鋳造装置の代表例にはいわゆる双ロール
法と片ロール法等があるが、特に装置の形式は本発明で
は制限されない、これらの方法により0.7〜3.5m
m厚鋳片を製造した場合の冷却速度は1000℃程度ま
で一般には102〜10’ ℃/secであり、この後
、冷却体から鋳片は離れる場合が多く、その場合は空冷
されるため冷却速度は低下する。さらに冷却体より刈れ
た後は、水あるいは温水を噴霧するなどして冷却するこ
とが好ましい。
Typical examples of such continuous casting equipment include the so-called twin roll method and single roll method, but the type of equipment is not particularly limited by the present invention.
When producing m-thick slabs, the cooling rate is generally 102 to 10'C/sec up to about 1000℃, and after this, the slabs often separate from the cooling body, in which case they are cooled by air. Speed decreases. Furthermore, after cutting from the cooling body, it is preferable to cool the grass by spraying water or hot water.

本発明においては、上述のような高速冷却によって微細
結晶とするが、それに必要な冷却速度は、好ましくは1
02〜10”C/secである。
In the present invention, fine crystals are formed by rapid cooling as described above, and the cooling rate required for this is preferably 1
02 to 10"C/sec.

このようにして得られた鋳片を必要により中間焼鈍等を
はさみ複数回冷間圧延をくりかえす等の方法で50%以
上、好適には60%以上の圧下率での冷間圧延を行い板
厚を0.15m+++厚以上、好適には0゜21101
厚以上として最終焼鈍の前段階とする。50%未満の圧
下率では十分な歪が加わらないため再結晶焼鈍時にMn
S、 MnSb、 MnSe等のインヒビターの微細分
散が十分起こらない。好ましくは50〜90%の圧下率
である。
The slab obtained in this way is cold rolled at a reduction rate of 50% or more, preferably 60% or more, by repeating cold rolling multiple times with intermediate annealing as necessary, to obtain a plate thickness. 0.15m+++ thickness or more, preferably 0°21101
If the thickness is higher than that, it is considered as a step before final annealing. If the reduction rate is less than 50%, sufficient strain is not applied, so Mn
Fine dispersion of inhibitors such as S, MnSb, MnSe, etc. does not occur sufficiently. Preferably the rolling reduction is 50 to 90%.

最後に、(110) <001>集積度を高める再結晶
のため1300℃以下、600℃以上で焼鈍を行う、6
00℃未満では焼鈍の効果が得られない。好適にはこの
再結晶焼鈍は800〜1000℃で行った後、1100
℃以上で再度行う。1300℃超では工業的には困難な
処理といえるからである。
Finally, annealing is performed at 1300°C or lower and 600°C or higher for recrystallization to increase the (110) <001> integration degree, 6
If the temperature is lower than 00°C, the annealing effect cannot be obtained. Preferably, this recrystallization annealing is performed at 800 to 1000°C, followed by 1100°C.
Repeat at ℃ or above. This is because a temperature higher than 1300°C can be said to be industrially difficult to process.

なお、炭素金星の多いものについては脱炭焼鈍の後、所
望により、最終焼鈍を行ってもよい。
In addition, for those with a large amount of carbon Venus, final annealing may be performed as desired after decarburization annealing.

ここに、本発明によりMn S 、 MnSb、 Mn
Se等のインヒビターの微細分散およびそれによる+1
10}〈001>方位の集積の改善の機構は次のように
考えられる。
Here, according to the present invention, Mn S , MnSb, Mn
Fine dispersion of inhibitors such as Se and its +1
10} The mechanism of improvement in the accumulation of <001> orientations is considered as follows.

急速冷却により微細分散したMnS、 MnSb、 M
nSe析出物を冷間圧延の歪により破砕することで再結
晶焼鈍時にさらに黴細なMnS、 MnSb、 MnS
eを鋼中に分散させ得る。この微細分散した析出物が強
力なインヒビターとなり、再結晶焼鈍時に+110}〈
001>方位の結晶粒を優先成長させ、集積度の高い(
110}〈001>集合組織が得られる。
MnS, MnSb, M finely dispersed by rapid cooling
By crushing the nSe precipitates due to strain during cold rolling, MnS, MnSb, and MnS become even finer during recrystallization annealing.
e can be dispersed in the steel. These finely dispersed precipitates act as strong inhibitors, resulting in +110% during recrystallization annealing.
001> crystal grains are preferentially grown, resulting in a high degree of integration (
110}<001> texture is obtained.

