JPH0153332B2 - - Google Patents

Info

Publication number
JPH0153332B2
JPH0153332B2 JP58051567A JP5156783A JPH0153332B2 JP H0153332 B2 JPH0153332 B2 JP H0153332B2 JP 58051567 A JP58051567 A JP 58051567A JP 5156783 A JP5156783 A JP 5156783A JP H0153332 B2 JPH0153332 B2 JP H0153332B2
Authority
JP
Japan
Prior art keywords
less
alloy
coercive force
tungsten
magnetic properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58051567A
Other languages
Japanese (ja)
Other versions
JPS58193320A (en
Inventor
Ryo Masumoto
Juetsu Murakami
Naoji Nakamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP58051567A priority Critical patent/JPS58193320A/en
Publication of JPS58193320A publication Critical patent/JPS58193320A/en
Publication of JPH0153332B2 publication Critical patent/JPH0153332B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は鉄およびタングステンからなる合金あ
るいはこれを主成分とし、副成分としてバナジウ
ム、ニオブ、クロム、モリブデン、タンタル、ニ
ツケル、銅、コバルト、チタン、ジルコニウム、
珪素、アルミニウム、ゲルマニウム、錫、アンチ
モン、ベリリウム、マンガン、希土類元素(イツ
トリウム、ランタン系元素)および炭素の1種あ
るいは2種以上の合計0.01〜60%の元素からな
り、少量の不純物を含む角形ヒステリシス磁性合
金の製造方法に関するもので、その目的とすると
ころは残留磁束密度が大きく、良好な角形ヒステ
リシス特性を有しかつ鍛造、加工が容易な角形ヒ
ステリシス磁性合金を得るにある。 現在、電磁機器における記憶素子、フエリード
およびラツチングリレー用の磁性材料として、残
留磁束密度が大きく、角形性のヒステリシスを示
し、用途に応じて数エルステツドから数100エル
ステツドの保磁力を有する角形性磁性合金が使用
されている。これら成品においては高度な加工を
必要とするもの、あるいはガラス封着などの作業
を必要とするものなどがあり、したがつて加工性
に富み、かつ磁気特性が高温加熱(約800℃)に
よつても安定であることが望まれている。 従来、このような特性を有する磁性材料として
はFe−C系合金、Fe−Mn系合金、Fe−Co系合
金およびFe−Ni系合金等がある。しかしFe−C
系合金およびFe−Mn系合金は安価で加工性にす
ぐれているが、高温加熱によつて磁気特性が著る
しく劣化する欠点を有し、またFe−Co系合金お
よびFe−Ni系合金は高価なコバルトあるいはニ
ツケルを多量に含み、かつ高度な加工技術を必要
とするため工業的に充分満足し得るものとは云い
難い。 本発明者らは幾多研究の結果、タングステン1
〜20%および残部鉄からなる合金およびこれを主
成分としさらに副成分としてバナジウム10%以
下、ニオブ0.5%未満、クロム15%以下、モリブ
デン10%以下、タンタル0.5%未満、ニツケル15
%以下、銅10%以下、コバルト50%以下、チタン
5%以下、ジルコニウム5%以下、珪素5%以
下、アルミニウム5%以下、ゲルマニウム5%以
下、錫5%以下、アンチモン5%以下、ベリリウ
ム3%以下、マンガン15%以下、希土類元素2%
以下、および炭素1.5%以下の1種または2種以
上の合計0.01〜60%と、少量の不純物とからなる
合金は残留磁束密度が大きく、すぐれた角形ヒス
テリシスを示し、保磁力が2エルステツド以上を
有し、かつ加工が容易で高温加熱によつても磁気
特性が安定な磁性合金であることを見いだしその
製造方法を検討した。 即ち本発明は残留磁束密度が大きく角形ヒステ
リシスを示し、保磁力が2エルステツド以上を有
し、かつ鍛造、成形加工が容易な角形ヒステリシ
ス磁性合金の製造方法を提供するものであり、本
発明の製造方法によつて得られた合金は角形ヒス
テリシス特性を必要とする上記の電磁機器の磁性
材料として好適である。 本発明の製造方法により合金を造るには、まず
主成分のタングステン1〜20%および残部鉄と、
副成分としてバナジウム10%以下、ニオブ0.5%
未満、クロム15%以下、モリブデン10%以下、タ
ンタル0.5%未満、ニツケル15%以下、銅10%以
下、コバルト50%以下、チタン5%以下、ジルコ
ニウム5%以下、珪素5%以下、アルミニウム5
%以下、ゲルマニウム5%以下、錫5%以下、ア
ンチモン5%以下、ベリリウム3%以下、マンガ
ン15%以下、希土類元素2%以下、および炭素
1.5%以下の1種または2種以上の合計0.01〜60
%の適当量を空気中、好ましくは非酸化性雰囲気
中あるいは真空中において適当な溶解炉を用いて
溶解した後、マンガン、珪素、アルミニウム、チ
タン、カルシウム合金、マグネシウム合金、その
他の脱酸剤、脱硫剤を少量(1%以下)添加して
できるだけ不純物を取り除き、充分に撹拌し、組
成的に均一な溶融合金を得る。 次にこれを適当な形および大きさの鋳型に注入
して建全な鋳塊を得、さらにこれに約800℃〜
1200℃の高温において鍛造あるいは熱間加工並び
に冷間加工を施して適当な形状のもの、例えば棒
あるいは板となし、約900℃以上の高温度で適当
な時間加熱して焼鈍あるいは溶体化処理を施す。
ついでこれをスエージング、線引あるいは圧延な
どの方法によつて加工率50%以上の冷間加工を施
し、目的の形状のもの例えが細線あるいは薄板に
する。さらにこれら冷間加工状態の成品を空気
中、好ましくは非酸化性雰囲気中あるいは真空中
で400℃以上1000℃位迄の温度で加熱することに
より、保磁力2エルステツド以上を有するすぐれ
た角形ヒステリシス磁性合金が得られる。 上記の焼鈍或は溶体化処理は合金の組成に応じ
て適宜選択して施されるものであるが、焼鈍は加
熱することによつて、加工歪を除去し、組織を均
質化するために必要であり、また、溶体化処理は
高温度の加熱によつて、過飽和な組織を形成せし
めて、冷間加工後に施される加熱において、微細
な金属間化合物を析出させ、保磁力を増大させる
ために必要である。 上記の冷間加工は合金の結晶の優越方向をそろ
える効果があり、特に加工率50%以上の加工を施
した場合にこの効果が著るしい。また上記の冷間
加工に次いで行われる加熱は、加工歪の除去、再
結晶、変態、析出などを経て角形特性および保磁
力を向上させるが、特に400℃以上1000℃位迄の
加熱においてその効果が大きい。 次に本発明の実施例について述べる。 実施例 1 合金番号8(組成Fe=87.8%、W=12.2%)の
合金の製造 原料としては99.9%純度の電解鉄および99.8%
純度のタングステンを用いた。試料を造るには原
料を全重量700gでアルミナ坩堝に入れ、空気中
で高周波誘導電気炉によつて溶かした後、よく撹
拌して均質な溶融合金とした。次にこれを直径25
mm、高さ170mmの孔をもつ鋳型に注入し、得られ
た鋳塊を約1000℃で鍛造して直径4mmの丸棒と
し、1000℃で1時間加熱した後水冷し、ついで冷
間線引によつて直径0.5mmの線とした。この場合
の加工率(減面率)は98%である。さらにこの線
より長さ20cmを切りとつて試料とし、種々な熱処
理を施した後残留磁束密度Brと、磁場100エルス
テツドのときの磁束密度B100との比率で表わした
角形率Br/B100および保磁力Hcの値を測定し、
第1表に示すような特性が得られた。
The present invention is an alloy consisting of iron and tungsten, or an alloy containing these as the main component, with subcomponents of vanadium, niobium, chromium, molybdenum, tantalum, nickel, copper, cobalt, titanium, zirconium,
Square hysteresis consisting of 0.01 to 60% of one or more of silicon, aluminum, germanium, tin, antimony, beryllium, manganese, rare earth elements (yttrium, lanthanum elements), and carbon, and containing a small amount of impurities. The present invention relates to a method for manufacturing a magnetic alloy, and its purpose is to obtain a square hysteresis magnetic alloy that has a large residual magnetic flux density, good square hysteresis characteristics, and is easy to forge and process. Currently, prismatic magnetic materials are used as magnetic materials for memory elements, ferrites, and latching relays in electromagnetic equipment. They have a large residual magnetic flux density, exhibit angular hysteresis, and have coercive forces ranging from several Oersteds to several 100 Oersteds depending on the application. alloy is used. Some of these products require advanced processing or require work such as glass sealing, so they are highly processable and their magnetic properties change when heated at high temperatures (approximately 800°C). It is hoped that it will remain stable over time. Conventionally, magnetic materials having such characteristics include Fe-C alloys, Fe-Mn alloys, Fe-Co alloys, and Fe-Ni alloys. However, Fe-C
Although these alloys are inexpensive and have excellent workability, they have the disadvantage that their magnetic properties deteriorate significantly when heated to high temperatures, and Fe-Co and Fe-Ni alloys have Since it contains a large amount of expensive cobalt or nickel and requires advanced processing technology, it is difficult to say that it is fully satisfactory industrially. As a result of numerous studies, the present inventors found that tungsten 1
