JPH06306467A - Production of nonoriented silicon steel sheet extremely excellent in magnetic property - Google Patents

Production of nonoriented silicon steel sheet extremely excellent in magnetic property

Info

Publication number
JPH06306467A
JPH06306467A JP5096213A JP9621393A JPH06306467A JP H06306467 A JPH06306467 A JP H06306467A JP 5096213 A JP5096213 A JP 5096213A JP 9621393 A JP9621393 A JP 9621393A JP H06306467 A JPH06306467 A JP H06306467A
Authority
JP
Japan
Prior art keywords
steel sheet
oriented electrical
cooling body
steel strip
silicon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5096213A
Other languages
Japanese (ja)
Other versions
JP3387962B2 (en
Inventor
Tomoji Kumano
知二 熊野
Toshiaki Mizoguchi
利明 溝口
Takashi Morohoshi
隆 諸星
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP09621393A priority Critical patent/JP3387962B2/en
Publication of JPH06306467A publication Critical patent/JPH06306467A/en
Application granted granted Critical
Publication of JP3387962B2 publication Critical patent/JP3387962B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet having random cube texture and extremely excellent in magnetic properties in the all-around direction. CONSTITUTION:The nonoriented silicon steel sheet is produced by using a cast steel strip prepared by solidifying a molten steel for nonoriented silicon steel sheet, having a composition consisting of, by weight, <=4.0% Si, <=2.0% Al, and the balance Fe with inevitable impurities and satisfying (Si+2Al)>2.5%, by means of an updatedly moving cooling body surface. At this time, cold rolling draft is regulated to 5-<40% and also solidification rate and the {100} plane strength of central layer of cast slab, with respect to random, are regulated to >=10 deg.C/sec and >=2.3, respectively, by which random cube ({100}<0vw>) is developed. By this method, the nonoriented silicon steel sheet extremely excellent in magnetic properties in the all-around direction can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度が極めて高
く、鉄損が低い無方向性電磁鋼板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having a very high magnetic flux density and a low iron loss.

【0002】[0002]

【従来の技術】近年、回転機用磁芯材料としての無方向
性電磁鋼板に対する品質向上の要求は省エネルギーの観
点から、益々強くなっている。電磁鋼板製造セーカーの
側においても、この要望に応えるべく鋭意無方向性電磁
鋼板の磁気特性の向上のための研究開発が進められてき
ており、工業的には、JISに規定されている数々の無
方向性電磁鋼板が製造されている。無方向性電磁鋼板の
製造プロセスにおいて、鉄損値が低い製品を得るために
は、従来、鋼をその溶製段階で高純度化することや、鋼
中のSi含有量を多くすることや、仕上げ焼鈍において
温度・時間を十分に採る等の手段が採られてきた。しか
しながら、これらの技術的手段によるときは、製品の鉄
損値は、低くなるけれど、磁束密度が低くなるという問
題がある。
2. Description of the Related Art In recent years, demands for quality improvement of non-oriented electrical steel sheets as magnetic core materials for rotating machines have become stronger from the viewpoint of energy saving. In order to meet this demand, research and development for improving the magnetic properties of non-oriented electrical steel sheets has been promoted even on the side of the electromagnetic steel sheet manufacturing sakers, and industrially, a number of them have been stipulated in JIS. Non-oriented electrical steel sheets are manufactured. In the manufacturing process of non-oriented electrical steel sheet, in order to obtain a product having a low iron loss value, conventionally, the steel is highly purified in its melting stage, or the Si content in the steel is increased, Means such as sufficient temperature and time have been adopted in finish annealing. However, when these technical means are used, the iron loss value of the product is low, but the magnetic flux density is low.

