JPS60171703A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS60171703A
JPS60171703A JP59028338A JP2833884A JPS60171703A JP S60171703 A JPS60171703 A JP S60171703A JP 59028338 A JP59028338 A JP 59028338A JP 2833884 A JP2833884 A JP 2833884A JP S60171703 A JPS60171703 A JP S60171703A
Authority
JP
Japan
Prior art keywords
aging
rare earth
sintering
temperature
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59028338A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Hiroshi Kogure
小暮 浩
Noriaki Meguro
目黒 訓昭
Shigeo Tanigawa
茂穂 谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP59028338A priority Critical patent/JPS60171703A/en
Publication of JPS60171703A publication Critical patent/JPS60171703A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To increase the coercive force of intermetallic compound permanent magnet material consisting of rare earth metal and Fe, by adding B. CONSTITUTION:In the manufacturing process of a rare earth magnet metal which is melted of an alloy having compositions of R(Fe1-x-yCoxBy)A (R: a combination of one or more kinds of rare earth elements, 0<=x<=0.3, 0.02<=B<= 0.15, 4<=A<=8, but Mn or Ni is possible to be substituted for a part of Fe and Si or Ge is possible to be substituted for a part of B), and then ground, molded in magnetic field, sintered and heat-treated. The process is commenced to heat- treatment at the temperature area 50-100 deg.C lower than the sintering temperature and is aged by being cooled in sequential multi steps or continuously to a lower temperature. After the aging, it is rapidly cooled at the temperature area of 400-600 deg.C to increase a coercive force of the R-Fe-B alloy and to reduce its irregularity.

Description

【発明の詳細な説明】 本発明は主に希土類金R(以下Rと略記する。)とFe
からなる金属間化合物永久磁石材料の製造法に関するも
のである。特にB添加によって改良されたR−Fe −
B系永久磁石材料の製造法に関するものである。
Detailed Description of the Invention The present invention mainly focuses on rare earth metals R (hereinafter abbreviated as R) and Fe.
The present invention relates to a method for producing an intermetallic compound permanent magnet material comprising: In particular, R-Fe − improved by B addition
The present invention relates to a method for manufacturing B-based permanent magnet materials.

すでに知られているように、R−Fe合金、例えばR2
F epyはR−Go合金よりも高い飽和磁化を有し、
高価なGoを含有せず、永久磁石材料として高いポテン
シャルを有する永久磁石材料である。しかしながら、永
久磁石材料として必要な工HCが得られず、長い間装置
されたままであツた。近年、液体急冷技術の進歩にとも
ない、R−Fe合金に本方法を利用し、高い保磁力を得
ることに成功している。(例えば、J、 J、 Cro
at。
As already known, R-Fe alloys, e.g. R2
Fepy has higher saturation magnetization than R-Go alloy,
It is a permanent magnet material that does not contain expensive Go and has high potential as a permanent magnet material. However, the required HC as a permanent magnet material could not be obtained, and the device remained in use for a long time. In recent years, with the progress of liquid quenching technology, this method has been successfully applied to R-Fe alloys to obtain high coercive force. (For example, J, J, Cro
at.

Journal of Applied Physic
s 52(3)March 1981.2509“M 
aon8tic P rol)flrtiesor a
+e+t−5pun pr −Fe alloys”)
さらに、N、、 G、 K、oonらはBを微量添加し
たR−Fe−8合金を超急冷し、600〜800℃kT
IL″i効結晶化させることにより高保磁力を実現して
いる。(N、 C,Koon et al Appl、
PhysLetter39(10)15(1981) 
840 ”MagneticProperties 0
fAIOrllhOIjS and crystai+
zedF eo、sz F1a、Ig >、、9T b
o、os L ao、佑”、特開昭58−123853
号公報)しかしながら上記作製法においては結晶質と非
晶質の混合状態が必要であり、得られる材料の形態は一
般に粉末ないし薄帯に限定される。
Journal of Applied Physics
s 52(3) March 1981.2509 “M
aon8tic Prol) flrtiesor a
+e+t-5pun pr -Fe alloys")
Furthermore, N, G, K, oon et al.
A high coercive force is achieved by crystallizing the IL″i effect. (N, C, Koon et al Appl,
Phys Letter 39 (10) 15 (1981)
840 ”MagneticProperties 0
fAIOrllhOIjS and crystal+
zedF eo, sz F1a, Ig >, 9T b
o, os L ao, Yu”, JP-A-58-123853
However, the above production method requires a mixed state of crystalline and amorphous materials, and the form of the obtained material is generally limited to powder or ribbon.

