JPH06128642A - Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property - Google Patents

Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property

Info

Publication number
JPH06128642A
JPH06128642A JP27462692A JP27462692A JPH06128642A JP H06128642 A JPH06128642 A JP H06128642A JP 27462692 A JP27462692 A JP 27462692A JP 27462692 A JP27462692 A JP 27462692A JP H06128642 A JPH06128642 A JP H06128642A
Authority
JP
Japan
Prior art keywords
steel sheet
silicon
nonoriented
cold rolling
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27462692A
Other languages
Japanese (ja)
Inventor
Tomoji Kumano
知二 熊野
Takeshi Kubota
猛 久保田
Hiroaki Masui
浩昭 増井
Hodaka Honma
穂高 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27462692A priority Critical patent/JPH06128642A/en
Publication of JPH06128642A publication Critical patent/JPH06128642A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To specify the optimal cold rolling rate at the time of producing a high silicon nonoriented silicon steel sheet by using a cast steel strip solidified by means of the surface of updatedly moving cooling body. CONSTITUTION:In the course where a molten steel, containing >4.0-8.0wt.% Si and <=2.0wt.% Al, for high silicon nonoriented silicon steel sheet is solidified by means of the surface of an updatedly moving cooling body, pickled, cold- rolled, and finish-annealed, cold rooling rate is regulated to 5-<40%. In the case of relatively low cold rolling rate as mentioned above, the texture of a product sheet after finish annealing is sharpened by means of that of columnal crystals. By this method, an ideal texture random cube ([100]<0vw>) for a nonoriented silicon steel sheet can be obtained. Because a high silicon nonoriented silicon steel extremely excellent in magnetic properties can be obtained by this method, this sheet can be a new product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁束密度が極めて高
く、鉄損が低い高珪素無方向性電磁鋼板の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-silicon non-oriented electrical steel sheet having extremely high magnetic flux density and low iron loss.

【0002】[0002]

【従来の技術】近年、回転機用磁芯材料としての無方向
性電磁鋼板に対する品質向上の要求は省エネルギーの観
点から、益々強くなっている。電磁鋼板製造メーカーの
側においても、この要望に応えるべく鋭意無方向性電磁
鋼板の磁気特性の向上のための研究開発が進められてき
ており、工業的には、JISに規定されている数々の無
方向性電磁鋼板が製造されている。
2. Description of the Related Art In recent years, demands for quality improvement of non-oriented electrical steel sheets as magnetic core materials for rotating machines have become stronger from the viewpoint of energy saving. In order to meet this demand, the manufacturers of electromagnetic steel sheets are also conducting research and development to improve the magnetic properties of non-oriented electrical steel sheets, and industrially, a number of them are specified in JIS. Non-oriented electrical steel sheets are manufactured.

【0003】無方向性電磁鋼板の製造プロセスにおい
て、鉄損値が低い製品を得るためには、従来、鋼をその
溶製段階で高純度化する、鋼中のSi含有量を多くす
る、仕上げ焼鈍において温度・時間を十分にとる等の手
段が採られてきたが、後工程の作業性を考慮して従来S
iの含有量は、上限は4%と規定されていた。
In the manufacturing process of non-oriented electrical steel sheets, in order to obtain a product having a low iron loss value, conventionally, the steel is highly purified in its melting stage, the Si content in the steel is increased, and the finishing is performed. In annealing, measures such as taking sufficient temperature and time have been adopted, but in consideration of workability in the post process, conventional S
The upper limit of the content of i was specified to be 4%.