Alloys consisting of ~20% and the balance iron, with this as the main component, and additional subcomponents of vanadium 10% or less, niobium 0.5% or less, chromium 15% or less, molybdenum 10% or less, tantalum 0.5% or less, and nickel 15
% or less, Copper 10% or less, Cobalt 50% or less, Titanium 5% or less, Zirconium 5% or less, Silicon 5% or less, Aluminum 5% or less, Germanium 5% or less, Tin 5% or less, Antimony 5% or less, Beryllium 3 % or less, manganese 15% or less, rare earth elements 2%
An alloy consisting of 0.01 to 60% in total of one or more of the following and 1.5% or less of carbon and a small amount of impurities has a large residual magnetic flux density, exhibits excellent square hysteresis, and has a coercive force of 2 oersted or more. We discovered that it is a magnetic alloy that is easy to process and has stable magnetic properties even when heated at high temperatures, and we investigated a method for producing it. That is, the present invention provides a method for manufacturing a prismatic hysteresis magnetic alloy that has a large residual magnetic flux density, exhibits prismatic hysteresis, has a coercive force of 2 oersted or more, and is easy to forge and form. The alloy obtained by this method is suitable as a magnetic material for the above-mentioned electromagnetic equipment requiring square hysteresis characteristics. To make an alloy using the manufacturing method of the present invention, first 1 to 20% of tungsten as the main component and the balance iron;
Vanadium 10% or less, niobium 0.5% as secondary components
less than 15% chromium, less than 10% molybdenum, less than 0.5% tantalum, less than 15% nickel, less than 10% copper, less than 50% cobalt, less than 5% titanium, less than 5% zirconium, less than 5% silicon, less than 5% aluminum
% or less, germanium 5% or less, tin 5% or less, antimony 5% or less, beryllium 3% or less, manganese 15% or less, rare earth elements 2% or less, and carbon
1.5% or less of one or more types total 0.01-60
% in air, preferably in a non-oxidizing atmosphere or in vacuum using a suitable melting furnace, manganese, silicon, aluminum, titanium, calcium alloys, magnesium alloys, and other deoxidizers, Add a small amount (1% or less) of a desulfurizing agent to remove as much impurity as possible, and stir thoroughly to obtain a compositionally uniform molten alloy. Next, this is poured into a mold of an appropriate shape and size to obtain a sound ingot, which is further heated to approximately 800℃~
It is forged or hot-worked and cold-worked at a high temperature of 1200°C to form a suitable shape, such as a bar or plate, and then annealed or solution-treated by heating at a high temperature of about 900°C or higher for an appropriate time. give
This is then subjected to cold working at a processing rate of 50% or more using methods such as swaging, wire drawing, or rolling to form the desired shape, such as a thin wire or thin plate. Furthermore, by heating these cold-worked products in air, preferably in a non-oxidizing atmosphere or in vacuum at a temperature of 400°C to 1000°C, excellent rectangular hysteresis magnetism with a coercive force of 2 oersted or more can be obtained. An alloy is obtained. The above annealing or solution treatment is selected as appropriate depending on the composition of the alloy, but annealing is necessary to remove processing strain and homogenize the structure by heating. In addition, solution treatment uses high-temperature heating to form a supersaturated structure, and during the heating performed after cold working, fine intermetallic compounds are precipitated and the coercive force is increased. is necessary. The above-mentioned cold working has the effect of aligning the dominant direction of the crystals of the alloy, and this effect is particularly noticeable when processing is performed at a working rate of 50% or more. Furthermore, the heating performed after the above-mentioned cold working improves the squareness characteristics and coercive force through removal of processing strain, recrystallization, transformation, precipitation, etc., but this effect is especially effective when heated from 400℃ to about 1000℃. is large. Next, examples of the present invention will be described. Example 1 Production of alloy with alloy number 8 (composition Fe = 87.8%, W = 12.2%) The raw materials are 99.9% pure electrolytic iron and 99.8% pure
High purity tungsten was used. To prepare the sample, raw materials were placed in an alumina crucible with a total weight of 700 g, melted in air in a high-frequency induction electric furnace, and then thoroughly stirred to form a homogeneous molten alloy. Next, add this to diameter 25
The resulting ingot was forged at approximately 1000℃ to form a round bar with a diameter of 4mm, heated at 1000℃ for 1 hour, cooled in water, and then cold drawn. It was made into a wire with a diameter of 0.5 mm. The processing rate (area reduction rate) in this case is 98%. Further, a 20 cm length was cut from this line as a sample, and after various heat treatments, the squareness ratio Br/B 100 expressed as the ratio of the residual magnetic flux density Br to the magnetic flux density B 100 at a magnetic field of 100 oersted was obtained. Measure the value of coercive force Hc,
The properties shown in Table 1 were obtained.