以上のように、本発明方法により産業上有用なmol 
<OLD方位の一方向性高珪素鋼板の好適な製造が可能
となる。
As described above, industrially useful mol can be obtained by the method of the present invention.
It becomes possible to suitably manufacture a unidirectional high-silicon steel plate with <OLD orientation.

次に、本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 第1表に示す鋼組成を有する薄板を以下の2通りの方法
で作製した。
Example 1 Thin plates having the steel compositions shown in Table 1 were produced using the following two methods.

〈方法1〉 50r、p、m、で回転する直径200IIm超硬合金
製双ロールの間隙に溶湯を注ぎ、1.5mm厚で50m
m幅の超薄鋳片を製造した。この鋳片を酸洗した後、8
09イの冷間圧延を施し、0.31厚の′3仮とした。
<Method 1> Pour the molten metal into the gap between twin rolls made of cemented carbide with a diameter of 200 II m rotating at 50 r, p, m, and roll 50 m with a thickness of 1.5 mm.
An ultra-thin slab with a width of m was manufactured. After pickling this slab,
It was subjected to cold rolling of 0.09mm to form a 0.31mm thickness.

〈方法2〉 鋳型を用イテ50+a+a x 200 mm X 3
00 mnの鋳片にSR込んだ後、1000℃に加熱し
てから25mm厚にまで軌間鍛造した。次いで、再び、
1ooo℃まで加熱し、熱間圧延により1.5 mmに
まで圧延した。さらに1200℃に10分加熱した後、
80℃の温水中に急冷し、最後に圧下率80%の冷間圧
延により0,31厚の薄板とした。
<Method 2> Use a mold 50+a+a x 200 mm x 3
After pouring SR into a 00 mm thick slab, it was heated to 1000°C and then gauge forged to a thickness of 25 mm. Then again,
It was heated to 100°C and rolled to 1.5 mm by hot rolling. After further heating to 1200℃ for 10 minutes,
It was rapidly cooled in hot water at 80° C. and finally cold-rolled at a reduction rate of 80% to form a thin plate with a thickness of 0.31.

これらの薄板を塩浴中にて800℃で5分間焼鈍し、1
次再結晶させた。次に、N、雰囲気中にて50℃/hの
昇温速度で1200℃まで昇温し、1200℃で3時間
均熱焼鈍した。その後、希tJi#腐食により5mm以
上の大きさに成長した2次再結晶粒の存在を調べたのち
、エッチピット法により5mm以上の2次再結晶粒につ
いての(ILOI <001>方位の結晶粒の率を測定
した。結果を第2表に示す。
These thin plates were annealed in a salt bath at 800°C for 5 minutes, and
Next, it was recrystallized. Next, the temperature was raised to 1200°C at a temperature increase rate of 50°C/h in a N atmosphere, and soaking annealing was performed at 1200°C for 3 hours. After that, we investigated the existence of secondary recrystallized grains that had grown to a size of 5 mm or more by diluted tJi# corrosion, and then used the etch pit method to investigate the presence of secondary recrystallized grains of 5 mm or more (ILOI <001> orientation) The results are shown in Table 2.

第2表から明らかなように本発明において規定する、期
成の範囲内ムこあるa種B、C,Dについては従来の圧
延法では実現できなかった+1101 <001>方位
に結晶粒の高度の集積がみられ、(110+ <Oat
>方位の高度集積性の珪素鋼板が得られることがわかる
。また、本発明にかかる組成範囲外の鋼種Aは、Si含
量が少ないため本発明方法による操作を行っても最終焼
鈍時にT相析出が起こり、2次再結晶せず、また鋼種E
はSi含量が多いため、冷間圧延が不可能となり比較で
きなかった。
As is clear from Table 2, for types B, C, and D, which are outside the range of formation specified in the present invention, the height of the crystal grains in the +1101 <001> orientation, which could not be achieved by the conventional rolling method. An accumulation of (110+ <Oat
It can be seen that a silicon steel plate with a high degree of integration in the > orientation can be obtained. In addition, steel type A outside the composition range according to the present invention has a low Si content, so even if the process according to the present invention is performed, T phase precipitation occurs during final annealing and secondary recrystallization does not occur, and steel type E
Because of the high Si content, cold rolling was impossible and comparison could not be made.