【0004】しかしながら、これらの技術的手段による
ときは、製品の鉄損値は、低くなるけれど、集合組織の
観点から磁束密度が低くなると言う問題がある。又、S
iが請求範囲の如く高い場合は、通常の製造方法では、
熱間圧延以降の工程では、脆性のため作業性が実際的で
ない。この困難を克服するために、温間圧延、浸珪素処
理等の方法が考案されているが、工程が複雑となり、生
産コストが高くなる。一方、近年移動更新する冷却体表
面によって凝固せしめる方法が開発され、無方向性電磁
鋼板分野にも適用されはじめている。しかし、これまで
の場合は、Si%が4重量%以下、冷間圧延率が40%
以上であった。冷間圧延圧下率が40%以上では、仕上
終焼鈍後の集合組織は、鋼板面に平行な面指数として
は、{100}のみでなく{111}面もかなり強く、
磁気特性、特に磁束密度の向上に限界があった。
However, when these technical means are used, the iron loss value of the product is low, but there is a problem that the magnetic flux density is low from the viewpoint of texture. Also, S
When i is high as in the claims, in the usual manufacturing method,
In the steps after hot rolling, workability is not practical due to brittleness. In order to overcome this difficulty, methods such as warm rolling and silicon immersion treatment have been devised, but the process becomes complicated and the production cost increases. On the other hand, in recent years, a method of solidifying by a moving and renewing surface of a cooling body has been developed and is beginning to be applied to the field of non-oriented electrical steel sheets. However, in the past, Si% was 4% by weight or less, and the cold rolling rate was 40%.
That was all. When the cold rolling reduction rate is 40% or more, the texture after finish annealing is not only {100} but also {111} plane as the plane index parallel to the steel sheet plane, which is considerably strong.
There was a limit to the improvement of magnetic properties, especially the magnetic flux density.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術における問題を解決し、全周方位での鉄損が低くか
つ、磁束密度が極めて高い高珪素無方向性電磁鋼板を供
給することができる製造方法を提供することを目的とす
る。
SUMMARY OF THE INVENTION The present invention solves the above problems in the prior art and provides a high silicon non-oriented electrical steel sheet which has a low iron loss in all azimuth directions and an extremely high magnetic flux density. It is an object of the present invention to provide a possible manufacturing method.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明の特徴とするところは、重量%で、4.0%<
Si≦8.0%、Al≦2.0%、残部Fe及び不可避
的不純物からなる溶鋼(いわゆる非変態鋼)を、移動更
新する冷却体表面によって凝固せしめて鋳造鋼帯とし、
次いで、該当鋳造鋼帯を冷間圧延して所定の厚さ(最終
板厚)とした後、仕上げ焼鈍する無方向性電磁鋼板の製
造方法において、冷間圧延に際し圧延率を5%以上40
%未満、好ましくは、30%未満とすることを特徴とす
る磁気特性が極めて優れた高珪素無方向性電磁鋼板の製
造方法である。
In order to achieve the above object, the feature of the present invention is that the weight% is 4.0% <
A molten steel consisting of Si ≦ 8.0%, Al ≦ 2.0%, balance Fe and unavoidable impurities (so-called non-transformed steel) is solidified by a moving and renewing cooling body surface to form a cast steel strip,
Then, in the method for producing a non-oriented electrical steel sheet, in which the corresponding cast steel strip is cold-rolled to a predetermined thickness (final sheet thickness) and then finish-annealed, the rolling rate is 5% or more in the cold rolling.
%, And preferably less than 30%, is a method for producing a high-silicon non-oriented electrical steel sheet having extremely excellent magnetic properties.

【0007】以下、本発明を詳細に説明する。本発明者
等は、本発明における技術的課題を解決すべく鋭意検討
を重ねた結果、溶鋼から直接的に鋳造薄帯を得、その後
の冷間圧延率を適切にとることによって、仕上げ焼鈍後
の製品における集合組織を制御することができ、これに
よって磁束密度が極めて高く鉄損が良好な(鉄損値が低
い)無方向性電磁鋼板を得るに成功した。
The present invention will be described in detail below. The present inventors have conducted intensive studies to solve the technical problems in the present invention, and as a result, directly obtain a cast ribbon from molten steel, and by appropriately taking a cold rolling ratio thereafter, after finish annealing. We have succeeded in obtaining a non-oriented electrical steel sheet having a very high magnetic flux density and a good iron loss (low iron loss value).