【表】 実施例 2 合金番号52(組成Fe=85.7%、W=11.3%、Cr
=3%)の合金の製造 原料は実施例1と同じ純度の鉄およびタングス
テンと99.8%純度のクロムを用いた。試料の製造
法は実施例1と同じである。試料に種々の熱処理
を施して第2表に示すような特性を得た。
[Table] Example 2 Alloy number 52 (composition Fe = 85.7%, W = 11.3%, Cr
3%) The raw materials used were iron and tungsten with the same purity as in Example 1, and chromium with a purity of 99.8%. The method of manufacturing the sample was the same as in Example 1. The samples were subjected to various heat treatments to obtain the properties shown in Table 2.

【表】 実施例 3 合金番号120(組成Fe=85.2%、W=11.6%、Ge
=3.2%)の合金の製造 原料は実施例1と同じ純度の鉄およびタングス
テンと99.8%純度のゲルマニウムとを用いた。試
料の製造法は実施例1と同じである。試料に種々
の熱処理を施して第3表に示すような特性を得
た。
[Table] Example 3 Alloy number 120 (composition Fe = 85.2%, W = 11.6%, Ge
3.2%) The raw materials used were iron and tungsten of the same purity as in Example 1, and germanium of 99.8% purity. The method of manufacturing the sample was the same as in Example 1. The samples were subjected to various heat treatments to obtain the properties shown in Table 3.