【0003】この問題を解決するために、熱延で高温で
巻き取り保温するいわゆる自己焼鈍、又は熱延板を焼鈍
する方法が採られてきた。更に、最近、移動更新する冷
却体表面によって凝固せしめて鋳造鋼帯とし、次いで、
該当鋳造鋼帯を冷間圧延して所定の厚さとした後、仕上
げ焼鈍する無方向性電磁鋼板を得る方法が開発された。
これらの方法でもっても、冷延圧下率が例えば通常行わ
れているような60%以上では、仕上げ焼鈍後の集合組
織は、鋼板面に平行な面指数としては、{100}のみ
でなく{111}面もかなり強く、磁気特性、特に磁束
密度の向上に限界があった。
In order to solve this problem, so-called self-annealing in which hot rolling is carried out at a high temperature for hot rolling, or a method of annealing a hot-rolled sheet has been adopted. Furthermore, recently, it is solidified by a moving and renewing cooling body surface into a cast steel strip, and then,
A method has been developed to obtain a non-oriented electrical steel sheet which is cold-rolled from a corresponding cast steel strip to a predetermined thickness and then finish-annealed.
Even with these methods, when the cold rolling reduction is, for example, 60% or more, which is usually performed, the texture after finish annealing is not only {100} but also {100} as the surface index parallel to the steel plate surface. The 111} plane was also quite strong, and there was a limit to improving the magnetic properties, especially the magnetic flux density.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記従来技
術における問題を解決し、回転機用鉄芯材として極めて
優れた、全周方位での鉄損が低く、かつ、磁束密度が極
めて高い無方向性電磁鋼板を供給する製造方法を提供す
ることを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the above problems in the prior art, is extremely excellent as an iron core material for rotating machines, has a low iron loss in all circumferential directions, and has an extremely high magnetic flux density. It is an object to provide a manufacturing method for supplying a non-oriented electrical steel sheet.

【0005】[0005]

【課題を解決するための手段】本発明の特徴とするとこ
ろは、重量%で、Si≦4.0%、Al≦2.0%、か
つ(Si+2Al)>2.5%で残部:Fe及び不可避
的不純物からなる溶鋼(いわゆる非変態鋼)を、移動更
新する冷却体表面によって凝固せしめて鋳造鋼帯とし、
次いで、該当鋳造鋼帯を冷間圧延して所定の厚さ(最終
板厚)とした後、仕上げ焼鈍する無方向性電磁鋼板の製
造方法において、冷間圧延に際し圧延率を5%以上40
%未満とし、かつ鋳造する場合の移動更新する冷却体表
面による鋳造後の集合組織と鋳造時の凝固速度を同時に
規定するものである。
The feature of the present invention is that, by weight%, Si ≦ 4.0%, Al ≦ 2.0%, and (Si + 2Al)> 2.5%, and the balance: Fe and Molten steel consisting of unavoidable impurities (so-called non-transformed steel) is solidified by the moving and renewing surface of the cooling body to form a cast steel strip,
Then, in the method for producing a non-oriented electrical steel sheet, in which the corresponding cast steel strip is cold-rolled to a predetermined thickness (final sheet thickness) and then finish-annealed, the rolling rate is 5% or more in the cold rolling.
%, And the texture after casting by the surface of the cooling body which is moved and renewed in casting and the solidification rate during casting are simultaneously defined.

【0006】以下、本発明を詳細に説明する。発明者等
は、本発明における技術的課題を解決すべく鋭意検討を
重ねた結果、溶鋼から直接的に鋳造薄滞を得、その後、
冷間圧延し、焼鈍する無方向性電磁鋼板の製造におい
て、鋳片の冷間圧延率及び集合組織と、仕上げ焼鈍後の
磁性に密接な関係があることを見い出した。即ち、仕上
げ焼鈍後の製品の集合組織は、冷延圧下率ばかりでな
く、鋳片の集合組織及び凝固時の速度にも強く依存する
ことを見い出した。これらの相乗効果によって磁束密度
が更に極めて高く鉄損が良好な(鉄損値が低い)無方向
性電磁鋼板を得ることに成功した。
The present invention will be described in detail below. The inventors, as a result of intensive studies to solve the technical problem in the present invention, directly obtained casting delay from the molten steel, then,
In the production of cold-rolled and annealed non-oriented electrical steel sheet, it was found that there is a close relationship between the cold rolling ratio and texture of the slab and the magnetism after finish annealing. That is, it was found that the texture of the product after finish annealing strongly depends not only on the cold rolling reduction but also on the texture of the slab and the speed at the time of solidification. Due to these synergistic effects, we have succeeded in obtaining a non-oriented electrical steel sheet having an extremely high magnetic flux density and a good iron loss (low iron loss value).

【0007】先ず、鋳片厚中心層での鋳片の表面に平行
な{100}面強度が対ランダム(以下{100}面強
度という)について述べる。図1に示すように{10
0}面強度が2.3倍以上である鋳片を5〜40%の冷
延率で冷延して焼鈍した場合、全周で著しく良好なB50
が得られる。尚B50≧1.70Tを良好範囲とした。こ
の{100}面強度を2.3倍以上とする方法として
は、柱状晶を著しく発達させる必要があり、移動更新す
る冷却体表面によって凝固せしめて鋳造鋼帯とする方法
が極めて適している。
First, the {100} plane strength parallel to the surface of the slab in the slab thickness center layer will be described with respect to randomness (hereinafter referred to as {100} plane strength). As shown in FIG. 1, {10
When a slab having a {0} surface strength of 2.3 times or more is cold-rolled at a cold rolling rate of 5 to 40% and annealed, B 50 is remarkably good all around.
Is obtained. In addition, B 50 ≧ 1.70 T was defined as a good range. As a method for increasing the {100} plane strength to be 2.3 times or more, it is necessary to significantly develop columnar crystals, and a method of solidifying by a moving and renewing cooling body surface to form a cast steel strip is extremely suitable.

【0008】又、鋳片の中心層の凝固速度を規定したの
は、実際凝固速度を評価する場合、デンドライトの間隔
で行うが、中心層の方が、表面層よりデンドライトがよ
り明確に腐食し観察されやすいため、より実際的である
ことによる。無方向性電磁鋼板では、凝固速度が、10
℃/秒未満であれば、柱状晶の発達が完全でなく{10
0}強度が弱いため、10℃/秒以上とする。
Further, the solidification rate of the central layer of the cast slab is defined by the intervals of dendrites when the actual solidification rate is evaluated, but the central layer corrodes the dendrites more clearly than the surface layer. Because it is more observable, it is more practical. The non-oriented electrical steel sheet has a solidification rate of 10
If the temperature is less than ℃ / sec, the columnar crystals are not completely developed {10
Since 0} strength is weak, it is set to 10 ° C./sec or more.

【0009】上記、鋳片の中心層の{100}強度を
2.3以上とすること及び、鋳片の中心層の凝固速度を
10℃/秒以上とする方法としては、例えば、 ΔT(溶湯の過熱度)を大きくする(方法としては、
鋳込み温度を上げる) 凝固部での抜熱の効率化で凝固時の望ましい集合組織
を得、更に加えるに 凝固直後での急速冷却で望まれる集合組織を室温まで
凍結すること等が考えられる。具体的には、 では、溶湯鋳造時の温度を上げる。 では、 ・移動更新する冷却体表面の材質を熱伝導度の高いもの
を使用する。 ・移動更新する冷却体の冷却を水等で強制的に行う。 ・移動更新する冷却体表面を抜熱速度の大きい形状にす
る。 ・鋳造の雰囲気ガスとして熱伝導度の高い不活性ガスを
使用する。 ・液面を力学的に移動更新する冷却体表面に抑えつけて
抜熱速度を大きくする方法等がある。 では、凝固直後での強水冷、強ガス冷却等がある。
As a method of setting the {100} strength of the central layer of the cast slab to 2.3 or more and the solidification rate of the central layer of the slab to 10 ° C./sec or more, for example, ΔT (molten metal) Increase the degree of superheat)
Increasing the casting temperature) It is conceivable to obtain the desired texture at the time of solidification by improving the efficiency of heat removal at the solidification part, and further to freeze the desired texture at room temperature by rapid cooling immediately after solidification. Specifically, the temperature at the time of molten metal casting is raised. Then, ・ Use a material with high thermal conductivity for the surface of the cooling body to be moved and updated. -Forced cooling of the cooling body to be moved and updated with water etc. -The surface of the cooling body to be moved and updated should be shaped to have a high heat removal rate. -Use an inert gas with high thermal conductivity as the atmosphere gas for casting. -There is a method to increase the heat removal rate by suppressing the liquid surface on the surface of the cooling body that dynamically moves and updates. Then, there are strong water cooling and strong gas cooling immediately after solidification.

【0010】ここで、注意を要することがある。鋳片の
中心層の{100}強度を2.3以上とするためには、
必ずしも、凝固速度が、10℃/秒以上としなくてもよ
い。即ち、上記方法の他に、成分を変更させることによ
り可能であり、結晶粒界移動を妨げる元素を添加するこ
とにより可能である。例えば、Cr,Ti,W等の添加
により、微細ないわゆるインヒビター(CrC,WC,
TiN,TiC等)を形成させることにより、凝固速度
が遅くてもかなり強い{100}強度が得られる。しか
し、このような、いわゆるインヒビターを添加し{10
0}強度を確保することは、最終焼鈍後の磁気特性(特
に鉄損)を劣化させるために、無方向性電磁鋼板では、
不適である。従って、本発明においても凝固速度が同一
でも、成分が異なると{100}強度は、多少異なる。
Attention should be paid here. In order to increase the {100} strength of the central layer of the cast slab to 2.3 or more,
The coagulation rate does not necessarily have to be 10 ° C./second or more. That is, in addition to the above method, it is possible to change the composition, and it is possible to add an element that hinders the movement of grain boundaries. For example, by adding Cr, Ti, W, etc., fine so-called inhibitors (CrC, WC,
By forming TiN, TiC, etc.), a fairly strong {100} strength can be obtained even if the solidification rate is slow. However, adding such a so-called inhibitor {10
To secure 0} strength deteriorates the magnetic properties (especially iron loss) after the final annealing. Therefore, in the non-oriented electrical steel sheet,
Not suitable. Therefore, also in the present invention, even if the solidification rate is the same, if the components are different, the {100} strength will be slightly different.

