JPS58135605A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS58135605A
JPS58135605A JP57018448A JP1844882A JPS58135605A JP S58135605 A JPS58135605 A JP S58135605A JP 57018448 A JP57018448 A JP 57018448A JP 1844882 A JP1844882 A JP 1844882A JP S58135605 A JPS58135605 A JP S58135605A
Authority
JP
Japan
Prior art keywords
sintering
permanent magnet
subjected
rare earth
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57018448A
Other languages
Japanese (ja)
Inventor
Masaaki Tokunaga
徳永 雅亮
Chitoshi Hagi
萩 千敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57018448A priority Critical patent/JPS58135605A/en
Publication of JPS58135605A publication Critical patent/JPS58135605A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/086Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered

Abstract

PURPOSE:To allow a permanent magnet to maintain such properties as those characteristic of a material demonstrating high performance without a decrease of Br due to substitution by boron by a method wherein, during the process of manufacturing the permanent magnet made of a rare earth cobalt intermetallic compound, sintering is carried out in the atmosphere of hydrogen to remove boron. CONSTITUTION:An alloy R(Co1-xBx)A is employed, where R is formed of one kind of rare earth element or a combination of more than one thereof as the main element of Sm, with 3.5<=A<=8.5, 0.001<=x<=0.3. An alloy composed of Sm(Co0.96B0.04)4.6 is subjected to arc fusion, after being roughly crushed in an iron mortar to prepare pulverized fine powder by means of a jet mill with a particle size of 4mum(F.S.S.S.). The crused fine powder obtained is subjected to transverse magnetization within a magnetic field of 10kOe for forming purposes and the formed body is subjected to two-stage sintering of 1,100 deg.CX1hr+1,140 deg.C X2hrs in a hydrogen current. In addition, after the body is held while being heated at 1,100 deg.CX0.5hr, it is gradually cooled to 830 deg.C at a cooling speed of 2 deg.C/min and then rapidly cooled within silicon oil.

Description

【発明の詳細な説明】 本発明は希土類元素とt’0@Bからなる金属間化合物
の製造方法に関するものである。RCo5を中心とした
希土類;バルト磁石はその高い磁気異方性と比較的大き
な飽和磁化を有することから永久磁石化がはかられ、 
SwaCoqで22MGOg 。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an intermetallic compound consisting of a rare earth element and t'0@B. Rare earths, mainly RCo5; Baltic magnets have high magnetic anisotropy and relatively large saturation magnetization, so they are made into permanent magnets.
22MGOg at SwaCoq.

(Srxαy PrrLs ) Co5で26MGひI
の(BE )nagを有する焼結磁石が開発されている
。現在ではCb置換型R2(、’a17とともに希土類
コバルト磁石の代表的材種として多くの応用がはかられ
ている。しかしながら、材質が機械的に弱いことから初
末冶金的に製造されるIIKクラックを発生しやすい現
象が生じることなどが問題として生じていた。
(Srxαy PrrLs) 26MG HiI with Co5
A sintered magnet with a (BE)nag of At present, Cb substitution type R2 (along with 'a17) is being used in many applications as a representative material for rare earth cobalt magnets. Problems such as the occurrence of phenomena that are likely to occur have arisen.

これら問題を解決するためKCoをBで置換することが
検討された。B置換による機械的性質の改良でクラック
の発生、かじり現象は解決されたが、B置換によるB1
の低下が大きく、高性能材としての特性な一持できなか
った。
In order to solve these problems, replacing KCo with B was considered. Although the occurrence of cracks and the galling phenomenon were solved by improving the mechanical properties by B substitution, B1 by B substitution
There was a large decrease in the properties of the material, and the properties as a high-performance material could not be maintained.

本発明はB置換によるByの低下を阻止するため罠なさ
れた。すなわち焼結の際水素雰囲気を用いるととにより
脱Bをはかりfirの低下を回避できたのである。B置
換による粉末の機械的性質の改良点は主に磁界中成形の
際に発揮される。
The present invention was designed to prevent the reduction of By by B substitution. That is, by using a hydrogen atmosphere during sintering, it was possible to remove B and avoid a decrease in fir. The improvement in the mechanical properties of the powder due to B substitution is mainly exhibited during compaction in a magnetic field.

すなわちB置換された粉末では圧力伝達率が向上し、金
型とのかじり現象が緩和され、その結果クラックのない
成形体が得られるのである。
In other words, the B-substituted powder improves the pressure transmission rate and alleviates the galling phenomenon with the mold, resulting in a crack-free molded product.

脱Bは通常1080−1180t)の温度範囲で水素雰
囲気中で行なう。Bを含有する合金の場合、焼結温度は
低下する傾向にあるが、粉砕粒度とも関連するため比較
的粉砕粒度の大きい粉末の焼結が可能となる。脱Bは緻
密化が進行する過程で行なうが、いわゆるopen p
ort が存在する状態での脱Bが最も効率がよい。し
たがって2段焼結も採用可能である。すなわち第1段目
の焼結で脱Bをはかりつつ密度を理論密度の75〜85
16!で上昇させ、第2段目の焼結で理論密度の97〜
98俤を得る。又本税Bは水素を用いて行なうためBの
逃げ道を作ってやる必要がある。そのため焼結体の炉内
での配置、水素気流の流し方等脱Bに最適となるよう配
慮が必要である。
The deboronization is usually carried out in a hydrogen atmosphere at a temperature range of 1080-1180 t). In the case of alloys containing B, the sintering temperature tends to decrease, but since it is related to the pulverized particle size, it becomes possible to sinter powder with a relatively large pulverized particle size. B removal is carried out during the process of densification, but the so-called open p
It is most efficient to remove B in the presence of ort. Therefore, two-stage sintering can also be adopted. In other words, in the first stage of sintering, the density is reduced to 75 to 85 of the theoretical density while removing B.
16! In the second stage of sintering, the theoretical density is 97~
Get 98 yen. Also, since this tax B uses hydrogen, it is necessary to create an escape route for B. Therefore, consideration must be given to the arrangement of the sintered body in the furnace, the flow of hydrogen gas, etc. in order to optimize the removal of B.

本発明によって得られる焼結磁石は焼結過程におけるB
の挙動から拡散が活発となるため。
The sintered magnet obtained by the present invention has B in the sintering process.
This is because diffusion becomes active due to the behavior of

非常に均質なものとなる。したがって、熱安定性、耐候
性に富んだ材質になるわけである。
It becomes very homogeneous. Therefore, the material is highly thermally stable and weather resistant.

本発明による焼結磁石は一般に溶解によるインゴット作
成、インゴットの粗粉砕、微粉砕。
The sintered magnet according to the present invention is generally produced by melting into an ingot, coarsely crushing the ingot, or finely crushing the ingot.

磁場中圧縮成形、脱Bをともなう焼結、熱処理の工程に
よって製造される。溶解はAt中ないしと、Arを導入
し、Bを投入し、酸化しやすく蒸気圧の高い希土類元素
を最後に投入する。溶湯+tイy−iットケースに鋳造
されるが偏析のない均質なインゴットを作製する必要か
ら水冷されたインゴットに鋳造することもある。又比較
的少量のインゴット多数個に分けて鋳造してもよい。
It is manufactured by compression molding in a magnetic field, sintering with removal of B, and heat treatment. For melting, At or Ar is introduced, then B is introduced, and finally rare earth elements, which are easily oxidized and have a high vapor pressure, are introduced. Although it is cast in a molten metal +t-y-i case, it is sometimes cast into a water-cooled ingot because it is necessary to produce a homogeneous ingot without segregation. Alternatively, the ingots may be divided into a large number of comparatively small quantities and cast.

粗粉砕は微粉砕の前処理としてジ謬−クラッシャー、ブ
ラウン・ミル、鉄乳鉢等で行なわれる。いずれも−52
メツシ一程度の粒度KII整する。微粉砕はジェット・
ミル、振動ミル、ボール・ミルが用いられ、いずれも非
酸化性の雰囲気を必要とする。ジェット・ミルの場合は
N2ガス、振動ミル、ボールミルの場合はアセトン。
Coarse pulverization is performed as a pretreatment for fine pulverization using a crusher, a brown mill, an iron mortar, or the like. Both are -52
The grain size is about the same as that of a meshi. Fine grinding is done by jet
Mills, vibratory mills, and ball mills are used, all of which require a non-oxidizing atmosphere. N2 gas for jet mills, acetone for vibration mills and ball mills.

トルエン、アルコール等の有機溶媒が用いられる。有機
溶媒を用いた場合の乾燥は加熱可能な真空ボックス中で
50υ租度の温度で真空乾燥する。最適微粉粒度は組成
によって変化するが3〜7μm(F、S、S、S)が一
般的である。磁場中圧縮成形は10〜20 KC7gの
磁場強度、 2〜10t09/aiの成形圧で行なわれ
る。圧縮成形は縦磁場、横磁場の2種あるが、製品の形
状、必要とされる磁気特性によって選択される。横磁場
成形の方が配向度が縦磁場よりも良好で一般に高い磁気
特性が得られる。焼結は、4rおよびB#気流中、真空
中、水素気流中でも可能であるが脱Bのためには水素気
流中で行なう必要がある。焼結温度は組成、粉砕粒度に
よって変化するが、  1000〜1180でか用いら
れる。脱Bのための水素気流の流し方は炉の構造によっ
ても異なるが、水素気流にBが容易に乗り炉外圧排出さ
れるよう留意することが必要である。脱Bされ、緻密化
した焼結体は熱処理されるが、一般にAr@流中で徐冷
急冷タイプのものを用いる。たとえば1080υxO0
5^r、加熱保持後、 0.5”! t7/vainの
冷却速度で徐冷し、 800−900 vに達した後す
ぐに20〜400で、八番nの冷却速度でJr気流中や
オイル中に急冷するものである。
Organic solvents such as toluene and alcohol are used. When an organic solvent is used, drying is carried out under vacuum at a temperature of 50 μm in a heatable vacuum box. The optimum fine particle size varies depending on the composition, but is generally 3 to 7 μm (F, S, S, S). Compression molding in a magnetic field is carried out at a magnetic field strength of 10-20 KC7g and a molding pressure of 2-10t09/ai. There are two types of compression molding: vertical magnetic field and horizontal magnetic field, and the choice is made depending on the shape of the product and the required magnetic properties. Horizontal magnetic field forming provides a better degree of orientation than vertical magnetic field, and generally provides higher magnetic properties. Sintering can be performed in a 4r and B# air stream, in a vacuum, or in a hydrogen stream, but in order to remove B, it is necessary to carry out the sintering in a hydrogen stream. The sintering temperature varies depending on the composition and the pulverized particle size, but a temperature of 1000 to 1180 is used. The method of flowing the hydrogen stream for removing B differs depending on the structure of the furnace, but care must be taken to ensure that B easily rides on the hydrogen stream and is discharged to the outside pressure of the furnace. The deboronized and densified sintered body is heat treated, but generally a slow cooling and quenching type in an Ar@ flow is used. For example, 1080υxO0
5^r, after heating and holding, slowly cool at a cooling rate of 0.5"! t7/vain, and after reaching 800-900 V, immediately cool it to 20-400 V, and cool it in Jr. air flow at a cooling rate of 8-n. It is rapidly cooled in oil.

本発明に用いられる合金はR(Co1−:xBx)Aで
である。ここでRはSn+を中心とした希土類元素の1
種又は2種以上の組みあわせで、5.5≦A≦8.5 
、0.001≦X≦0.5である。Aが35以下の場合
The alloy used in the present invention is R(Co1-:xBx)A. Here, R is 1 of a rare earth element centered on Sn+.
species or a combination of two or more species, 5.5≦A≦8.5
, 0.001≦X≦0.5. If A is 35 or less.

希土類元素含有量が多くなりすぎるため飽和磁化の低下
が激しく、又8.5以上の場合a −(’6がデンドラ
イトとしてあられれ結晶磁気異方性を低下させる。Xが
0.001以下の場合B置換による材質の機械的性質の
改善が充分でなく、又0.5以上の場合B残存量が高(
なり飽和磁化の低下が大きく永久磁石材料として好まし
くない。なおCoの一部をII 、(、’u、Ni 、
Ti 、Zr 、Bf 、Nlr 、 Ta 。
Because the rare earth element content becomes too large, the saturation magnetization decreases sharply, and when it is 8.5 or more, a - ('6 occurs as dendrites and reduces the crystal magnetic anisotropy. When X is 0.001 or less If the mechanical properties of the material are not sufficiently improved by B substitution, and if it is 0.5 or more, the residual amount of B is high (
This results in a large decrease in saturation magnetization, making it undesirable as a permanent magnet material. Note that a part of Co is II, (,'u, Ni,
Ti, Zr, Bf, Nlr, Ta.

Ml−Cα等の元素で置換しても本発明の効果は得られ
る。
The effects of the present invention can also be obtained by substitution with elements such as Ml-Cα.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

〈実施例1〉 5ra (CO(196BAOa )4.6なる合金を
アーク溶解シ。
<Example 1> An alloy of 5ra (CO(196BAOa)4.6) was arc melted.

鉄乳鉢で粗粉砕した後、ジーット・ミル粉砕によって微
粉砕粉を作成した。粉砕粒度は4μm(p、s、s、s
)である。得られた微粉砕粉を10KOgの磁界中で横
磁場成形した。、本成形体を水素気流中で1100℃X
 1 hr +1140t x 2hrzの2段焼結し
た。さらKt+oo℃x0.5ArI 加熱保持後。
After coarsely pulverizing in an iron mortar, finely pulverized powder was prepared by pulverizing with a jet mill. The grinding particle size is 4 μm (p, s, s, s
). The obtained finely pulverized powder was subjected to transverse magnetic field molding in a magnetic field of 10 KOg. , this molded body was heated at 1100°C in a hydrogen stream.
Sintering was performed in two stages: 1 hr + 1140 t x 2 hrz. Further, after heating and holding at Kt + oo°C x 0.5ArI.

2で/ratnの冷却速度で850vまで徐冷し、シリ
コン・オイル中に急冷した。得られた磁気特性は表1に
示す通りである。なお比較のため。
It was slowly cooled down to 850V at a cooling rate of 2/ratn and quenched in silicone oil. The obtained magnetic properties are shown in Table 1. For comparison.

+15clX2Ar#のlr中焼結した場合についても
示した。
The case of sintering in +15clX2Ar# lr is also shown.

表   1 又水素中、Ar中焼結の場合のB量分桁値も示したが、
水素中焼結の場合のB量はz=o、oosで脱Bが充分
行なわれていることがわかる。
Table 1 also shows the B content values for sintering in hydrogen and Ar.
It can be seen that the amount of B in the case of sintering in hydrogen is z=o, oos, and that B is sufficiently removed.

く実施例2〉 (Prt12Snaαa ) CCO1lL98BQB
2 )4.7なる合金を実施例1と同様和処理し、微粉
砕粉を得た。得られた粉砕粉を用い縦磁場成型で20”
X 10”X 5 ’のトロイダル形状の圧粉体を作成
した。本成形体に水素気流中で1090tXIAy+1
150tX2Ar#の2段焼結をほどこした。さらに1
100υ×α5hr 、  加熱保持後2t/ra*n
の冷却速度で950υまで徐冷しシリコンオイル中に急
冷した。
Example 2> (Prt12Snaαa) CCO11L98BQB
2) The alloy 4.7 was treated in the same manner as in Example 1 to obtain finely pulverized powder. The obtained pulverized powder was molded in a vertical magnetic field into 20”
A toroidal-shaped powder compact of 10"
Two-stage sintering of 150t×2Ar# was performed. 1 more
100υ×α5hr, 2t/ra*n after heating and holding
The sample was slowly cooled to 950 υ at a cooling rate of 1, and then rapidly cooled in silicone oil.

得られた磁気特性は Brへ9500G ”EC”  8700 (h IEc P−1950001 (BH)am −215lQO。The obtained magnetic properties are 9500G to Br "EC" 8700 (h IEc P-1950001 (BH) am -215lQO.

密度へB−5097cc であった。残存B量はz=o、oo2であったがクラッ
クはみとめられなかった。比較のため(Prα2S講u
)Coa、yも同様の処理をほどこしたがはがれ現象の
ため成形が行なえなかった◎ 〈実施例3〉 ((、”1155ma5 ) (t’0l−ZBac 
)4.5&: 0 、0.001 。
The density was B-5097cc. Although the amount of residual B was z=o, oo2, no cracks were observed. For comparison (Prα2S course u
) Coa and y were also treated in the same way, but could not be molded due to peeling phenomenon◎ <Example 3>((,"1155ma5)(t'0l-ZBac
)4.5&: 0, 0.001.

0.02 、0.04 、0.1 、 a2 、 rJ
、5 、0.4  なる合金を実施例1と同様に処理し
、微粉砕粉を作成した。得られた粉砕粉を用い横磁場成
形した。これら成形体を900〜目00t7の間で焼結
した。脱B処理は焼結の前に800℃×2hrz、水素
気流中で行ったさらに1000υ×1ルτ、加熱保持後
2v/sinの徐冷速度で800vまで冷却しシリコン
オイル中に急冷した。第1図に得られた磁気特性、残存
B量を示す。B量は0.5までは磁気特性の劣化がみら
れず良好な焼結体の得られることがわかる。
0.02, 0.04, 0.1, a2, rJ
, 5, and 0.4 were treated in the same manner as in Example 1 to produce finely pulverized powder. The obtained pulverized powder was subjected to transverse magnetic field molding. These molded bodies were sintered between 900 and 00t7. B removal treatment was carried out at 800° C. x 2 hrz in a hydrogen stream before sintering, and after heating and holding at 1000 υ x 1 hr, the material was cooled down to 800 V at a slow cooling rate of 2 V/sin and quenched in silicone oil. FIG. 1 shows the obtained magnetic properties and the amount of residual B. It can be seen that when the amount of B is up to 0.5, no deterioration of magnetic properties is observed and a good sintered body can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

Claims (1)

【特許請求の範囲】 R(Co1−zBx )A(ここでRはS肩を中心とし
た希土類元素の1種又は2種以上の組み合わせ。 五5≦A≦8.5 、0.001≦X≦0.5)なる組
成を有する希土類コバルト金属間化合物永久磁石を製造
する工程におい七溶解原料を粗粉砕、微粉砕、磁界中圧
縮成形後焼結を水素中七行ない脱Bすることを特徴とす
る均質でかつ熱安定性良好な永久磁石の製造方法。
[Claims] R(Co1-zBx)A (where R is one or a combination of two or more rare earth elements centered on the S shoulder. 55≦A≦8.5, 0.001≦X ≦0.5) In the process of manufacturing a rare earth cobalt intermetallic compound permanent magnet having a composition of A method for producing a permanent magnet that is homogeneous and has good thermal stability.
JP57018448A 1982-02-08 1982-02-08 Manufacture of permanent magnet Pending JPS58135605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57018448A JPS58135605A (en) 1982-02-08 1982-02-08 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57018448A JPS58135605A (en) 1982-02-08 1982-02-08 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS58135605A true JPS58135605A (en) 1983-08-12

Family

ID=11971900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57018448A Pending JPS58135605A (en) 1982-02-08 1982-02-08 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS58135605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223903A (en) * 1985-07-25 1987-01-31 Namiki Precision Jewel Co Ltd Production of resin bound permanent magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223903A (en) * 1985-07-25 1987-01-31 Namiki Precision Jewel Co Ltd Production of resin bound permanent magnet

Similar Documents

Publication Publication Date Title
JP3932143B2 (en) Magnet manufacturing method
JPH0553853B2 (en)
JP2002033206A (en) Rare-earth magnet and manufacturing method thereof
JPS60162750A (en) Rare earth magnet and its production
CN107464644A (en) The preparation method of performance Nd Fe B sintered magnet
US20060016515A1 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
JP2019169542A (en) Method for manufacturing r-t-b based sintered magnet
JPH0345885B2 (en)
JP7155813B2 (en) Method for producing RTB based sintered magnet
JPH0345883B2 (en)
JPS58135605A (en) Manufacture of permanent magnet
KR100256358B1 (en) The manufacturing method for sintering magnetic alloy with fe-si line
JPH0345884B2 (en)
JPH0576161B2 (en)
JPH0344405B2 (en)
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JP2631514B2 (en) Manufacturing method of permanent magnet
JP4574820B2 (en) Method for producing magnet powder for rare earth bonded magnet
JPH03162546A (en) Manufacture of permanent magnet alloy having excellent oxidation resistance
JPS5923803A (en) Production of magnet consisting of rare earth element
JPH09143514A (en) Production of rare earth magnetic alloy powder and neodymium-iron-boron base spheroidal alloy magnetic powder
JPS63285909A (en) Permanent magnet and manufacture thereof
JPS61147504A (en) Rare earth magnet
JPH0796694B2 (en) Method of manufacturing permanent magnet material
JP2002083728A (en) Method of manufacturing rare earth permanent magnet