この第2表から、本発明にかかる方法によれば、従来法
の圧延法の場合に比べ[110}〈001>方位に極め
て集積度の高い珪素鋼板を得られることは明らかである
From Table 2, it is clear that according to the method of the present invention, a silicon steel plate with an extremely high degree of integration in the [110}<001> orientation can be obtained compared to the conventional rolling method.

(注ン 11;  本発明の範囲外 第2表 方法2−低来り11 実施例2 第3表の組成の薄板を次の方法によって製作した。(Note 11; Outside the scope of the present invention Table 2 Method 2-Low 11 Example 2 Thin plates having the compositions shown in Table 3 were manufactured by the following method.

100 r、p、n+、で回転する直径300Iの銅製
双ロールの間隙に溶湯を注ぎ、2.0 mm厚の薄鋳片
を製造した。その後、スケールを硫酸酸洗により除去し
、所定の板厚(0,2〜0.4 mm)にまで冷間圧延
した。
The molten metal was poured into the gap between twin copper rolls with a diameter of 300 I rotating at 100 r, p, n+, to produce a thin slab with a thickness of 2.0 mm. Thereafter, scale was removed by pickling with sulfuric acid, and the plate was cold rolled to a predetermined thickness (0.2 to 0.4 mm).

このようにして得た薄板を塩浴中にて850℃で3分間
焼鈍し1次再結晶させ、次いで50%N、 −H,雰囲
気中にて50℃/hの昇温速度で1150℃まで昇温し
、1150℃で5時間焼鈍した。この薄板から圧延方向
の磁気特性を測定するため、25cmのエプスタイン鉄
tp試験用試験片を打ち抜き、850℃で10分間の焼
鈍により歪取りし、開枠と比較試料として市販の3%S
i含有一方向性珪素鋼板を使用して鉄損値を測定した結
果を第4表に示す。この第4表から、本発明方法により
、従来の一方向性珪素鋼板よりも鉄損値の低い優れた電
磁用鋼板が製造できることが容易に理解できる。
The thin plate thus obtained was annealed at 850°C for 3 minutes in a salt bath for primary recrystallization, and then heated to 1150°C at a heating rate of 50°C/h in a 50% N, -H atmosphere. The temperature was raised and annealing was performed at 1150°C for 5 hours. In order to measure the magnetic properties in the rolling direction from this thin plate, 25 cm Epstein iron TP test specimens were punched out and strained by annealing at 850°C for 10 minutes.
Table 4 shows the results of measuring iron loss values using i-containing unidirectional silicon steel sheets. From this Table 4, it can be easily understood that by the method of the present invention, an excellent electromagnetic steel sheet having a lower iron loss value than the conventional unidirectional silicon steel sheet can be manufactured.

第3表 (重量%) 第4表 実施例3 第3表の鋼種Gを用い、150 r、p、s、で回転す
る直径200 +*mの超硬合金製双ロールの間隙に溶
湯を注入し、0.3〜5IIIIm厚の(0,3,o、
s、 0.7; 1.5.2゜5、3.0.4.0.5
.0LI11の8種類について)の薄鋳片を製造した。
Table 3 (wt%) Table 4 Example 3 Using steel type G in Table 3, molten metal was injected into the gap between twin cemented carbide rolls with a diameter of 200+*m rotating at 150 r, p, s. and (0,3,o,
s, 0.7; 1.5.2°5, 3.0.4.0.5
.. Thin slabs of 8 types of 0LI11) were manufactured.

その後、硫酸酸洗によりスケールを除去し、圧下率75
%で冷間圧延を施し、次いで塩浴中にて800℃で10
分間焼鈍し1次結晶させ、次に■2雰囲気中にて30℃
/hの昇温速度で1200℃まで昇温し、1200℃で
5時間焼鈍した。
After that, scale was removed by sulfuric acid pickling, and the reduction rate was 75.
% cold rolling and then in a salt bath at 800°C for 10
First crystallize by annealing for 1 minute, then 30℃ in 2 atmosphere.
The temperature was raised to 1200°C at a heating rate of /h and annealed at 1200°C for 5 hours.

