JP2002075715A - Anisotropic bulk exchange spring magnet and manufacturing method thereof - Google Patents

Anisotropic bulk exchange spring magnet and manufacturing method thereof

Info

Publication number
JP2002075715A
JP2002075715A JP2000265081A JP2000265081A JP2002075715A JP 2002075715 A JP2002075715 A JP 2002075715A JP 2000265081 A JP2000265081 A JP 2000265081A JP 2000265081 A JP2000265081 A JP 2000265081A JP 2002075715 A JP2002075715 A JP 2002075715A
Authority
JP
Japan
Prior art keywords
exchange spring
spring magnet
anisotropic bulk
magnetic field
bulk exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000265081A
Other languages
Japanese (ja)
Other versions
JP3622652B2 (en
Inventor
Hideaki Ono
野 秀 昭 小
Norihisa Waki
憲 尚 脇
Munekatsu Shimada
田 宗 勝 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000265081A priority Critical patent/JP3622652B2/en
Publication of JP2002075715A publication Critical patent/JP2002075715A/en
Application granted granted Critical
Publication of JP3622652B2 publication Critical patent/JP3622652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0579Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B with exchange spin coupling between hard and soft nanophases, e.g. nanocomposite spring magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Abstract

PROBLEM TO BE SOLVED: To provide an exchange spring magnet material which is high in density and whose crystal grains are anisotropic, and to provide a method of manufacturing the same. SOLUTION: An alloy which contains rare earth elements and which has not yet been hydrogenated is ground into raw material powder, and the material powder is compression-molded by a molding die as being oriented under a magnetic filed. In this state, the molded body is subjected to hydrogenation and dehydrogenation processing at a temperature of 700 deg.C or higher and then pressurized in a process in which temperature is made to drop, by which an anisotropic bulk exchange spring magnet provided with a soft and a hard phase can be obtained, where the axis of easy magnetization of the crystalline direction in the hard phase is lined up in one direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、モータ、磁界セン
サ、回転センサ、加速度センサ、トルクセンサなどに好
適に用いられる高出力磁石材料に係わり、とくに異方性
バルク交換スプリング磁石およびこのような磁石の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-power magnet material suitably used for a motor, a magnetic field sensor, a rotation sensor, an acceleration sensor, a torque sensor and the like, and more particularly to an anisotropic bulk exchange spring magnet and such a magnet. And a method for producing the same.

【0002】[0002]

【従来の技術】永久磁石材料としては、化学的に安定で
定コストなフェライト磁石や、高性能の希土類系磁石が
実用化されている。
2. Description of the Related Art As permanent magnet materials, ferrite magnets that are chemically stable and at a constant cost and rare earth magnets with high performance have been put to practical use.

【0003】これらの材料は、磁石化合物としてはほぼ
単一の化合物から構成されているが、近年、高保磁力の
永久磁石材料と、高磁束密度の軟磁性材料を複合化した
交換スプリング磁石が注目を集め、研究が進められてい
る。このような交換スプリング磁石は、高い最大エネル
ギ積が期待されており、理論的には100MGOe以上
の極めて高い磁石特性が可能とされている。
[0003] These materials are composed of almost a single compound as a magnet compound. In recent years, exchange spring magnets in which a permanent magnet material having a high coercive force and a soft magnetic material having a high magnetic flux density are combined have attracted attention. Are being researched. Such exchange spring magnets are expected to have a high maximum energy product, and theoretically have extremely high magnet properties of 100 MGOe or more.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、現在開
発されている交換スプリング磁石は、等方性磁石であ
り、得られる最大エネルギ積も20MGOe程度の低い
値に留まっている。
However, the exchange spring magnets currently being developed are isotropic magnets, and the maximum energy product obtained is as low as about 20 MGOe.

【0005】これは、交換スプリング磁石を構成する結
晶粒の方向が一方向に揃っていないことに起因して、特
性向上がなされないことが最大の原因と考えられ、交換
結合を示すような微細で且つ結晶方向が揃った異方性交
換スプリング磁石を実現するために多くの研究がなされ
ている。
[0005] This is considered to be mainly due to the fact that the directions of the crystal grains constituting the exchange spring magnet are not aligned in one direction. Many studies have been made to realize anisotropic exchange spring magnets having a uniform crystal direction.

【0006】[0006]

【発明の目的】本発明は、従来の交換スプリング磁石に
おける上記課題に着目してなされたものであって、高密
度で結晶粒が異方性である交換スプリング磁石材料と、
このような磁石材料の製造方法を提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in a conventional exchange spring magnet, and has an exchange spring magnet material having a high density and anisotropic crystal grains.
It is an object of the present invention to provide a method for manufacturing such a magnet material.

【0007】[0007]

【課題を解決するための手段】本発明の請求項1に係わ
る異方性バルク交換スプリング磁石は、ソフト相とハー
ド相を有する交換スプリング磁石であって、ハード相の
結晶方向の磁化容易軸が一方向に揃っている構成とした
ことを特徴としており、異方性バルク交換スプリング磁
石におけるこのような構成を前述した従来の課題を解決
するための手段としている。
The anisotropic bulk exchange spring magnet according to claim 1 of the present invention is an exchange spring magnet having a soft phase and a hard phase, wherein the hard phase has an easy axis of magnetization in the crystal direction. It is characterized in that it is arranged in one direction, and such an arrangement in an anisotropic bulk exchange spring magnet is a means for solving the above-mentioned conventional problems.

【0008】本発明に係わる異方性バルク交換スプリン
グ磁石実施の一形態として、請求項2に係わる交換スプ
リング磁石においては、結晶粒直径が50nm〜5μm
の範囲にあるものとすることができ、同じく実施形態と
して、請求項3に係わる交換スプリング磁石において
は、その元素配合比として希土類元素を2〜13原子
%、B(ほう素)を1〜25原子%含んでいるものとす
ることができ、請求項4に係わる交換スプリング磁石に
おいては、添加剤としてV、Zr、Ga、Nb、Cuか
らなる群から選ばれる1種類以上の元素を合計で0.0
1〜5原子%含んでいるものとすることができる。
In one embodiment of the anisotropic bulk exchange spring magnet according to the present invention, in the exchange spring magnet according to the second aspect, the crystal grain diameter is 50 nm to 5 μm.
As another embodiment, in the exchange spring magnet according to the third aspect, the element compounding ratio of the rare earth element is 2 to 13 atomic% and B (boron) is 1 to 25 atomic%. At least one element selected from the group consisting of V, Zr, Ga, Nb, and Cu as an additive may be included in the exchange spring magnet according to claim 4. .0
It may contain 1 to 5 atomic%.