【0008】先ず、本発明成分系について説明する。C
は、0.050%以下であれば、本発明の目的を達する
ことができる。無方向性電磁鋼板の用途は、主に回転機
であり、磁気特性の安定という観点からは、無方向性電
磁鋼板の使用中に磁気特性の劣化(磁気時効)を起こさ
ないことが要求される。Sは、鋼の溶製段階で不可避的
に混入する元素であり、凝固後の冷却中にMnと結合し
てMnSを形成するため、0.0100%以下とすべき
である。Nは、0.010%以下であればよい。Nは、
Sと同様に、移動更新する冷却体表面によって急速に凝
固する場合、鋼帯中に固溶され、更に冷却中にAlN,
MnS等の析出物を形成し、仕上げ焼鈍時に再結晶粒の
成長を妨げたり製品が磁化されるときに磁壁の移動を妨
げるいわゆるピニング効果を発揮し製品の低鉄損化を妨
げる要因になる。このため、N≦0.010%以下とす
べきである。
First, the component system of the present invention will be described. C
Is 0.050% or less, the object of the present invention can be achieved. The non-oriented electrical steel sheet is mainly used in rotating machines, and from the viewpoint of stable magnetic characteristics, it is required that magnetic property deterioration (magnetic aging) does not occur during use of the non-oriented electrical steel sheet. . S is an element that is unavoidably mixed in the melting stage of steel and is combined with Mn to form MnS during cooling after solidification, so S should be 0.0100% or less. N may be 0.010% or less. N is
Similar to S, when rapidly solidified by the moving and renewing surface of the cooling body, it is solid-solved in the steel strip, and AlN,
Precipitates such as MnS are formed, which hinders the growth of recrystallized grains during finish annealing or exhibits a so-called pinning effect that hinders the movement of domain walls when the product is magnetized, which becomes a factor to prevent lower iron loss of the product. Therefore, N ≦ 0.010% should be set.

【0009】Siは、従来から良く知られているように
鋼板の固有抵抗を増加させ渦流損を低減するため添加さ
れる。4.0%を超えてSiを添加すると、加工性が極
端に劣化し、冷間圧延が困難なものとなる。しかし、1
00℃〜300℃での温間処理の適用、及び鋳込み鋳片
の厚みを薄くする等の方法により、酸洗、冷間圧延がで
きるようになった。このため、ただ単にSi含有量が多
いことは、高珪素無方向性電磁鋼板製造に関して大きな
問題ではなくなった。又、従来よりよく知られているよ
うに、Fe−Si合金では、6.5%Siで磁歪が極め
て小さくなるため、電気機器での騒音改善になる。
As is well known in the art, Si is added to increase the specific resistance of the steel sheet and reduce the eddy current loss. If Si is added in excess of 4.0%, the workability will be extremely deteriorated and cold rolling will become difficult. But 1
Pickling and cold rolling became possible by applying a warm treatment at 00 ° C. to 300 ° C. and reducing the thickness of the cast slab. For this reason, simply having a high Si content is not a big problem in the production of a high-silicon non-oriented electrical steel sheet. Further, as is well known in the art, since Fe--Si alloy has a very small magnetostriction at 6.5% Si, noise in electric equipment is improved.

【0010】AlもSi同様には、鋼板の固有抵抗を増
加させ渦流損を低減するため添加される。この目的のた
め従来から変態を有しない無方向性電磁鋼板には、最大
2.0%のAlが添加されている。更に添加量を増加す
ることは、原理的には可能であるが、Si含有量が既に
多いため製造コスト考慮して、最大2.0%とする。M
nは、その含有量が、0.1%より少ないと製品の加工
性が劣化するから又、Sを無害化させるために添加され
る。しかしながら、Mnの添加量が、2.0%を超える
と製品の磁束密度が、著しく劣化するからMn≦2.0
%でなければならない。Bは、必要に応じて添加する元
素であり、特にNを無害化させるために添加される。N
の量とのバランスが必要であるから最大含有量を0.0
05%とする。極低窒素鋼を溶製すれば、Nは無害化で
きるので、この場合添加の必要性は少ない。
Al, like Si, is added to increase the specific resistance of the steel sheet and reduce eddy current loss. For this purpose, a maximum of 2.0% Al has been added to non-oriented electrical steel sheets that have not been transformed so far. Although it is possible in principle to increase the addition amount, the maximum Si content is 2.0% in view of the manufacturing cost because the Si content is already large. M
When the content of n is less than 0.1%, the workability of the product is deteriorated, and n is added to render S harmless. However, if the addition amount of Mn exceeds 2.0%, the magnetic flux density of the product is significantly deteriorated, so Mn ≦ 2.0.
%Must. B is an element that is added as necessary, and is particularly added to render N harmless. N
Therefore, the maximum content is 0.0
05%. N can be made harmless by melting ultra-low nitrogen steel, and in this case, the need for addition is small.