したがって、永久磁石材料として利用する際には圧縮成
形等によってバルク化をはかってやる必要がある。又、
超急冷による粉末は等方性で角型が悪く着磁が困雌で実
用の際問題が多い。
Therefore, when using it as a permanent magnet material, it is necessary to bulk it by compression molding or the like. or,
Powder produced by ultra-quenching is isotropic, has a poor square shape, and is difficult to magnetize, causing many problems in practical use.

一方、併用らは結晶質のNd −Fe −Bを用い磁場
中成形、焼結を用い異方性化をはかり高特性を得た。(
第29回3MConf、1983 booklet P
 110、3essionE B、 E B −1”N
ew Materialfor permanent 
Magnets on a base of N da
nd Fe ” )得られた磁気特性は、35〜40〜
I G Osで希土類磁石の中では最も高い。しかしな
がら水系磁石のキュIJ、一点は300℃前俊であり、
熱安定性に問題があった。すなわち、水系磁石を加熱し
た場合、熱によって磁化の反転が生じ、減磁しやすい傾
向を持つ。本欠点を改良するためには工H(。
On the other hand, in the combination, crystalline Nd-Fe-B was used, and high properties were obtained by molding and sintering in a magnetic field to obtain anisotropy. (
29th 3MConf, 1983 booklet P
110, 3essionE B, E B -1”N
ew Material for permanent
Magnets on a base of N da
nd Fe”) The obtained magnetic properties are 35~40~
IG Os is the highest among rare earth magnets. However, the water-based magnet Kyu IJ, one point is 300℃ Maetoshi,
There was a problem with thermal stability. That is, when a water-based magnet is heated, the heat causes a reversal of magnetization, which tends to cause demagnetization. In order to improve this drawback, it is necessary to

の増加をはかるのが1つの方法である。すでに知られて
いる熱処理法は焼結後600℃近傍で加熱するというも
のである。(第29回3MConf、発表)しかしなが
ら、本然処理方法では得られる。l−I Cにも限界が
あり、熱処理による。1−I Cのバラツキも多かった
One method is to increase the A known heat treatment method involves heating at around 600° C. after sintering. (Presentation at the 29th 3MConf) However, it can be obtained with the original processing method. L-IC also has a limit, which depends on heat treatment. There were also many variations in 1-IC.

本発明はこれらR−Fe −B合金の>HC向上。The present invention improves >HC of these R-Fe-B alloys.

工l−1,0のバラツキの低減を目的になされたもので
、熱処理を焼結温度から50〜100℃低い温度範囲か
ら始め、低温側へ順次多段ないし連続冷却で時効を加え
、400〜600℃の温度範囲で時効終了後急冷するこ
とにより上記目的を達成したものである。
This was done with the purpose of reducing the variation in the sintering temperature, starting at a temperature range of 50 to 100 degrees Celsius lower than the sintering temperature, and then aging to a temperature range of 400 to 600 degrees Celsius through multi-stage or continuous cooling. The above object was achieved by rapidly cooling the material after aging in the temperature range of .degree.

本発明の熱処理は高温側から多段時効ないし連続冷却に
よって行われる。時効開始温度は焼結温度から50〜1
00℃低い温度領域が選ばれる。焼結温度と時効開始温
度の差が50℃以下の場合は時効による加熱によって結
晶成長が生じ、zHoの低干が見られ好ましくない。(
時効開始温度は焼結温度よりも低い。〉焼結温度と時効
開始温度の差が100℃以上の場合は、高工He、を得
るための初期状態が得られない。時効終了彎の急冷開始
温度は400〜600℃が選ばれる。急冷開始温度が4
00℃以下の場合急冷効果が得られず、600℃以上の
場合は高い>HCが得られない。
The heat treatment of the present invention is performed by multi-stage aging or continuous cooling from the high temperature side. The aging start temperature is 50 to 1 from the sintering temperature.
A temperature range lower than 0.0°C is selected. If the difference between the sintering temperature and the aging start temperature is 50° C. or less, crystal growth will occur due to heating due to aging, which is undesirable because low drying of zHo will be observed. (
The aging start temperature is lower than the sintering temperature. > If the difference between the sintering temperature and the aging start temperature is 100° C. or more, the initial state for obtaining high-quality He cannot be obtained. The quenching start temperature at the end of aging is selected to be 400 to 600°C. Rapid cooling start temperature is 4
If the temperature is 00°C or lower, no quenching effect can be obtained, and if the temperature is 600°C or higher, a high >HC cannot be obtained.

本発明の適用できる永久磁石は一般に溶解によるインゴ
ット作成、粉砕、磁界中成形、焼結、熱処理の工程によ
って製造される。溶解は通常の方法で、Ar中ないし真
空中で行う。Bはフェロボロンを用いることも可能であ
る。′t!A砕は粗粉砕と微粉砕に工程的にはわかれる
が、粗粉砕はスタンプミル、ジョークラッシセ、ブラウ
ンミル、ディスクミルで、又微粉砕はジェットミル、振
動ミル。
Permanent magnets to which the present invention can be applied are generally manufactured by the steps of melting into an ingot, crushing, forming in a magnetic field, sintering, and heat treatment. The melting is carried out in a conventional manner in Ar or vacuum. It is also possible to use ferroboron for B. 't! Process-wise, A-grinding can be divided into coarse grinding and fine grinding. Coarse grinding involves stamp mills, jaw crushers, brown mills, and disc mills, while fine grinding uses jet mills and vibration mills.

ボールミル等で行われる。いずれも酸化を防ぐために非
酸化性雰囲気中で行うが、有m溶媒や不活性ガスが用い
られる。粉砕粒度は3〜5μs (F。
This is done using a ball mill, etc. Both are carried out in a non-oxidizing atmosphere to prevent oxidation, and a solvent or an inert gas is used. The grinding particle size is 3-5 μs (F.

S、S、S、)が望ましい。磁界中成形は配向度向上、
異方性化のために必要で、一般に縦磁場成形(加圧方向
と磁場印加方向が平行)および横磁場成形(加圧方向と
磁場印加方向が垂直)が用いられる。横磁場成形の方が
組繊S成形よりも配向度は優れている。焼結はAr 、
 He等の不活性ガス中又は真空中で行われる。さらに
はN2ガス中の焼結も可能である。焼結後の冷却は急冷
が望ましい。
S, S, S, ) is desirable. Molding in a magnetic field improves orientation,
This is necessary for anisotropy, and generally vertical magnetic field shaping (the direction of pressure and the direction of magnetic field application are parallel) and transverse magnetic field shaping (the direction of pressure and the direction of magnetic field application are perpendicular) are used. Transverse magnetic field molding has a better degree of orientation than fiber S molding. Sintering is Ar,
It is carried out in an inert gas such as He or in vacuum. Furthermore, sintering in N2 gas is also possible. Rapid cooling is preferable for cooling after sintering.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1 Nd (Feα’l B、1 )EtF、、なる組成を
有する合金をアーク溶解にて作製した。得られたインゴ
ットをスタンプミルおよびディスクミルで粗粉砕した。
Example 1 An alloy having a composition of Nd(Feα'l B,1)EtF was produced by arc melting. The obtained ingot was coarsely ground using a stamp mill and a disc mill.

粗粉砕粉をジェットミルを用いて微粉砕した。粉砕媒体
はN2ガスであり、粉砕粒度は3.4μ■(F、S、S
、S、)であった。得られた微粉砕粉な15kOeの磁
場中で横磁場成形した。成形圧力は2ton/ cm”
である。得られた成形体をAr雰囲気中で2段焼結した
。第1段は1080℃X1hr、第2段は1100℃×
1h「であり、焼結後A「気流中に急冷した。急冷後の
磁気特性は以下の通りであるB「〜12100G 、l−1c 〜88000s zHc 〜93’000e (B H) wax 〜34,5M GOe本磁石に1
000℃xlhr + 900℃×柚r + 800℃
xlhr + 700℃xlhr + 600℃X1h
r + 500℃×Ihrの多段時効を施し急冷したと
ころ、以下の磁気特性を得た。
The coarsely ground powder was finely ground using a jet mill. The grinding medium is N2 gas, and the grinding particle size is 3.4μ■ (F, S, S
,S,). The resulting finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 15 kOe. Molding pressure is 2ton/cm”
It is. The obtained compact was sintered in two stages in an Ar atmosphere. The first stage is 1080℃×1hr, the second stage is 1100℃×
1h", and after sintering A" was quenched in an air stream.The magnetic properties after quenching are as follows: 5M GOe book magnet 1
000℃xlhr + 900℃×Yuzur + 800℃
xlhr + 700℃xlhr + 600℃X1h
When it was subjected to multi-stage aging at r + 500°C x Ihr and rapidly cooled, the following magnetic properties were obtained.

Br−12150G BHc〜 9800〜 工HC〜142000a (B H) maX 〜35.6M G Oeなお、焼
結後の磁石に600℃X111rの時効を施し急冷した
場合味、以下の磁気特性を示した。
Br-12150G BHc ~ 9800 ~ Engineering HC ~ 142000a (B H) maX ~ 35.6M G Oe Note that when the sintered magnet was aged at 600°C x 111r and rapidly cooled, it exhibited the following magnetic properties.

Br 〜 12100G BHc 〜91000e jl:1」C〜119000e (BH)Ilax〜34.8MGOe 600℃×柚rの時効と比較して多段時効の方が高いp
HCを得るために効果があり、角型も改良され、高(B
 H) waxが得られる。
Br ~ 12100G BHc ~ 91000e jl: 1'' C ~ 119000e (BH) Ilax ~ 34.8MGOe Multi-stage aging has higher p than aging at 600℃ x Yuzuri
It is effective for obtaining HC, the square shape is also improved, and high (B
H) Wax is obtained.

実施例2 Pr (Fe0.9B、、)5 なる組成を有する合金
を実施例1と同様の方法で溶解、粉砕、磁界中成形。
Example 2 An alloy having the composition Pr (Fe0.9B,,)5 was melted, pulverized, and molded in a magnetic field in the same manner as in Example 1.

焼結した。本磁石に種々の時効を加えた結果を第1表に
示す。第1表中の時効の内容は第2表に示す。
Sintered. Table 1 shows the results of applying various types of aging to this magnet. The contents of the statute of limitations in Table 1 are shown in Table 2.

実施例3 N do、1) P r h4 (F eo、I Bo
、0iaS io、□J )5 なる組成を右する合金
を実施例1と同様に溶解、粉砕、磁場中成形し゛た。焼
結は1100℃X ihr + 1120℃X1hの2
段焼結を行い、Ar気流中に急冷した。急冷後GOO℃
×柚rの時効を施したところ、以下の磁気特性を得た。
Example 3 N do, 1) P r h4 (F eo, I Bo
, 0iaS io, □J)5 was melted, crushed, and molded in a magnetic field in the same manner as in Example 1. Sintering is 1100℃ x ihr + 1120℃ x 1h 2
Stage sintering was performed and quenching was performed in an Ar stream. GOO℃ after quenching
When subjected to the aging of ×Yuzu, the following magnetic properties were obtained.

Br 〜 11700G pHC〜93000e シ1−IC〜 133000e ([3’ @ ) 1laX 〜33.5M G Os
であった。
Br ~ 11700G pHC ~ 93000e Si1-IC ~ 133000e ([3' @ ) 1laX ~33.5M G Os
Met.

さらに1000℃X1br保持後1.3℃/1nで60
0℃まで連続冷却し、1時間保持後Ar気流中に急冷し
た。得られた磁気特性は、 Br 〜11720G BHC〜95000e 工HC〜17200o11 (31−1) wax ”−33,8MGOeであった
Further, after holding at 1000℃X1br, 60 at 1.3℃/1n
It was continuously cooled to 0° C., kept for 1 hour, and then rapidly cooled in an Ar gas flow. The obtained magnetic properties were: Br~11720G BHC~95000e Engineering HC~17200o11 (31-1) wax''-33,8MGOe.

実施例4 N d (F e(1,6COo、t B6.1)64
なる合金を実施例1と同様の方法で溶解、粉砕、磁場中
成形、焼結した。焼結後600℃xlhrの時効を加え
た結果、以下の磁気特性を得た。
Example 4 N d (F e (1,6 COo, t B6.1) 64
The alloy was melted, crushed, formed in a magnetic field, and sintered in the same manner as in Example 1. As a result of aging at 600°C x lhr after sintering, the following magnetic properties were obtained.

B「〜10750G βHa〜 8700へ >HC〜99000e (B l−1) e+ax 〜27.IM G Osさ
らに1000℃から多段時効を行った。すなわち、10
00℃x1hr + 900℃×柚r + 800℃X
1hr+700℃x1hr +600℃xlhr +5
00℃x 1hrの時効I支A r中に急冷した。得ら
れた磁気特性は、Br 〜10820G fJHC〜9300oe 工1−IC〜138000e (B H) lax 〜28.IM GOeであった。
B'~10750G βHa~ To 8700 > HC~99000e (B l-1) e+ax ~27. IM G Os Further, multi-stage aging was performed from 1000°C. That is, 10
00°C x 1hr + 900°C x Yur + 800°C
1hr+700℃x1hr +600℃xlhr +5
The sample was rapidly cooled during aging at 00° C. for 1 hr. The obtained magnetic properties are: Br ~10820G fJHC ~9300oe Engineering 1-IC ~138000e (B H) lax ~28. It was IM GOe.

Claims (1)

【特許請求の範囲】 R(Fe、−、−ンCo、By )A (ここでR:希
土類元素の1種又は21!以上の組合せ、0≦X≦0.
3゜0.02≦B≦0.15.4≦A≦8、ただしFe
の1部をMn、Niで、又Bの1部をSi、Geで置換
可能である。)なる組成を有する合金を溶解。 粉砕、磁場中成形、焼結、熱処理を施す希土類磁石の製
造法において、熱処理を焼結湿度から50〜100℃低
い温度領域から始め、低温側へ順次多段ないし連続冷却
により時効を加え、400〜600℃の温度範囲で時効
終了後急冷することを特徴とする永久磁石の製造方法。
[Claims] R(Fe, -, Co, By)A (where R: one kind of rare earth element or a combination of 21! or more, 0≦X≦0.
3゜0.02≦B≦0.15.4≦A≦8, but Fe
A part of B can be replaced with Mn or Ni, and a part of B can be replaced with Si or Ge. ) is melted. In the manufacturing method of rare earth magnets, which involves crushing, forming in a magnetic field, sintering, and heat treatment, heat treatment is started at a temperature range of 50 to 100 degrees Celsius lower than the sintering humidity, and then aging is applied by multi-stage or continuous cooling in order to lower temperatures, and the temperature range is 400 to 400 degrees Celsius. A method for producing a permanent magnet, characterized by rapid cooling after aging in a temperature range of 600°C.
JP59028338A 1984-02-17 1984-02-17 Manufacture of permanent magnet Pending JPS60171703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59028338A JPS60171703A (en) 1984-02-17 1984-02-17 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59028338A JPS60171703A (en) 1984-02-17 1984-02-17 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS60171703A true JPS60171703A (en) 1985-09-05

Family

ID=12245816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59028338A Pending JPS60171703A (en) 1984-02-17 1984-02-17 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS60171703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS6342102A (en) * 1986-08-07 1988-02-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPS6342102A (en) * 1986-08-07 1988-02-23 Tohoku Metal Ind Ltd Manufacture of sintered rare-earth magnet

Similar Documents

Publication Publication Date Title
JPH0216368B2 (en)
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
JPS60204862A (en) Rare earth element-iron type permanent magnet alloy
JPS60171703A (en) Manufacture of permanent magnet
JPH0680608B2 (en) Rare earth magnet manufacturing method
JP2002075715A (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
KR900006533B1 (en) Anisotropic magnetic materials and magnets made with it and making method for it
JP2966169B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JP3090401B2 (en) Manufacturing method of rare earth sintered magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPS62116756A (en) Permanent magnet alloy
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2642619B2 (en) Manufacturing method of permanent magnet
JPS60165702A (en) Manufacture of permanent magnet
JP3238779B2 (en) Rare earth magnet alloy powder and its manufacturing method
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JPS62208609A (en) Resin-bonded permanent magnet and manufacture of its magnetic powder
JPS63285909A (en) Permanent magnet and manufacture thereof
JP2966168B2 (en) Rare earth magnet, alloy powder for rare earth magnet and method for producing the same
JPS63216307A (en) Alloy powder for magnet
JPH1041114A (en) Manufacture of powder for high molecular composite type rare earth magnet
JPS63312915A (en) Production of permanent magnet
JPS63211705A (en) Anisotropic permanent magnet and manufacture thereof
JPH1088273A (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet and production of rare earth permanent magnet
JP3411659B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same