これらの試料について(110}〈001>方位の結晶
粒の率をエッチピント法により測定した結果を第1図に
示す。この第1図から、薄鋳片の厚さが0.7〜3.5
 amの範囲で(110}〈001>方位の結晶粒が増
大し、その割合はは\゛90〜100%となっているこ
とがわかる。
Figure 1 shows the results of measuring the ratio of crystal grains with (110}<001> orientation on these samples using the etch focus method.From this figure, it can be seen that the thickness of the thin slab was 0.7~3. 5
It can be seen that the crystal grains with the (110}<001> orientation increase in the am range, and the ratio is \90 to 100%.

実施例4 第3表の鋼種Hを用い、20Or、p、n+、で回転す
る直径200 m−の超硬合金製双ロールの間隙に溶湯
を注入し、1.5 mm厚の薄鋳片を製造した。次いで
、硫酸酸洗によりスケールを除去し、圧下率が30〜9
0%の(30,38,45,50−60,70,80,
90%の8種類について)冷間圧延を施した後、50℃
/hの昇温速度で1200℃まで昇温し、1200℃で
5時間均熱焼鈍した。
Example 4 Using steel type H in Table 3, molten metal was injected into the gap between twin cemented carbide rolls with a diameter of 200 m rotating at 20 Or, p, n+, and a thin slab with a thickness of 1.5 mm was made. Manufactured. Next, scale was removed by sulfuric acid pickling, and the reduction rate was 30 to 9.
0% (30, 38, 45, 50-60, 70, 80,
90% of 8 types) After cold rolling, 50℃
The temperature was raised to 1200°C at a heating rate of /h, and soaking annealing was performed at 1200°C for 5 hours.

これらの試料について、(110}〈001>方向の結
晶粒の割合をエッチピント法により測定した結果を第2
図に示す。この第2図から、明らかに冷間圧延率50%
以上で(110) <001>方位の結晶粒率が増大し
、その割合はは170〜100%と、集積度が高まるこ
とがわかる。
For these samples, the ratio of crystal grains in the (110}<001> direction was measured by the etch focus method.
As shown in the figure. From this figure 2, it is clear that the cold rolling rate is 50%.
From the above, it can be seen that the crystal grain ratio of the (110) <001> orientation increases, and the ratio is 170 to 100%, and the degree of integration increases.

(発明の効果) 以上、本発明にかかる方法により製造された一方向性高
珪素鋼板は従来の一方向性珪素鋼板よりさらに高度に優
れた8!械的性質を有し、また磁気特性に優れた電磁鋼
板としての広範囲な利用が期待される。また、移動更新
する冷却体上での急速冷却法により薄鋳片を製造する方
法をとったため、従来必要と考えられてきた熱処理工程
が省略できて、従来に比べ著しく安価で、Si含有量が
高く、低鉄損特性の得られる一方向性高珪素鋼板の製造
が可能であり、工業上極めて有用である。
(Effects of the Invention) As described above, the unidirectional high-silicon steel sheet manufactured by the method according to the present invention is more highly superior to the conventional unidirectional silicon steel sheet. It is expected to be widely used as an electrical steel sheet that has mechanical properties and excellent magnetic properties. In addition, since we have adopted a method of manufacturing thin slabs using a rapid cooling method on a moving and renewing cooling body, we can omit the heat treatment process that was previously thought to be necessary, making it significantly cheaper than conventional methods and reducing the Si content. It is possible to produce a unidirectional high-silicon steel sheet with high and low core loss characteristics, which is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における一方向性高珪素鋼板の急速冷
却後の鋳片板厚と(110}〈001>方位の結晶粒の
率との関係を示すグラフ:および第2図は、本発明にお
ける各冷間圧延率と(110}〈001>方位の結晶粒
率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the slab thickness after rapid cooling of the unidirectional high-silicon steel sheet of the present invention and the ratio of crystal grains in the (110}<001> orientation. It is a graph showing the relationship between each cold rolling rate and the crystal grain ratio of the (110}<001> orientation in the invention.

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.0005〜0.08%、Mn:0.03〜0.
14%、Si:2.5〜6.5%、S:0.007〜0
.05%、を含有し、 さらにSb:0.01〜0.15%、およびSe:0.
005〜0.05%のうちの少なくとも1種を含有し、
残部がFeおよび付随不純物 から成る組成を有する溶湯を、冷却面が移動更新する冷
却体上に連続的に供給して急冷凝固し、0.7〜3.5
mm厚の鋳片を得ること、および、得られた鋳片に圧下
率50%以上の冷間圧延を施し、次いで、600〜13
00℃の温度で焼鈍することから成る、低鉄損特性をも
つ集積度の高い{110}〈001〉方向性の高珪素鋼
板の製造方法。
(1) In weight%, C: 0.0005-0.08%, Mn: 0.03-0.
14%, Si: 2.5-6.5%, S: 0.007-0
.. 05%, further Sb: 0.01 to 0.15%, and Se: 0.05%.
005 to 0.05%,
A molten metal having a composition in which the balance consists of Fe and incidental impurities is continuously supplied onto a cooling body whose cooling surface moves and renews, and is rapidly solidified to a temperature of 0.7 to 3.5
Obtaining a slab with a thickness of mm, and cold rolling the obtained slab at a reduction rate of 50% or more, and then rolling a slab with a thickness of 600 to 13
A method for producing a highly integrated {110}<001> oriented high-silicon steel sheet with low core loss characteristics, comprising annealing at a temperature of 00°C.
(2)重量%で、 C:0.0005〜0.08%、Mn:0.03〜0.
14%、Si:2.5〜6.5%、S:0.007〜0
.05%、を含有し、 さらにSb:0.01〜0.15%、およびSe:0.
005〜0.05%のうちの少なくとも1種、 ならびにNi:1%以下、およびCu:1%以下のうち
の少なくとも1種を含有し、 残部Feおよび付随不純物 から成る組成を有する溶湯を、冷却面が移動更新する冷
却体上に連続的に供給して急冷凝固し、0.7〜2.0
mm厚の鋳片を得ること、および、得られた鋳片に圧下
率50%以上の冷間圧延を施し、次いで、600〜13
00℃の温度で焼鈍することから成る、低鉄損特性をも
つ集積度の高い{110}〈001〉方向性の高珪素鋼
板の製造方法。
(2) In weight%, C: 0.0005-0.08%, Mn: 0.03-0.
14%, Si: 2.5-6.5%, S: 0.007-0
.. 05%, further Sb: 0.01 to 0.15%, and Se: 0.05%.
005 to 0.05%, and at least one of Ni: 1% or less and Cu: 1% or less, with the balance consisting of Fe and incidental impurities. It is continuously supplied onto a cooling body whose surface moves and renews, and is rapidly solidified to a temperature of 0.7 to 2.0.
Obtaining a slab with a thickness of mm, and cold rolling the obtained slab at a reduction rate of 50% or more, and then rolling a slab with a thickness of 600 to 13
A method for producing a highly integrated {110}<001> oriented high-silicon steel sheet with low core loss characteristics, comprising annealing at a temperature of 00°C.
(3)重量%で、 C:0.0005〜0.08%、Mn:0.03〜0.
14%、Si:2.5〜6.5%、S:0.007〜0
.05%、を含有し、 さらにSb:0.01〜0.15%、およびSe:0.
005〜0.05%のうちの少なくとも1種、 ならびにCo:1%以下を含有し、 残部がFeおよび付随不純物 から成る組成を有する溶湯を、冷却面が移動更新する冷
却体上に連続的に供給して急冷凝固し、0.7〜3.5
mm厚の鋳片を得ること、および、得られた鋳片に圧下
率50%以上の冷間圧延を施し、次いで、600〜13
00℃の温度で焼鈍することから成る、低鉄損特性をも
つ集積度の高い{110}〈001〉方向性の高珪素鋼
板の製造方法。
(3) In weight%, C: 0.0005-0.08%, Mn: 0.03-0.
14%, Si: 2.5-6.5%, S: 0.007-0
.. 05%, further Sb: 0.01 to 0.15%, and Se: 0.05%.
0.005 to 0.05% and Co: 1% or less, with the balance consisting of Fe and incidental impurities. Supply and rapidly solidify, 0.7 to 3.5
Obtaining a slab with a thickness of mm, and cold rolling the obtained slab at a reduction rate of 50% or more, and then rolling a slab with a thickness of 600 to 13
A method for producing a highly integrated {110}<001> oriented high-silicon steel sheet with low core loss characteristics, comprising annealing at a temperature of 00°C.
(4)重量%で、 C:0.0005〜0.08%、Mn:0.03〜0.
14%、Si:2.5〜6.5%、S:0.007〜0
.05%、を含有し、 さらにSb:0.01〜0.15%、およびSe:0.
005〜0.05%のうちの少なくとも1種、 Ni:1%以下、およびCu:1%以下のうちの少なく
とも1種、 ならびにCo:1%以下を含有し、 残部Feおよび付随不純物 から成る組成を有する溶湯を、冷却面が移動更新する冷
却体上に連続的に供給して急冷凝固し、0.7〜3.5
mm厚の鋳片を得ること、および、得られた鋳片に圧下
率50%以上の冷間圧延を施し、次いで、600〜13
00℃の温度で焼鈍することから成る、低鉄損特性をも
つ集積度の高い{110}〈001〉方向性の高珪素鋼
板の製造方法。
(4) In weight%, C: 0.0005-0.08%, Mn: 0.03-0.
14%, Si: 2.5-6.5%, S: 0.007-0
.. 05%, further Sb: 0.01 to 0.15%, and Se: 0.05%.
005 to 0.05%, at least one of Ni: 1% or less, and Cu: 1% or less, and Co: 1% or less, with the balance consisting of Fe and incidental impurities. A molten metal having a 0.7 to 3.5
Obtaining a slab with a thickness of mm, and cold rolling the obtained slab at a reduction rate of 50% or more, and then rolling a slab with a thickness of 600 to 13
A method for producing a highly integrated {110}<001> oriented high-silicon steel sheet with low core loss characteristics, comprising annealing at a temperature of 00°C.
JP715087A 1987-01-14 1987-01-14 Manufacture of grain-oriented high-silicon steel sheet Pending JPS63176427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP715087A JPS63176427A (en) 1987-01-14 1987-01-14 Manufacture of grain-oriented high-silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP715087A JPS63176427A (en) 1987-01-14 1987-01-14 Manufacture of grain-oriented high-silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS63176427A true JPS63176427A (en) 1988-07-20

Family

ID=11658041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP715087A Pending JPS63176427A (en) 1987-01-14 1987-01-14 Manufacture of grain-oriented high-silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS63176427A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258922A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH02258925A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density
EP0398114A2 (en) 1989-05-13 1990-11-22 Nippon Steel Corporation Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density
US5051138A (en) * 1989-03-30 1991-09-24 Nippon Steel Corporation Method of producing grain oriented electrical steel sheet having high magnetic flux

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02258922A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH02258925A (en) * 1989-03-30 1990-10-19 Nippon Steel Corp Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density
US5051138A (en) * 1989-03-30 1991-09-24 Nippon Steel Corporation Method of producing grain oriented electrical steel sheet having high magnetic flux
EP0398114A2 (en) 1989-05-13 1990-11-22 Nippon Steel Corporation Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density
EP0398114B2 (en) 1989-05-13 2001-12-19 Nippon Steel Corporation Process for preparation of thin grain oriented electrical steel sheet having superior iron loss and high flux density

Similar Documents

Publication Publication Date Title
JP7507157B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JPH02259020A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH0686631B2 (en) Method for manufacturing unidirectional electrical steel sheet with high magnetic flux density
US5858126A (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
EP0588342B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing same
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
EP0475710A2 (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characteristics
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JPS61166923A (en) Manufacture of electrical steel sheet having superior soft magnetic characteristic
JPS6311619A (en) Production of grain oriented high silicon steel sheet
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP2521585B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
KR100490999B1 (en) Method For Manufacturing Grain-Oriented Silicon Steel Containing High Silicon By Strip Casting Process
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
KR970007162B1 (en) Making method of oriented electrical steel sheet having excellent from loss properties
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH02263924A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property