【0011】本発明は、上記した成分の外に、製品の機
械特性の向上、磁気特性、耐錆性等の向上或いは、その
他の目的のために、P,Ni,Cr,Sb,Sn,Cu
を1種又は、2種以上含有させても本発明の効果は損な
われない。
In addition to the above-mentioned components, the present invention is intended to improve the mechanical properties of products, magnetic properties, rust resistance, etc., or for other purposes, P, Ni, Cr, Sb, Sn, Cu.
The effect of the present invention is not impaired even if one or two or more are contained.

【0012】次に、本発明の製造プロセス条件につい
て、説明する。移動更新する冷却体表面によって凝固せ
しめて得られる鋳造鋼帯を比較的高い冷間圧延率で圧延
する場合は、磁束密度は、高くなるが、凝固過程で形成
された柱状晶は、この高い圧延率でかなり破壊され、製
品板の再結晶集合組織は、鋼板法線‖〈111〉軸密度
と鋼板法線‖〈100〉軸密度は同程度であり無方向性
電磁鋼板にとって理想的な集合組織ではない。
Next, the manufacturing process conditions of the present invention will be described. When the cast steel strip obtained by solidifying by the moving and renewing cooling body surface is rolled at a relatively high cold rolling rate, the magnetic flux density is high, but the columnar crystals formed during the solidification process are The recrystallized texture of the product sheet is the same as the steel sheet normal ‖ <111> axial density and the steel sheet normal ‖ <100> axial density, and is an ideal texture for non-oriented electrical steel sheets. is not.

【0013】本発明者者は、鋭意研究を続けたところ、
40%未満(好ましくは30%未満)の冷延圧下率で
は、鋳造時に形成された柱状晶を核として、仕上げ焼鈍
後の再結晶集合組織は、ほぼ完全な、{100}〈0v
w〉(ランダムキューブ)となることを見い出した。こ
の理由は、未だ明確ではないが、柱状晶の集合組織であ
る{100}〈0vw〉(ランダムキューブ)は相対的
に加工歪が蓄積し難いため軽度の冷延圧下率では、圧延
集合組織も、ランダムキューブのまま温存され、仕上げ
焼鈍時の再結晶段階で、それが再結晶及び粒成長し(む
しろ、歪誘起粒界移動と言うべき)、ランダムキューブ
が先鋭化するためと考えられる。又、冷延圧下率が5%
未満であると、鋳造時の表面性状がそのまま残存し製品
に適さないので5%以上とする。更に、冷間圧延性の観
点からも、高珪素材のこのような軽圧下(5〜40%、
好ましくは5〜30%)は、70%前後の従来の冷間圧
延率よりも、実生産に適している。図1に、6.3重量
%≦Si≦6.7重量%の溶鋼を移動更新する冷却体表
面によって凝固せしめて鋳造鋼帯とし、次いで、該当鋳
造鋼帯を冷間圧延して所定の厚さとした後、仕上げ焼鈍
する無方向性電磁鋼板の製造方法において、冷間圧延率
と磁束密度(B50(T))の関係を示した。製品厚みは
一定でないが冷延率40%未満、特に30%以下にする
ことにより、極めて優れた磁束密度が得られることがわ
かる。
The inventors of the present invention continued their earnest research and found that
At a cold rolling reduction of less than 40% (preferably less than 30%), the recrystallized texture after finish annealing is almost perfect, with the columnar crystals formed during casting as nuclei, {100} <0v.
We found that w> (random cube). The reason for this is not clear yet, but since {100} <0vw> (random cube), which is a columnar crystal texture, is relatively hard to accumulate work strain, the rolling texture also occurs at a slight cold rolling reduction. It is considered that the random cube is preserved as it is, and it is recrystallized and grain-grown at the recrystallization stage during finish annealing (rather, it should be called strain-induced grain boundary migration), and the random cube is sharpened. Also, cold rolling reduction is 5%
If it is less than 5%, the surface quality at the time of casting remains as it is and is not suitable for products. Further, also from the viewpoint of cold rolling property, such a light reduction (5 to 40%,
(Preferably 5 to 30%) is more suitable for actual production than the conventional cold rolling rate of around 70%. In Fig. 1, molten steel of 6.3 wt% ≤ Si ≤ 6.7 wt% is solidified into a cast steel strip by the moving and renewing surface of the cooling body, and then the cast steel strip is cold-rolled to a predetermined thickness. Then, the relationship between the cold rolling rate and the magnetic flux density (B 50 (T)) was shown in the method for manufacturing a non-oriented electrical steel sheet that is finish annealed. Although the product thickness is not constant, it can be seen that an extremely excellent magnetic flux density can be obtained by setting the cold rolling reduction to less than 40%, particularly 30% or less.

【0014】尚、製品厚みで鋳造することが考えられる
が、この場合は、5%未満の冷延圧下率の場合と同様に
表面性状が製品に適さないばかりでなく図1に示すよう
に、磁気特性自体もあまり良好でない。
It should be noted that it is conceivable that the product is cast with a product thickness. In this case, the surface texture is not suitable for the product as in the case of a cold rolling reduction of less than 5%, and as shown in FIG. The magnetic properties themselves are also not very good.

【0015】[0015]

【実施例】以下、本発明の実施態様を述べる。表1の成
分の溶鋼(残部Fe及び不可避的不純物からなる)を移
動更新する冷却体表面にて凝固せしめて直接0.56m
m,0.40mm及び0.25mmの鋼帯を得た。その後、
酸洗を施し、表1に示す製品厚みに冷間圧延をした。冷
間圧延された、鋼板を脱脂し、連続焼鈍炉にて、105
0℃で30秒焼鈍した。その後、磁気特性(22.5度
毎の平均)をエプシュタイン法にて測定した。これらの
値を、比較法である冷間圧延率40%以上の場合(鋳片
の厚みを1.7mm、及び1.05mm)と比較した。
The embodiments of the present invention will be described below. Directly 0.56 m by solidifying the molten steel (comprising the balance Fe and unavoidable impurities) of the ingredients of Table 1 on the surface of the moving cooling body
Steel strips of m, 0.40 mm and 0.25 mm were obtained. afterwards,
It was pickled and cold-rolled to the product thickness shown in Table 1. The cold-rolled steel sheet is degreased and then heated in a continuous annealing furnace to 105
Annealed at 0 ° C for 30 seconds. Then, the magnetic property (average every 22.5 degrees) was measured by the Epstein method. These values were compared with the case of the cold rolling ratio of 40% or more, which is a comparative method (thicknesses of cast slabs are 1.7 mm and 1.05 mm).

【0016】[0016]

【表1】 [Table 1]

【0017】このように移動更新する冷却体表面によっ
て凝固せしめて鋳造鋼帯とし、次いで、該当鋳造鋼帯を
冷間圧延して所定の厚さとした後、仕上げ焼鈍する高珪
素無方向性電磁鋼板の製造方法において、冷間圧延に際
し圧延率を5%以上40%未満とすると冷間圧延率が高
い場合と比べて磁気特性が極めて優れた高珪素無方向性
電磁鋼板が得られる。
A high-silicon non-oriented electrical steel sheet which is solidified by the moving and renewing surface of the cooling body to form a cast steel strip, which is then cold-rolled to a predetermined thickness and then finish-annealed. In the manufacturing method described above, when the rolling rate is set to 5% or more and less than 40% during cold rolling, a high-silicon non-oriented electrical steel sheet having extremely excellent magnetic properties as compared with the case where the cold rolling rate is high is obtained.

【0018】図2に本発明で得られた仕上げ焼鈍後製品
板の集合組織を示した。このように非常に素晴らしいい
わゆるランダムキューブが得られている。これは、高珪
素無方向性電磁鋼板にとって理想的とも言える。
FIG. 2 shows the texture of the finished annealed product sheet obtained in the present invention. In this way, a very nice so-called random cube is obtained. It can be said that this is ideal for high silicon non-oriented electrical steel sheets.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
磁気特性の優れた無方向性電磁鋼板が得られる。
As described above, according to the present invention,
A non-oriented electrical steel sheet having excellent magnetic properties can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】冷間圧延率とB50の関係を示す図である。FIG. 1 is a diagram showing a relationship between a cold rolling rate and B 50 .

【図2】仕上げ焼鈍後の材料の{100}正極点図を示
す図である。
FIG. 2 is a diagram showing a {100} positive electrode dot diagram of a material after finish annealing.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 本間 穂高 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hodaka Hodaka No. 1-1 Toibata-cho, Tobata-ku, Kitakyushu, Kitakyushu, Fukuoka Inside Nippon Steel Corporation Yawata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%で 4.0%<Si≦8.0%、 Al≦2.0% 残部Fe及び不可避的不純物からなる溶鋼を、移動更新
する冷却体表面によって凝固せしめて鋳造鋼帯とし、次
いで、該当鋳造鋼帯を冷間圧延して所定の厚さとした
後、仕上げ焼鈍する高珪素含有無方向性電磁鋼板の製造
方法において、冷間圧延に際し圧延率を5%以上40%
未満とすることを特徴とする磁気特性が極めて優れた高
珪素無方向性電磁鋼板の製造方法。
1. A cast steel strip obtained by solidifying a molten steel composed of 4.0% <Si ≦ 8.0% and Al ≦ 2.0% by weight in the balance Fe and unavoidable impurities by a moving and renewing cooling body surface. Then, in the method for producing a high silicon-containing non-oriented electrical steel sheet, in which the corresponding cast steel strip is cold-rolled to a predetermined thickness and then finish-annealed, the rolling ratio is 5% or more and 40% or more in cold rolling.
A method for producing a high-silicon non-oriented electrical steel sheet having extremely excellent magnetic properties, which is characterized by
JP27462692A 1992-10-13 1992-10-13 Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property Withdrawn JPH06128642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27462692A JPH06128642A (en) 1992-10-13 1992-10-13 Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27462692A JPH06128642A (en) 1992-10-13 1992-10-13 Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property

Publications (1)

Publication Number Publication Date
JPH06128642A true JPH06128642A (en) 1994-05-10

Family

ID=17544338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27462692A Withdrawn JPH06128642A (en) 1992-10-13 1992-10-13 Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property

Country Status (1)

Country Link
JP (1) JPH06128642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469088A2 (en) * 2003-04-10 2004-10-20 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet having high magnetic flux density
CN102199721A (en) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 High-silicon non-oriented cold-rolled sheet, and manufacture method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1469088A2 (en) * 2003-04-10 2004-10-20 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet having high magnetic flux density
US7214277B2 (en) 2003-04-10 2007-05-08 Nippon Steel Corporation Method for manufacturing non-oriented electrical steel sheet having high magnetic flux density
CN102199721A (en) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 High-silicon non-oriented cold-rolled sheet, and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP2006501361A5 (en)
JP3855554B2 (en) Method for producing non-oriented electrical steel sheet
JPH03219020A (en) Production of nonoriented silicon steel sheet
JP2708682B2 (en) Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
JP3387980B2 (en) Method for producing non-oriented silicon steel sheet with extremely excellent magnetic properties
KR930010323B1 (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3387962B2 (en) Manufacturing method of non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3331401B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties all around
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH06128642A (en) Production of high silicon nonoriented silicon steel sheet extremely excellent in magnetic property
JPH05279740A (en) Manufacture of high silicon nonoriented steel sheet excellent in magnetic property
JP3994667B2 (en) Method for producing grain-oriented electrical steel sheet
JP3310004B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
JPH0631394A (en) Production of thin cast slab for non-oriented silicon steel sheet
JPH05279826A (en) Production of &#39;permalloy(r)&#39; excellent in impedance relative magnetic permeability
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000104