【0011】次に、成分系について説明すると、製品の
機械特性の向上、磁気特性、耐錆性等の向上或いは、そ
の他の目的のために、Mn,P,B,Ni,Cr,S
b,Sn,Cuを1種又は2種以上含有させても本発明
の効果は損なわれない。
Next, the component system will be explained. In order to improve the mechanical properties of the product, magnetic properties, rust resistance, etc., or for other purposes, Mn, P, B, Ni, Cr, S.
The effect of the present invention is not impaired even if b, Sn, and Cu are contained in one kind or two or more kinds.

【0012】Cは、0.012%以下であれば、本発明
の目的を達することができる。無方向性電磁鋼板の用途
は、主に回転機であり、磁気特性の安定という観点から
は、無方向性電磁鋼板の使用中に磁気特性の劣化(磁気
時効)を起こさないことが要求される。本発明では、凝
固速度が速く必然的に凝固後の冷却速度も速くなり、C
は鋼中で固溶し、電気機器で使用中に磁気時効を生じる
可能性があるため、製品段階では、0.0030%以下
とするべきであるが、鋳造時のCが、0.012%以下
であれば、後工程での脱炭が比較的容易であるので0.
012%以下とする。又、Cを更に多く含有させると、
鋳造組織を凝固速度が速い場合と同様な効果をもたせる
ことができ(柱状晶の発達:キューブ集合組織を極度に
発達させる)、この有害Cを後工程で脱炭することも原
理的には可能である。しかし、過度の脱炭は実生産的で
ない。又、仕上げ焼鈍時の条件を、高温長時間として、
脱炭現象を積極的に利用してランダムキューブ集合組織
を形成させるいわゆる柱状晶成長(コラムラーグレイン
グロウス)の可能性もあるが、工業生産には適していな
い。
If C is 0.012% or less, the object of the present invention can be achieved. The non-oriented electrical steel sheet is mainly used in rotating machines, and from the viewpoint of stable magnetic characteristics, it is required that magnetic property deterioration (magnetic aging) does not occur during use of the non-oriented electrical steel sheet. . In the present invention, the solidification rate is high and the cooling rate after solidification is necessarily high, so that C
May form a solid solution in steel and cause magnetic aging during use in electrical equipment, so it should be 0.0030% or less at the product stage, but C during casting is 0.012%. If it is below, decarburization in the subsequent step is relatively easy, so
012% or less. Also, if C is added in a larger amount,
The cast structure can have the same effect as when the solidification rate is fast (development of columnar crystals: extremely develops the cube texture), and it is theoretically possible to decarburize this harmful C in the subsequent process. Is. However, excessive decarburization is not productive. Also, the conditions during finish annealing are high temperature and long time,
There is a possibility of so-called columnar grain growth, in which the decarburization phenomenon is positively used to form a random cube texture, but it is not suitable for industrial production.

【0013】Sは、鋼の溶製段階で不可避的に混入する
元素であり、最終焼鈍での結晶粒成長の促進、製品板で
の磁区のピニング効果の減少のためにできるだけ低Sが
望まれる。このため、0.008%以下とすべきであ
る。Nは、S同様、鋼の溶製段階で不可避的に混入する
元素であり、最終焼鈍での結晶粒成長の促進、製品板で
の磁区のピニング効果の減少のためには、できるだけ低
Nが望まれる。0.006%を超える場合は、上記理由
で加える製品板で膨れ(気泡:いわゆるブリスター)が
発生することがある。このため、N≦0.006%以下
とすべきである。
S is an element that is inevitably mixed in during the melting stage of steel, and it is desirable that S be as low as possible in order to promote the growth of crystal grains in the final annealing and to reduce the pinning effect of magnetic domains in the product plate. . Therefore, it should be 0.008% or less. N, like S, is an element that is inevitably mixed in during the melting stage of steel, and in order to promote crystal grain growth in the final annealing and reduce the pinning effect of magnetic domains in the product plate, N should be as low as possible. desired. If it exceeds 0.006%, swelling (air bubbles: so-called blisters) may occur in the product plate added for the above reason. Therefore, N should be 0.006% or less.

【0014】Siは、従来からよく知られているように
鋼板の固有抵抗を増加させ渦流損を低減するため添加さ
れる。4.0%を超えてSiを添加すると、加工性が極
端に劣化し冷間圧延を困難なものとする。AlもSi同
様には、鋼板の固有抵抗を増加させ渦流損を低減するた
めに添加される。この目的のため従来から変態を有しな
い無方向性電磁鋼板には、最大2.0%のAlが添加さ
れている。更に添加量を増加することは、原理的には可
能であるが、Si同様冷間圧延性を考慮して最大2.0
%とする。従って、本発明では、加工性を考慮して上限
を、変態の有無を考慮して下限を規定する。即ち、S
i,Al範囲を重量%で、Si≦4.0%、Al≦2.
0%、かつ(Si+2Al)>2.5%とする。変態を
有する(Si+2Al)≦2.5%における本発明の効
果はいまだ確認されていない。
Si is added to increase the specific resistance of the steel sheet and reduce eddy current loss, as is well known in the art. If Si is added in excess of 4.0%, the workability is extremely deteriorated and cold rolling becomes difficult. Al, like Si, is added to increase the specific resistance of the steel sheet and reduce eddy current loss. For this purpose, a maximum of 2.0% Al has been added to non-oriented electrical steel sheets that have not been transformed so far. Although it is possible in principle to increase the addition amount, a maximum of 2.0 is taken into consideration in consideration of cold rollability as in Si.
%. Therefore, in the present invention, the upper limit is defined in consideration of workability, and the lower limit is defined in consideration of the presence or absence of transformation. That is, S
i, Al range by weight%, Si ≦ 4.0%, Al ≦ 2.
0% and (Si + 2Al)> 2.5%. The effect of the present invention in (Si + 2Al) ≦ 2.5% with transformation has not been confirmed yet.

【0015】Mnは、その含有量が0.1%より少ない
と製品の加工性が劣化するから又、Sを無害化させるた
めに添加される。しかしながら、Mnの添加量が、2.
0%を超えると製品の磁束密度が著しく劣化するからM
n≦2.0%でなければならない。Pは、製品の打ち抜
き性を良好ならしめるために、0.1%までの範囲内で
添加される。P≦0.2%であれば、製品の磁気特性の
観点からは問題がない。Bは、Nを無害化のために添加
される。Nの量とのバランスが必要であるから最大含有
量を0.005%とする。極低窒素鋼を溶製すれば、N
は、無害化できるので、この場合添加の必要性は少な
い。
If the content of Mn is less than 0.1%, the workability of the product deteriorates, and Mn is added to render S harmless. However, the addition amount of Mn is 2.
If it exceeds 0%, the magnetic flux density of the product will deteriorate significantly, so M
It must be n ≦ 2.0%. P is added within the range of up to 0.1% in order to improve the punchability of the product. If P ≦ 0.2%, there is no problem from the viewpoint of magnetic properties of the product. B is added to make N harmless. Since the balance with the amount of N is necessary, the maximum content is set to 0.005%. If ultra low nitrogen steel is melted, N
Can be rendered harmless, and in this case, the need for addition is small.

【0016】次に、本発明の製造プロセスに条件につい
て説明する。発明者らは、移動更新する冷却体表面によ
って凝固せしめて得られる鋳造鋼帯を比較的低い冷間圧
延率(5〜40%)で圧延する場合は、磁束密度が、極
めて高くなることを見い出した。そして、鋳片の集合組
織及び凝固速度を規定することにより相乗的に更に、磁
気特性が向上することを見い出した。この理由は未だ定
かではないが、次のように推定される。即ち、鋳片中心
層の{100}強度が強いと5〜40%の冷延率では、
歪蓄積量が少なく、かつ、冷延歪の蓄積位置が限られる
ので、最終焼鈍での歪解放において、核生成粒成長の割
合は少なく、主に歪誘起粒界移動によりランダムキュー
ブが先鋭化する。一方、{100}強度が弱い(等軸粒
が多い)と冷延時の歪蓄積が多くかつランダムに生じ確
率的には、核生成粒成長の頻度が増加するためと考えて
いる。
Next, the conditions for the manufacturing process of the present invention will be described. The inventors have found that when a cast steel strip obtained by solidifying by a moving and renewing cooling body surface is rolled at a relatively low cold rolling rate (5 to 40%), the magnetic flux density becomes extremely high. It was Then, it was found that the magnetic properties are synergistically further improved by defining the texture and solidification rate of the slab. The reason for this is not yet clear, but it is estimated as follows. That is, when the {100} strength of the slab center layer is strong, at a cold rolling rate of 5 to 40%,
Since the amount of accumulated strain is small and the cold-rolled strain accumulation position is limited, the rate of nucleation grain growth is small in the strain release during final annealing, and the random cube is sharpened mainly by strain-induced grain boundary movement. . On the other hand, if the {100} strength is weak (the number of equiaxed grains is large), strain accumulation during cold rolling is large and occurs randomly, and the probability is that the frequency of nucleation grain growth increases.

【0017】冷延圧下率の範囲について述べる。5%未
満であると、鋳造後の形状矯正が十分でなく、かつ磁性
も良好でない。上限は、40%未満としたが、望ましく
は30%以下である。冷延圧下率が40%以上の高い場
合は、冷延後の集合組織が殆んど同じになり、ランダム
キューブの発現はない。図2に移動更新する冷却体表面
によって凝固せしめて鋳造鋼帯とし、次いで、該当鋳造
鋼帯を冷間圧延して所定の厚さとした後、仕上げ焼鈍す
る無方向性電磁鋼板の製造方法において、冷間圧延率と
磁束密度(B50(T))の関係を示す。○は{100}
強度:2.8で、●は{100}強度:2.1である。
ただし、同一素材を用いた試験であるため最終焼鈍板の
厚みはそれぞれ異なる。又、この図では、冷延圧下率2
0%近傍で第1のピーク、70%近傍で第2のピークが
現れ、本発明は、この第1のピークに関するものであ
る。本発明では、全周方向の磁束密度B50が1.70T
以上の場合を“良好”としている。即ち、{100}面
強度が対ランダムで2.3倍未満で鋳片厚中心層の凝固
速度を10℃/秒未満であっても、冷間圧延の圧下率が
5%以上40%未満であれば、60%以上の従来方法よ
りかなり良好な磁性が得られる。
The range of cold rolling reduction will be described. If it is less than 5%, shape correction after casting is not sufficient and magnetism is not good. Although the upper limit is less than 40%, it is preferably 30% or less. When the cold-rolling reduction rate is as high as 40% or more, the texture after cold-rolling is almost the same, and no random cube appears. In the method for producing a non-oriented electrical steel sheet, which is solidified by a cooling body surface moving and updated to FIG. 2 to form a cast steel strip, and then the cast steel strip is cold-rolled to a predetermined thickness and then finish-annealed, The relationship between the cold rolling rate and the magnetic flux density (B 50 (T)) is shown. ○ is {100}
Strength: 2.8, ●: {100} strength: 2.1.
However, the thickness of the final annealed plate is different because it is a test using the same material. Also, in this figure, the cold rolling reduction rate is 2
The first peak appears near 0% and the second peak appears near 70%, and the present invention relates to the first peak. In the present invention, the magnetic flux density B 50 in the entire circumferential direction is 1.70T.
The above cases are considered “good”. That is, even if the {100} surface strength is less than 2.3 times the randomness and the solidification rate of the slab thickness center layer is less than 10 ° C./sec, the cold rolling reduction ratio is 5% or more and less than 40%. If so, a magnetic property of 60% or more, which is considerably better than that of the conventional method, can be obtained.

【0018】更に、図3に製品の集合組織を示す。これ
は冷間圧延圧下率20%で、板厚圧1/4位置での{1
00}正極点の図であり、{100}強度が3.2(凝
固速度約57℃/秒)の場合である。無方向性電磁鋼板
にとって理想であるランダムキューブ({100}〈0
vw〉)が発現していることがわかる。
Further, FIG. 3 shows the texture of the product. This is a cold rolling reduction of 20% and {1
00} positive electrode point, when the {100} strength is 3.2 (solidification rate of about 57 ° C./sec). Random cube ({100} <0 which is ideal for non-oriented electrical steel sheets
It can be seen that vw>) is expressed.

【0019】[0019]