【表】 なお代表的な合金の磁気特性を第4表に示す。【table】 The magnetic properties of typical alloys are shown in Table 4.

【表】 実施例 4 合金番号180(組成Fe=67.5%、W=9.8%、Cr
=2%、Mo=0.7%、Co=20%)の合金の製
造 原料は実施例1と同じ純度の鉄およびタングス
テンと99.8%純度のクロム、モリブデン、コバル
トを用いた。試料の製造法は実施例1と同じであ
る。試料に種々の熱処理を施して第4表に示すよ
うな特性を得た。
[Table] Example 4 Alloy number 180 (composition Fe = 67.5%, W = 9.8%, Cr
2%, Mo=0.7%, Co=20%) The raw materials used were iron and tungsten of the same purity as in Example 1, and chromium, molybdenum, and cobalt of 99.8% purity. The method of manufacturing the sample was the same as in Example 1. The samples were subjected to various heat treatments to obtain the properties shown in Table 4.

【表】 実施例 5 合金番号228(組成Fe=66.7%、W=12%、Be
=1%、Co=20%、C=0.3%)の合金の製造 原料は実施例1と同じ純度の鉄およびタングス
テンと99.8%純度のベリリウム、コバルト、炭素
を用いた。試料の製造法は実施例1と同じであ
る。試料に種々の熱処理を施して第5表に示すよ
うな特性を得た。
[Table] Example 5 Alloy number 228 (composition Fe = 66.7%, W = 12%, Be
1%, Co=20%, C=0.3%) The raw materials used were iron and tungsten of the same purity as in Example 1, and beryllium, cobalt, and carbon of 99.8% purity. The method of manufacturing the sample was the same as in Example 1. The samples were subjected to various heat treatments to obtain the properties shown in Table 5.

【表】 第1図には種々なタングステン量を含んだFe
−W系合金について1000℃で1時間加熱した後水
冷し、ついで加工率98%の冷間加工を施した線材
を、700℃の真空中で加熱した場合の保磁力HC、
残留磁束密度Brおよび角形率Br/B100が示して
ある。図に見えるようにタングステン量の増加と
共に保磁力HCは著るしく増大し、残留磁束密度
Brは暫次減少するが、角形率Br/B100はタング
ステン量に関係なく80%以上のすぐれた特性を示
す。しかしタングステン1%以下では保磁力HC
は2エルステツド以下となり、またタングステン
20%以上では加工が困難となる。 第2図はタングステン12.2%を含む合金につい
て同様に加工率98%の冷間加工を施した後、各温
度で加熱した場合の保磁力HC、残留磁束密度Br
および角形率Br/B100が示してある。図に見る
ように400℃以上の温度における加熱では角形率
が80%以上を示すが、400℃以下の温度の加熱で
は角形率が80%以下となり角形ヒステリシス磁性
合金として不適当である。この角形率が高温加熱
によつても80%以上を示すことは本発明合金の大
きな特長である。 第3図はFe−12.7%W−22.0%Co合金を種々の
高温度で1時間加熱した後水冷し、ついで加工率
98%の冷間加工を施した後750℃で加熱した本発
明の製造方法によつて得られた合金の磁気特性を
示す特性図である。図から明らかなように高温、
加熱後水冷による溶体化処理では、水冷開始温度
の広い範囲に亘つて保磁力、残留磁束密度および
角形率とも高く、すぐれた磁気特性を示してい
る。 第4図はFe−12.2%W合金にCr、Niあるいは
Coを添加し、同様に冷間加工と熱処理をした本
発明の製造方法によつて得られた合金の磁気特性
を示す特性図で、図から明らかなようにCr、Ni
あるいはCoを添加すると保磁力、角形率の何れ
も大きくなる。残留磁束密度はCo添加では増大
するが、Cr15%以上、Ni15%以上となると下る
ので好ましくない。またCo50%以上では加工が
困難となり好ましくない。 第5図は同じくFe−12.2%W合金にV、Moあ
るいはMnを添加し、同様に冷間加工と熱処理を
した本発明の製造方法によつて得られた合金の磁
気特性図を示す特性図で、図から明らかなように
V、Mo、Mnの何れかを添加すると保磁力、角
形率は大きくなるが、V10%以上、Mo10%以上、
Mn15%以上となると残留磁束密度が下るので好
ましくない。 第6図は同じくFe−12.2%W合金にTa、Cu、
Al、Ti、ZrあるいはSiを添加し、同様に冷間加
工と熱処理を施した本発明の製造方法によつて得
られた合金の磁気特性を示す特性図で、図から明
らかなようにFe−12.2%W合金にTa、Cu、Al、
Ti、Zr、Siの何れかを添加すると保磁力、角形
率は大きくなるが、Ta10%以上、Cu10%以上、
Al5%以上、Ti5%以上、Zr5%以上、Si5%以上
となると残留磁束密度が下るので好ましくなく、
またAl5%以上、Ti5%以上、Zr5%以上、Si5%
以上になると加工が困難となり好ましくない。 第7図は同じくFe−12.2%W合金にGe、Sn、
Sb、Be、C、CeあるいはNbを添加し、同様に
冷間加工と熱処理を施した本発明の製造方法によ
つて得られた合金の磁気特性を示す特性図で、図
から明らかなようにGe、Sn、Sb、Be、C、Ce
の何れかを添加すると保磁力、角形率は大きくな
るが、Sn5%以上、Sb5%以上、Be3%以上とな
ると残留磁束密度が下り、加工が困難となるので
好ましくなく、またGe5%以上、C1.5%以上、Ce
(希土類元素)2%以上になると加工が困難とな
り好ましくない。Nbを添加すると保磁力、残留
磁束密度が大きくなるが、Nb0.5%以上では加工
性を損うので好ましくない。 また、第8図、第9図、第10図および第11
図は、Fe−5%W合金にCr、Ni、Co、Mn、V、
Mo、Cu、Ti、Zr、Si、Al、Ge、Sn、Sb、Be、
Ce、Nb、TaあるいはCを添加し、同様に冷間加
工と熱処理を施した本発明の製造方法によつて得
られた合金の磁気特性を示す特性図である。これ
らの図から明らかなように、これらの元素を添加
すると保磁力、角形率の何れも大きくなる。残留
磁束密度はCo添加では増大し、その他元素添加
では減少するが、なお10キロガウス以上の大きな
値を示している。 さらに、第12図、第13図、第14図および
第15図は、Fe−17%合金にCr、Ni、Co、Mn、
V、Mo、Cu、Ti、Zr、Si、Al、Ge、Sn、Sb、
Be、Ce、Nb、TaあるいはCを添加し、同様に
冷間加工と熱処理を施した本発明の製造方法によ
つて得られた合金の磁気特性を示す特性図で、図
から明らかなように、これらの元素を添加すると
保磁力、角形率の何れも大きくなる。残留磁束密
度はCo添加では増大し、その他の元素添加では
減少するが、なお10キロガウス以上の大きな値を
示している。 さらに上記各実施例および第4表からわかるよ
うにFe−W系合金およびこれを主成分とし、副
成分としてV、Nb、Cr、Mo、Ta、Ni、Cu、
Co、Ti、Zr、Si、Al、Ge、Sn、Sb、Be、Mn、
希土類元素、およびCの1種または2種以上の合
計0.01〜60%を添加して得た本発明の製造方法に
よる合金は焼鈍あるいは溶体化処理後加工率50%
以上の冷間加工を施した後、400℃以上で加熱す
ることにより、保磁力が2エルステツド以上で、
残留磁束密度の大きな優れた角形ヒステリシス特
性を有する磁性合金が得られる。 また本発明の製造方法においては合金に加効率
50%以上の冷間加工を施し、400℃以上の加熱に
より角形特性を付与した後、合金をさらに加熱す
るかあるいはこれに冷間加工を施してもその角形
性が容易に劣化しない特長がある。したがつて本
発明の製造方法によつて得た合金はガラス封着を
必要とし、あるいは最終熱処理後さらに加工を必
要とする成品を製造する場合に有利である。 以上本発明の製造方法において合金の特性は加
効率50%以上の冷間加工を行つた後、400℃以上
の温度で加熱することにより得られることを述べ
たが、この冷間加工と加熱を繰り返し行つても、
良好な角形特性が得られることは当然である。 なお図面、実施例および第4表に掲げた合金に
は比較的純度の高い金属Nb、Cr、Mo、W、
Mn、V、Ti、Al、Si、希土類元素およびC等を
用いたが、これらの代りに経済的に有利な一般市
販のフエロあるいは母合金およびミツシユメタル
を用いても溶解の際脱酸、脱硫を充分に行えば、
これらの金属を用いる場合とほぼ同様な磁気特性
と加工性が得られる。 上記のように本発明の製造法によれば、所定の
合金を焼鈍あるいは溶体化処理後冷間加工を施し
さらに400℃以上で加熱することにより、角形特
性がすぐれ保磁力も大きい合金が得られる。
[Table] Figure 1 shows Fe containing various amounts of tungsten.
- Coercive force HC when a W-based alloy is heated at 1000°C for 1 hour, water-cooled, and then cold-worked at a processing rate of 98% and heated in a vacuum at 700°C,
The residual magnetic flux density Br and the squareness Br/B 100 are shown. As shown in the figure, as the amount of tungsten increases, the coercive force HC increases significantly, and the residual magnetic flux density
Although Br gradually decreases, the squareness ratio Br/B 100 shows excellent properties of 80% or more regardless of the amount of tungsten. However, if tungsten is less than 1%, the coercive force HC
is less than 2 oersted, and tungsten
If it exceeds 20%, processing becomes difficult. Figure 2 shows the coercive force HC and residual magnetic flux density Br when an alloy containing 12.2% tungsten was similarly cold worked at a processing rate of 98% and then heated at various temperatures.
and the squareness ratio Br/B 100 are shown. As shown in the figure, when heated at a temperature of 400°C or higher, the squareness ratio is 80% or more, but when heated at a temperature of 400°C or lower, the squareness ratio becomes less than 80%, making it unsuitable as a square hysteresis magnetic alloy. It is a major feature of the alloy of the present invention that this squareness ratio remains 80% or more even when heated at high temperatures. Figure 3 shows Fe-12.7%W-22.0%Co alloys heated at various high temperatures for 1 hour, cooled with water, and then processed at various processing rates.
FIG. 2 is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention, which was subjected to 98% cold working and then heated at 750°C. As is clear from the figure, the high temperature
In solution treatment by water cooling after heating, the coercive force, residual magnetic flux density, and squareness are all high over a wide range of water cooling start temperatures, showing excellent magnetic properties. Figure 4 shows Fe-12.2%W alloy with Cr, Ni or
This is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention in which Co is added and similarly cold worked and heat treated.
Alternatively, when Co is added, both the coercive force and the squareness increase. The residual magnetic flux density increases when Co is added, but it decreases when Cr is 15% or more and Ni is 15% or more, which is not preferable. Moreover, if Co exceeds 50%, processing becomes difficult, which is not preferable. Figure 5 is a characteristic diagram showing the magnetic characteristics of an alloy obtained by the manufacturing method of the present invention in which V, Mo, or Mn is added to the Fe-12.2% W alloy and similarly cold-worked and heat-treated. As is clear from the figure, coercive force and squareness increase when any of V, Mo, or Mn is added, but V10% or more, Mo10% or more,
If Mn exceeds 15%, the residual magnetic flux density decreases, which is not preferable. Figure 6 shows Ta, Cu, and Fe-12.2%W alloy.
This is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention in which Al, Ti, Zr, or Si is added and similarly subjected to cold working and heat treatment. 12.2% W alloy with Ta, Cu, Al,
Coercive force and squareness will increase if any of Ti, Zr, or Si is added, but if Ta is 10% or more, Cu is 10% or more,
If Al is 5% or more, Ti is 5% or more, Zr is 5% or more, or Si is 5% or more, the residual magnetic flux density decreases and is not desirable.
Also, Al5% or more, Ti5% or more, Zr5% or more, Si5%
If it is more than that, it becomes difficult to process, which is not preferable. Figure 7 shows the Fe-12.2%W alloy with Ge, Sn,
This is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention in which Sb, Be, C, Ce, or Nb is added and similarly subjected to cold working and heat treatment. Ge, Sn, Sb, Be, C, Ce
If any of these is added, the coercive force and squareness will increase, but if it is more than 5% Sn, 5% Sb, or 3% Be, the residual magnetic flux density will decrease and processing will become difficult, which is not preferable. .5% or more, Ce
(Rare earth element) If it exceeds 2%, processing becomes difficult, which is not preferable. Adding Nb increases coercive force and residual magnetic flux density, but Nb of 0.5% or more impairs workability, which is not preferable. Also, Figures 8, 9, 10 and 11
The figure shows Fe-5%W alloy with Cr, Ni, Co, Mn, V,
Mo, Cu, Ti, Zr, Si, Al, Ge, Sn, Sb, Be,
FIG. 2 is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention in which Ce, Nb, Ta, or C is added and similarly subjected to cold working and heat treatment. As is clear from these figures, the addition of these elements increases both the coercive force and the squareness. Although the residual magnetic flux density increases with the addition of Co and decreases with the addition of other elements, it still shows a large value of 10 kilogauss or more. Furthermore, Fig. 12, Fig. 13, Fig. 14, and Fig. 15 show that Cr, Ni, Co, Mn,
V, Mo, Cu, Ti, Zr, Si, Al, Ge, Sn, Sb,
This is a characteristic diagram showing the magnetic properties of an alloy obtained by the manufacturing method of the present invention in which Be, Ce, Nb, Ta or C is added and similarly subjected to cold working and heat treatment. When these elements are added, both the coercive force and the squareness increase. Although the residual magnetic flux density increases with the addition of Co and decreases with the addition of other elements, it still shows a large value of 10 kilogauss or more. Furthermore, as can be seen from the above examples and Table 4, Fe-W alloys and Fe-W alloys containing this as the main component, V, Nb, Cr, Mo, Ta, Ni, Cu,
Co, Ti, Zr, Si, Al, Ge, Sn, Sb, Be, Mn,
The alloy produced by the manufacturing method of the present invention obtained by adding a total of 0.01 to 60% of one or more of rare earth elements and C has a processing rate of 50% after annealing or solution treatment.
After the above cold working, by heating at 400℃ or higher, the coercive force becomes 2 oersted or higher.
A magnetic alloy having a large residual magnetic flux density and excellent square hysteresis characteristics can be obtained. In addition, in the manufacturing method of the present invention, the alloy is given a
It has the feature that the squareness does not deteriorate easily even if the alloy is further heated or cold worked after it has been cold-worked by 50% or more and given squareness by heating to 400℃ or higher. . Therefore, the alloy obtained by the production method of the present invention is advantageous in producing products that require glass sealing or further processing after final heat treatment. As mentioned above, in the manufacturing method of the present invention, the properties of the alloy can be obtained by performing cold working with a loading rate of 50% or more and then heating at a temperature of 400°C or higher. Even if I go over and over again,
Naturally, good squareness characteristics can be obtained. The alloys listed in the drawings, examples, and Table 4 include relatively pure metals Nb, Cr, Mo, W,
Mn, V, Ti, Al, Si, rare earth elements, C, etc. were used, but it is also possible to use economically advantageous general commercially available ferro or master alloys and Mitsushi metal instead of these materials without deoxidizing and desulfurizing during melting. If you do it enough,
Almost the same magnetic properties and workability as when using these metals can be obtained. As described above, according to the manufacturing method of the present invention, by annealing or solution treatment of a given alloy, cold working it, and then heating it at 400°C or higher, an alloy with excellent squareness characteristics and a large coercive force can be obtained. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−W系合金を1000℃で1時間加熱
後冷水し、ついで加工率98%の冷間加工を施した
後、700℃で加熱した場合の磁気特性を示す曲線
図、第2図はタングステン12.2%を含むFe−W系
合金に同様に加工率98%の冷間加工を施した後、
種々の温度で加熱した場合の磁気特性を示す曲線
図、第3図はFe−12.7%W−22.0%Co合金を種々
の高温度で1時間加熱後水冷し、ついで加工率98
%の冷間加工を施した後750℃で加熱した場合の
磁気特性を示す曲線図、第4図はFe−12.2%W合
金にCr、NiあるいはCoを添加し、同様に冷間加
工と熱処理を施した場合の磁気特性を示す曲線
図、第5図は同じくFe−12.2%W合金にV、Mo
あるいはMnを添加し、同様に冷間加工と熱処理
を施した場合の磁気特性を示す曲線図、第6図は
同じくFe−12.2%W合金にTa、Cu、Al、Ti、Zr
あるいはSiを添加し、同様に冷間加工と熱処理を
施した場合の磁気特性を示す曲線図、第7図は
Fe−12.2%W合金にGe、Sn、Sb、Be、C、Ceあ
るいはNbを添加し、同様に冷間加工と熱処理を
施した場合の磁気特性を示す曲線図、第8図は
Fe5%W合金にCr、Ni、CoあるいはMnを添加
し、同様に冷間加工と熱処理を施した場合の磁気
特性を示す曲線図、第9図はFe−5%W合金に
V、Mo、Cu、Ti、ZrあるいはSiを添加し、同様
に冷間加工と熱処理を施した場合の磁気特性を示
す曲線図、第10図はFe5%W合金にAl、Ge、
Sn、Sb、BeあるいはCeを添加し、同様に冷間加
工と熱処理を施した場合の磁気特性を示す曲線
図、第11図はFe−5%W合金にNb、Taあるい
はCを添加し、同様に冷間加工と熱処理を施した
場合の磁気特性を示す曲線図、第12図はFe17
%W合金にCr、Ni、CoあるいはMnを添加し、
同様に冷間加工と熱処理を施した場合の磁気特性
を示す曲線図、第13図はFe17%W合金にV、
Mo、Cu、Ti、ZrあるいはSiを添加し、同様に冷
間加工と熱処理を施した場合の磁気特性を示す曲
線図、第14図はFe−17%W合金にAl、Ge、
Sn、Sb、BeあるいはCeを添加し、同様に冷間加
工と熱処理を施した場合の磁気特性を示す曲線
図、第15図はFe−17%W合金にNb、Taあるい
はCを添加し、同様に冷間加工と熱処理を施した
場合の磁気特性を示す曲線図である。
Figure 1 is a curve diagram showing the magnetic properties when Fe-W alloy is heated at 1000℃ for 1 hour, cooled, then cold worked at a working rate of 98%, and then heated at 700℃. The figure shows a Fe-W alloy containing 12.2% tungsten after being cold-worked at a processing rate of 98%.
Curve diagrams showing magnetic properties when heated at various temperatures. Figure 3 shows Fe-12.7%W-22.0%Co alloys heated at various high temperatures for 1 hour, water-cooled, and then processed at a processing rate of 98.
% cold working and then heating at 750°C. Figure 4 shows the magnetic properties when Cr, Ni or Co is added to the Fe-12.2% W alloy and cold worked and heat treated in the same way. Figure 5 is a curve diagram showing the magnetic properties when V and Mo are applied to the Fe-12.2%W alloy.
Alternatively, a curve diagram showing the magnetic properties when Mn is added and similarly subjected to cold working and heat treatment. Figure 6 shows the same Fe-12.2% W alloy with Ta, Cu, Al, Ti,
Alternatively, Figure 7 is a curve diagram showing the magnetic properties when Si is added and similarly subjected to cold working and heat treatment.
Figure 8 is a curve diagram showing the magnetic properties when Ge, Sn, Sb, Be, C, Ce, or Nb is added to Fe-12.2% W alloy and similarly subjected to cold working and heat treatment.
A curve diagram showing the magnetic properties when Cr, Ni, Co, or Mn is added to Fe5%W alloy and similarly subjected to cold working and heat treatment. Figure 9 shows the magnetic properties of Fe-5%W alloy with V, Mo, A curve diagram showing the magnetic properties when Cu, Ti, Zr or Si is added and subjected to cold working and heat treatment in the same way.
A curve diagram showing the magnetic properties when Sn, Sb, Be or Ce is added and similarly cold worked and heat treated. Similarly, a curve diagram showing the magnetic properties when subjected to cold working and heat treatment, Figure 12 is Fe17
%W alloy by adding Cr, Ni, Co or Mn,
Similarly, a curve diagram showing the magnetic properties when subjected to cold working and heat treatment, Figure 13 shows V,
A curve diagram showing the magnetic properties when Mo, Cu, Ti, Zr or Si is added and subjected to cold working and heat treatment in the same way.
A curve diagram showing the magnetic properties when Sn, Sb, Be or Ce is added and similarly cold worked and heat treated. It is a curve diagram showing magnetic properties when cold working and heat treatment are similarly performed.

Claims (1)

【特許請求の範囲】 1 重量比にてタングステン1〜20%および残部
鉄と、少量の不純物とからなる合金を焼鈍あるい
は溶体化処理後加工率50%以上の冷間加工を施
し、さらにこれを400℃以上で加熱することによ
り2エルステツド以上の保磁力を発揮せしめるこ
とを特徴とする角形ヒステリシス磁性合金の製造
方法。 2 重量比にてタングステン1〜20%および残部
鉄を主成分とし、副成分としてバナジウム10%以
下、ニオブ0.5%未満、クロム15%以下、モリブ
デン10%以下、タンタル0.5%未満、ニツケル15
%以下、銅10%以下、コバルト50%以下、チタン
5%以下、ジルコニウム5%以下、珪素5%以
下、アルミニウム5%以下、ゲルマニウム5%以
下、錫5%以下、アンチモン5%以下、ベリリウ
ム3%以下、マンガン15%以下、希土類元素2%
以下、および炭素1.5%以下の1種または2種以
上の合計0.01〜60%と、少量の不純物とからなる
合金を焼鈍あるいは溶体化処理後加工率50%以上
の冷間加工を施し、さらにこれを400℃以上で加
熱することにより2エルステツド以上の保磁力を
発揮せしめることを特徴とする角形ヒステリシス
磁性合金の製造方法。
[Claims] 1 An alloy consisting of 1 to 20% tungsten by weight, the balance iron, and a small amount of impurities is annealed or solution treated, then cold worked at a working rate of 50% or more, and then A method for producing a rectangular hysteresis magnetic alloy, which exhibits a coercive force of 2 oersted or more by heating at 400°C or more. 2 The main components are 1 to 20% tungsten and the balance iron by weight, and the subcomponents are less than 10% vanadium, less than 0.5% niobium, less than 15% chromium, less than 10% molybdenum, less than 0.5% tantalum, and nickel 15.
% or less, Copper 10% or less, Cobalt 50% or less, Titanium 5% or less, Zirconium 5% or less, Silicon 5% or less, Aluminum 5% or less, Germanium 5% or less, Tin 5% or less, Antimony 5% or less, Beryllium 3 % or less, manganese 15% or less, rare earth elements 2%
An alloy consisting of the following and carbon 1.5% or less, a total of 0.01 to 60% of one or more types, and a small amount of impurities, is annealed or solution treated, then cold worked at a processing rate of 50% or more, and then 1. A method for producing a rectangular hysteresis magnetic alloy, which exhibits a coercive force of 2 oersted or more by heating it at 400°C or more.
JP58051567A 1983-03-29 1983-03-29 Preparation of square hysteresis magnetic alloy Granted JPS58193320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051567A JPS58193320A (en) 1983-03-29 1983-03-29 Preparation of square hysteresis magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051567A JPS58193320A (en) 1983-03-29 1983-03-29 Preparation of square hysteresis magnetic alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52023742A Division JPS5924177B2 (en) 1977-03-07 1977-03-07 Square hysteresis magnetic alloy

Publications (2)

Publication Number Publication Date
JPS58193320A JPS58193320A (en) 1983-11-11
JPH0153332B2 true JPH0153332B2 (en) 1989-11-14

Family

ID=12890542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051567A Granted JPS58193320A (en) 1983-03-29 1983-03-29 Preparation of square hysteresis magnetic alloy

Country Status (1)

Country Link
JP (1) JPS58193320A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323818A (en) * 1976-08-18 1978-03-04 Hitachi Ltd Production of rotor material for high speed hysteresis motors

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323818A (en) * 1976-08-18 1978-03-04 Hitachi Ltd Production of rotor material for high speed hysteresis motors

Also Published As

Publication number Publication date
JPS58193320A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
US3954519A (en) Iron-chromium-cobalt spinodal decomposition-type magnetic alloy comprising niobium and/or tantalum
US4171978A (en) Iron/chromium/cobalt-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
WO2006094251A2 (en) Magnetostrictive fega alloys
JPS586778B2 (en) Anisotropic permanent magnet alloy and its manufacturing method
US4059462A (en) Niobium-iron rectangular hysteresis magnetic alloy
JPH0158261B2 (en)
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
JPS5924177B2 (en) Square hysteresis magnetic alloy
US3983916A (en) Process for producing semi-hard co-nb-fl magnetic materials
JPH03219037A (en) Ni base shape memory alloy and its manufacture
JPS6312936B2 (en)
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
US4082579A (en) Rectangular hysteresis magnetic alloy
US3166408A (en) Magnetic alloys
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JP2674137B2 (en) High permeability magnetic material
JPH0153332B2 (en)
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH0517819A (en) Production of soft-magnetic alloy having fine crystal
JPS6218619B2 (en)
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch
JPS6365052A (en) Soft magnetic alloy for reed chip, its production and reed switch
JPS6057686B2 (en) Permanent magnetic ribbon and its manufacturing method