JP2750238B2 - Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation - Google Patents

Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation

Info

Publication number
JP2750238B2
JP2750238B2 JP18537592A JP18537592A JP2750238B2 JP 2750238 B2 JP2750238 B2 JP 2750238B2 JP 18537592 A JP18537592 A JP 18537592A JP 18537592 A JP18537592 A JP 18537592A JP 2750238 B2 JP2750238 B2 JP 2750238B2
Authority
JP
Japan
Prior art keywords
annealing
less
rolling
steel sheet
goss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18537592A
Other languages
Japanese (ja)
Other versions
JPH05186830A (en
Inventor
賢一 荒井
和志 石山
靖 田中
昭 日裏
操 浪川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP18537592A priority Critical patent/JP2750238B2/en
Priority to US07/920,127 priority patent/US5354389A/en
Priority to KR1019920013517A priority patent/KR950005791B1/en
Priority to DE69214554T priority patent/DE69214554T2/en
Priority to EP92112933A priority patent/EP0526834B1/en
Publication of JPH05186830A publication Critical patent/JPH05186830A/en
Priority to US08/259,389 priority patent/US5489342A/en
Application granted granted Critical
Publication of JP2750238B2 publication Critical patent/JP2750238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、Goss方位に集積した
結晶方位を有する方向性珪素鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented silicon steel sheet having a crystal orientation integrated in a Goss orientation.

【0002】[0002]

【従来の技術】方向性珪素鋼板は、無方向性珪素鋼板よ
りも良好な磁気特性を有しており、主としてトランスの
鉄心として使用されている。Gossによる{110}<0
01>方位に揃った結晶粒を持つ方向性珪素鋼板の製造
方法の発明以来、このようなGoss 組織を有する方向性
珪素鋼板の製造方法が数多く提案されている。これらの
提案を大別すると以下の3つに要約される。
2. Description of the Related Art Oriented silicon steel sheets have better magnetic properties than non-oriented silicon steel sheets, and are mainly used as transformer cores. {110} <0 by Goss
Since the invention of a method for producing a grain-oriented silicon steel sheet having crystal grains aligned in the <01> orientation, many methods for producing a grain-oriented silicon steel sheet having such a Goss structure have been proposed. These proposals can be broadly summarized into the following three.

【0003】第一の方法は、2回冷圧法と呼ばれる方法
である。この方法はGoss法を改良した方法であり、製鋼
段階でMn,Sb,S,Se等を添加し、これらの元素
およびその微細析出物による結晶粒成長抑制作用を利用
して2次再結晶を行わせるもである。具体的には、C:
0.02〜0.08wt%、Si:2.0〜4.0wt
%、Mn:0.2wt%程度、S:0.005〜0.0
5wt%の成分を持つ鋼塊を溶製し熱間圧延によって板
厚2.0〜3.0mmに圧延後、熱延板焼鈍を施し、次
いで圧延率70%程度の冷間圧延を施し、引き続き85
0〜1050℃の中間焼鈍を施し、さらに圧延率60〜
70%で冷間圧延を施し、800〜850℃で脱炭焼鈍
後、1100℃以上の温度で5〜50時間焼鈍して2次
再結晶及びインヒビターの除去(純化焼鈍)を行い、Go
ss粒を成長させる(例えば、特公昭51−13469
号)。
[0003] The first method is a method called twice cold pressure method. This method is a modification of the Goss method, in which Mn, Sb, S, Se, etc. are added at the steelmaking stage, and secondary recrystallization is performed by utilizing the effect of these elements and their fine precipitates to suppress the growth of crystal grains. It is also done. Specifically, C:
0.02 to 0.08 wt%, Si: 2.0 to 4.0 wt%
%, Mn: about 0.2 wt%, S: 0.005 to 0.0
A steel ingot having a composition of 5 wt% is melted and rolled to a plate thickness of 2.0 to 3.0 mm by hot rolling, and then subjected to hot rolling annealing, and then to cold rolling at a rolling ratio of about 70%, 85
Intermediate annealing at 0 to 1050 ° C is performed, and the rolling reduction is 60 to
Cold rolling at 70%, decarburizing annealing at 800 to 850 ° C, annealing at 1100 ° C or higher for 5 to 50 hours to perform secondary recrystallization and removal of inhibitor (purification annealing),
Growing ss grains (for example, Japanese Patent Publication No. 51-13469)
issue).

【0004】第二の方法は1回冷圧法と呼ばれる方法で
ある。この方法は冷間圧延回数を1回にした方法で、2
回冷圧法よりもGoss粒の集積度が高いことで知られてい
る。具体的には、C:0.02〜0.08wt%、S
i:2.0〜4.0wt%、Mn:0.2wt%程度、
N:0.01〜0.05wt%、Al:0.1wt%程
度の成分を持つ鋼塊を溶製し熱間圧延によって板厚2.
0〜3.0mmに圧延後、熱延板焼鈍を施してAlN析
出処理を施し、次いで圧延率80〜95%の冷間圧延を
行った後、脱炭焼鈍を施し、しかる後、1200℃で2
0時間の高温焼鈍によって2次再結晶及びインヒビター
の除去(純化焼鈍)を行い、Goss粒を成長させる(例え
ば、特公昭40−15644号)。
[0004] The second method is a method called a one-time cold pressure method. In this method, the number of cold rolling is set to one,
It is known that the degree of accumulation of Goss grains is higher than that of the recooling method. Specifically, C: 0.02 to 0.08 wt%, S
i: 2.0 to 4.0 wt%, Mn: about 0.2 wt%,
1. A steel ingot having a composition of about N: 0.01 to 0.05 wt% and Al: about 0.1 wt% is melted and hot-rolled to obtain a sheet thickness of 2.
After rolling to 0 to 3.0 mm, hot-rolled sheet annealing is performed to perform AlN precipitation treatment, then cold rolling is performed at a rolling ratio of 80 to 95%, decarburizing annealing is performed, and then at 1200 ° C. 2
The secondary recrystallization and removal of the inhibitor (purification annealing) are performed by high-temperature annealing for 0 hour to grow Goss grains (for example, Japanese Patent Publication No. 40-15644).

【0005】第三の方法は、インヒビターを用いずにGo
ss組織を形成する方法である(例えば、特開昭64−5
5339号、特開平2−57635号等)。この方法
は、単純に特定条件の圧延と熱処理とを組み合わせるこ
とによりGoss粒を発達させるものである。
[0005] A third method is to use Go without an inhibitor.
This is a method of forming an ss structure (see, for example,
5339, JP-A-2-57635, etc.). In this method, Goss grains are developed by simply combining rolling and heat treatment under specific conditions.

【0006】[0006]

【発明が解決しようとする課題】上述したように第一、
第二の方法は脱炭焼鈍、純化焼鈍が必須であるため、高
温長時間の焼鈍が不可欠である。このため製造コスト、
設備コストが高くなることが避けられない。
As described above, first,
Since the second method requires decarburization annealing and purification annealing, annealing at high temperature for a long time is indispensable. Because of this, manufacturing costs,
It is inevitable that equipment costs will increase.

【0007】また、鉄損を低減するために最終板厚を
0.20mm以下にしようとすると2次再結晶現象が不
安定となり、全面Goss粒で占めることは困難となる。こ
のため現状では板厚0.23mm程度のものが製造限界
となっている。
If the final sheet thickness is reduced to 0.20 mm or less in order to reduce iron loss, the secondary recrystallization phenomenon becomes unstable and it is difficult to occupy the entire surface with Goss grains. For this reason, the production limit is currently about 0.23 mm in thickness.

【0008】上記第三の方法では脱炭焼鈍、純化焼鈍が
不要であるために製造コスト上は上記第一、第二の方法
に比べて有利である。しかしながら、本願発明者らによ
って特開昭64−55339号、特開平2−57635
号に開示されている方法の追試を行ったところ、そのGo
ss粒成長機構は極めて不安定であって、必ずしも常に全
面Goss粒で被われた材料が得られる訳ではなく、安定し
た品質を得ることが難しいことが判った。安定したGoss
粒生成は実用上方向性珪素鋼板には必須であり、Goss粒
以外の箇所を除いて使用するにしても歩留の低下に伴う
コスト高を招いてしまう。
Since the third method does not require decarburizing annealing and purification annealing, it is more advantageous in terms of manufacturing cost than the first and second methods. However, the inventors of the present application disclose Japanese Patent Application Laid-Open Nos. 64-55339 and 2-57635.
In addition to the method disclosed in
The ss grain growth mechanism was extremely unstable, and it was found that it was not always possible to obtain a material covered entirely with Goss grains, and it was difficult to obtain stable quality. Goss stable
Grain generation is practically indispensable for grain oriented silicon steel sheets, and even if it is used except for portions other than Goss grains, the cost is increased due to a decrease in yield.

【0009】本発明はこのような事情に鑑みてなされた
ものであって、安価な製造コストで優れた磁気特性を有
するGoss方位に集積した結晶方位を有する方向性珪素鋼
板を製造することができる製造方法を提供することを目
的とする。
The present invention has been made in view of such circumstances, and it is possible to manufacture a grain-oriented silicon steel sheet having a crystal orientation integrated with a Goss orientation having excellent magnetic properties at low manufacturing cost. It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明は、C:0.01
wt%以下、Si:2.5〜7.0wt%、S:0.0
1wt%以下、Al:0.01wt%以下、N:0.0
1wt%以下を含む鋼材を準備し、この鋼材を1000
℃以上に保持した後、仕上温度が700〜950℃にな
るような熱間圧延を施し、次いで圧延率40%以上の一
次冷間圧延を施した後、600〜900℃の温度で一次
焼鈍し、さらに、圧延率50〜80%の二次冷間圧延を
施し、引き続き還元性雰囲気若しくは酸素分圧が0.5
Pa以下の非酸化性雰囲気、又は酸素分圧が0.5Pa
以下の真空中において1000〜1300℃の温度で二
次焼鈍することを特徴とするGoss方位に集積した結晶方
位を有する方向性珪素鋼板の製造方法を提供する。
According to the present invention, C: 0.01
wt% or less, Si: 2.5 to 7.0 wt%, S: 0.0
1 wt% or less, Al: 0.01 wt% or less, N: 0.0
A steel material containing 1 wt% or less is prepared, and this steel material is
C. or higher, followed by hot rolling so that the finishing temperature becomes 700 to 950.degree. C., and then subjected to primary cold rolling at a rolling reduction of 40% or more, followed by primary annealing at a temperature of 600 to 900.degree. Further, a secondary cold rolling is performed at a rolling ratio of 50 to 80%, and then the reducing atmosphere or the oxygen partial pressure is reduced to 0.5%.
Non-oxidizing atmosphere of Pa or less, or oxygen partial pressure of 0.5 Pa
A method for producing a grain-oriented silicon steel sheet having a crystal orientation integrated in a Goss orientation, characterized by performing secondary annealing at a temperature of 1000 to 1300 ° C. in the following vacuum.

【0011】また、前記二次焼鈍後の鋼材に対して、さ
らに圧延率30%以上の三次冷間圧延を施し、引き続き
還元性雰囲気若しくは酸素分圧が0.5Pa以下の非酸
化性雰囲気、又は酸素分圧が0.5Pa以下の真空中に
おいて1000〜1300℃の温度で三次焼鈍をするこ
とを特徴とするGoss方位に集積した結晶方位を有する方
向性珪素鋼板の製造方法を提供する。
Further, the steel material after the secondary annealing is further subjected to tertiary cold rolling at a rolling reduction of 30% or more, and subsequently a reducing atmosphere or a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less, or A method for producing a grain-oriented silicon steel sheet having a crystal orientation accumulated in a Goss orientation, wherein tertiary annealing is performed at a temperature of 1000 to 1300 ° C. in a vacuum having an oxygen partial pressure of 0.5 Pa or less.

【0012】本願発明者らは上記課題を解決するため
に、純化焼鈍が不要な成分系を前提とし、鋼中成分の影
響、及び熱延条件を始めとして圧延条件、焼鈍条件を詳
細に検討した結果、鋼組成を特定範囲に規定し、さらに
上記製造条件を特定の狭い範囲に規定することにより、
最終的にGoss粒が安定して成長し、かつ珪素鋼板全面を
覆うようにすることができることを見い出した。上記構
成を有する本発明は本願発明者らのこのような知見に基
づきなされたものである。
In order to solve the above-mentioned problems, the inventors of the present application have presupposed a component system that does not require purification annealing, and have studied in detail the effects of components in steel, and rolling conditions and annealing conditions including hot rolling conditions. As a result, by defining the steel composition in a specific range, and further defining the above manufacturing conditions in a specific narrow range,
Finally, they have found that Goss grains grow stably and can cover the entire surface of the silicon steel sheet. The present invention having the above-described configuration has been made based on such findings of the present inventors.

【0013】[0013]

【作用】以下、本発明について詳細に説明する。まず、
化学成分の限定理由について説明する。
Hereinafter, the present invention will be described in detail. First,
The reasons for limiting the chemical components will be described.

【0014】Cは製鋼段階でできるだけ低減しておくこ
とが磁気特性上好ましい。Cが0.01wt%を超える
と磁気特性が著しく劣化する。このためCの上限を0.
01wt%に規定する。
C is preferably reduced as much as possible in the steel making stage from the viewpoint of magnetic properties. If C exceeds 0.01% by weight, the magnetic properties are significantly deteriorated. Therefore, the upper limit of C is set to 0.
It is defined as 01 wt%.

【0015】Siは、電気抵抗を高める作用と、2.5
wt%以上の含有により金属学的変態点をなくし鋼をα
単相にする作用を有している。また、6.5wt%付近
では磁歪がゼロとなるため極めて優れた軟磁気特性が得
られる。しかし、7wt%を超えると磁歪が再び増大し
磁気特性が悪化するとともに、極めて脆くなるため実用
的ではない。このためSiの含有量を2.5〜7.0w
t%の範囲に規定する。
Si has an effect of increasing electric resistance and has an effect of 2.5
The metallurgical transformation point is eliminated by containing at least
It has the effect of making it a single phase. Further, at around 6.5 wt%, magnetostriction becomes zero, so that extremely excellent soft magnetic characteristics can be obtained. However, if it exceeds 7 wt%, magnetostriction increases again, magnetic properties deteriorate, and the material becomes extremely brittle, which is not practical. Therefore, the content of Si is set to 2.5 to 7.0 w.
It is specified in the range of t%.

【0016】S,Nは通常の鋼中に含まれる代表的な元
素であるが、これらの元素は、固溶した状態でも析出物
の形態を採った状態でも粒成長性を阻害するため、でき
る限り低減することが好ましい。但し、製鋼段階で極端
な低減を行うとコスト増の原因となるため、粒成長性を
阻害しない範囲としてこれらの含有量の上限をそれぞれ
0.01wt%に規定する。
S and N are typical elements contained in ordinary steel, and these elements can be formed in a solid solution state or a precipitate state because they inhibit grain growth. It is preferable to reduce as much as possible. However, if an extreme reduction is made at the steel making stage, it will cause an increase in cost. Therefore, the upper limits of these contents are respectively defined as 0.01 wt% as ranges that do not impair the grain growth.

【0017】Alはα鉄への固溶度が広く、かつ酸素と
の親和力が強い元素である。従って、最終的な熱処理に
よりGoss組織を形成する際に、熱処理雰囲気中の微量酸
素と反応して鋼板表面に酸化物層を形成してしまうた
め、表面エネルギーによる結晶粒成長が阻害されてしま
う。このため、Alの含有量をこのような不都合が生じ
ない0.01wt%以下に規定する。Al含有量のさら
に好ましい範囲は0.005wt%以下である。Alは
脱酸剤として通常添加されるものであるため、特に厳密
に制御する必要がある。このように一般的な添加元素で
あるAlを微量に制御してGoss粒の成長を促進させると
いう思想は本願発明者らが初めて見出したことである。
Al is an element having a wide solid solubility in α-iron and a strong affinity for oxygen. Therefore, when the Goss structure is formed by the final heat treatment, it reacts with a trace amount of oxygen in the heat treatment atmosphere to form an oxide layer on the surface of the steel sheet, so that crystal grain growth due to surface energy is hindered. For this reason, the content of Al is set to 0.01 wt% or less at which such inconvenience does not occur. A more preferable range of the Al content is 0.005 wt% or less. Since Al is usually added as a deoxidizing agent, it needs to be strictly controlled. The idea of promoting the growth of Goss grains by controlling a small amount of Al, which is a general additive element, as described above was found by the present inventors for the first time.

【0018】Cuはα鉄への固溶度が小さな元素であ
り、最終的な熱処理によりGoss組織を形成する際の結晶
粒成長を著しく阻害する元素である。また、Cuは製鋼
段階で0.05wt%程度含有される。従って、その含
有量を上述のような不都合が生じない0.01wt%以
下に減じることが好ましく、0.005wt%以下にす
ることが一層好ましい。ただし、Cuは融点が1083
℃であり、1000℃程度以上の熱処理により揮発する
成分であるため、0.01wt%よりも多く含有されて
いても比較的長時間の熱処理により0.01wt%以下
にすることが可能である。しかし、工程の効率化の観点
からは熱処理時間の延長は好ましくない。
Cu is an element having a small solid solubility in α-iron, and is an element that remarkably inhibits crystal grain growth when a Goss structure is formed by final heat treatment. Further, Cu is contained at about 0.05 wt% in the steel making stage. Therefore, the content is preferably reduced to 0.01 wt% or less, at which the above-mentioned inconvenience does not occur, and more preferably 0.005 wt% or less. However, Cu has a melting point of 1083.
° C, and is a component which is volatilized by heat treatment at about 1000 ° C or more. Therefore, even if it is contained more than 0.01 wt%, it can be reduced to 0.01 wt% or less by heat treatment for a relatively long time. However, extension of the heat treatment time is not preferable from the viewpoint of increasing the efficiency of the process.

【0019】これら元素以外の不可避不純物元素は通常
の鋼に含有される程度の量は許容される。しかし、磁気
特性等をより向上させる観点からは少ないほうが好まし
い。特に、α鉄への固溶度が低いSn等は、Cuと同様
に最終的な熱処理によりGoss組織を形成する際の結晶粒
成長を著しく阻害するので、その含有量が0.01wt
%以下、好ましくは0.005wt%以下になるように
注意する必要がある。また、α鉄への固溶度が広く、か
つ酸素との親和力が強いV,Zn等は、Alと同様に表
面エネルギーによる結晶粒成長を阻害する作用を有する
ため、その含有量が0.01wt%以下、好ましくは
0.005wt%以下になるように注意する必要があ
る。さらに、鋼中のOは3次再結晶挙動に影響を与える
ため、極力低いことが望ましく0.008wt%以下で
あることが好ましい。なお、他の鋼の基本元素であるM
n,Pも少ないほうが好ましい。
The unavoidable impurity elements other than these elements can be contained in such an amount as to be contained in ordinary steel. However, from the viewpoint of further improving the magnetic characteristics and the like, it is preferable that the number is small. In particular, Sn or the like having a low solid solubility in α-iron remarkably inhibits crystal grain growth when a Goss structure is formed by final heat treatment similarly to Cu, so that the content is 0.01 wt.
%, Preferably 0.005 wt% or less. V, Zn, etc., which have a high solid solubility in α-iron and a strong affinity for oxygen, have an effect of inhibiting crystal grain growth by surface energy, similarly to Al, so that the content is 0.01 wt. %, Preferably 0.005 wt% or less. Further, since O in the steel affects the tertiary recrystallization behavior, it is desirably as low as possible, preferably 0.008 wt% or less. The basic element of other steels, M
It is preferable that n and P are also small.

【0020】このようにして溶解された鋼は、インゴッ
トに鋳造されるか或いは連続鋳造法によりスラブとさ
れ、次いで、このインゴット又はスラブは1000℃以
上の温度に保持され、熱間圧延に供される。熱間圧延前
の保持温度を1000℃以上に規定したのは、粗圧延機
あるいは仕上げ熱間圧延機前段での熱延中の再結晶の促
進と、700〜950℃の熱延仕上げ温度を確保するた
めである。なお、熱間圧延は、インゴット又はスラブを
加熱炉にて1000℃以上に加熱してから行ってもよい
し、直接圧延により連続鋳造の後スラブ温度を1000
℃以上に保持したまま行ってもよい。
The steel thus melted is cast into an ingot or made into a slab by a continuous casting method, and the ingot or the slab is kept at a temperature of 1000 ° C. or more and subjected to hot rolling. You. The holding temperature before hot rolling is specified to be 1000 ° C. or higher because recrystallization is promoted during hot rolling in a rough rolling mill or a preceding stage of a finishing hot rolling mill and a hot rolling finishing temperature of 700 to 950 ° C. is secured. To do that. The hot rolling may be performed after the ingot or slab is heated to 1000 ° C. or more in a heating furnace, or the slab temperature may be set to 1000 after continuous casting by direct rolling.
It may be carried out while the temperature is kept at not less than ° C.

【0021】また、熱間圧延の仕上温度は700〜95
0℃の範囲であることが必要である。仕上温度が700
℃未満では熱間圧延の圧延負荷が大きくなり過ぎ製造上
好ましくない上に、最終的なGoss粒の成長にも悪影響を
及ぼす。また、仕上温度を950℃超にするにはインゴ
ット又はスラブの初期温度を高目に設定する必要があ
り、製造コスト上不利となる。
The finishing temperature of hot rolling is 700-95.
It must be in the range of 0 ° C. Finish temperature 700
If the temperature is lower than 0 ° C., the rolling load of the hot rolling becomes too large, which is not preferable in production, and also adversely affects the final growth of Goss grains. Further, in order to make the finishing temperature higher than 950 ° C., it is necessary to set the initial temperature of the ingot or the slab higher, which is disadvantageous in manufacturing cost.

【0022】熱延板の板厚は最終製品の所望板厚によっ
て異なるが、概ね1.6mm程度から5.0mm程度と
なる。このようにして製造された熱延板は常法に従って
巻き取られるが、その巻取温度は560〜800℃とす
ることが好ましい。巻取温度が560℃未満では、熱延
終了後のランアウトテーブル上での冷却が実際上困難で
あるため実用性に欠け、一方、巻取温度が800℃を超
えると、巻取冷却中の表面酸化により酸洗性が悪化し、
実用的ではない。
The thickness of the hot-rolled sheet varies depending on the desired thickness of the final product, but generally ranges from about 1.6 mm to about 5.0 mm. The hot-rolled sheet manufactured in this manner is wound according to a conventional method, and the winding temperature is preferably 560 to 800 ° C. When the winding temperature is lower than 560 ° C., cooling on the run-out table after the completion of hot rolling is practically difficult, and therefore, lacks practicality. The acidity deteriorates due to oxidation,
Not practical.

【0023】なお、巻き取られた熱延コイルを、必要に
応じて連続炉或いはバッチ炉で熱延板焼鈍してもよい。
このときの熱延板焼鈍温度は700〜1100℃である
ことが好ましい。熱延板焼鈍温度が700℃未満では、
熱延時に形成された加工組織を消滅させることができな
いため、その効果が実質的に現われず、一方、熱延板焼
鈍温度が1100℃を超えると、操業上のコスト高の原
因となるために実用上問題となる。
The rolled hot-rolled coil may be annealed in a continuous furnace or a batch furnace as required.
The hot-rolled sheet annealing temperature at this time is preferably 700 to 1100 ° C. If the hot-rolled sheet annealing temperature is less than 700 ° C,
Since the worked structure formed at the time of hot rolling cannot be eliminated, the effect is not substantially exhibited. On the other hand, if the hot-rolled sheet annealing temperature exceeds 1100 ° C., it causes high operating costs. This is a practical problem.

【0024】このようにして得られた熱延板は常法に従
って一次冷間圧延される。この冷間圧延の圧延率は40
%以上とする。圧延率が40%未満では、通常の熱延板
の板厚からして最終製品板厚(通常、1.0mm以下)
まで圧延することが難しく、また、表面エネルギーの効
果も相対的に小さくなってしまうため、引き続き行われ
る焼鈍によっても十分な粒成長を引き起こすことができ
ない。なお、通常、冷間圧延では潤滑材を使用するが、
潤滑材を使用せず無潤滑で圧延を行なっても同様の効果
が得られる。
The hot rolled sheet thus obtained is subjected to primary cold rolling according to a conventional method. The rolling rate of this cold rolling is 40
% Or more. When the rolling reduction is less than 40%, the final product thickness (usually, 1.0 mm or less) is calculated based on the thickness of the normal hot-rolled sheet.
It is difficult to perform rolling to the maximum, and the effect of surface energy is relatively reduced. Therefore, sufficient grain growth cannot be caused by subsequent annealing. Normally, lubricating materials are used in cold rolling,
The same effect can be obtained even if rolling is performed without lubrication without using a lubricant.

【0025】このようにして得られた一次冷延板は、6
00〜900℃で焼鈍(一次焼鈍)される。焼鈍温度が
600℃未満では、焼鈍による完全再結晶を行わせるこ
とができない。一方、焼鈍温度が900℃を超えると、
完全再結晶は達成されるが、焼鈍コストが不可避的に高
くなってしまう。また、短時間で再結晶を行わせ、かつ
経済性も確保するには、特に680〜800℃の温度で
焼鈍することが好ましい。この焼鈍では、鋼板表面が若
干酸化されたとしても、後に行われる冷間圧延前の酸洗
によりその除去が可能であるため、二次焼鈍時又は三次
焼鈍時の結晶方位のGoss方位への集積を確保するという
面では大きな問題はない。しかし、酸化膜を過度に生成
しないようにするという観点から、極力酸素分圧の低い
非酸化性雰囲気または真空中で行うことが好ましい。ま
た、焼鈍時間は通常2分以上であれば問題はない。この
ような焼鈍処理は箱型炉によるバッチ焼鈍又は連続焼鈍
にて実施することができる。
The thus obtained primary cold-rolled sheet is 6
Annealing (primary annealing) at 00 to 900 ° C. If the annealing temperature is lower than 600 ° C., complete recrystallization by annealing cannot be performed. On the other hand, if the annealing temperature exceeds 900 ° C,
Although complete recrystallization is achieved, annealing costs are inevitably high. In addition, in order to perform recrystallization in a short time and secure economic efficiency, it is particularly preferable to perform annealing at a temperature of 680 to 800 ° C. In this annealing, even if the steel sheet surface is slightly oxidized, it can be removed by pickling before cold rolling performed later, so that the crystal orientation in the secondary or tertiary annealing is accumulated in the Goss orientation. There is no major problem in terms of securing However, from the viewpoint of preventing an oxide film from being formed excessively, it is preferable to perform the treatment in a non-oxidizing atmosphere or a vacuum having a low oxygen partial pressure as much as possible. There is no problem if the annealing time is usually 2 minutes or more. Such an annealing treatment can be performed by batch annealing or continuous annealing using a box furnace.

【0026】焼鈍処理における加熱条件は、連続焼鈍で
は加熱速度200〜500℃/分、保持時間が2〜5分
間程度が適当であり、バッチ焼鈍では加熱速度4〜20
℃/分、保持時間が1〜10時間が適当である。冷却速
度は、熱収縮による歪みが鋼板内に残留しない限りにお
いて、通常採用される冷却速度で構わない。例えば、6
00℃まで13.5℃/秒、300℃まで12℃/秒の
冷却速度が採用される。
The heating conditions in the annealing treatment are suitably a heating rate of 200 to 500 ° C./min and a holding time of about 2 to 5 minutes for continuous annealing, and a heating rate of 4 to 20 for batch annealing.
C./min, and a holding time of 1 to 10 hours are appropriate. The cooling rate may be a normally adopted cooling rate as long as distortion due to heat shrinkage does not remain in the steel sheet. For example, 6
A cooling rate of 13.5 ° C / sec to 00 ° C and 12 ° C / sec to 300 ° C is employed.

【0027】上記一次焼鈍が施された鋼板は、圧延率5
0〜80%で二次冷間圧延される。圧延率が50%未満
或いは80%超では最終的なGoss粒の集積が十分でな
い。この冷間圧延は、一次冷間圧延と同様無潤滑、潤滑
のいずれでも実施可能である。
The steel sheet subjected to the primary annealing has a rolling reduction of 5%.
Secondary cold rolling is performed at 0 to 80%. If the rolling ratio is less than 50% or more than 80%, the final accumulation of Goss grains is not sufficient. This cold rolling can be performed either without lubrication or with lubrication as in the case of primary cold rolling.

【0028】このようにして得られた二次冷延板は10
00〜1300℃の温度で再び焼鈍される(二次焼
鈍)。焼鈍温度が1000℃未満では、表面エネルギー
を利用した結晶粒成長の駆動力が十分でないため所望の
Goss組織を得ることはできない。一方、焼鈍温度が13
00℃を超えると、実質的にこのような高温加熱のため
に必要エネルギーコストが大きくなり過ぎ、実用上の問
題を生じる。
The secondary cold rolled sheet obtained in this way is 10
Annealing is again performed at a temperature of 00 to 1300 ° C (secondary annealing). If the annealing temperature is lower than 1000 ° C., the driving force for crystal grain growth utilizing surface energy is not sufficient, and the desired
You can't get a Goss organization. On the other hand, when the annealing temperature is 13
If the temperature exceeds 00 ° C., the energy cost required for such high-temperature heating becomes excessively large, causing a practical problem.

【0029】この二次焼鈍は水素が必要量以上含まれて
いる実質的に還元性を有する雰囲気中か、実質的に窒
素、Ar等の不活性ガスからなる酸素分圧が0.5Pa
以下の非酸化性雰囲気中又は酸素分圧が0.5Pa以下
の真空中で行う必要がある。これは、結晶方位のGoss方
位への集積を阻害する鋼板表面に対する酸化膜の形成を
防止するためである。真空中又は不活性ガス雰囲気中に
酸素分圧が0.5Paを超える程度に酸素が含有される
場合には、鋼板表面に酸化膜が形成され、上記のような
効果は得られない。焼鈍時間は一次焼鈍と同様2分以上
であれば問題ない。
This secondary annealing is carried out in an atmosphere having a substantial reducing property in which hydrogen is contained in a necessary amount or an oxygen partial pressure substantially consisting of an inert gas such as nitrogen or Ar having a pressure of 0.5 Pa.
It is necessary to carry out in the following non-oxidizing atmosphere or in a vacuum having an oxygen partial pressure of 0.5 Pa or less. This is to prevent the formation of an oxide film on the steel sheet surface that hinders the integration of the crystal orientation in the Goss orientation. When oxygen is contained in a vacuum or an inert gas atmosphere so that the oxygen partial pressure exceeds about 0.5 Pa, an oxide film is formed on the surface of the steel sheet, and the above effects cannot be obtained. There is no problem if the annealing time is 2 minutes or more as in the primary annealing.

【0030】このようにして得られた二次焼鈍板はその
ままでも磁束密度の高い特性(B8≧1.7T以上)を
示すが、さらに三次冷間圧延および三次焼鈍を施すこと
により、より高い磁気特性を示すようになる。
Although the secondary annealed sheet thus obtained exhibits high magnetic flux density characteristics (B 8 ≧ 1.7 T or more) as it is, it is further enhanced by performing the third cold rolling and the third annealing. It shows magnetic properties.

【0031】三次冷間圧延の圧延率は30%以上とす
る。圧延率が30%未満であると、最終的に得られる結
晶組織が所望のGoss組織とならない。また、圧延率が5
0%を超える範囲では、B8 が1.9T以上の高磁束密
度を示す。この冷間圧延は、一次および二次冷間圧延と
同様無潤滑、潤滑のいずれでも実施可能である。
The rolling reduction of the third cold rolling is set to 30% or more. If the rolling reduction is less than 30%, the crystal structure finally obtained does not have a desired Goss structure. In addition, the rolling rate is 5
In a range exceeding 0%, B 8 shows a high magnetic flux density of 1.9 T or more. This cold rolling can be carried out without lubrication or lubrication as in the case of primary and secondary cold rolling.

【0032】上記三次冷延板は1000〜1300℃の
温度で焼鈍される(三次焼鈍)。この場合も、焼鈍温度
が1000℃未満では、表面エネルギーを利用した結晶
粒成長の駆動力が十分でないため所望のGoss組織を得る
ことはできない。一方、焼鈍温度が1300℃を超える
と、実質的にこのような高温加熱のために必要なエネル
ギーコストが大きくなり過ぎ、実用上の問題を生ずる。
この焼鈍も、上記二次焼鈍と同様の理由から、還元性雰
囲気若しくは酸素分圧が0.5Pa以下の非酸化性雰囲
気中、又は酸素分圧が0.5Pa以下の真空中で行う必
要がある。焼鈍時間は3分以上であれば問題はないが、
長時間焼鈍すればより安定したGoss組織が形成される。
The tertiary cold rolled sheet is annealed at a temperature of 1000 to 1300 ° C. (tertiary annealing). Also in this case, if the annealing temperature is lower than 1000 ° C., a desired Goss structure cannot be obtained because the driving force for crystal grain growth utilizing surface energy is not sufficient. On the other hand, if the annealing temperature exceeds 1300 ° C., the energy cost required for such high-temperature heating becomes substantially too large, causing a practical problem.
This annealing also needs to be performed in a reducing atmosphere or a non-oxidizing atmosphere with an oxygen partial pressure of 0.5 Pa or less, or in a vacuum with an oxygen partial pressure of 0.5 Pa or less for the same reason as the above-described secondary annealing. . There is no problem if the annealing time is 3 minutes or more,
Prolonged annealing forms a more stable Goss structure.

【0033】上記の方法で得られた鋼板は、いずれもG
oss 粒が安定して集積する。上記特性としては直流で8
00A/mの磁界を印加したときの磁束密度B8 が、い
ずれも1.7T以上と優れた磁気特性を示す。
Each of the steel sheets obtained by the above method has a G
Oss grains accumulate stably. The above characteristics are 8
Each of the magnetic flux densities B 8 when a magnetic field of 00 A / m is applied is 1.7 T or more, indicating excellent magnetic properties.

【0034】このように本発明によって優れた特性を有
する鋼板が製造できるのは、特定の組成の鋼に対し、一
次冷圧、一次焼鈍、二次冷圧により、又はこれに加えて
二次焼鈍、三次冷圧により好ましい集合組織が形成さ
れ、二次焼鈍又は三次焼鈍による表面エネルギーを利用
した結晶粒成長によりGoss粒の選択的粒成長が生じるこ
とによるものと推察される。
As described above, a steel sheet having excellent properties can be produced by the present invention only when a steel having a specific composition is subjected to a primary cold pressure, a primary annealing, a secondary cold pressure, or in addition to the secondary annealing. It is presumed that a preferred texture is formed by the tertiary cold pressure, and selective grain growth of Goss grains occurs by crystal growth using surface energy by secondary annealing or tertiary annealing.

【0035】一次冷圧、一次焼鈍、二次冷圧、二次焼
鈍、三次冷圧の各条件が本発明条件から外れた場合に
は、最終焼鈍(二次焼鈍または三次焼鈍)を本発明条件
で実施しても最終的に粗大結晶にならないか、あるいは
結晶方位のGoss方位への集積が不十分((100)面は
板面に揃うが<001>軸が圧延方向からずれる)なも
のとなってしまう。
If the conditions of the primary cold pressure, primary annealing, secondary cooling pressure, secondary annealing, and tertiary cold pressure deviate from the conditions of the present invention, the final annealing (secondary annealing or tertiary annealing) is performed according to the present invention. The result is that the crystal does not eventually become a coarse crystal, or the crystal orientation is not sufficiently integrated in the Goss orientation (the (100) plane is aligned with the plate surface, but the <001> axis is shifted from the rolling direction). turn into.

【0036】[0036]

【実施例】【Example】

[実施例1]表1に示す化学成分の鋼を溶製し、仕上温
度:820℃、巻取温度:600℃、仕上板厚:1.8
mmの条件で熱間圧延を行なった。このようにして作成
された板厚1.8mmの熱延板を表面酸化膜除去のため
酸洗した後、40%(板厚1mm)〜85%(板厚0.
3mm)の範囲で一次冷間圧延した。次いでこれらの鋼
板に対して非酸化性雰囲気中において600〜900℃
で1時間の一次焼鈍処理を施した。
[Example 1] Steels having the chemical components shown in Table 1 were melted, and the finishing temperature: 820 ° C, the winding temperature: 600 ° C, and the finished plate thickness: 1.8.
The hot rolling was performed under the condition of mm. The hot-rolled sheet having a thickness of 1.8 mm produced in this manner is pickled to remove a surface oxide film, and then 40% (1 mm in thickness) to 85% (0.
(3 mm). Next, these steel sheets are heated at 600 to 900 ° C. in a non-oxidizing atmosphere.
For 1 hour.

【0037】この段階における鋼板の直流磁気特性(磁
束密度B8 )を図1に示す。図1は各一次冷間圧延率及
び一次焼鈍温度における磁束密度B8 を示す図である。
同図に示すように、この段階では磁束密度B8 が1.6
Tを超えるものはなく、高磁束特性は得られていない。
FIG. 1 shows the DC magnetic characteristics (magnetic flux density B 8 ) of the steel sheet at this stage. Figure 1 is a diagram showing a magnetic flux density B 8 in the primary cold rolling ratio and primary annealing temperatures.
As shown in the figure, at this stage, the magnetic flux density B 8 is 1.6.
Nothing exceeded T, and high magnetic flux characteristics were not obtained.

【0038】次いで、これらの鋼板の全部を0.1mm
にまで二次冷間圧延した。この時の冷間圧延率は約60
〜90%であった。これらの鋼板に対し酸素分圧0.5
Pa以下の真空中にて1200℃で5時間の二次焼鈍処
理を施し、焼鈍後の直流磁気特性を測定した。
Next, all of these steel plates were 0.1 mm
To 2nd cold rolling. The cold rolling rate at this time is about 60
9090%. Oxygen partial pressure of 0.5
Secondary annealing was performed at 1200 ° C. for 5 hours in a vacuum of Pa or less, and the DC magnetic properties after annealing were measured.

【0039】図2にその結果を示す。図2は各二次冷間
圧延率及び一次焼鈍温度における二次焼鈍後の磁束密度
8 を示す図である。この図に示すように、二次冷間圧
延の圧延率が80%以下、一次焼鈍温度が700〜80
0℃において、磁束密度B8が1.7T以上の高い磁気
特性が得られることが確認された。
FIG. 2 shows the result. Figure 2 is a diagram showing the magnetic flux density B 8 after the secondary annealing at each of the secondary cold rolling ratio and primary annealing temperatures. As shown in this figure, the rolling reduction of the secondary cold rolling is 80% or less, and the primary annealing temperature is 700 to 80.
At 0 ° C., it was confirmed that high magnetic properties with a magnetic flux density B 8 of 1.7 T or more were obtained.

【0040】[実施例2]実施例1と同様の熱延板を使
用し、これら鋼板を表面酸化膜除去のため酸洗した後、
40%(板厚1mm)〜85%(板厚0.3mm)の範
囲で一次冷間圧延した。次いで、これらの鋼板に対し非
酸化性雰囲気中にて700℃で1時間の焼鈍処理を施し
た。
Example 2 Using the same hot-rolled sheets as in Example 1, pickling these steel sheets to remove the surface oxide film,
The primary cold rolling was performed in a range of 40% (sheet thickness 1 mm) to 85% (sheet thickness 0.3 mm). Next, these steel sheets were subjected to an annealing treatment at 700 ° C. for 1 hour in a non-oxidizing atmosphere.

【0041】次に、一次焼鈍後の鋼板に対して圧延率5
0〜90%の二次冷間圧延を施した後、酸素分圧0.5
Pa以下の真空中にて1250℃で5時間の二次焼鈍処
理を施した。
Next, the steel sheet after the primary annealing has a rolling reduction of 5%.
After subjecting to secondary cold rolling of 0 to 90%, an oxygen partial pressure of 0.5
A secondary annealing treatment was performed at 1250 ° C. for 5 hours in a vacuum of Pa or less.

【0042】このようにして得られた鋼板の直流磁気特
性を測定した。図3にその結果を示す。図3は一次圧延
率及び二次圧延率を変化させた場合の二次焼鈍後の鋼板
の磁束密度B8 の値を示す図であり、同図において、白
丸で示した点は{110}が鋼板面に集積しなかった鋼
板を、また、黒丸で示した点は{110}が鋼板面に集
積した鋼板を示している。
The DC magnetic properties of the steel sheet thus obtained were measured. FIG. 3 shows the result. Figure 3 is a diagram showing the values of the magnetic flux density B 8 of the steel sheet after the secondary annealing in the case of changing the primary reduction ratio and the secondary reduction ratio, in the figure, indicated points in a white circle is {110} The steel plates that were not accumulated on the steel plate surface, and the points indicated by black circles indicate the steel plates with {110} accumulated on the steel plate surface.

【0043】この図から明らかなように、二次冷間圧延
率が80%を超えた場合には、{110}の集積は見ら
れず、磁束密度の値も低いことが確認された。これに対
して二次冷間圧延率が50〜80%でかつ一次冷間圧延
率が60%以下の領域においては、磁束密度は1.6T
以上、また、二次冷間圧延率が55%以上では1.7T
以上、さらには70%付近で1.8T以上の高い値が得
られることが確認された。
As is clear from this figure, when the secondary cold rolling ratio exceeds 80%, no accumulation of {110} was observed, and it was confirmed that the value of the magnetic flux density was low. On the other hand, in the region where the secondary cold rolling reduction is 50 to 80% and the primary cold rolling reduction is 60% or less, the magnetic flux density is 1.6T.
As described above, when the secondary cold rolling reduction is 55% or more, 1.7 T
As described above, it was confirmed that a high value of 1.8 T or more was obtained around 70%.

【0044】[実施例3]実施例1と同様の熱延板を使
用し、これら熱延板を表面酸化膜除去のため酸洗した
後、0.8mm(圧延率:55.6%)まで冷間圧延し
た(一次冷間圧延)。これらの鋼板に対し700℃で1
時間及び3時間、並びに1000℃で1分の焼鈍処理を
施した。
Example 3 Using the same hot-rolled sheets as in Example 1, pickling these hot-rolled sheets to remove a surface oxide film, and then reducing the thickness to 0.8 mm (rolling ratio: 55.6%). Cold rolled (primary cold rolling). At 700 ° C 1
Annealing treatment was performed for 1 hour, 3 hours, and 1000 ° C. for 1 minute.

【0045】次に、一次焼鈍後の鋼板に対して板厚0.
3mm(圧延率:62.5%)まで二次冷間圧延した
後、これらの鋼板に対して酸素分圧0.5Pa以下の真
空中にて1200℃で10時間の二次焼鈍処理を施し
た。
Next, with respect to the steel sheet after the primary annealing, a sheet thickness of 0.
After secondary cold rolling to 3 mm (rolling ratio: 62.5%), these steel sheets were subjected to a secondary annealing treatment at 1200 ° C. for 10 hours in a vacuum having an oxygen partial pressure of 0.5 Pa or less. .

【0046】この段階における鋼板の直流磁気特性を測
定した。その結果を表2に示す。表2に示すように、7
00℃で一次焼鈍処理を行ったものはB8 が1.7T以
上と良好な磁気特性が得られることが確認された。
At this stage, the direct current magnetic properties of the steel sheet were measured. Table 2 shows the results. As shown in Table 2, 7
00 having been subjected to the primary annealing at ℃ it was confirmed that good magnetic properties and B 8 is 1.7T or higher is obtained.

【0047】さらに、上記の鋼板を0.06mm(圧延
率:80%)および0.03mm(圧延率:90%)に
三次冷間圧延した後、酸素分圧0.5Pa以下の真空中
において1200℃で1時間の三次焼鈍処理を施し、こ
れらの鋼板の直流磁気特性を測定した。その結果を表3
に示す。なお、表3の試料番号は同一条件で作成した試
料の数を示している。この3表から、一次焼鈍がいずれ
の条件であっても、特定条件の三次圧延及び三次焼鈍を
行うことにより、極めて高い磁束密度を安定的に有する
鋼材を得ることができることが確認された。
Further, the above-mentioned steel sheet is subjected to tertiary cold rolling to 0.06 mm (rolling ratio: 80%) and 0.03 mm (rolling ratio: 90%), and then 1200 in a vacuum having an oxygen partial pressure of 0.5 Pa or less. A tertiary annealing treatment was performed at 1 ° C. for 1 hour, and the direct current magnetic properties of these steel sheets were measured. Table 3 shows the results.
Shown in Note that the sample numbers in Table 3 indicate the number of samples prepared under the same conditions. From these Tables 3, it was confirmed that, regardless of the condition of the primary annealing, by performing the tertiary rolling and the tertiary annealing under specific conditions, a steel material having an extremely high magnetic flux density can be obtained stably.

【0048】[実施例4]上記実施例2で得られた鋼板
(既に0.1mmにまで冷間圧延されたものを除く)を
板厚0.1mmまで三次冷間圧延(圧延率30%以上)
し、引き続き酸素分圧0.5Pa以下の真空中にて10
50℃で1時間の焼鈍処理を施し、これらの鋼板の直流
磁気特性を測定した。その結果を図4に示す。
Example 4 The steel sheet obtained in Example 2 (except the one already cold-rolled to 0.1 mm) was tertiary cold-rolled to a sheet thickness of 0.1 mm (rolling ratio 30% or more). )
Then, in a vacuum with an oxygen partial pressure of 0.5 Pa or less, 10
An annealing treatment was performed at 50 ° C. for 1 hour, and the direct current magnetic properties of these steel sheets were measured. FIG. 4 shows the results.

【0049】この図から明らかなように、実施例2の段
階で磁束密度が1.7T以上程度(図3参照)であった
鋼板が、全て1.9T以上の高い磁束密度を示すことが
確認された。
As is clear from this figure, it was confirmed that all the steel sheets having a magnetic flux density of about 1.7 T or more (see FIG. 3) in the stage of Example 2 exhibited a high magnetic flux density of 1.9 T or more. Was done.

【0050】[実施例5]表4に示すC1〜D3の化学
成分の鋼を溶製し、仕上温度:800℃、巻取温度:6
10℃、仕上板厚:1.8mmの条件で熱間圧延を行っ
た。この熱延板を表面酸化膜除去のため酸洗した後、板
厚0.8mm(圧延率:55.6%)まで一次冷間圧延
し、次いでこの鋼板に対して750℃で1時間の一次焼
鈍処理を施した。
Example 5 Steels having the chemical components C1 to D3 shown in Table 4 were melted, and the finishing temperature: 800 ° C. and the winding temperature: 6
Hot rolling was performed under the conditions of 10 ° C. and a finished plate thickness of 1.8 mm. The hot-rolled sheet is pickled to remove a surface oxide film, and then subjected to primary cold rolling to a sheet thickness of 0.8 mm (rolling ratio: 55.6%). An annealing treatment was performed.

【0051】次に、一次焼鈍後の鋼板に対して板厚0.
3mm(圧延率:40%)まで二次冷間圧延し、引き続
き、これらの鋼板に対して酸素分圧が0.5Pa以下の
水素雰囲気中にて1180℃で10時間の二次焼鈍処理
を施した。これらの鋼板のB8 を直流磁気測定装置を用
いて測定した。その結果を表5に示す。なお、鋼種C1
〜C3はCu量を変化させたもの、D1〜D3はAl量
を変化させたものである。表5から明らかなように、C
u及びAlが0.01wt%以下になると高い磁束密度
が得られることが確認された。
Next, with respect to the steel sheet after the primary annealing, the sheet thickness is set to 0.
Secondary cold rolling was performed to 3 mm (rolling ratio: 40%), and subsequently, these steel sheets were subjected to a secondary annealing treatment at 1180 ° C. for 10 hours in a hydrogen atmosphere having an oxygen partial pressure of 0.5 Pa or less. did. The B 8 of steel sheets were measured using a DC magnetic measurement device. Table 5 shows the results. In addition, steel type C1
C3 is the result of changing the amount of Cu, and D1 to D3 are the results of changing the amount of Al. As is clear from Table 5, C
It was confirmed that a high magnetic flux density can be obtained when u and Al are 0.01 wt% or less.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】[0056]

【表5】 [Table 5]

【0057】[0057]

【発明の効果】この発明によれば、安価な製造コストで
優れた磁気特性を有するGoss方位に集積した結晶方位を
有する方向性珪素鋼板を製造することができる製造方法
が提供される。
According to the present invention, there is provided a manufacturing method capable of manufacturing a grain-oriented silicon steel sheet having a crystal orientation integrated with a Goss orientation having excellent magnetic properties at a low manufacturing cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において、一次焼鈍後における鋼板の
直流磁気特性を示す図。
FIG. 1 is a view showing DC magnetic characteristics of a steel sheet after primary annealing in Example 1.

【図2】実施例1において、二次焼鈍後における鋼板の
直流磁気特性を示す図。
FIG. 2 is a diagram showing DC magnetic characteristics of a steel sheet after secondary annealing in Example 1.

【図3】実施例3で得られた鋼板の直流磁気特性を示す
図。
FIG. 3 is a view showing DC magnetic characteristics of a steel sheet obtained in Example 3.

【図4】実施例4で得られた鋼板の直流磁気特性を示す
図。
FIG. 4 is a view showing DC magnetic characteristics of the steel sheet obtained in Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 日裏 昭 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 浪川 操 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平1−309924(JP,A) 特開 昭64−55339(JP,A) (58)調査した分野(Int.Cl.6,DB名) C21D 8/12────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Akira Hiraka 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Misao Namikawa 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Japan (56) References JP-A-1-309924 (JP, A) JP-A-64-55339 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C21D 8 / 12

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 C:0.01wt%以下、Si:2.5
〜7.0wt%、S:0.01wt%以下、Al:0.
01wt%以下、N:0.01wt%以下を含む鋼材を
準備し、この鋼材を1000℃以上に保持した後、仕上
温度が700〜950℃になるような熱間圧延を施し、
次いで圧延率40%以上の一次冷間圧延を施した後、6
00〜900℃の温度で一次焼鈍し、さらに、圧延率5
0〜80%の二次冷間圧延を施し、引き続き還元性雰囲
気若しくは酸素分圧が0.5Pa以下の非酸化性雰囲
気、又は酸素分圧が0.5Pa以下の真空中において1
000〜1300℃の温度で二次焼鈍することを特徴と
するGoss方位に集積した結晶方位を有する方向性珪素鋼
板の製造方法。
1. C: 0.01 wt% or less, Si: 2.5
To 7.0 wt%, S: 0.01 wt% or less, Al: 0. 0 wt%.
A steel material containing 01 wt% or less and N: 0.01 wt% or less is prepared, and after maintaining the steel material at 1000 ° C or more, hot rolling is performed so that the finishing temperature becomes 700 to 950 ° C.
Next, after performing a primary cold rolling of a rolling reduction of 40% or more,
Primary annealing at a temperature of 00 to 900 ° C.
0-80% secondary cold rolling is performed, and subsequently, in a reducing atmosphere or a non-oxidizing atmosphere with an oxygen partial pressure of 0.5 Pa or less, or in a vacuum with an oxygen partial pressure of 0.5 Pa or less.
A method for producing a grain-oriented silicon steel sheet having a crystal orientation integrated in a Goss orientation, characterized by performing secondary annealing at a temperature of 000 to 1300 ° C.
【請求項2】 前記鋼材はさらに0.01wt%以下の
Cuを含有していることを特徴とする請求項1に記載の
Goss方位に集積した結晶方位を有する方向性珪素鋼板の
製造方法。
2. The steel according to claim 1, wherein the steel further contains 0.01 wt% or less of Cu.
A method for producing a grain-oriented silicon steel sheet having a crystal orientation integrated in a Goss orientation.
【請求項3】 前記二次焼鈍後の鋼材に対して、さらに
圧延率30%以上の三次冷間圧延を施し、引き続き還元
性雰囲気若しくは酸素分圧が0.5Pa以下の非酸化性
雰囲気、又は酸素分圧が0.5Pa以下の真空中におい
て1000〜1300℃の温度で三次焼鈍することを特
徴とする請求項1又は2に記載のGoss方位に集積した結
晶方位を有する方向性珪素鋼板の製造方法。
3. The steel material after the secondary annealing is further subjected to tertiary cold rolling at a rolling reduction of 30% or more, and subsequently a reducing atmosphere or a non-oxidizing atmosphere having an oxygen partial pressure of 0.5 Pa or less, or 3. The production of a grain-oriented silicon steel sheet having a crystal orientation integrated with Goss orientation according to claim 1 or 2, wherein the third annealing is performed at a temperature of 1000 to 1300 [deg.] C. in a vacuum having an oxygen partial pressure of 0.5 Pa or less. Method.
JP18537592A 1991-07-29 1992-07-13 Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation Expired - Lifetime JP2750238B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP18537592A JP2750238B2 (en) 1991-07-29 1992-07-13 Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
US07/920,127 US5354389A (en) 1991-07-29 1992-07-24 Method of manufacturing silicon steel sheet having grains precisely arranged in Goss orientation
KR1019920013517A KR950005791B1 (en) 1991-07-29 1992-07-28 Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
DE69214554T DE69214554T2 (en) 1991-07-29 1992-07-29 Process for the production of silicon steel strips with fine grain in GOSS texture
EP92112933A EP0526834B1 (en) 1991-07-29 1992-07-29 Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
US08/259,389 US5489342A (en) 1991-07-29 1994-06-14 Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21036591 1991-07-29
JP3-210365 1991-07-29
JP18537592A JP2750238B2 (en) 1991-07-29 1992-07-13 Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation

Publications (2)

Publication Number Publication Date
JPH05186830A JPH05186830A (en) 1993-07-27
JP2750238B2 true JP2750238B2 (en) 1998-05-13

Family

ID=26503066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18537592A Expired - Lifetime JP2750238B2 (en) 1991-07-29 1992-07-13 Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation

Country Status (1)

Country Link
JP (1) JP2750238B2 (en)

Also Published As

Publication number Publication date
JPH05186830A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US5354389A (en) Method of manufacturing silicon steel sheet having grains precisely arranged in Goss orientation
US5250123A (en) Oriented silicon steel sheets and production process therefor
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JPH0583612B2 (en)
JP4029523B2 (en) Method for producing grain-oriented electrical steel sheet
JP4206665B2 (en) Method for producing grain-oriented electrical steel sheet having excellent magnetic properties and coating properties
JP2871308B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
JPH0717959B2 (en) Method for manufacturing unidirectional high magnetic flux density electrical steel sheet
JP2750238B2 (en) Method for producing grain-oriented silicon steel sheet having crystal orientation integrated in Goss orientation
US5425820A (en) Oriented magnetic steel sheets and manufacturing process therefor
KR950009760B1 (en) Method of manufacturing grain oriented silicon steel sheet
JP2888226B2 (en) Non-oriented electrical steel sheet with low iron loss
JP4281119B2 (en) Manufacturing method of electrical steel sheet
JPH05186831A (en) Production of grain-oriented silicon steel sheet having crystal orientation integrated in goss orientation
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3526312B2 (en) Method for producing oriented silicon steel sheet with high magnetic flux density
JPH0776733A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JPH0317892B2 (en)
JPH07110974B2 (en) Method for producing directional silicon iron alloy ribbon
JPH07197126A (en) Production of grain oriented silicon steel sheet having high magnetic flux density
JPH0776732A (en) Production of grain-oriented silicon steel sheet high in magnetic flux density
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JPH08199242A (en) Production of grain oriented silicon steel sheet having superior magnetic property
JPH1088234A (en) Production of grain oriented silicon steel sheet having stable and high magnetic flux density
JPH04337050A (en) High tensile strength magnetic material excellent in magnetic property and its production