【0009】半発明の請求項5に係わる異方性バルク交
換スプリング磁石の製造方法においては、希土類元素を
含み、水素反応させていない合金を粉砕して得られた原
料粉末を磁場中配向させながら型内で圧縮成形し、この
状態で700℃以上で水素化および脱水素処理を行い、
その後の降温過程で加圧する構成とし、交換スプリング
磁石の製造方法の実施形態として請求項6に係わる製造
方法においては、原料粉末を10kOe以上の磁場中で
配向させるようになすことができ、同じく交換スプリン
グ磁石製造の実施形態として請求項7に係わる製造方法
においては、降温過程において5K/min.以上の冷
却速度で降温するようになすことができる。さらに、請
求項8に係わる製造方法においては、降温過程において
型温が400℃以上の温度範囲のときに、3ton/c
2以上の加圧力で加圧することができ、請求項9に係
わる製造方法においては、降温過程において外部から磁
場を印加するようになすことができ、請求項10に係わ
る製造方法においては、そのときの磁場強度を5kOe
以上とすることができ、このような異方性バルク交換ス
プリング磁石の製造方法の構成を前述した従来の課題を
解決するための手段としたことを特徴としている。
In a method for manufacturing an anisotropic bulk exchange spring magnet according to claim 5 of the present invention, a raw material powder obtained by pulverizing an alloy containing a rare earth element and not undergoing a hydrogen reaction is oriented in a magnetic field. It is compression molded in a mold, and in this state, hydrogenation and dehydrogenation are performed at 700 ° C or higher.
In the manufacturing method according to claim 6, which is configured to pressurize in a subsequent temperature lowering process, and as an embodiment of the manufacturing method of the exchange spring magnet, the raw material powder can be oriented in a magnetic field of 10 kOe or more. In a manufacturing method according to claim 7 as an embodiment of manufacturing a spring magnet, in the temperature decreasing step, 5 K / min. The temperature can be lowered at the above cooling rate. Further, in the manufacturing method according to claim 8, when the mold temperature is in the temperature range of 400 ° C. or more in the temperature lowering process, 3 ton / c
m 2 or more can be pressurized with pressure, in the manufacturing method according to claim 9, can be made to apply a magnetic field from the outside in the cooling process, in the manufacturing method according to claim 10, the When the magnetic field strength is 5 kOe
The method of manufacturing such an anisotropic bulk exchange spring magnet is characterized in that it is a means for solving the above-mentioned conventional problems.

【0010】さらに、本発明の請求項11に係わる異方
性バルク交換スプリング磁石の製造装置は、原料粉末を
成形する型と、圧縮機構と、磁場印加機構と、加熱機構
と、水素供給機構と、真空排気機構とを併せ持つ構成と
したことを特徴としており、本発明の請求項12ないし
請求項16に係わるモータ、磁界センサ、回転センサ、
加速度センサおよびトルクセンサにおいては、いずれも
本発明に係わる上記異方性バルク交換スプリング磁石を
用いていることを特徴としている。
Further, according to an eleventh aspect of the present invention, there is provided an apparatus for manufacturing an anisotropic bulk exchange spring magnet, comprising a mold for molding a raw material powder, a compression mechanism, a magnetic field application mechanism, a heating mechanism, and a hydrogen supply mechanism. , A vacuum exhaust mechanism, and a motor, a magnetic field sensor, a rotation sensor, and a motor according to claims 12 to 16 of the present invention.
In each of the acceleration sensor and the torque sensor, the above-described anisotropic bulk exchange spring magnet according to the present invention is used.

【0011】[0011]

【発明の実施の形態】本発明に係わる異方性バルク交換
スプリング磁石は、請求項1に記載しているように、ソ
フト相とハード相を有し、ハード相の結晶方向の磁化容
易軸が一方向に揃ったものとなっており、このような磁
石材料は、希土類元素を含み、且つ水素反応させていな
い結晶質合金粉末を磁場中で配向させつつ加圧成形し、
これを700℃以上の温度で水素吸蔵、および脱水素処
理し、その後の降温過程で加圧することによって得られ
る。
BEST MODE FOR CARRYING OUT THE INVENTION An anisotropic bulk exchange spring magnet according to the present invention has a soft phase and a hard phase, and has an easy axis of magnetization in the crystal direction of the hard phase. It has been aligned in one direction, such a magnet material contains a rare earth element, and pressure molding while orienting in a magnetic field crystalline alloy powder not subjected to hydrogen reaction,
This is obtained by subjecting it to a hydrogen absorption and dehydrogenation treatment at a temperature of 700 ° C. or higher, and then pressurizing it during the temperature lowering process.

【0012】このような磁石材料において、ソフト相と
は磁石材料中の組成のうち、周囲の磁界の影響を受けて
磁力を帯びやすい相であり、ハード相とは磁石材料中の
組成のうち、周囲の磁界の影響を受けにくく、自身の磁
力を変化させにくい相であって、磁石性能に影響を及ぼ
すものである。このとき、従来は交換スプリング磁石を
構成する結晶粒の方向が一方向に揃っていないことに起
因して特性向上がなされなかったが、本発明に係わる交
換スプリング磁石においては、この結晶粒をハード相の
磁化容易軸一方向に揃えた磁石材料であることから、こ
れによって出力特性が顕著区向上することになる。さら
にこの結果として本発明に係わる磁石材料においては、
7.7g/cm3以上という従来得られなかった高密度
磁石材料が得られ、一層の性能向上が実現することにな
る。
In such a magnetic material, the soft phase is a phase of the composition in the magnetic material that tends to be magnetically affected by the surrounding magnetic field, and the hard phase is a phase in the composition of the magnetic material. This phase is hardly affected by the surrounding magnetic field and hardly changes its magnetic force, and has an effect on the magnet performance. At this time, the characteristics were not improved because the directions of the crystal grains constituting the exchange spring magnet were not aligned in one direction, but in the exchange spring magnet according to the present invention, the crystal grains were hardened. Since the magnet material is aligned in one direction of the easy axis of magnetization of the phase, the output characteristics are significantly improved. Furthermore, as a result, in the magnetic material according to the present invention,
A high density magnet material of 7.7 g / cm 3 or more, which has not been obtained conventionally, can be obtained, and further improvement in performance can be realized.

【0013】本発明の請求項2に係わる異方性バルク交
換スプリング磁石においては、その結晶粒径が50nm
〜5μmの範囲としたことにより、磁気特性が良好とな
る。すなわち、結晶粒径が50nmよりも小さいと結晶
粒界が増大して磁束密度が低下してしまい、反対に5μ
mを超えると交換結合が弱まって磁石特性が低下してし
まうことになる。
In the anisotropic bulk exchange spring magnet according to claim 2 of the present invention, the crystal grain size is 50 nm.
By setting the thickness in the range of 5 μm to 5 μm, the magnetic properties are improved. That is, if the crystal grain size is smaller than 50 nm, the crystal grain boundaries increase and the magnetic flux density decreases.
If it exceeds m, the exchange coupling will be weakened and the magnet properties will be degraded.

【0014】本発明の請求項3に係わる異方性バルク交
換スプリング磁石においては、希土類元素を2〜13原
子%、B(ほう素)を1〜25原子%の範囲で含んでい
ることから、磁気特性が向上する。なお、この範囲外で
はソフト相とハード相の構成比のバランスが崩れ、良好
な磁石特性が得られなくなってしまう。
The anisotropic bulk exchange spring magnet according to claim 3 of the present invention contains a rare earth element in the range of 2 to 13 atomic% and B (boron) in the range of 1 to 25 atomic%. Magnetic properties are improved. If the ratio is out of this range, the balance of the composition ratio between the soft phase and the hard phase is lost, and good magnet properties cannot be obtained.

【0015】また、本発明の請求項4に係わる異方性バ
ルク交換スプリング磁石においては、V、Zr、Ga、
Nb、Cuからなる群から選ばれる1種類以上の元素が
合計で0.01〜5原子%添加されているので、焼結時
の結晶粒成長が抑えられ、磁石特性が向上することにな
る。このとき、これらの添加量が0.05原子%に満た
ない場合には、添加剤としての効果が得られず、逆に5
原子%を超えた場合には、非磁性化合物増加による磁気
特性の劣化という不都合が生じる傾向がある。
In the anisotropic bulk exchange spring magnet according to claim 4 of the present invention, V, Zr, Ga,
Since one or more elements selected from the group consisting of Nb and Cu are added in a total amount of 0.01 to 5 atomic%, crystal grain growth during sintering is suppressed, and magnet properties are improved. At this time, if the amount of these additives is less than 0.05 atomic%, the effect as an additive cannot be obtained, and
When the content exceeds atomic%, there is a tendency that a disadvantage such as deterioration of magnetic properties due to an increase in the nonmagnetic compound occurs.

【0016】本発明に係わる異方性バルク交換スプリン
グ磁石の製造方法においては、請求項5に記載している
ように、希土類元素を含み、水素反応させていない合金
を粉砕して得られた原料粉末を磁場中配向させながら型
内で圧縮成形し、この状態で700℃以上で水素化およ
び脱水素処理を行い、その後の降温過程で加圧するよう
にしており、以上の工程によって得られた焼結体は、ハ
ード相とソフト相で構成され、ハード相の磁化容易軸が
一方向に揃い、高密度化された異方性バルク交換スプリ
ング磁石となる。
In the method for manufacturing an anisotropic bulk exchange spring magnet according to the present invention, as described in claim 5, a raw material obtained by pulverizing an alloy containing a rare earth element and not subject to a hydrogen reaction is obtained. The powder is compression-molded in a mold while being oriented in a magnetic field. In this state, hydrogenation and dehydrogenation are performed at 700 ° C. or higher, and pressure is applied during the subsequent temperature lowering process. The union is composed of a hard phase and a soft phase, and the easy axis of magnetization of the hard phase is aligned in one direction, resulting in a high-density anisotropic bulk exchange spring magnet.

【0017】このとき、原料粉末としては、例えば上記
のように、希土類元素含有量が2〜13原子%、B含有
量が1〜25原子%に調整された結晶質合金を5μm以
下程度の粒径に粉砕して得られた粉末を用いることがで
き、この原料粉末を金型に入れて磁場中配向させ、例え
ば1〜2ton/cm2程度の圧力で加圧して圧縮成形
体を得る。得られた成形体をこの状態、すなわち金型に
入れたままで、水素フロー中で700℃以上、例えば7
00〜900℃で1〜3時間保持して水素化処理を施し
た後、同程度の温度で減圧状態にして脱水素反応させ
る。そして、その後の降温時に、例えば3ton/cm
2以上の圧力で加圧する。
At this time, as the raw material powder, for example, as described above, a crystalline alloy having a rare earth element content adjusted to 2 to 13 atomic% and a B content adjusted to 1 to 25 atomic% has a particle size of about 5 μm or less. A powder obtained by pulverizing to a diameter can be used. This raw material powder is placed in a mold, oriented in a magnetic field, and pressed at a pressure of, for example, about 1 to 2 ton / cm 2 to obtain a compression molded body. The obtained molded body is kept in this state, that is, in a mold, in a hydrogen flow at 700 ° C. or more, for example, at 7 ° C.
After carrying out the hydrogenation treatment by holding at 00 to 900 ° C. for 1 to 3 hours, a dehydrogenation reaction is carried out under reduced pressure at the same temperature. Then, when the temperature is lowered, for example, 3 ton / cm
Pressurize with 2 or more pressure.

【0018】粉砕工程は、得られた異方性バルク交換ス
プリング磁石の結晶粒径を50nm〜5μmの範囲とす
るために必要であり、例えばハンマーなどの工具やボー
ルミルなどの装置による機械的外力によって粉砕するこ
とができるが、その方法については特に限定されない。
The pulverizing step is necessary to keep the crystal grain size of the obtained anisotropic bulk exchange spring magnet in the range of 50 nm to 5 μm, for example, by a mechanical external force generated by a tool such as a hammer or a device such as a ball mill. Pulverization can be performed, but the method is not particularly limited.

【0019】次いで、得られた粉末に磁場をかけること
によって、ハード相の結晶中の磁化容易軸が配向磁場方
向に揃うようになり、成形体が異方性を備えることにな
る。このとき、圧縮成形を行うことにより、粉末はある
程度の塊状をなし、次工程での取り扱いが容易になる。
ただし、この段階で得られた結晶質磁石合金成形体は、
保磁力が極めて小さく、永久磁石として使用することが
できない。
Next, by applying a magnetic field to the obtained powder, the axis of easy magnetization in the crystal of the hard phase is aligned with the direction of the orientation magnetic field, and the molded body has anisotropy. At this time, by performing the compression molding, the powder is formed into a certain lump and the handling in the next step becomes easy.
However, the crystalline magnet alloy compact obtained at this stage
The coercive force is extremely small and cannot be used as a permanent magnet.

【0020】次に、水素フロー中でにおいて700℃以
上に保持した後、同程度の温度で水素化および脱水素処
理を行うが、この成形体を公知の水素吸蔵、脱水素処理
(HDDR)することによって、配向性を維持したまま
結晶粒を微細化して保磁力が発現され、永久磁石として
の使用に耐えるものとなる。このとき、前記HDDR
(脱水素)処理を700℃以上で行うことにより、保磁
力と配向性が確保されることになる。そして、HDDR
処理後の降温過程において焼結体を加圧することによっ
て、高密度化された異方性バルク交換スプリング磁石が
実現する。
Next, after holding at 700 ° C. or higher in a hydrogen flow, hydrogenation and dehydrogenation are performed at approximately the same temperature, and the molded body is subjected to a known hydrogen storage and dehydrogenation (HDDR). As a result, the crystal grains are refined while maintaining the orientation, a coercive force is developed, and the material can withstand use as a permanent magnet. At this time, the HDDR
By performing the (dehydrogenation) treatment at 700 ° C. or higher, the coercive force and the orientation are secured. And HDDR
By pressurizing the sintered body during the cooling process after the treatment, a densified anisotropic bulk exchange spring magnet is realized.

【0021】これまで、HDDR処理は、保磁力を発現
する磁石粉末を製造するために用いられてきており、一
旦HDDR処理で作製された粉末を磁場中成形して再度
加圧および加熱することによりバルク体を得ることが提
案されているが、この方法では熱処理過程がHDDR処
理にバルク作製処理を加えた2工程となって結晶粒径の
増加を招くため、磁石特性が低下してしまい、微細な結
晶粒を維持することがとくに要求される交換スプリング
磁石に対しては、永久磁石としては全く機能しないもの
になってしまっていた。
Heretofore, HDDR processing has been used to produce magnet powder exhibiting coercive force. The powder produced by HDDR processing is once molded in a magnetic field, and then pressurized and heated again. It has been proposed to obtain a bulk body. However, in this method, the heat treatment process is a two-step process of adding a bulk preparation process to the HDDR process, which causes an increase in the crystal grain size. For an exchange spring magnet which is particularly required to maintain a fine crystal grain, it has not functioned as a permanent magnet at all.

【0022】本発明においては、交換スプリング磁石の
微細構造を維持するためHDDR処理の降温過程で加圧
することによってこの問題を解消し、高密度化された異
方性バルク磁石を得るようにしている。このとき、降温
過程における加圧処理と同時に外部から改めて磁場を印
加することによって配向性が高められる。
In the present invention, this problem is solved by applying pressure during the cooling process of the HDDR process to maintain the fine structure of the exchange spring magnet, and a high-density anisotropic bulk magnet is obtained. . At this time, the orientation is enhanced by applying a new magnetic field from the outside simultaneously with the pressure treatment in the temperature decreasing process.

【0023】原料粉末を配向させるに際しては、請求項
6に記載しているように、外部磁界を10kOe以上が
望ましい。すなわち、外部磁界が10kOe未満では配
向度が低下して磁石特性の劣化が顕著となる傾向がある
ことによる。
In order to orient the raw material powder, the external magnetic field is desirably 10 kOe or more. That is, when the external magnetic field is less than 10 kOe, the degree of orientation tends to decrease and the magnet characteristics tend to deteriorate significantly.

【0024】HDDR処理後の降温過程における降温条
件としては、請求項7に記載しているように、5K/m
in.以上の冷却速度を採用することが望ましい。これ
は、冷却速度が5K/min.に満たない場合には、結
晶粒乃成長が顕著となって磁石特性が劣化する傾向があ
ることによる。
[0024] As described in claim 7, the temperature drop condition in the temperature drop process after the HDDR process is 5 K / m.
in. It is desirable to employ the above cooling rate. This is because the cooling rate is 5K / min. If the ratio is less than the above range, the crystal grain growth becomes remarkable and the magnet characteristics tend to deteriorate.

【0025】また、HDDR処理後の降温過程における
加圧条件については、請求項8に記載しているように、
型温が400℃以上の温度範囲にあるときに加圧するこ
とが望ましく、加圧圧力を3ton/cm2以上とする
ことが望ましい。これは、焼結体の高密度化に望ましい
条件であり、この範囲を外れると高性能磁石が実現でき
ないことがあることによる。
As for the pressurizing condition in the temperature decreasing process after the HDDR process, as described in claim 8,
It is desirable to apply pressure when the mold temperature is in the temperature range of 400 ° C. or more, and it is desirable that the applied pressure be 3 ton / cm 2 or more. This is a desirable condition for increasing the density of the sintered body, and if it is out of this range, a high-performance magnet may not be realized.

【0026】本発明に係わる異方性バルク交換スプリン
グ磁石の製造方法においては、HDDR処理後の降温過
程において焼結体を加圧することを特徴としているが、
請求項9に記載しているように、加圧と同時に外部磁場
を印加することによって、さらに磁石特性が向上する。
これは、降温時に印加された外部磁場によって成長する
微結晶の成長方向が制御され、結果として得られる磁石
の配向性が向上することによる。降温時の外部磁場の印
加方向は、HDDR処理前に磁場中配向させるために印
加した磁場方向に平行または垂直方向の何れかとした場
合に磁石特性が最も向上する結果が得られる。また、こ
のときの磁場強度としては、請求項10に記載している
ように、5kOe以上の場合に良好な特性が得られるこ
とが確認されている。
The method for manufacturing an anisotropic bulk exchange spring magnet according to the present invention is characterized in that the sintered body is pressurized in a temperature decreasing process after the HDDR process.
As described in the ninth aspect, by applying the external magnetic field simultaneously with the pressurization, the magnet characteristics are further improved.
This is because the growth direction of the growing microcrystal is controlled by the external magnetic field applied at the time of temperature decrease, and the orientation of the resultant magnet is improved. When the direction of application of the external magnetic field at the time of cooling is either parallel or perpendicular to the direction of the applied magnetic field for orientation in the magnetic field before the HDDR processing, the result that the magnet characteristics are most improved is obtained. In addition, it has been confirmed that good characteristics can be obtained when the magnetic field strength at this time is 5 kOe or more, as described in claim 10.

【0027】このような製造方法により、本発明に係わ
る異方性バルク交換スプリング磁石を製造するためのそ
うちとしては、請求項11に記載しているように、原料
粉末を成形するための型と、圧縮機構と、磁場印加機構
と、加熱機構と、水素供給機構と、真空排気機構とを併
せ持った製造装置を使用することができる。
According to the method for producing the anisotropic bulk exchange spring magnet according to the present invention by such a production method, a mold for molding a raw material powder is provided. A manufacturing apparatus having a combination of a compression mechanism, a magnetic field application mechanism, a heating mechanism, a hydrogen supply mechanism, and a vacuum exhaust mechanism can be used.

【0028】また、製造された本発明の異方性バルク交
換スプリング磁石は、極めて大きな最大エネルギ積を有
しているので、モータ、磁界センサ、回転センサ、加速
度センサ、トルクセンサ、さらには電気自動車やハイブ
リッド電気自動車の駆動用モータに使用することによっ
て、デバイスの高出力化および小型化、高効率化を実現
することができ、特にエンジンと駆動モータを併せ備え
る必要があるハイブリッド電気自動車の駆動モータに適
用することにより、これまでスペースの確保が困難であ
った場所にも駆動用モータを搭載することができるよう
になり、環境問題を一気に解決できる可能性を有する。
Further, the manufactured anisotropic bulk exchange spring magnet of the present invention has an extremely large maximum energy product, so that the motor, the magnetic field sensor, the rotation sensor, the acceleration sensor, the torque sensor, and the electric vehicle And drive motors for hybrid electric vehicles can realize higher output, smaller size, and higher efficiency of devices, and especially drive motors for hybrid electric vehicles that need to have both an engine and a drive motor As a result, the drive motor can be mounted in a place where it was difficult to secure a space, and there is a possibility that environmental problems can be solved at once.

【0029】[0029]

【発明の効果】本発明に係わる異方性バルク交換スプリ
ング磁石は、ソフト相とハード相を有する交換スプリン
グ磁石であって、ハード相の結晶方向の磁化容易軸が一
方向に揃っている構成としたものであるから、出力特性
が向上するという極めて顕著な効果をもたらすものであ
る。
The anisotropic bulk exchange spring magnet according to the present invention is an exchange spring magnet having a soft phase and a hard phase, wherein the easy axis of the hard phase crystal direction is aligned in one direction. Therefore, an extremely remarkable effect that output characteristics are improved can be obtained.

【0030】本発明の請求項2に係わる異方性バルク交
換スプリング磁石においては、結晶粒直径が50nm〜
5μmの範囲にあるものであるから、磁束密度の低下や
交換結合の劣化を防止して磁気特性を良好なものとする
ことができ、請求項3に係わる異方性バルク交換スプリ
ング磁石においては、希土類元素を2〜13原子%、B
を1〜25原子%含んでいるものであるから、ソフト相
とハード相の構成比のバランスを良好なものとして磁気
特性をさらに向上させることができ、請求項4に係わる
異方性バルク交換スプリング磁石においては、V、Z
r、Ga、Nb、Cuからなる群から選ばれる1種類以
上の元素を添加剤として、合計で0.01〜5原子%含
んでいることから、燒結時の結晶粒成長を制御して磁石
特性を一層向上させることができる。
The anisotropic bulk exchange spring magnet according to claim 2 of the present invention has a crystal grain diameter of 50 nm to 50 nm.
Since it is in the range of 5 μm, it is possible to prevent the magnetic flux density and the exchange coupling from deteriorating and to improve the magnetic properties. In the anisotropic bulk exchange spring magnet according to the third aspect, 2 to 13 atomic% of rare earth element, B
5. The anisotropic bulk exchange spring according to claim 4, wherein the composition contains 1 to 25 atomic%, and the magnetic characteristics can be further improved by balancing the composition ratio of the soft phase and the hard phase. For magnets, V, Z
Since at least one element selected from the group consisting of r, Ga, Nb, and Cu is contained as an additive in a total amount of 0.01 to 5 atomic%, crystal grain growth during sintering is controlled and magnet properties are controlled. Can be further improved.

【0031】本発明の請求項5に係わる異方性バルク交
換スプリング磁石の製造方法においては、希土類元素を
含み、水素反応させていない合金を粉砕して得られた原
料粉末を磁場中配向させながら型内で圧縮成形し、この
状態で700℃以上で水素化および脱水素処理を行い、
その後の降温過程で加圧するようにしているので、ソフ
ト相とハード相を有し、ハード相の磁化容易軸が一方向
に揃い、高密度化された異方性バルク交換スプリング磁
石を得ることができる。
In the method for manufacturing an anisotropic bulk exchange spring magnet according to claim 5 of the present invention, a raw material powder obtained by pulverizing an alloy containing a rare earth element and not subjected to a hydrogen reaction is oriented in a magnetic field. It is compression molded in a mold, and in this state, hydrogenation and dehydrogenation are performed at 700 ° C or higher.
Since the pressure is applied during the subsequent cooling process, it is possible to obtain a high-density anisotropic bulk exchange spring magnet that has a soft phase and a hard phase, and the easy axis of the hard phase is aligned in one direction. it can.

【0032】本発明の請求項6に係わる異方性バルク交
換スプリング磁石の製造方法においては、原料粉末を1
0kOe以上の磁場中で配向させるようにしているの
で、配向度を向上させて、目的の異方性磁石を得ること
ができ、請求項7に係わる異方性バルク交換スプリング
磁石の製造方法においては、降温に際して5K/mi
n.以上の冷却速度で降温するようにしているので、結
晶粒成長を抑えつつ冷却することができ、請求項8に係
わる交換スプリング磁石の製造方法においては、同じく
降温に際して、型温が400℃以上の温度範囲のとき
に、3ton/cm2以上の加圧力で加圧するようにし
ているので、燒結体を高密度化することができ、高性能
磁石を実現することができる。
In the method for manufacturing an anisotropic bulk exchange spring magnet according to claim 6 of the present invention, the raw material powder is
Since the orientation is performed in a magnetic field of 0 kOe or more, the degree of orientation can be improved and the desired anisotropic magnet can be obtained. In the method of manufacturing an anisotropic bulk exchange spring magnet according to claim 7, 5K / mi at the time of temperature drop
n. Since the temperature is lowered at the above cooling rate, the cooling can be performed while suppressing the crystal grain growth. In the method for manufacturing an exchange spring magnet according to claim 8, when the temperature is lowered, the mold temperature is 400 ° C. or higher. Since pressure is applied with a pressing force of 3 ton / cm 2 or more in the temperature range, the density of the sintered body can be increased, and a high-performance magnet can be realized.

【0033】また、請求項9に係わる異方性バルク交換
スプリング磁石の製造方法においては、同じく降温過程
において外部から磁場を印加するようにしていることか
ら、配向性をさらに高めて、磁石特性を一層向上させル
ことができ、請求項10に係わる交換スプリング磁石の
製造方法においては、このときの磁場強度を5kOe以
上としているので、外部磁場の印加による上記効果をよ
り確実なものとすることができるという効果がもたらさ
れる。
In the method for manufacturing an anisotropic bulk exchange spring magnet according to the ninth aspect, since a magnetic field is applied from the outside during the temperature decreasing process, the orientation is further enhanced and the magnet characteristics are improved. In the method for manufacturing an exchange spring magnet according to claim 10, since the magnetic field strength at this time is set to 5 kOe or more, it is possible to further ensure the above-mentioned effect by applying an external magnetic field. The effect that can be done is brought.

【0034】本発明の請求項11に係わる異方性バルク
交換スプリング磁石の製造装置は、原料粉末を成形する
型と、圧縮機構と、磁場印加機構と、加熱機構と、水素
供給機構と、真空排気機構とを併せ備えたものであるか
ら、上記製造方法に基づいて、本発明に係わる上記異方
性バルク交換スプリング磁石を円滑に製造することがで
きる。
An apparatus for manufacturing an anisotropic bulk exchange spring magnet according to claim 11 of the present invention comprises a mold for molding a raw material powder, a compression mechanism, a magnetic field application mechanism, a heating mechanism, a hydrogen supply mechanism, a vacuum Since it is provided with an exhaust mechanism, the anisotropic bulk exchange spring magnet according to the present invention can be manufactured smoothly based on the manufacturing method.

【0035】さらに、本発明の請求項12ないし請求項
14に係わるモータ、磁界センサ、回転センサ、加速度
センサ、トルクセンサにおいては、いずれも本発明に係
わる上記異方性バルク交換スプリング磁石を適用したも
のであるから、これらデバイスの高出力化、小型化、高
効率化が可能になるという極めて優れた効果がもたらさ
れる。とくに、エンジンと駆動モータを併せ持つ必要が
あるハイブリッド電気自動車の駆動モータに適用すれ
ば、これまでスペースの確保が困難であった場所にも駆
動用モータを搭載することが可能となる。
Further, in the motor, magnetic field sensor, rotation sensor, acceleration sensor, and torque sensor according to claims 12 to 14 of the present invention, the anisotropic bulk exchange spring magnet according to the present invention is applied. Therefore, an extremely excellent effect that high output, miniaturization, and high efficiency of these devices can be achieved is brought about. In particular, if the present invention is applied to a drive motor of a hybrid electric vehicle which needs to have both an engine and a drive motor, it becomes possible to mount the drive motor in a place where it has been difficult to secure space.

【0036】[0036]

【実施例】以下に、本発明を実施例に基づいてより具体
的に説明する。
The present invention will be described below in more detail with reference to examples.

【0037】実施例1 NdxFe94-x6で表され、xを1〜15まで変化させ
た組成の合金をそれぞれ高周波誘導溶解し、ジェットミ
ルにより4μmに粉砕して得られた粉末を磁場中プレス
して成形したのち、HDDR処理を行い、その後の降温
過程で加圧および磁場を印加して、異方性バルク交換ス
プリング磁石を作製した。得られたバルク体は、最大2
5kOeの直流BHトレーサにて磁場中プレス時の磁場
印加方向と、これに垂直な方向における磁化曲線を測定
し、これらの曲線の違いによって異方性の有無を確認し
た。
Example 1 An alloy represented by Nd x Fe 94-x B 6 and having a composition in which x was changed from 1 to 15 was subjected to high frequency induction melting, and the powder obtained by pulverizing to 4 μm with a jet mill was used. After being pressed and molded in a magnetic field, an HDDR process was performed, and then, during the temperature-lowering process, pressure and a magnetic field were applied to produce an anisotropic bulk exchange spring magnet. The resulting bulk is up to 2
The magnetization curves in the direction of application of the magnetic field during the press in a magnetic field and in the direction perpendicular thereto were measured with a 5 kOe DC BH tracer, and the presence or absence of anisotropy was confirmed by the difference between these curves.

【0038】なお、磁場中プレス時の印加磁場は15k
Oeとし、HDDR処理は、850℃×2時間の水素吸
蔵処理と、850℃×1時間の脱水素処理からなるもの
とした。また、降温過程においては、10kOeの磁場
中において、5ton/cm 2で加圧しながら20K/
min.の冷却速度で400℃まで冷却し、その後加圧
圧力を開放した。
The applied magnetic field during pressing in a magnetic field is 15 k
Oe, and the HDDR treatment was performed at 850 ° C. × 2 hours for hydrogen absorption.
Storage and dehydrogenation at 850 ° C for 1 hour
And Also, in the temperature decreasing process, a magnetic field of 10 kOe
Inside, 5 ton / cm Two20K /
min. At a cooling rate of 400 ℃, then pressurize
The pressure was released.

【0039】図1は、得られた磁石の最大エネルギ積B
Hmの相対値とx値(Nd量)、すなわち希土類元素量
の関係を示す異方性バルク交換スプリング磁石ものであ
って、希土類元素量が2〜13原子%において良好な磁
石特性が得られることが確認された。
FIG. 1 shows the maximum energy product B of the obtained magnet.
An anisotropic bulk exchange spring magnet showing the relationship between the relative value of Hm and the x value (the amount of Nd), that is, the amount of a rare earth element. Good magnet properties can be obtained when the amount of the rare earth element is 2 to 13 atomic%. Was confirmed.

【0040】実施例2 Nd9Fe91-yyで表され、yを1〜30まで変化させ
た組成の合金をそれぞれ高周波誘導溶解したのち、上記
実施例1と同じ工程によって異方性バルク交換スプリン
グ磁石を作製した。
[0040] represented by Example 2 Nd 9 Fe 91-y B y, After the alloy composition was changed to y to 1-30 respectively a high frequency induction melting, anisotropic bulk by the same process as in Example 1 An exchange spring magnet was manufactured.

【0041】図2は、得られた磁石の最大エネルギ積B
Hmの相対値とy値、すなわちB量の関係を示すもので
あって、B量が1〜25原子%の範囲において良好な磁
石特性が得られることが確認された。
FIG. 2 shows the maximum energy product B of the obtained magnet.
It shows the relationship between the relative value of Hm and the y value, that is, the B content, and it was confirmed that good magnet properties were obtained when the B content was in the range of 1 to 25 atomic%.

【0042】実施例3 実施例1において良好な磁石特性が確認されたNd9
856の組成を有し、通常のHDDR処理を行った粉
末を用いて、これをそれぞれの温度でホットプレスして
得られたバルク体の保持力の相対値を同組成の上記実施
例と比較した。
Example 3 Nd 9 F in which good magnet properties were confirmed in Example 1
e Using a powder having the composition of 85 B 6 and subjected to ordinary HDDR treatment, the relative value of the holding power of the bulk body obtained by hot pressing the powder at each temperature is shown in the above Example having the same composition. And compared.

【0043】その結果は図3に示すとおりで、ホットプ
レスによって得られたバルク体は熱処理工程を2回経て
いるために、保持力は低下し、磁石特性が劣化している
ことが確認された。
The results are as shown in FIG. 3. It was confirmed that the bulk obtained by hot pressing had been subjected to the heat treatment step twice, so that the holding power was reduced and the magnet properties were deteriorated. .

【0044】実施例4 実施例1において良好な磁石特性が確認されたNd9
856の組成の合金に対して、添加剤として、表1に
示す各種元素をFeに置換する形で添加した合金粉末を
用い、実施例1と同じ工程によって異方性バルク交換ス
プリング磁石を作製した。そして得られたバルク磁石の
最大エネルギ積BHmの相対値を表1に併せて示す。表
1から明らかなように、V、Zr、Ga、Nb、Cuよ
りなる群から選ばれる1種類以上の元素を合計で0.0
1〜5原子%含んだ場合に磁石特性が向上していること
が判明した。
Example 4 Nd 9 F in which good magnet properties were confirmed in Example 1
An anisotropic bulk exchange spring magnet was prepared by the same process as in Example 1 using an alloy powder obtained by adding various elements shown in Table 1 to Fe as an additive to an alloy having a composition of e 85 B 6. Was prepared. Table 1 also shows the relative values of the obtained maximum energy products BHm of the bulk magnet. As is evident from Table 1, one or more elements selected from the group consisting of V, Zr, Ga, Nb, and Cu are contained in a total of 0.0
It was found that when the content was 1 to 5 atomic%, the magnet characteristics were improved.

【0045】[0045]

【表1】 [Table 1]

【0046】実施例5 Nd9Fe8416の組成の合金粉末を用いて、実施例
1と同様の工程により異方性バルク交換スプリング磁石
を作製するに際して、降温過程の降温速度のみを変化さ
せた。そして得られたバルク磁石の最大エネルギ積BH
mの相対値と降温速度との関係を図4に示す。図から明
らかなように、降温速度が5K/min.以上で温度を
低下させた場合に、良好な磁石特性が得られた。
Example 5 When an anisotropic bulk exchange spring magnet was manufactured by the same process as in Example 1 using an alloy powder having a composition of Nd 9 Fe 84 V 1 B 6 , only the cooling rate in the cooling step was changed. Changed. And the obtained maximum energy product BH of the bulk magnet
FIG. 4 shows the relationship between the relative value of m and the cooling rate. As is clear from the figure, the cooling rate was 5 K / min. As described above, when the temperature was lowered, good magnet properties were obtained.

【0047】実施例6 図5は、Nd9Fe83Cu36の組成の合金粉末を用い
て、実施例1と同様の工程において異方性バルク交換ス
プリング磁石を作製するに際して、降温過程における加
圧圧力と加圧時の温度範囲を変化させた場合の密度変化
を示したものであって、良好な磁石特性を備えた高密度
の磁石は、加圧圧力が5ton/cm2以上で、かつ加
圧温度範囲が400℃以上で得られることが確認され
た。
Embodiment 6 FIG. 5 shows that when an anisotropic bulk exchange spring magnet is manufactured in the same process as in Embodiment 1 using an alloy powder having a composition of Nd 9 Fe 83 Cu 3 B 6 , It shows the density change when the pressure range is changed when the pressurizing pressure and the temperature range at the time of pressurizing. A high-density magnet having good magnet properties has a pressurizing pressure of 5 ton / cm 2 or more. In addition, it was confirmed that a pressure temperature range of 400 ° C. or more was obtained.

【0048】実施例7 図6は、Nd4Fe71Cu520の組成の合金粉末を用い
て、実施例1と同様の工程により異方性バルク交換スプ
リング磁石を作製するに際して、降温過程における外部
磁場強度を変化させた場合の外部磁場強度と得られたバ
ルク磁石の最大エネルギ積BHmの相対値との関係を示
すものである。なお、外部磁場の印加方向は、粉末を磁
場中プレスによって配向させたときの磁場方向に平行と
した。図から明らかなように、外部磁場強度が5kOe
以上のときに磁石特性が向上することが判明した。
Example 7 FIG. 6 shows that an anisotropic bulk exchange spring magnet was manufactured in the same process as in Example 1 by using an alloy powder having a composition of Nd 4 Fe 71 Cu 5 B 20 in a temperature decreasing process. FIG. 9 shows the relationship between the external magnetic field strength when the external magnetic field strength is changed and the obtained relative value of the maximum energy product BHm of the bulk magnet. The direction in which the external magnetic field was applied was parallel to the direction of the magnetic field when the powder was oriented by pressing in a magnetic field. As is apparent from the figure, the external magnetic field strength is 5 kOe.
At this time, it was found that the magnet characteristics were improved.

【0049】実施例8 図7は、本発明に係わる異方性バルク交換スプリング磁
石1を用いた電気自動車またはハイブリッド電気自動
車、あるいは燃料電池自動車用の駆動用モータの構造を
示すものであって、このようなバルク磁石1は、駆動用
モータの小型化および軽量化、高性能化を可能にし、ク
リーンエネルギー化に大きくする寄与するものである。
なお、図中において記号2,3,4は、それぞれロータ
部、スロット(巻線)、ステータ部を示す。
Embodiment 8 FIG. 7 shows the structure of a drive motor for an electric vehicle, a hybrid electric vehicle, or a fuel cell vehicle using the anisotropic bulk exchange spring magnet 1 according to the present invention. Such a bulk magnet 1 makes it possible to reduce the size, weight, and performance of the driving motor and contribute to increasing clean energy.
In the drawings, symbols 2, 3, and 4 indicate a rotor section, a slot (winding), and a stator section, respectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】NdxFe94-x6の組成を有する異方性バルク
交換スプリング磁石の最大エネルギ積BHm(相対値)
と希土類元素量の関係を示すグラフである。
FIG. 1 shows the maximum energy product BHm (relative value) of an anisotropic bulk exchange spring magnet having a composition of Nd x Fe 94-x B 6
4 is a graph showing the relationship between and the amount of rare earth elements.

【図2】Nd9Fe91-yyの組成を有する異方性バルク
交換スプリング磁石の最大エネルギ積BHm(相対値)
とB量の関係を示すグラフである。
[Figure 2] Nd 9 Fe 91-y B maximum energy product of anisotropic bulk exchange-spring magnet having a composition of y BHM (relative value)
5 is a graph showing the relationship between the amount of B and the B amount.

【図3】Nd9Fe856の組成を有しホットプレスによ
って得られた磁石の保磁力(相対値)を本発明に係わる
同組成の異方性バルク交換スプリング磁石と比較して示
すグラフである。
FIG. 3 is a graph showing the coercive force (relative value) of a magnet having a composition of Nd 9 Fe 85 B 6 and obtained by hot pressing in comparison with an anisotropic bulk exchange spring magnet of the same composition according to the present invention. It is.

【図4】Nd9Fe8416の組成の有する異方性バル
ク交換スプリング磁石の保磁力(相対値)に及ぼす降温
速度の影響を示すグラフである。
FIG. 4 is a graph showing the effect of the cooling rate on the coercive force (relative value) of an anisotropic bulk exchange spring magnet having a composition of Nd 9 Fe 84 V 1 B 6 .

【図5】Nd9Fe83Cu36の組成の有する異方性バ
ルク交換スプリング磁石の密度に及ぼす降温過程におけ
る加圧圧力と加圧時の温度範囲の影響を示すグラフであ
る。
FIG. 5 is a graph showing the influence of the pressurizing pressure and the temperature range during pressurization on the density of the anisotropic bulk exchange spring magnet having the composition of Nd 9 Fe 83 Cu 3 B 6 .

【図6】Nd4Fe71Cu520の組成の有する異方性バ
ルク交換スプリング磁石の最大エネルギ積BHm(相対
値)に及ぼす降温過程における印加磁場の影響を示すグ
ラフである。
FIG. 6 is a graph showing the influence of an applied magnetic field in a temperature decreasing process on a maximum energy product BHm (relative value) of an anisotropic bulk exchange spring magnet having a composition of Nd 4 Fe 71 Cu 5 B 20 .

【図7】本発明に係わる異方性バルク交換スプリング磁
石を用いた自動車の駆動用モータの構造を示す概略図で
ある。
FIG. 7 is a schematic view showing a structure of a motor for driving an automobile using an anisotropic bulk exchange spring magnet according to the present invention.

【符号の説明】[Explanation of symbols]

1 異方性バルク交換スプリング磁石 1 Anisotropic bulk exchange spring magnet

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01F 41/02 C22C 33/02 J // C22C 33/02 K H01F 1/04 H (72)発明者 島 田 宗 勝 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 4K018 AA27 BA18 CA04 DA11 DA33 EA06 KA45 5E040 AA04 CA01 HB06 HB07 HB11 HB19 NN18 5E062 CD04 CE04 CF05 CG03 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01F 41/02 C22C 33/02 J // C22C 33/02 K H01F 1/04 H (72) Inventor Island Tadashi Masaru 2nd Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Prefecture F-term (reference) 4K018 AA27 BA18 CA04 DA11 DA33 EA06 KA45 5E040 AA04 CA01 HB06 HB07 HB11 HB19 NN18 5E062 CD04 CE04 CF05 CG03

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 ソフト相とハード相を有する交換スプリ
ング磁石であって、ハード相の結晶方向の磁化容易軸が
一方向に揃っていることを特徴とする異方性バルク交換
スプリング磁石。
1. An exchange spring magnet having a soft phase and a hard phase, wherein an easy axis of crystal orientation of the hard phase is aligned in one direction.
【請求項2】 結晶粒直径が50nm〜5μmの範囲に
あることを特徴とする請求項1記載の異方性バルク交換
スプリング磁石。
2. An anisotropic bulk exchange spring magnet according to claim 1, wherein the crystal grain diameter is in the range of 50 nm to 5 μm.
【請求項3】 元素配合比として希土類元素を2〜13
原子%、B(ほう素)を1〜25原子%含んでいること
を特徴とする請求項1または請求項2記載の異方性バル
ク交換スプリング磁石。
3. A rare earth element of 2 to 13 as an element compounding ratio.
The anisotropic bulk exchange spring magnet according to claim 1, wherein the magnet comprises 1 to 25 atomic% of B (boron).
【請求項4】 添加剤として、V、Zr、Ga、Nb、
Cuからなる群から選ばれる1種類以上の元素を合計で
0.01〜5原子%含んでいることを特徴とする請求項
1ないし請求項3のいずれかに記載の異方性バルク交換
スプリング磁石。
4. An additive comprising V, Zr, Ga, Nb,
The anisotropic bulk exchange spring magnet according to any one of claims 1 to 3, wherein the magnet contains at least one element selected from the group consisting of Cu in an amount of 0.01 to 5 atomic% in total. .
【請求項5】 希土類元素を含み、水素反応させていな
い合金を粉砕して得られた原料粉末を磁場中配向させな
がら型内で圧縮成形し、この状態で700℃以上で水素
化および脱水素処理を行い、その後の降温過程で加圧す
ることを特徴とする請求項1ないし請求項4のいずれか
に記載の異方性バルク交換スプリング磁石の製造方法。
5. A raw material powder obtained by pulverizing an alloy containing a rare earth element and not undergoing a hydrogen reaction is compression-molded in a mold while being oriented in a magnetic field, and hydrogenated and dehydrogenated at 700 ° C. or more in this state. The method for producing an anisotropic bulk exchange spring magnet according to any one of claims 1 to 4, wherein the treatment is performed, and pressure is applied during a subsequent temperature lowering process.
【請求項6】 原料粉末を10kOe以上の磁場中で配
向させることを特徴とする請求項5記載の異方性バルク
交換スプリング磁石の製造方法。
6. The method according to claim 5, wherein the raw material powder is oriented in a magnetic field of 10 kOe or more.
【請求項7】 降温過程において、5K/min.以上
の冷却速度で降温することを特徴とする請求項5または
請求項6記載の異方性バルク交換スプリング磁石の製造
方法。
7. The process of cooling at a temperature of 5 K / min. The method for producing an anisotropic bulk exchange spring magnet according to claim 5 or 6, wherein the temperature is decreased at the above cooling rate.
【請求項8】 降温過程において、型温が400℃以上
の温度範囲のときに、3ton/cm2以上の加圧力で
加圧することを特徴とする請求項5ないし請求項7のい
ずれかに記載の異方性バルク交換スプリング磁石の製造
方法。
8. The method according to claim 5, wherein in the temperature decreasing step, when the mold temperature is in a temperature range of 400 ° C. or more, pressurization is performed with a pressing force of 3 ton / cm 2 or more. Of manufacturing an anisotropic bulk exchange spring magnet.
【請求項9】 降温過程において、外部から磁場を印加
することを特徴とする請求項5ないし請求項8のいずれ
かに記載の異方性バルク交換スプリング磁石の製造方
法。
9. The method for producing an anisotropic bulk exchange spring magnet according to claim 5, wherein a magnetic field is applied from the outside during the temperature decreasing process.
【請求項10】 磁場強度が5kOe以上であることを
特徴とする請求項9記載の異方性バルク交換スプリング
磁石の製造方法。
10. The method for producing an anisotropic bulk exchange spring magnet according to claim 9, wherein the magnetic field strength is 5 kOe or more.
【請求項11】 原料粉末を成形する型と、圧縮機構
と、磁場印加機構と、加熱機構と、水素供給機構と、真
空排気機構とを併せ持つことを特徴とする請求項1ない
し請求項4のいずれかに記載の異方性バルク交換スプリ
ング磁石の製造装置。
11. The method according to claim 1, further comprising a mold for molding the raw material powder, a compression mechanism, a magnetic field application mechanism, a heating mechanism, a hydrogen supply mechanism, and a vacuum exhaust mechanism. An apparatus for manufacturing an anisotropic bulk exchange spring magnet according to any one of the above.
【請求項12】 請求項1ないし請求項4のいずれかに
記載の異方性バルク交換スプリング磁石が用いてあるこ
とを特徴とするモータ。
12. A motor using the anisotropic bulk exchange spring magnet according to any one of claims 1 to 4.
【請求項13】 請求項1ないし請求項4のいずれかに
記載の異方性バルク交換スプリング磁石が用いてあるこ
とを特徴とする磁界センサ。
13. A magnetic field sensor using the anisotropic bulk exchange spring magnet according to claim 1. Description:
【請求項14】 請求項1ないし請求項4のいずれかに
記載の異方性バルク交換スプリング磁石が用いてあるこ
とを特徴とする回転センサ。
14. A rotation sensor using the anisotropic bulk exchange spring magnet according to any one of claims 1 to 4.
【請求項15】 請求項1ないし請求項4のいずれかに
記載の異方性バルク交換スプリング磁石が用いてあるこ
とを特徴とする加速度センサ。
15. An acceleration sensor using the anisotropic bulk exchange spring magnet according to any one of claims 1 to 4.
【請求項16】 請求項1ないし請求項4のいずれかに
記載の異方性バルク交換スプリング磁石が用いてあるこ
とを特徴とするトルクセンサ。
16. A torque sensor using the anisotropic bulk exchange spring magnet according to claim 1. Description:
JP2000265081A 2000-09-01 2000-09-01 Anisotropic bulk exchange spring magnet and manufacturing method thereof Expired - Fee Related JP3622652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265081A JP3622652B2 (en) 2000-09-01 2000-09-01 Anisotropic bulk exchange spring magnet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265081A JP3622652B2 (en) 2000-09-01 2000-09-01 Anisotropic bulk exchange spring magnet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2002075715A true JP2002075715A (en) 2002-03-15
JP3622652B2 JP3622652B2 (en) 2005-02-23

Family

ID=18752402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265081A Expired - Fee Related JP3622652B2 (en) 2000-09-01 2000-09-01 Anisotropic bulk exchange spring magnet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3622652B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
US20180182542A1 (en) * 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
US11179856B2 (en) 2017-03-30 2021-11-23 Soft Robotics, Inc. User-assisted robotic control systems

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873008B2 (en) * 2006-05-18 2012-02-08 日立金属株式会社 R-Fe-B porous magnet and method for producing the same
US8268093B2 (en) 2006-05-18 2012-09-18 Hitachi Metals, Ltd. R-Fe-B porous magnet and method for producing the same
US8128758B2 (en) 2006-11-30 2012-03-06 Hitachi Metals, Ltd. R-Fe-B microcrystalline high-density magnet and process for production thereof
JP4924615B2 (en) * 2006-11-30 2012-04-25 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP2012099852A (en) * 2006-11-30 2012-05-24 Hitachi Metals Ltd R-Fe-B-BASED FINE CRYSTAL HIGH-DENSITY MAGNET
JPWO2008065903A1 (en) * 2006-11-30 2010-03-04 日立金属株式会社 R-Fe-B fine crystal high-density magnet and method for producing the same
JP2009123968A (en) * 2007-11-15 2009-06-04 Hitachi Metals Ltd POROUS MATERIAL FOR R-Fe-B BASED PERMANENT MAGNET, AND MANUFACTURING METHOD THEREOF
JP2012216804A (en) * 2011-03-28 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
JP2012216807A (en) * 2011-03-29 2012-11-08 Hitachi Metals Ltd Method for manufacturing r-t-b-based permanent magnet
US20180182542A1 (en) * 2016-12-27 2018-06-28 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
CN108242334A (en) * 2016-12-27 2018-07-03 丰田自动车株式会社 The manufacturing method of rare-earth magnet
JP2018107328A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet
US10546688B2 (en) * 2016-12-27 2020-01-28 Toyota Jidosha Kabushiki Kaisha Method for producing rare-earth magnet
CN108242334B (en) * 2016-12-27 2020-04-28 丰田自动车株式会社 Method for manufacturing rare earth magnet
US11179856B2 (en) 2017-03-30 2021-11-23 Soft Robotics, Inc. User-assisted robotic control systems

Also Published As

Publication number Publication date
JP3622652B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
JP2530641B2 (en) Magnetically anisotropic bonded magnet, magnetic powder used therefor, and method for producing the same
JP5259351B2 (en) Permanent magnet and permanent magnet motor and generator using the same
CN105469917B (en) High temperature hybrid permanent magnet and method of forming the same
JPH01139738A (en) Method and apparatus for magnetic material having magnetic anisotropy
JP2596835B2 (en) Rare earth anisotropic powder and rare earth anisotropic magnet
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
JP3983999B2 (en) Manufacturing method of anisotropic exchange spring magnet and motor comprising the same
WO2011030387A1 (en) Magnet material, permanent magnet, and motor and electricity generator each utilizing the permanent magnet
JP2002075715A (en) Anisotropic bulk exchange spring magnet and manufacturing method thereof
JP2005093729A (en) Anisotropic magnet, its manufacturing method, and motor using it
JP2002057015A (en) Anisotropic magnet, its manufacturing method, and motor using the same
JPH0411703A (en) Manufacture of rare earth magnet
JP2014523142A (en) Magnetic material and manufacturing method thereof
JP3622550B2 (en) Anisotropic exchange spring magnet powder and method for producing the same
JP3618647B2 (en) Anisotropic magnet, method for manufacturing the same, and motor using the same
JP2005093731A (en) Anisotropic magnet, its manufacturing method, and motor using it
JPH0837122A (en) Production of r-t-m-n anisotropic bonded magnet
JP3941418B2 (en) Alloy for anisotropic exchange spring magnet and method for producing anisotropic exchange spring magnet
JPS6077959A (en) Permanent magnet material and its manufacture
JP2014527289A (en) Magnetic material and manufacturing method thereof
JP2999648B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2000235909A (en) Rare earth/iron/boron magnet and manufacture thereof
JP2999649B2 (en) Rare earth magnet, rare earth magnet alloy powder and method for producing the same
JP2000323310A (en) Rare-earth containing permanent magnet
JPH0483307A (en) Manufacture of rare-earth element magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees