JP3067896B2 - Method of manufacturing thin slab for unidirectional electrical steel sheet - Google Patents

Method of manufacturing thin slab for unidirectional electrical steel sheet

Info

Publication number
JP3067896B2
JP3067896B2 JP4194321A JP19432192A JP3067896B2 JP 3067896 B2 JP3067896 B2 JP 3067896B2 JP 4194321 A JP4194321 A JP 4194321A JP 19432192 A JP19432192 A JP 19432192A JP 3067896 B2 JP3067896 B2 JP 3067896B2
Authority
JP
Japan
Prior art keywords
casting
thin slab
steel sheet
roll
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4194321A
Other languages
Japanese (ja)
Other versions
JPH0631397A (en
Inventor
健司 小菅
嘉夫 塗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4194321A priority Critical patent/JP3067896B2/en
Publication of JPH0631397A publication Critical patent/JPH0631397A/en
Application granted granted Critical
Publication of JP3067896B2 publication Critical patent/JP3067896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、2.5〜6.5%のS
iを含む0.3〜6.0mm厚の一方向性電磁鋼板用薄鋳
片の製造方法に関するものである。
The present invention relates to a method for producing 2.5 to 6.5% of sulfur.
The present invention relates to a method for producing a thin slab for a grain-oriented electrical steel sheet having a thickness of 0.3 to 6.0 mm, including i.

【0002】[0002]

【従来の技術】一方向性電磁鋼板はトランス等の電気機
器の鉄心材料として利用されており、磁気特性として励
磁特性と鉄損特性が良好でなくてはならない。しかも近
年、特にエネルギーロスの少ない低鉄損素材への市場要
求が強まっている。
2. Description of the Related Art A grain-oriented electrical steel sheet is used as an iron core material of electric equipment such as a transformer, and must have good magnetic properties such as excitation properties and iron loss properties. In recent years, the market demand for low iron loss materials with particularly low energy loss has been increasing.

【0003】しかし、従来の製造方法では、熱延、冷
延、焼鈍等の複雑な工程処理が必要なため、製造コスト
が非常に高いという問題がある。そこで最近、電磁鋼の
溶鋼を急冷凝固法で直接薄帯にする技術が開発された。
この方法によれば、溶鋼から直接成品または半成品がで
きるので、製造コストを大幅に下げることが可能であ
る。
However, the conventional production method has a problem that the production cost is very high because complicated process treatments such as hot rolling, cold rolling and annealing are required. Therefore, a technique has been recently developed in which molten steel of electromagnetic steel is directly thinned by a rapid solidification method.
According to this method, a product or semi-product can be made directly from molten steel, so that the production cost can be significantly reduced.

【0004】この急冷凝固法で薄鋳片を得て、それを出
発素材とする一方向性電磁鋼板を製造する方法は、たと
えば特開昭63−11619号公報がある。ここでは、
Si:2.5〜6.5%等を含有する溶湯を供給して双
ロール方式により急冷凝固し、0.7〜2.0mm厚の鋳
片を得ることが提供されている。しかし、鋳造時の雰囲
気については何も言及されておらず、通常の大気中で実
施されていると考えられる。
A method for producing a thin grain slab by this rapid solidification method and manufacturing a grain-oriented magnetic steel sheet using the thin slab as a starting material is disclosed in, for example, Japanese Patent Application Laid-Open No. 63-11619. here,
It is provided that a molten metal containing Si: 2.5 to 6.5% or the like is supplied and rapidly solidified by a twin roll method to obtain a slab 0.7 to 2.0 mm thick. However, nothing is mentioned about the atmosphere at the time of casting, and it is considered that the casting is carried out in the normal atmosphere.

【0005】[0005]

【発明が解決しようとする課題】しかし、本発明者らの
知見によると、この一方向性電磁鋼板用鋳片から製造さ
れる成品は、磁束密度が低く、その原因は鋳造組織の制
御に問題点があると考えた。本発明は、このような問題
を解消しようとするものであって、鋳造時の雰囲気に着
眼し、凝固時の鋳造組織を制御することにより{11
0}〈001〉方位の集積度が高く、磁束密度が良好な
一方向性電磁鋼板を得るための薄鋳片製造方法を提供す
ることを目的とするものである。
However, according to the findings of the present inventors, the product manufactured from the cast piece for a grain-oriented electrical steel sheet has a low magnetic flux density, which is caused by a problem in controlling the cast structure. I thought there was a point. The present invention is intended to solve such a problem, and focuses on the atmosphere at the time of casting, and controls the casting structure at the time of solidification to reduce the size of the cast iron.
It is an object of the present invention to provide a method of manufacturing a thin slab for obtaining a unidirectional magnetic steel sheet having a high degree of integration of 0} <001> orientation and a good magnetic flux density.

【0006】[0006]

【課題を解決するための手段】本発明では、上記目的を
達成すべく検討を重ねた結果、完成したものであって、
その要旨とするところは、双ロール式連続鋳造におい
て、重量でSi:2.5〜6.5%、Mn:0.02〜
0.15%、S:0.001〜0.05%を基本成分と
して含有する溶鋼を、連続的に供給して急冷凝固させ、
0.3〜3.0mmの厚みの薄鋳片を連続鋳造するに際
し、双ロールの湯溜まり部をアルゴンガス雰囲気にする
ことにあり、これにより、従来よりも高い磁束密度を得
ることができる。
The present invention has been completed as a result of repeated studies to achieve the above object.
The point is that in twin-roll continuous casting, Si: 2.5 to 6.5% by weight, Mn: 0.02 to
Molten steel containing 0.15%, S: 0.001 to 0.05% as a basic component is continuously supplied and rapidly solidified,
When continuously casting thin cast pieces having a thickness of 0.3 to 3.0 mm, the pool portion of the twin rolls is made to have an argon gas atmosphere, whereby a higher magnetic flux density can be obtained than before.

【0007】[0007]

【作用】以下に本発明を詳細に説明する。一方向性電磁
鋼板は一般に、その製造工程の最終焼鈍中に二次再結晶
を充分に起こさせ、所謂ゴス集合組織を得ることにより
製造できる。このゴス集合組織を得るためには、一次再
結晶粒の成長粗大化を抑制し、{110}〈001〉方
位の再結晶粒のみを或る温度範囲で選択的に成長させ
る。すなわち、二次再結晶させるような素地を作ってや
ることが必要である。これに対して、特開昭63−11
619号の急冷凝固法では{100}〈0vw〉柱状晶
の鋳造組織の存在が避けられないという問題がある。こ
の{100}〈0vw〉は、圧延、再結晶しても{10
0}〈0vw〉に近い方位の結晶になることが、良く知
られている。従って、柱状晶が多く存在すると、二次再
結晶不良部分が増加するため、成品の磁気特性が劣化
し、高い磁束密度が得られない。
The present invention will be described below in detail. A grain-oriented electrical steel sheet can generally be produced by sufficiently causing secondary recrystallization during the final annealing in the production process to obtain a so-called Goss texture. In order to obtain this Goss texture, the coarse growth of primary recrystallized grains is suppressed, and only recrystallized grains of the {110} <001> orientation are selectively grown in a certain temperature range. That is, it is necessary to make a base material for secondary recrystallization. In contrast, Japanese Patent Application Laid-Open No. 63-11 / 1988
No. 619 has a problem that the presence of a cast structure of {100} <0vw> columnar crystal is inevitable. This {100} <0vw> is {10} even after rolling and recrystallization.
It is well known that the crystal has an orientation close to 0} <0vw>. Therefore, if there are many columnar crystals, the secondary recrystallization defective portion increases, so that the magnetic properties of the product deteriorate and a high magnetic flux density cannot be obtained.

【0008】そこで、成品の磁束密度を向上させるため
には、薄鋳片での柱状晶の鋳造組織をできるだけ少なく
して、等軸晶の鋳造組織にする必要がある。本発明者ら
は、この急冷凝固時の凝固組織形態を改善するため、湯
溜まり部の雰囲気を変えて、凝固速度をさらに高める方
向にもっていかなければならないと考えた。
Therefore, in order to improve the magnetic flux density of the product, it is necessary to make the cast structure of columnar crystals in thin cast pieces as small as possible to make the cast structure of equiaxed crystals. The present inventors considered that in order to improve the solidification structure morphology during the rapid solidification, the atmosphere in the pool was changed to further increase the solidification speed.

【0009】一般に、双ロール急冷凝固法では、図1で
双ロールの湯溜まり部を模式的に示すように、ロール1
/溶鋼2間にガス膜層3が存在し、溶鋼2表面からロー
ル1側への伝熱抵抗として、ロール本体1以外にガス膜
層3も含めた総括伝熱抵抗を考慮する必要がある。この
時のガス膜は数μmのオーダーの厚さと考えられる。普
通、双ロール急冷凝固法でのロール1と溶鋼2の接触時
間は0.1秒オーダーであり、この短時間に凝固シェル
を形成させる必要があり、ガス膜層3による総括伝熱抵
抗への影響は非常に大きいものと思われる。そこで、本
発明者らは、双ロールの湯溜まり部での雰囲気ガス4の
巻き込みに着目した。
In general, in the twin roll quenching and solidification method, as shown in FIG.
The gas film layer 3 exists between the molten steel 2 and the overall heat transfer resistance including the gas film layer 3 in addition to the roll body 1 needs to be considered as the heat transfer resistance from the surface of the molten steel 2 to the roll 1. The gas film at this time is considered to have a thickness on the order of several μm. Normally, the contact time between the roll 1 and the molten steel 2 in the twin-roll quenching solidification method is on the order of 0.1 second, and it is necessary to form a solidified shell in this short time. The impact seems to be very large. Then, the present inventors paid attention to entrainment of the atmosphere gas 4 in the pool of the twin rolls.

【0010】そこで、従来の大気に変えて、種々のガス
を使用し、鋳造組織形態について検討を実施した。その
結果、湯溜まり部をアルゴンガス雰囲気にすると、図2
(a)に示すように等軸粒鋳造組織を持った薄鋳片が得
られ、さらに集合組織もランダム方位に改善されること
により、磁束密度が向上することを見出した。これに対
し、窒素ガス雰囲気では、凝固組織形態は方向性をもっ
た柱状晶(図2(b))となり易い。
In view of the above, various types of gases were used in place of the conventional atmosphere, and a study was conducted on the form of the casting structure. As a result, when the pool is set to an argon gas atmosphere,
As shown in (a), a thin slab having an equiaxed grain casting structure was obtained, and it was further found that the magnetic flux density was improved by improving the texture to a random orientation. On the other hand, in a nitrogen gas atmosphere, the solidification structure morphology tends to be directional columnar crystals (FIG. 2B).

【0011】この理由としては、アルゴンガスは熱伝導
度が比較的よく、冷却速度を高める方向にあることが考
えられる。すなわち、アルゴンガスは、窒素ガスと熱伝
導度が略同等であるが、窒素ガスの場合は溶鋼の表面で
微量の吸窒が行われるため、見かけの熱伝導度が小さく
なり、その結果として、窒素ガスと比較するとアルゴン
ガスの熱伝導度が大きくなることが考えられる。
The reason may be that the argon gas has a relatively good thermal conductivity and tends to increase the cooling rate. That is, argon gas has almost the same thermal conductivity as nitrogen gas, but in the case of nitrogen gas, a small amount of nitrogen absorption is performed on the surface of the molten steel, so that the apparent thermal conductivity decreases, and as a result, It is conceivable that the thermal conductivity of argon gas is higher than that of nitrogen gas.

【0012】以上のように、本発明者らは、双ロールの
湯溜まり部の雰囲気ガスの巻き込みに着目して、種々の
ガスを検討した結果、湯溜まり部をアルゴンガス雰囲気
にすると、等軸粒鋳造組織とランダム集合組織を持った
薄鋳片が得られ、磁束密度が向上することを見出した。
As described above, the inventors of the present invention focused on the entrainment of the atmosphere gas in the pool portion of the twin rolls and examined various gases. It was found that thin slabs having a grain structure and a random texture were obtained, and the magnetic flux density was improved.

【0013】次に本発明において、鋼成分および製造条
件を前記のように限定した理由を、詳細に説明する。こ
の鋼成分の限定理由は下記の通りである。
Next, the reason why the steel composition and the production conditions are limited as described above in the present invention will be described in detail. The reasons for limiting the steel components are as follows.

【0014】Siは鉄損を良くするために下限を2.5
%とするが、多すぎると冷間圧延の際に割れ易く加工が
困難となるので上限を6.5%とする。MnはMnSを
形成するために必要な元素で、下限0.02%は、これ
未満であればMnSの絶対量が不足し、上限0.15%
は、これを超えるとMnSの適当な分散状態が得られな
いので上記範囲に限定した。SはMnS,(Mn・F
e)Sを形成するために必要な元素で、下限0.001
%は、これ未満では、MnS,(Mn・Fe)Sの絶対
量が不足し、上限0.05%は、これを超えると仕上げ
高温焼鈍で脱硫が困難となるので上記範囲に限定した。
Si has a lower limit of 2.5 to improve iron loss.
However, if the content is too large, it tends to crack during cold rolling, making it difficult to work. Therefore, the upper limit is set to 6.5%. Mn is an element necessary for forming MnS. The lower limit of 0.02% is less than this, the absolute amount of MnS is insufficient, and the upper limit is 0.15%.
Exceeds this range, an appropriate dispersion state of MnS cannot be obtained. S is MnS, (Mn · F
e) Element necessary for forming S, with a lower limit of 0.001
% Is less than this, the absolute amounts of MnS and (Mn.Fe) S are insufficient, and the upper limit of 0.05% is limited to the above range, because if it exceeds this, desulfurization becomes difficult by finish high-temperature annealing.

【0015】さらに、硫化物に加えてAlNを利用する
場合は、酸可溶性AlとNを添加する。酸可溶性Alは
AlNを形成するために必要な元素で、下限0.01%
は、これ未満ではAlNの絶対量が不足し、上限0.0
4%は、これを超えるとAlNの適正な分散状態が得ら
れないので限定した。NはAlNを形成するために必要
な元素で、下限0.03%は、これ未満ではAlNの絶
対量が不足し、また上限0.015%は、これを超える
と二次再結晶が不安定となると共に、ブリスターが発生
しやすくなるので上記範囲に限定した。
When AlN is used in addition to sulfide, acid-soluble Al and N are added. Acid soluble Al is an element necessary for forming AlN, and the lower limit is 0.01%
Is less than this, the absolute amount of AlN is insufficient, and the upper limit is 0.0
If it exceeds 4%, an appropriate dispersion state of AlN cannot be obtained, so the content is limited. N is an element necessary for forming AlN. The lower limit of 0.03% is less than the lower limit, the absolute amount of AlN is insufficient, and the upper limit of 0.015% is over, secondary recrystallization is unstable. , And blisters are likely to be generated.

【0016】その他、Cu,Sn,Sbはインヒビター
を強くする目的で1.0%以下において少なくとも1種
添加しても良い。また、Cについては、0.03〜0.
10%が望ましい。下限0.03%は、これ未満であれ
ば二次再結晶が不安定となり、上限0.10%は、これ
より多くなると脱炭所要時間が長くなり、経済的に不利
となるからである。
In addition, at least one of Cu, Sn and Sb may be added at 1.0% or less for the purpose of strengthening the inhibitor. For C, 0.03 to 0.
10% is desirable. If the lower limit of 0.03% is less than this, the secondary recrystallization becomes unstable, and if the upper limit of 0.10% is more than this, the decarburization time becomes longer, which is economically disadvantageous.

【0017】次に、この溶鋼を双ロール法等により急冷
凝固し、0.3〜6.0mm厚の薄鋳片を製造するが、最
終板厚0.05〜0.40mmの製品を想定したとき、良
好な二次再結晶を得るためには0.3mm未満では冷延圧
下率が不足であり、6.0mm超では冷延圧下率は過剰と
なる。本発明では、等軸晶鋳造組織でかつランダム集合
組織とするため、鋳造雰囲気ガスをアルゴンガスに限定
した。なお凝固する時の溶鋼の過冷却度は、10℃以下
が望ましい。さらに凝固完了後は、インヒビターの成
長、凝集粗大化や結晶粒の成長を抑えるため、600℃
までの温度域を10℃/秒以上で急冷するのが好まし
い。ここで、600℃以下ではインヒビターが析出しな
いため、600℃以上の温度域に限定した。また、下限
10℃/秒は、これ以下ではインヒビターが成長、凝集
粗大化し、結晶粒が成長粗大化するからである。さら
に、鋳片の靭性を得るために、若干の圧下を薄鋳片に加
えてやる方法もある。ここで、インヒビターとして窒化
物も必要とする場合は、AlN等の析出のために950
〜1200℃で30秒〜30分の中間焼鈍を行うことが
望ましい。
Next, the molten steel is rapidly solidified by a twin roll method or the like to produce a thin slab having a thickness of 0.3 to 6.0 mm. A product having a final thickness of 0.05 to 0.40 mm is assumed. At times, in order to obtain good secondary recrystallization, the cold rolling reduction is insufficient when the diameter is less than 0.3 mm, and the cold rolling reduction is excessive when the distance exceeds 6.0 mm. In the present invention, in order to have an equiaxed cast structure and a random texture, the casting atmosphere gas is limited to argon gas. The degree of supercooling of the molten steel during solidification is desirably 10 ° C or less. Further, after the solidification is completed, 600 ° C.
It is preferable to rapidly cool the temperature range up to 10 ° C./sec. Here, the inhibitor was not precipitated at a temperature of 600 ° C. or less, so the temperature range was limited to a temperature range of 600 ° C. or more. Also, the lower limit of 10 ° C./sec is because below this, the inhibitor grows, agglomerates and coarsens, and the crystal grains grow and coarsen. Furthermore, there is a method in which a slight reduction is applied to the thin slab in order to obtain the toughness of the slab. Here, when a nitride is also required as an inhibitor, 950 is required for precipitation of AlN or the like.
It is desirable to perform intermediate annealing at a temperature of 1200 ° C. for 30 seconds to 30 minutes.

【0018】次に、1回ないし、中間焼鈍を含む2回以
上の冷間圧延を施す。このときの最終冷延圧下率は高い
ゴス集積度をもつ製品を得るため、圧下率60〜90%
が必要となる。この後は、湿潤水素雰囲気中で脱炭焼鈍
を行い、さらにMgO等の焼鈍分離剤を塗布して、二次
再結晶と純化のため1100℃以上の仕上げ焼鈍を行う
ことで、磁気特性が良好な一方向性電磁鋼板が製造され
る。次に本発明の実施例を挙げて説明する。
Next, cold rolling is performed once or twice or more including intermediate annealing. The final cold rolling reduction at this time is 60% to 90% in order to obtain a product having a high degree of Goss accumulation.
Is required. Thereafter, decarburization annealing is performed in a wet hydrogen atmosphere, an annealing separator such as MgO is applied, and finish annealing at 1100 ° C. or more is performed for secondary recrystallization and purification, so that magnetic properties are good. A simple grain-oriented electrical steel sheet is manufactured. Next, an example of the present invention will be described.

【0019】[0019]

【実施例】【Example】

〔実施例1〕表1に示す成分組成を含む溶鋼を、双ロー
ル急冷凝固法により、2.4mm厚の薄鋳片にした。鋳造
条件は、ロール径が300mmφ、ロール周速度が440
mm/秒、溶鋼のロール接触時間は約0.3秒であった。
湯溜まり部での溶鋼温度は1495℃であった。鋳造雰
囲気は、表2に示すように、Ar,N2 の2水準にし
た。鋳造直後は、双ロール直下から気水冷却を実施し
た。1400℃から600℃までの二次冷却速度は、い
ずれも100℃/秒である。このときの、鋳造雰囲気が
ArとN2 での鋳造組織を図2に示す。鋳造雰囲気がA
rで等軸晶(図2(a))、N2 では柱状晶(図2
(b))になっていた。ついで、得られた鋳片を酸洗し
た後、冷間圧延を行い0.8mm厚にした。次に湿潤水素
中で焼鈍し、再度、冷間圧延を施し0.30mm厚にし
た。さらに、湿潤水素中で脱炭焼鈍しMgO粉を塗布し
た後、1200℃に10時間、水素ガス雰囲気中で高温
焼鈍を行った。表2に、得られた製品の磁気特性を示
す。製品の磁性は、鋳造雰囲気が、Arで他の鋳造雰囲
気よりも高い磁束密度のものが得られた。
[Example 1] Molten steel containing the component compositions shown in Table 1 was formed into a thin slab 2.4 mm thick by twin-roll rapid solidification. As for the casting conditions, the roll diameter was 300 mmφ and the roll peripheral speed was 440.
mm / sec, the molten steel roll contact time was about 0.3 seconds.
The molten steel temperature at the pool was 1495 ° C. As shown in Table 2, the casting atmosphere had two levels of Ar and N 2 . Immediately after casting, steam-water cooling was performed immediately below the twin rolls. The secondary cooling rate from 1400 ° C. to 600 ° C. is 100 ° C./sec. FIG. 2 shows a casting structure in which the casting atmosphere is Ar and N 2 . Casting atmosphere is A
r is an equiaxed crystal (FIG. 2A), and N 2 is a columnar crystal (FIG. 2A).
(B)). Next, the obtained slab was pickled and then cold-rolled to a thickness of 0.8 mm. Next, it was annealed in wet hydrogen and cold rolled again to a thickness of 0.30 mm. Furthermore, after decarburizing annealing in wet hydrogen and applying MgO powder, high temperature annealing was performed in a hydrogen gas atmosphere at 1200 ° C. for 10 hours. Table 2 shows the magnetic properties of the obtained products. Regarding the magnetism of the product, the casting atmosphere was Ar having a higher magnetic flux density than other casting atmospheres.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】〔実施例2〕表3に示す成分組成を含む溶
鋼を、双ロール急冷凝固法により、2.3mm厚の薄鋳片
にした。鋳造条件は、ロール径が300mmφ、ロール周
速度が450mm/秒、溶鋼のロール接触時間は約0.3
秒であった。湯溜まり部での溶鋼温度は1495℃であ
った。鋳造雰囲気は、表4に示すように、Ar,N2
2水準にした。鋳造直後は、双ロール直下から気水冷却
を実施した。1400℃から600℃までの二次冷却速
度は、いずれも100℃/秒である。ついで、得られた
鋳片を1120℃で5分間焼鈍を行い、さらに酸洗した
後、冷間圧延を行い0.30mm厚にした。次に湿潤水素
中で脱炭焼鈍し、MgO粉を塗装布した後、1200℃
に10時間、水素ガス雰囲気中で脱炭焼鈍を行った。得
られた製品の磁性は、表4に示すように、鋳造雰囲気が
Arで、他の鋳造雰囲気よりも磁束密度が高く、鉄損が
良好なものが得られた。
Example 2 Molten steel containing the component compositions shown in Table 3 was formed into a 2.3 mm thick thin slab by a twin roll rapid solidification method. The casting conditions were as follows: a roll diameter of 300 mmφ, a roll peripheral speed of 450 mm / sec, and a molten steel roll contact time of about 0.3 mm.
Seconds. The molten steel temperature at the pool was 1495 ° C. As shown in Table 4, the casting atmosphere was set at two levels of Ar and N 2 . Immediately after casting, steam-water cooling was performed immediately below the twin rolls. The secondary cooling rate from 1400 ° C. to 600 ° C. is 100 ° C./sec. Then, the obtained slab was annealed at 1120 ° C. for 5 minutes, pickled, and then cold rolled to a thickness of 0.30 mm. Next, after decarburizing annealing in wet hydrogen and applying MgO powder as a coating cloth, 1200 ° C.
For 10 hours in a hydrogen gas atmosphere. As shown in Table 4, the magnetism of the obtained product was such that the casting atmosphere was Ar, the magnetic flux density was higher than the other casting atmospheres, and the iron loss was good.

【0023】[0023]

【表3】 [Table 3]

【0024】[0024]

【表4】 [Table 4]

【0025】〔実施例3〕 表5に示す成分組成を含む溶鋼を、双ロール急冷凝固法
により、2.0mm厚の薄鋳片にした。鋳造条件は、ロー
ル径が300mmφ、ロール周速度が550mm/秒、溶鋼
のロール接触時間は約0.3秒であった。湯溜まり部で
の溶鋼温度は1495℃であった。鋳造雰囲気はAr
ある。鋳造後の二次冷却条件は、双ロール直下から気水
冷却を実施した。二次冷却速度は600℃まで145℃
/秒をとった。
Example 3 Molten steel containing the component composition shown in Table 5 was formed into a 2.0 mm thick thin slab by a twin-roll rapid solidification method. The casting conditions were a roll diameter of 300 mmφ, a roll peripheral speed of 550 mm / sec, and a molten steel roll contact time of about 0.3 seconds. The molten steel temperature at the pool was 1495 ° C. The casting atmosphere is Ar . Regarding the secondary cooling conditions after casting, steam-water cooling was performed immediately below the twin rolls. Secondary cooling rate is 145 ° C up to 600 ° C
/ Sec.

【0026】ついで、得られた鋳片を1120℃で5分
間焼鈍を行い、さらに酸洗した後、冷間圧延を行い0.
23mm厚にした。次に湿潤水素中で脱炭焼鈍し、MgO
粉を塗装布した後、1200℃に10時間、水素ガス雰
囲気中で高温焼鈍を行った。得られた製品の磁性は、磁
束密度はB8 =1.92(T)、鉄損W17/50 =0.8
7(kg/W)で、良好な磁気特性が得られた。
Next, the obtained slab was annealed at 1120 ° C. for 5 minutes, pickled, and then cold rolled.
The thickness was 23 mm. Next, decarburization annealing is performed in wet hydrogen, and MgO
After the powder was coated with a cloth, high-temperature annealing was performed at 1200 ° C. for 10 hours in a hydrogen gas atmosphere. Regarding the magnetism of the obtained product, the magnetic flux density is B 8 = 1.92 (T), and the iron loss W 17/50 = 0.8.
At 7 (kg / W), good magnetic properties were obtained.

【0027】[0027]

【表5】 [Table 5]

【0028】[0028]

【発明の効果】本発明によれば、急冷凝固法により得ら
れた珪素鋼薄鋳片を素材とし、熱延を省略して、高い磁
束密度を有する一方向性電磁鋼板を、安価かつ省エネル
ギーに製造することができるので、産業上の貢献すると
ころが極めて大である。
According to the present invention, a unidirectional electrical steel sheet having a high magnetic flux density by using a thin cast slab of silicon steel obtained by a rapid solidification method as a raw material and omitting hot rolling can be obtained at low cost and energy saving. Because it can be manufactured, the industrial contribution is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】双ロールの湯溜まり部での、ロール表面におけ
るガス膜層の模式図である。
FIG. 1 is a schematic diagram of a gas film layer on a roll surface in a pool portion of a twin roll.

【図2】薄鋳片の1/4厚での鋳造金属組織写真であっ
て、(a)は鋳造雰囲気をArガスとしたもの、(b)
はN2 ガスとしたものである。
FIGS. 2A and 2B are photographs of a metal structure of a thin cast slab at a thickness of 1 /, wherein FIG.
Is N 2 gas.

【符号の説明】[Explanation of symbols]

1 ロール 2 溶鋼 3 ガス膜層 4 鋳造雰囲気ガス 1 roll 2 molten steel 3 gas film layer 4 casting atmosphere gas

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01F 1/16 H01F 1/16 B (56)参考文献 特開 平2−258149(JP,A) 特開 平4−4953(JP,A) 特開 昭62−267448(JP,A) 特開 平2−258922(JP,A) 特開 昭56−163235(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/00 B22D 11/06 330 C22C 33/04 C22C 38/00 303 H01F 1/16 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 7 Identification symbol FI H01F 1/16 H01F 1/16 B (56) References JP-A-2-258149 (JP, A) JP-A-4-4953 ( JP, A) JP-A-62-267448 (JP, A) JP-A-2-258922 (JP, A) JP-A-56-163235 (JP, A) (58) Fields investigated (Int. Cl. 7 , (DB name) B22D 11/00 B22D 11/06 330 C22C 33/04 C22C 38/00 303 H01F 1/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 双ロール式連続鋳造において、重量でS
i:2.5〜6.5%、Mn:0.02〜0.15%、
S:0.001〜0.05%を基本成分として含有する
溶鋼を、連続的に供給して急冷凝固させ、0.3〜6.
0mmの厚みの薄鋳片を連続鋳造するに際し、双ロールの
湯溜まり部をアルゴンガス雰囲気にすることを特徴とす
る一方向性電磁鋼板薄鋳片の製造方法。
In a twin-roll continuous casting, S is expressed by weight.
i: 2.5 to 6.5%, Mn: 0.02 to 0.15%,
S: Molten steel containing 0.001 to 0.05% as a basic component is continuously supplied and rapidly solidified, and 0.3 to 6.
A method for producing a thin slab for a grain-oriented electrical steel sheet, wherein a continuous pool of a thin slab having a thickness of 0 mm is subjected to an argon gas atmosphere in a pool portion of a twin roll.
【請求項2】 酸可溶性Al:0.01〜0.04%、
N:0.003〜0.015%を含有することを特徴と
する請求項1記載の一方向性電磁鋼板用薄鋳片の製造方
法。
2. Acid-soluble Al: 0.01 to 0.04%,
The method for producing a thin slab for a grain-oriented electrical steel sheet according to claim 1, wherein N: 0.003 to 0.015% is contained.
JP4194321A 1992-07-21 1992-07-21 Method of manufacturing thin slab for unidirectional electrical steel sheet Expired - Fee Related JP3067896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4194321A JP3067896B2 (en) 1992-07-21 1992-07-21 Method of manufacturing thin slab for unidirectional electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4194321A JP3067896B2 (en) 1992-07-21 1992-07-21 Method of manufacturing thin slab for unidirectional electrical steel sheet

Publications (2)

Publication Number Publication Date
JPH0631397A JPH0631397A (en) 1994-02-08
JP3067896B2 true JP3067896B2 (en) 2000-07-24

Family

ID=16322653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4194321A Expired - Fee Related JP3067896B2 (en) 1992-07-21 1992-07-21 Method of manufacturing thin slab for unidirectional electrical steel sheet

Country Status (1)

Country Link
JP (1) JP3067896B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7736444B1 (en) 2006-04-19 2010-06-15 Silicon Steel Technology, Inc. Method and system for manufacturing electrical silicon steel

Also Published As

Publication number Publication date
JPH0631397A (en) 1994-02-08

Similar Documents

Publication Publication Date Title
JPS6160896B2 (en)
US5049204A (en) Process for producing a grain-oriented electrical steel sheet by means of rapid quench-solidification process
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JPH10130729A (en) Production of grain-oriented silicon steel sheet having extremely low core loss
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3067894B2 (en) Manufacturing method of thin slab for non-oriented electrical steel sheet
GB2060697A (en) Grain-oriented silicon steel production
JP2871308B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JP2647323B2 (en) Manufacturing method of grain-oriented electrical steel sheet with low iron loss
JPH06306467A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2826005B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP2588635B2 (en) Thin slabs for manufacturing unidirectional electrical steel sheets
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH02258922A (en) Production of grain-oriented silicon steel sheet with high magnetic flux density
JP2750238B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JPH08199242A (en) Production of grain oriented silicon steel sheet having superior magnetic property
JPH07331331A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JPH07258737A (en) Production of grain-oriented magnetic steel sheet having high magnetic flux density

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000411

LAPS Cancellation because of no payment of annual fees