【実施例】以下、本発明の実施態様を述べる。表1の成
分の溶鋼(残部はFe及び不可避的不純物からなる)を
移動更新する冷却体表面にて凝固せしめて直接0.56
mm,0.62mm,1.20mm及び2.0mmの鋼帯を得
た。この場合、液面を力学的に移動更新する冷却体表面
に抑えつける方法(溶鋼接触制限板の使用)と通常の方
法(溶鋼接触制限板の不使用)で鋳造した。その後、酸
洗を施し、0.50mm及び0.95mmの厚みに冷間圧延
をした。冷間圧延された、鋼板を脱脂し、連続焼鈍炉に
て、975℃で30秒焼鈍した(必要に応じて脱炭条件
とした)。その後、磁気特性(22.5度毎の平均)を
エプシュタイン法にて測定した結果を表1に併記した。
The embodiments of the present invention will be described below. The molten steel having the components shown in Table 1 (the balance consisting of Fe and unavoidable impurities) is solidified on the surface of the moving and renewed cooling body to directly form 0.56
Steel strips of mm, 0.62 mm, 1.20 mm and 2.0 mm were obtained. In this case, casting was performed by a method of holding the liquid surface on the surface of the cooling body that dynamically moves and renews (using a molten steel contact limiting plate) and an ordinary method (using no molten steel contact limiting plate). After that, it was pickled and cold-rolled to a thickness of 0.50 mm and 0.95 mm. The cold-rolled steel sheet was degreased and annealed at 975 ° C. for 30 seconds in a continuous annealing furnace (decarburization conditions were set as necessary). Then, the magnetic characteristics (average every 22.5 degrees) were measured by the Epstein method, and the results are also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】このように移動更新する冷却体表面によっ
て凝固せしめて鋳造鋼帯とし、次いで、該当鋳造鋼帯を
冷間圧延して所定の厚さとした後、仕上げ焼鈍する無方
向性電磁鋼板の製造方法において、冷間圧延に際し圧延
率を5%以上40%未満とし、かつ鋳片中心層の{10
0}強度を2.3倍以上、凝固速度を10℃/秒以上と
することにより、極めて優れた無方向性珪素鋼板が得ら
れる。
Manufacturing of a non-oriented electrical steel sheet in which a cast steel strip is solidified by the moving and renewing surface of the cooling body to form a cast steel strip, and then the cast steel strip is cold-rolled to a predetermined thickness and then finish-annealed. In the method, the rolling ratio is set to 5% or more and less than 40% during cold rolling, and the slab center layer {10
By setting the 0} strength to 2.3 times or more and the solidification rate to 10 ° C./second or more, an extremely excellent non-oriented silicon steel sheet can be obtained.

【0022】[0022]

【発明の効果】以上に述べたように本発明により回転機
用鉄芯材として、全周方位での鉄損が低く、かつ磁束密
度が極めて高い無方向性電磁鋼板を得ることができる。
As described above, according to the present invention, it is possible to obtain a non-oriented electrical steel sheet having a low iron loss in all azimuth directions and an extremely high magnetic flux density as the iron core material for a rotating machine.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋳片中心層の{100}強度と全周方向の磁束
密度の関係を示す図。
FIG. 1 is a diagram showing a relationship between {100} strength of a cast slab center layer and magnetic flux density in the entire circumferential direction.

【図2】冷間圧延率と磁束密度の関係を示す図。FIG. 2 is a diagram showing a relationship between a cold rolling rate and a magnetic flux density.

【図3】仕上げ焼鈍後材の{100}正極点図。FIG. 3 is a {100} positive electrode diagram of the material after finish annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 久保田 猛 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takeshi Kubota 1-1 Tobahata-cho, Tobata-ku, Kitakyushu, Fukuoka Prefecture New Nippon Steel Corporation Yawata Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で Si≦4.0%、 Al≦2.0% かつ (Si+2Al)>2.5% 残部:Fe及び不可避的不純物からなる溶鋼を、移動更
新する冷却体表面によって凝固せしめて鋳造鋼帯とし、
次いで、該当鋳造鋼帯を冷間圧延して所定の厚さとし、
仕上げ焼鈍する無方向性電磁鋼板の製造において、移動
更新する冷却体表面によって凝固せしめて鋳造鋼帯とす
る場合の鋳片厚中心層での鋳片の表面に平行な{10
0}面強度を対ランダムで2.3倍以上とし、かつ冷間
圧延の圧下率が5%以上40%未満とすることを特徴と
する磁気特性が極めて優れた無方向性電磁鋼板の製造方
法。
1. By weight% Si ≦ 4.0%, Al ≦ 2.0% and (Si + 2Al)> 2.5% balance: Molten steel consisting of Fe and unavoidable impurities is solidified by a moving and renewing cooling body surface. At the very least, cast steel strip,
Then, the corresponding cast steel strip is cold rolled to a predetermined thickness,
In the production of a non-oriented electrical steel sheet that undergoes finish annealing, the thickness of the slab in the case of solidification by the moving and renewing surface of the cooling body to form a cast steel strip is parallel to the surface of the slab {10
0} surface strength relative to random is 2.3 times or more, and the cold rolling reduction is 5% or more and less than 40%, and a method for producing a non-oriented electrical steel sheet having extremely excellent magnetic properties. .
【請求項2】 重量%で Si≦4.0%、 Al≦2.0% かつ (Si+2Al)>2.5% 残部:Fe及び不可避的不純物からなる溶鋼を、移動更
新する冷却体表面によって凝固せしめて鋳造鋼帯とし、
次いで、該当鋳造鋼帯を冷間圧延して所定の厚さとし、
仕上げ焼鈍する無方向性電磁鋼板の製造において、溶鋼
を、移動更新する冷却体表面によって凝固せしめて鋳造
鋼帯とする場合の鋳片厚中心層の凝固速度を10℃/秒
以上とし、かつ冷間圧延の圧下率が5%以上40%未満
とすることを特徴とする磁気特性が極めて優れた無方向
性電磁鋼板の製造方法。
2. Si = 4.0% in weight%, Al ≦ 2.0% and (Si + 2Al)> 2.5% balance: Molten steel consisting of Fe and unavoidable impurities is solidified by the surface of a cooling body which is moved and renewed. At the very least, cast steel strip,
Then, the corresponding cast steel strip is cold rolled to a predetermined thickness,
In the production of non-oriented electrical steel sheets that undergo finish annealing, when the molten steel is solidified by the moving and renewing surface of the cooling body to form a cast steel strip, the solidification rate of the slab thickness central layer is 10 ° C / sec or more, and A method for producing a non-oriented electrical steel sheet having extremely excellent magnetic properties, characterized in that a reduction ratio of hot rolling is 5% or more and less than 40%.
JP09621393A 1993-04-22 1993-04-22 Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties Expired - Fee Related JP3387962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09621393A JP3387962B2 (en) 1993-04-22 1993-04-22 Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09621393A JP3387962B2 (en) 1993-04-22 1993-04-22 Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH06306467A true JPH06306467A (en) 1994-11-01
JP3387962B2 JP3387962B2 (en) 2003-03-17

Family

ID=14158970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09621393A Expired - Fee Related JP3387962B2 (en) 1993-04-22 1993-04-22 Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3387962B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050597A1 (en) 2006-10-23 2008-05-02 Nippon Steel Corporation Method for manufacturing non-oriented electrical sheet having excellent magnetic properties
WO2009091213A1 (en) * 2008-01-16 2009-07-23 Formation method for rotated cube texture, and electrical steel sheet produced using the same
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
WO2019182022A1 (en) 2018-03-23 2019-09-26 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
CN110396642A (en) * 2019-07-29 2019-11-01 江苏理工学院 Non-oriented electrical steel and preparation method thereof with { 100 } texture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008050597A1 (en) 2006-10-23 2008-05-02 Nippon Steel Corporation Method for manufacturing non-oriented electrical sheet having excellent magnetic properties
US8052811B2 (en) 2006-10-23 2011-11-08 Nippon Steel Corporation Method of producing non-oriented electrical steel sheet excellent in magnetic properties
WO2009091213A1 (en) * 2008-01-16 2009-07-23 Formation method for rotated cube texture, and electrical steel sheet produced using the same
JP2014517147A (en) * 2012-03-27 2014-07-17 ホ、ナム−フェ (100) [0vw] non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
WO2019182022A1 (en) 2018-03-23 2019-09-26 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
KR20200116990A (en) 2018-03-23 2020-10-13 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet
US11421297B2 (en) 2018-03-23 2022-08-23 Nippon Steel Corporation Non-oriented electrical steel sheet
CN110396642A (en) * 2019-07-29 2019-11-01 江苏理工学院 Non-oriented electrical steel and preparation method thereof with { 100 } texture

Also Published As

Publication number Publication date
JP3387962B2 (en) 2003-03-17

Similar Documents

Publication Publication Date Title
JP2017501296A (en) Method for producing oriented high silicon steel
JP2006501361A5 (en)
JPS6179724A (en) Manufacture of thin plate of high-silicon iron alloy
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3160281B2 (en) Method for producing grain-oriented silicon steel sheet with excellent magnetic properties
KR930010323B1 (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JP2708682B2 (en) Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPS6237094B2 (en)
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH0631394A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH075984B2 (en) Method for producing Cr-based stainless steel thin plate using thin casting method
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JP3387971B2 (en) Manufacturing method of electrical steel sheet for stationary equipment with excellent bidirectional magnetic properties
JP3845871B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP3067896B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3023620B2 (en) Method of manufacturing thin slab for unidirectional electrical steel sheet
JP3849310B2 (en) Method for producing grain-oriented electrical steel sheet without ear cracks
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JPH027374B2 (en)
JPH06128642A (en) Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120110

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees