KR20050066465A - The soft magnetic fe-based nano-alloy powder having superior to br/bs and the method there of - Google Patents

The soft magnetic fe-based nano-alloy powder having superior to br/bs and the method there of Download PDF

Info

Publication number
KR20050066465A
KR20050066465A KR1020030097755A KR20030097755A KR20050066465A KR 20050066465 A KR20050066465 A KR 20050066465A KR 1020030097755 A KR1020030097755 A KR 1020030097755A KR 20030097755 A KR20030097755 A KR 20030097755A KR 20050066465 A KR20050066465 A KR 20050066465A
Authority
KR
South Korea
Prior art keywords
alloy powder
powder
soft magnetic
ratio
amorphous alloy
Prior art date
Application number
KR1020030097755A
Other languages
Korean (ko)
Other versions
KR100549041B1 (en
Inventor
김규진
박종덕
Original Assignee
김규진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김규진 filed Critical 김규진
Priority to KR1020030097755A priority Critical patent/KR100549041B1/en
Publication of KR20050066465A publication Critical patent/KR20050066465A/en
Application granted granted Critical
Publication of KR100549041B1 publication Critical patent/KR100549041B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/142Thermal or thermo-mechanical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법에 관한 것으로서, 보다 상세하게는 (a)Fe계 비정질 합금분말을 밀링처리하여 상기 분말의 두께:직경의 비를 2∼20으로 형상제어하는 단계와, (b)상기 형상제어된 Fe계 비정질 합금분말을 열처리하여 평균 결정입경이 5∼50㎚인 나노결정 합금분말을 제조하는 단계와, (c)상기 나노결정 합금분말을 약산 용액에 침적시켜 에칭처리한 후, 분쇄하여 평균 분말입경이 50㎚이하인 나노합금분말을 제조하는 단계, 및 (d)상기 제조된 나노합금분말을 후처리하여 내부응력 제거 및 자기특성을 개선하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The present invention relates to a soft magnetic Fe-based nanoalloy powder having an excellent angular ratio and a method of manufacturing the same, and more specifically, to (a) a Fe-based amorphous alloy powder, by milling the powder thickness to diameter ratio of 2 to 20. (B) heat-treating the shape-controlled Fe-based amorphous alloy powder to form a nanocrystalline alloy powder having an average grain size of 5 to 50 nm, and (c) weakly acidifying the nanocrystalline alloy powder. After dipping into a solution and etching, grinding to prepare a nano alloy powder having an average powder particle diameter of 50 nm or less, and (d) post-treating the prepared nano alloy powder to remove internal stress and improve magnetic properties. Characterized in that comprises a.

본 발명에 따르면 보자력이 낮으며 각형비 및 포화자속밀도가 크게 개선된 나노합금분말을 제조할 수 있는 효과가 있으며, 이를 통해 종래 도난방지용 Tag 등에 적용되고 있는 고가의 Co계 비정질 합금리본을 대체함으로써 저렴한 가격으로 원재료를 공급하는 것이 가능하며 또한 종래의 합금분말에 비해 연자기 특성이 크게 향상되어 다양한 분야에 적용할 수 있는 효과가 있다. According to the present invention, the coercive force is low, and the nano alloy powder having the improved square ratio and the saturation magnetic flux density is greatly improved, thereby replacing the expensive Co-based amorphous alloy ribbon applied to the anti-theft tag. It is possible to supply raw materials at a low price, and the soft magnetic properties are greatly improved as compared to conventional alloy powders, and thus it is effective to be applied to various fields.

Description

각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법{The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of}Soft magnetic Fe-based nanoalloy powder with excellent square ratio and its manufacturing method {The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br / Bs and The Method There of}

본 발명은 각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법에 관한 것으로서, 보다 상세하게는 연자기 특성이 우수한 Fe계 비정질 합금분말을 형상제어, 나노결정화, 열처리, 에칭처리, 밀링처리, 및 후처리하여 합금분말의 자기특성인 보자력을 낮추고 각형비를 크게 개선시킴으로써 저렴한 가격으로 도난방지용 Tag 등에 원재료로서 적용할 수 있는 각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법에 관한 것이다. The present invention relates to a soft magnetic Fe-based nanoalloy powder having an excellent angular ratio and a method of manufacturing the same, and more particularly, to a Fe-based amorphous alloy powder having excellent soft magnetic properties, shape control, nanocrystallization, heat treatment, etching treatment, milling treatment, And a soft magnetic Fe-based nanoalloy powder having excellent angular ratio that can be applied as a raw material to an anti-theft tag at a low price by lowering the coercive force, which is a magnetic property of the alloy powder, and greatly improving the angular ratio.

종래의 도난방지용 Tag 등의 재료로 적용되고 있는 소재는 주로 급속응고방법으로 제조되는 Co계 비정질합금리본인데, 상기 Co계 비정질 합금리본은 원재료의 가격이 높고 또한 리본임에 따라 Tag를 제조할 때 리본의 Cutting 및 접착제의 사용 등 많은 작업공정이 요구되는 문제점이 있었다. The material that is applied as a material such as a tag for preventing theft is a Co-based amorphous alloy ribbon mainly manufactured by rapid solidification method, the Co-based alloy alloy ribbon is a high cost of the raw materials and when the tag is manufactured according to the ribbon There was a problem that many work processes such as cutting of ribbon and use of adhesive are required.

따라서, 상기와 같은 문제점을 해소하기 위해 리본을 제조하는 대신 합금분말을 적용하는 방식이 도입되었으나 수 ㎛이상의 합금분말을 Tag재로 적용할 때 상기 합금분말의 자기특성인 보자력이 매우 높고 각형비가 5%이하로서 매우 낮음에 따라 감지센서의 대용량화 및 감지기능의 저하 등이 유발되어 이 역시 Tag재로 적용하는데는 한계가 있는 문제점이 여전히 존재하며, 또한 일반적인 합금분말의 분쇄법을 적용함으로써 합금분말의 제조시에 매우 장시간이 소요되고 이에 따라 상기 제조되는 합금분말에 상당히 많은 양의 불순물이 함유되어 연자기 특성이 크게 저하되는 문제점이 존재하였다.Therefore, in order to solve the above problems, a method of applying an alloy powder instead of manufacturing a ribbon has been introduced, but when applying an alloy powder of several μm or more as a tag material, the coercive force of the alloy powder is very high and the angular ratio is 5%. As it is very low as below, a large capacity of the sensor and a deterioration of the detection function are caused, and there is still a problem that there is a limitation in applying it as a tag material, and also in the manufacture of an alloy powder by applying a grinding method of a general alloy powder. It takes a very long time, and thus there is a problem in that the soft magnetic properties are greatly reduced because a large amount of impurities are contained in the prepared alloy powder.

본 발명은 상술한 바와 같은 종래의 문제점을 해결하기 위해서 안출된 것으로서, 본 발명의 목적은 연자기 특성이 우수한 연자성 소재인 Fe계 비정질 합금분말을 형상제어, 열처리, 나노결정화, 에칭처리, 밀링처리, 후처리하여 합금분말의 자기특성인 보자력을 낮추고 각형비를 크게 개선시킴으로써 도난방지용 Tag 등에 적용되고 있는 고가의 Co계 비정질 합금리본을 저렴한 비용으로 대체할 수 있으며, 또한 종래의 합금분말에 비해 연자기 특성이 크게 향상되어 적용범위가 매우 광범위한 연자성 Fe계 나노합금분말의 제조방법을 제공하는 것이다.The present invention has been made to solve the conventional problems as described above, the object of the present invention is to shape-control, heat treatment, nanocrystallization, etching treatment, milling the Fe-based amorphous alloy powder is a soft magnetic material excellent in soft magnetic properties By lowering the coercive force, which is a magnetic property of the alloy powder, and greatly improving the square ratio by treatment and post-treatment, it is possible to replace expensive Co-based amorphous alloy ribbons applied to anti-theft tags at low cost, and compared with conventional alloy powders. The soft magnetic properties are greatly improved to provide a method for producing a soft magnetic Fe-based nanoalloy powder having a wide range of applications.

또한, 본 발명의 다른 목적은 상기 제조방법에 의해 제조된 보자력이 작고 각형비 및 포화자속밀도가 크게 개선된 연자성 Fe계 나노합금분말을 제공하는 것이다.In addition, another object of the present invention is to provide a soft magnetic Fe-based nano alloy powder having a small coercive force produced by the above production method and having greatly improved square ratio and saturation magnetic flux density.

상기와 같은 목적을 달성하기 위한 본 발명에 따른 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법은 (a)Fe계 비정질 합금분말을 밀링처리하여 상기 분말의 두께:직경의 비를 2∼20으로 형상제어하는 단계와, (b)상기 형상제어된 Fe계 비정질 합금분말을 열처리하여 평균 결정입경이 5∼50㎚인 나노결정 합금분말을 제조하는 단계와, (c)상기 나노결정 합금분말을 약산 용액에 침적시켜 에칭처리한 후, 분쇄하여 평균 분말입경이 50㎚이하인 나노합금분말을 제조하는 단계, 및 (d)상기 제조된 나노합금분말을 후처리하여 내부응력 제거 및 자기특성을 개선하는 단계를 포함하여 이루어지는 것을 특징으로 한다.Method for producing a soft magnetic Fe-based nanoalloy powder having excellent square ratio according to the present invention for achieving the above object is (a) Fe-based amorphous alloy powder by milling the thickness: diameter ratio of 2 to 20 (B) heat-treating the shape-controlled Fe-based amorphous alloy powder to prepare a nanocrystalline alloy powder having an average grain size of 5 to 50 nm, and (c) the nanocrystalline alloy powder. Immersing in a weak acid solution and etching, followed by grinding to prepare a nanoalloy powder having an average powder particle diameter of 50 nm or less, and (d) post-treatment of the prepared nanoalloy powder to remove internal stress and improve magnetic properties. Characterized in that comprises a step.

그리고, 본 발명에 따른 상기 Fe계 비정질 합금분말의 평균 결정입경은 20㎛이하인 것을 특징으로 한다.And, the average grain size of the Fe-based amorphous alloy powder according to the invention is characterized in that less than 20㎛.

또한, 본 발명에 따른 상기 (b)단계의 열처리는 무자장 또는 1,000∼10,000Gauss의 자장 중에서 상기 Fe계 비정질 합금분말의 결정화 개시온도보다 5∼150℃ 높은 온도에서 행하여지는 것을 특징으로 한다.In addition, the heat treatment of step (b) according to the present invention is characterized in that it is carried out at a temperature of 5 ~ 150 ℃ higher than the initiation temperature of the crystallization of the Fe-based amorphous alloy powder in the magnetic field or 1,000 ~ 10,000Gauss magnetic field.

본 발명에 따른 상기 약산 용액은 0,5∼10%의 염산용액, 황산용액, 질산용액 중 어느 하나를 포함하는 것을 특징으로 한다.The weak acid solution according to the present invention is characterized in that it comprises any one of 0, 5 to 10% hydrochloric acid solution, sulfuric acid solution, nitric acid solution.

본 발명에 따른 상기 (d)단계의 후처리는 환원성가스하에서 300∼600℃로 행하여지는 것을 특징으로 한다.Post-treatment of step (d) according to the invention is characterized in that it is carried out at 300 ~ 600 ℃ under reducing gas.

그리고, 본 발명에 따른 각형비가 우수한 연자성 Fe계 나노합금분말은 Fe계 비정질 합금분말을 형상제어 처리한 후 열처리하여 나노결정 합금분말을 제조하고, 상기 제조된 나노결정 합금분말을 에칭처리후 분쇄 및 후처리하여 제조되며, 보자력이 20 Oe이하이고 각형비가 10%이상이며 포화자속밀도가 100emu/g이상인 것을 특징으로 한다.In addition, the soft magnetic Fe-based nanoalloy powder having an excellent angular ratio according to the present invention is subjected to a shape control treatment of the Fe-based amorphous alloy powder, followed by heat treatment to prepare a nanocrystalline alloy powder, and the prepared nanocrystalline alloy powder is crushed after etching. And it is prepared by post-treatment, the coercive force is 20 Oe or less, the angular ratio is 10% or more and the saturation magnetic flux density is characterized by more than 100emu / g.

이하에서 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.

본 발명에 따른 각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법에 있어서, 원료분말로 사용되는 Fe계 비정질 합금분말은 기계적 합금화법, 급냉 응고법, 고압 수분사법 등에 의해 제조될 수 있으나, 본 발명에 있어서는 고압 수분사법에 의해 제조되는 것이 바람직하다. In the soft magnetic Fe-based nanoalloy powder having excellent square ratio according to the present invention and a method for manufacturing the same, the Fe-based amorphous alloy powder used as a raw material powder may be prepared by mechanical alloying, quench solidification, high pressure water spraying, or the like. In this invention, it is preferable to manufacture by the high pressure water spraying method.

상기 고압 수분사법은 본 출원인이 발명하여 기 출원한(대한민국 특허출원번호 제2000-0022312호) 비정질 합금분말의 제조방법으로서 낙하하는 용탕을 30㎫ 이상의 고압 수분사에 의해 분쇄한 후 급냉시켜 비정질 합금분말을 제조하여 종래의 수분사법에 비해 제조공정의 단순화 및 제조시간의 단축을 이루면서도 분사조건의 변화를 통해 다양한 크기의 분말입경을 지닌 양질의 비정질 합금분말을 제조할 수 있는 특징이 있다.The high pressure water spraying method is a method for preparing an amorphous alloy powder, which has been invented and filed by the present applicant (Korean Patent Application No. 2000-0022312). The molten metal is crushed by a high pressure water spray of 30 MPa or more and then quenched to form an amorphous alloy. It is characterized by the production of high quality amorphous alloy powders with various particle sizes through the change of the spraying conditions while making the powder simplified and manufacturing time shorter than the conventional water spraying method.

한편, 상기 고압 수분사법에 의해 제조되는 Fe계 비정질 합금분말은 입도분포가 0.5∼100㎛이며, 평균 분말입경은 20㎛이하로서 가능하면 평균 분말입경이 작은 것이 바람직하다.On the other hand, the Fe-based amorphous alloy powder produced by the high pressure water spraying method has a particle size distribution of 0.5 to 100 µm, and an average powder particle diameter of 20 µm or less, preferably as small as possible.

상기 평균 분말입경이 20㎛이하인 Fe계 비정질 합금분말은 볼밀링(Ball Milling)공정을 통해 형상제어된다. 상기 형상제어는 크롬 코팅볼이나 철볼을 사용하여 상기 합금분말의 형상을 제어하는 것으로서, 볼의 강도 및 무게를 정하여 공정을 행하는데 공정시 분말이 뭉쳐지는 것을 최대한 피해야 하며 분말의 파단(Fracture)도 피할 수 있도록 적정시간 동안 공정을 행하여 분말의 형상을 제어해야 한다.The Fe-based amorphous alloy powder having an average powder particle diameter of 20 μm or less is shape controlled through a ball milling process. The shape control is to control the shape of the alloy powder by using a chromium coated ball or iron ball, to determine the strength and weight of the ball to perform the process to avoid agglomeration of powder during the process as much as possible and the fracture (fracture) of the powder The shape of the powder should be controlled by performing the process for a time period to avoid it.

상기 형상제어를 통해 상기 합금분말의 두께:직경의 비인 Aspect ratio가 2∼20의 범위에 들도록 함이 바람직한데, Aspect ratio가 2이하인 경우에는 이방성처리가 어렵게 되며 또한 20이상인 경우에는 형상제어에 소요되는 시간이 장시간이 되는 문제점이 발생하게 된다.Through the shape control, the aspect ratio, which is the ratio of thickness to diameter of the alloy powder, is preferably in the range of 2 to 20. When the aspect ratio is 2 or less, anisotropic treatment becomes difficult, and in the case of 20 or more, shape control is required. The problem is that the time to be a long time.

상기 형상제어된 Fe계 비정질 합금분말은 분말의 결정화 개시온도보다 높은 온도 및 자장 또는 무자장 하에서 0.5 내지 3시간 가량 열처리가 되어 평균 결정입경이 5 내지 50㎚인 나노결정 합금분말이 된다. The shape-controlled Fe-based amorphous alloy powder is subjected to heat treatment for about 0.5 to 3 hours at a temperature higher than the crystallization start temperature of the powder and a magnetic or magnetic field, thereby obtaining a nanocrystalline alloy powder having an average grain size of 5 to 50 nm.

상기 열처리의 온도가 너무 높으면 결정입경이 조대해지고 또한 금속간 화합물이 생성될 수 있으며, 반대로 너무 낮으면 충분한 나노결정립이 생성되지 않으므로, 상기 열처리는 상기 분말의 결정화 개시온도보다 5 내지 150℃ 높은 온도에서 행하여짐이 바람직하다. 또한, 자장하에서 하는 열처리는 자기이방성을 부여하여 각형비를 개선하기 위한 것으로서 자장세기가 셀수록 상기 각형비의 개선효과는 크지만, 장비비 등 비용이 증가할 수 있으므로 상기 자장의 세기는 1,000 내지 10,000Gauss로 함이 바람직하다.If the temperature of the heat treatment is too high, the grain size may be coarsened and intermetallic compounds may be produced. On the contrary, if the temperature of the heat treatment is too low, sufficient nanocrystal grains may not be produced. It is preferable to carry out at. In addition, the heat treatment under the magnetic field is to improve the square ratio by providing magnetic anisotropy, the higher the magnetic field strength, the greater the effect of improving the square ratio, but the cost of equipment, such as equipment costs can increase, the strength of the magnetic field is 1,000 to 10,000 Gauss is preferred.

상기 열처리를 통해 제조된 나노결정 합금분말은 0.5 내지 10%의 염산, 질산, 황산 등 산용액에 0.5 내지 5시간동안 침적시켜 에칭처리를 한 후 건조시킨다. 상기 에칭처리는 금속 표면을 부식시켜 소거하는 방법으로서, 부식은 형태에 따라 전면이 균일하게 침식되는 형태인 전면부식, 틈에서 발생하는 부식의 형태인 틈새부식, 입계에 특정원소가 석출되거나 또는 입계를 따라 특정 합금원소가 결핍되어, 입내에 비하여 상대적으로 큰 국부부식이 입계를 따라 진행되는 형태인 입계부식 등으로 분류될 수 있는데, 본 발명에서는 상기 나노결정 합금분말의 입계를 따라 큰 국부부식이 진행되는 입계 에칭처리를 함이 바람직하다. The nanocrystalline alloy powder prepared by the heat treatment is dipped in an acid solution such as hydrochloric acid, nitric acid and sulfuric acid for 0.5 to 10% for 0.5 to 5 hours, followed by etching and drying. The etching process is a method of corroding and erasing a metal surface. Corrosion is a surface corrosion in which the entire surface is uniformly eroded according to its shape, a gap corrosion in the form of corrosion occurring in a gap, or a specific element is deposited at grain boundaries or grain boundaries. In the present invention, a specific alloy element is deficient, and thus, a relatively large local corrosion can be classified into a grain boundary corrosion, which is a form in which a relatively large local corrosion progresses along the grain boundary. In the present invention, a large local corrosion is formed along the grain boundary of the nanocrystalline alloy powder. It is preferable to perform an advanced grain boundary etching process.

상기 에칭처리후에는 볼 밀링장치를 이용, 상기 나노결정 합금분말을 분쇄하여 평균 분말입경이 50㎚이하인 나노합금분말을 제조한다. 상기 입계 에칭처리를 한 합금분말은 에칭전의 분말에 비해 밀링처리시 보다 용이하게 분쇄된다. 그리고 상기 밀링처리를 통한 분쇄시간은 볼 밀링장치 및 분쇄조건에 따라 변화될 수 있는 것으로, 유성볼 밀링장치를 사용하여 1 내지 10시간동안 밀링처리를 행함이 바람직하다.After the etching treatment, the nanocrystalline alloy powder is pulverized using a ball milling apparatus to prepare a nanoalloy powder having an average powder particle diameter of 50 nm or less. The alloy powder subjected to the grain boundary etching is more easily pulverized during the milling process than the powder before the etching. And the grinding time through the milling process can be changed according to the ball milling device and the grinding conditions, it is preferable to perform the milling treatment for 1 to 10 hours using the planetary ball milling device.

상기와 같은 공정을 통해 제조된 나노합금분말은 내부응력을 제거하고 자기특성을 개선시키기 위해 환원성 가스를 이용하며 300 내지 600℃의 온도에서 후 열처리를 하게 된다.The nanoalloy powder prepared by the above process uses a reducing gas to remove internal stress and improve magnetic properties, and is subjected to post-heat treatment at a temperature of 300 to 600 ° C.

이하, 본 발명에 따른 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법에 대한 바람직한 실시예를 상세하게 설명하기로 한다.Hereinafter, a preferred embodiment of the method for preparing a soft magnetic Fe-based nanoalloy powder having excellent square ratio according to the present invention will be described in detail.

실시예 1Example 1

고압의 수분사법에 의해 제조된 Fe83.5Si13.5B9Nb3Cu1 조성의 비정질 합금분말(평균입경 5㎛, 입도분포: 0.5~100㎛) 1kg을 유성볼밀(Ball/분말비=6/1)을 이용하여 5hr동안 Milling처리를 행하여 Aspect Ratio를 5/1로 형상제어 처리한 후, 결정화 개시온도보다 10℃ 높은 550℃의 Ar gas분위기 하에서 30분 동안 5,000Gauss의 자장하에 열처리를 행하여 나노결정립의 평균크기가 약 15nm가 되도록 한 다음, 5% 염산용액중에 1hr동안 에칭처리를 행하고, 건조한 다음 유성볼밀(Ball/분말비=6/1)을 이용하여 5hr 동안 Milling처리를 행하여 평균분말입경이 20nm가 되도록 제조하였다. 제조된 나노분말에 대해 H2 Gas의 환원성분위기하의 500℃에서 30분간 응력제거 열처리를 행하였고 이에 대한 포화자속밀도, 보자력, 각형비(Br/Bs) 등을 표 1에 나타내었다.1kg of amorphous alloy powder (average particle diameter: 5㎛, particle size distribution: 0.5 ~ 100㎛) of Fe 83.5 Si 13.5 B 9 Nb 3 Cu 1 composition prepared by high pressure water injection method, planetary ball mill (Ball / powder ratio = 6/1) After milling for 5hr, the aspect ratio is controlled to 5/1, and then heat-treated under 5,000Gauss magnetic field for 30 minutes under Ar gas atmosphere of 550 ℃ higher than the initiation temperature of crystallization. The average size of the particles was about 15 nm, then etched in 5% hydrochloric acid solution for 1hr, dried and milled for 5hr using a planetary ball mill (Ball / powder ratio = 6/1) to obtain an average powder particle size. It was prepared to be 20nm. The prepared nanopowders were subjected to stress relief heat treatment at 500 ° C. for 30 minutes under a reducing component atmosphere of H 2 gas.

여기서, 비정질 분말의 결정화 개시온도는 DTA(Differential Temperature Analysis)를 이용하여 2℃/min의 가열속도로 가열하면서 측정한 값이며, 결정립 및 분말의 평균크기는 XRD(X-ray Diffraction) 및 입도분석기에 의해 분석한 평균입경의 값을 나타낸 것이며, 포화자속밀도(Bs), 보자력, 각형비(Br/Bs)는 VSM(Vibrating Sample Magnetometer)을 이용하여 5,000 Gauss의 외부 자장하에서 측정된 값이다. Here, the crystallization start temperature of the amorphous powder is measured by heating at a heating rate of 2 ℃ / min using DTA (Differential Temperature Analysis), the average size of the grain and powder X-ray diffraction (XRD) and particle size analyzer The saturation magnetic flux density (Bs), coercive force, and square ratio (Br / Bs) are measured under an external magnetic field of 5,000 Gauss using VSM (Vibrating Sample Magnetometer).

실시예 2Example 2

수분사법으로 제조된 Fe80Al4B10Zr5Cu1 비정질 합금분말(평균입경: 3㎛, 입도분포: 0.5~60㎛)을 사용하는 것과 결정화 개시온도보다 5℃높은 470℃에서 열처리하는 것 외에는 실시예 1과 동일하게 실시하였다.Fe 80 Al 4 B 10 Zr 5 Cu 1 amorphous alloy powder (average particle diameter: 3㎛, particle size distribution: 0.5 ~ 60㎛) prepared by water-jet method and heat treatment at 470 ℃ higher 5 ℃ than crystallization start temperature The same procedure as in Example 1 was followed.

실시예 3Example 3

수분사법으로 제조된 Fe79Al3B12Nb5Cu1 비정질 합금분말(평균입경: 3㎛, 입도분포: 0.5~60㎛)을 사용하는 것과 결정화 개시온도보다 15℃높은 450℃에서 열처리하는 것 외에는 실시예 1과 동일하게 실시하였다.Fe 79 Al 3 B 12 Nb 5 Cu 1 amorphous alloy powder (average particle size: 3㎛, particle size distribution: 0.5 ~ 60㎛) prepared by water-jet method and heat treatment at 450 ℃ higher than the initiation temperature of crystallization The same procedure as in Example 1 was followed.

실시예 4Example 4

수분사법으로 제조된 Fe83Nb7B9Cu1 비정질 합금분말(평균입경: 10㎛, 입도분포: 0.5~100㎛)을 사용하는 것과 결정화개시온도보다 50℃높은 550℃에서 열처리하는 것 외에는 실시예 1과 동일하게 실시하였다.Fe 83 Nb 7 B 9 Cu 1 amorphous alloy powder (average particle diameter: 10㎛, particle size distribution: 0.5 ~ 100㎛) manufactured by the water-jet method, except for heat treatment at 550 ℃ higher than the crystallization start temperature 50 ℃ It carried out similarly to Example 1.

실시예 5Example 5

1% 염산용액을 사용하여 에칭시간을 5hr으로 하는 것 외에는 실시예1과 동일하게 실시하였다. The etching was carried out in the same manner as in Example 1 except that the etching time was 5 hours using a 1% hydrochloric acid solution.

실시예 6Example 6

5% 질산용액을 사용하는 것 외에는 실시예1과 동일하게 실시하였다. The same procedure as in Example 1 was conducted except that a 5% nitric acid solution was used.

실시예 7Example 7

5% 황산용액을 사용하는 것 외에는 실시예1과 동일하게 실시하였다. The same procedure as in Example 1 was conducted except that a 5% sulfuric acid solution was used.

실시예 8Example 8

형상제어한 분말을 무자장 하에 열처리를 행하는 것 외에는 실시예1과 동일하게 실시하였다. The shape-controlled powder was carried out in the same manner as in Example 1 except that the powder was heat-treated under no magnetic field.

비교예 1Comparative Example 1

형상제어처리공정을 취하지 않은 것 외에는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except not having performed the shape control process process.

비교예 2Comparative Example 2

에칭처리를 생략하는 것 이외에는 실시예 1과 동일하게 실시하였다.It carried out similarly to Example 1 except having omitted the etching process.

조건번호Condition number 원료분말의 특성Characteristics of Raw Powder 제조조건Manufacture conditions 제품특성Product Specifications 사용합금계(at%)Alloy used (at%) 평균입경 Average particle diameter 결정화개시온도Crystallization Start Temperature Aspect Ratio(폭/높이)Aspect Ratio (width / height) 결정화열처리온도Crystallization Heat Treatment Temperature 평균나노결정입경Average nanocrystal grain size Etching용액Etching Solution 분쇄시간Grinding time 분말의평균입경Average particle size of powder 포화자속밀도(Bs, emu/g)Saturated magnetic flux density (Bs, emu / g) 보자력(Hc, Oe)Coercive force (Hc, Oe) 각형비(Br/Bs, %)Square ratio (Br / Bs,%) 실시예 1Example 1 Fe83.5Si13.5B9Nb3Cu1 Fe 83.5 Si 13.5 B 9 Nb 3 Cu 1 5㎛5 μm 540℃540 ℃ 5/15/1 550℃550 ℃ 15nm15 nm 5%염산용액5% hydrochloric acid solution 5hr5hr 20nm20 nm 130130 55 2525 실시예 2Example 2 Fe80Al4B10Zr5Cu1 Fe 80 Al 4 B 10 Zr 5 Cu 1 2㎛2 μm 465℃465 ℃ 4/14/1 470℃470 ℃ 10nm10 nm "" "" 15nm15 nm 150150 88 2020 실시예 3Example 3 Fe79Al3B12Nb5Cu1 Fe 79 Al 3 B 12 Nb 5 Cu 1 3㎛3 μm 435℃435 ℃ 8/18/1 450℃450 ℃ 10nm10 nm "" "" 15nm15 nm 145145 1010 2323 실시예 4Example 4 Fe83Nb7B9Cu1 Fe 83 Nb 7 B 9 Cu 1 10㎛10 μm 500℃500 ℃ 12/112/1 550℃550 ℃ 10nm10 nm "" "" 15nm15 nm 162162 1212 2525 실시예 5Example 5 Fe83.5Si13.5B9Nb3Cu1 Fe 83.5 Si 13.5 B 9 Nb 3 Cu 1 5㎛5 μm 540℃540 ℃ 5/15/1 550℃550 ℃ 15nm15 nm 1%염산용액1% hydrochloric acid solution "" 20nm20 nm 130130 55 2020 실시예 6Example 6 "" "" "" "" "" "" 5%질산용액5% nitric acid solution "" 20nm20 nm 130130 55 2323 실시예 7Example 7 "" "" "" "" "" "" 5%황산용액5% sulfuric acid solution "" 20nm20 nm "" 55 2222 실시예 8Example 8 "" "" "" "" "" "" 5%염산용액5% hydrochloric acid solution 10hr10hr 20nm20 nm "" 55 1111 비교예 1Comparative Example 1 "" "" "" 1/11/1 "" "" "" 5hr5hr 30nm30 nm "" 1010 1One 비교예 2Comparative Example 2 "" "" "" "" "" "" -- 5hr5hr 250nm250 nm "" 3030 55

표1을 참조하면, 모든 실시예의 경우에 있어서 나노결정이 가능한 Fe계 비정질 합금분말은 본 발명의 제조공정에 의해 평균 분말입경이 수십nm이하로 제조가 가능하며 이에 따라 보자력이 모두 20 Oe이하로서 크게 낮아짐과 아울러 평균자속밀도가 100emu/g이상으로 개선되고, 또한 형상제어공정에 의해 Aspect Ratio를 조정함에 따라 각형비가 수십%로 급격히 증가함을 보여주고 있다기 실시예에 기재된 내용으로 한정되는 것은 아니며 또한, 본 발명의 동일 목적을 수행하기 위하여 해당 기술분야의 통상의 지식을 가진 자에 의해 수정 또는 변경된 등가의 구성은 특허청구범위에서 기술된 본 발명의 기술적 사상의 범위를 벗어나지 않는 것임에 유의해야 한다. Referring to Table 1, the Fe-based amorphous alloy powder capable of nanocrystallization in the case of all the examples can be produced with an average powder particle size of several tens of nm or less by the manufacturing process of the present invention, accordingly all coercive force is 20 Oe or less While significantly lowering, the average magnetic flux density is improved to 100 emu / g or more, and as the aspect ratio is adjusted by the shape control process, the angular ratio is rapidly increased to several tens of percent. In addition, it is noted that the equivalent configuration modified or changed by those skilled in the art in order to carry out the same purpose of the present invention does not depart from the scope of the technical idea of the present invention described in the claims. Should be.

따라서, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자에 의한 수정 또는 변경된 등가의 구성은 특허청구범위에서 기술한 본 발명의 기술적 범위에 구속되는 것이다.Therefore, modifications or changes in equivalent configurations by those skilled in the art will be constrained by the technical scope of the present invention as set forth in the claims.

이상에서 설명한 바와 같이 본 발명에 따른 각형비가 우수한 연자성 Fe계 나노합금분말 및 그 제조방법은 연자기 특성이 우수한 연자성 소재인 Fe계 비정질 합금분말을 형상제어, 열처리, 나노결정화, 에칭처리, 밀링처리, 후처리하여 합금분말의 자기특성인 보자력이 낮으며 각형비 및 포화자속밀도가 크게 개선된 나노합금분말을 제조할 수 있는 효과가 있으며, 이를 통해 종래 도난방지용 Tag 등에 적용되고 있는 고가의 Co계 비정질 합금리본을 대체함으로써 저렴한 가격으로 원재료를 공급하는 것이 가능하며 또한 종래의 합금분말에 비해 연자기 특성이 크게 향상되어 다양한 분야에 적용할 수 있는 효과가 있다. As described above, the soft magnetic Fe-based nanoalloy powder having excellent square ratio according to the present invention and a manufacturing method thereof are characterized in that the Fe-based amorphous alloy powder, which is a soft magnetic material having excellent soft magnetic properties, is subjected to shape control, heat treatment, nanocrystallization, etching treatment, Milling and post-treatment have the effect of producing nanoalloy powder with low coercivity, which is a magnetic property of the alloy powder, and greatly improving the square ratio and saturation magnetic flux density. By substituting Co-based amorphous alloy ribbon, it is possible to supply raw materials at a low price, and the soft magnetic properties are greatly improved as compared to conventional alloy powders, and thus it is effective to be applied to various fields.

Claims (6)

(a) Fe계 비정질 합금분말을 밀링처리하여 상기 분말의 두께:직경의 비를 2∼20으로 형상제어하는 단계;(a) milling the Fe-based amorphous alloy powder to shape-control the thickness to diameter ratio of 2 to 20; (b) 상기 형상제어된 Fe계 비정질 합금분말을 열처리하여 평균 결정입경이 5∼50㎚인 나노결정합금분말을 제조하는 단계;(b) heat-treating the shape-controlled Fe-based amorphous alloy powder to produce a nanocrystalline alloy powder having an average grain size of 5 to 50 nm; (c) 상기 나노결정합금분말을 약산 용액에 침적시켜 에칭처리한 후, 분쇄하여 평균 분말입경이 50㎚이하인 나노합금분말을 제조하는 단계; 및(c) immersing the nanocrystalline alloy powder in a weak acid solution, followed by etching, and grinding to prepare a nanoalloy powder having an average powder particle diameter of 50 nm or less; And (d) 상기 제조된 나노합금분말을 후처리하여 내부응력 제거 및 자기특성을 개선하는 단계를 포함하여 이루어지는 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법.(d) a method for producing a soft magnetic Fe-based nanoalloy powder having excellent square ratio, characterized in that it comprises the step of post-treating the prepared nano alloy powder to improve the internal stress and magnetic properties. 제 1항에 있어서,The method of claim 1, 상기 Fe계 비정질 합금분말의 평균 결정입경은 20㎛이하인 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법.The method for producing a soft magnetic Fe-based nanoalloy powder having excellent angular ratio, characterized in that the average grain size of the Fe-based amorphous alloy powder is 20㎛ or less. 제 1항에 있어서,The method of claim 1, 상기 (b)단계의 열처리는 무자장 또는 1,000∼10,000Gauss의 자장에서 상기 Fe계 비정질 합금분말의 결정화 개시온도보다 5∼150℃ 높은 온도에서 행하여지는 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법.The heat treatment in the step (b) is performed at a temperature of 5 to 150 ℃ higher than the initiation temperature of the crystallization of the Fe-based amorphous alloy powder in a magnetic field or a magnetic field of 1,000 ~ 10,000Gauss soft magnetic Fe-based nanoparticles having excellent angular ratio Method for producing alloy powder. 제 1항에 있어서,The method of claim 1, 상기 약산 용액은 0,5∼10%의 염산용액, 황산용액, 질산용액 중 어느 하나를 포함하는 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법.The weak acid solution is a method of producing a soft magnetic Fe-based nanoalloy powder having excellent square ratio, characterized in that it comprises any one of 0, 5 to 10% hydrochloric acid solution, sulfuric acid solution, nitric acid solution. 제 1항에 있어서,The method of claim 1, 상기 (d)단계의 후처리는 환원성가스하에서 300∼600℃로 행하여지는 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말의 제조방법.The post-treatment of the step (d) is carried out at 300 ~ 600 ℃ under reducing gas, the method of producing a soft magnetic Fe-based nano-alloy powder having excellent square ratio. Fe계 비정질 합금분말을 형상제어 처리한 후 열처리하여 나노결정합금분말을 제조하고, 상기 제조된 나노결정합금분말을 에칭처리후 분쇄 및 후처리하여 제조되며, 보자력이 20 Oe이하이고 각형비가 10%이상이며 포화자속밀도가 100emu/g이상인 것을 특징으로 하는 각형비가 우수한 연자성 Fe계 나노합금분말. The Fe-based amorphous alloy powder is subjected to shape control treatment, followed by heat treatment to prepare a nanocrystalline alloy powder, and the prepared nanocrystalline alloy powder is prepared by etching, pulverizing and post-treatment, having a coercivity of 20 Oe or less and a square ratio of 10%. The soft magnetic Fe-based nanoalloy powder having excellent square ratio, characterized in that the saturation magnetic flux density is 100 emu / g or more.
KR1020030097755A 2003-12-26 2003-12-26 The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of KR100549041B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030097755A KR100549041B1 (en) 2003-12-26 2003-12-26 The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030097755A KR100549041B1 (en) 2003-12-26 2003-12-26 The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of

Publications (2)

Publication Number Publication Date
KR20050066465A true KR20050066465A (en) 2005-06-30
KR100549041B1 KR100549041B1 (en) 2006-02-16

Family

ID=37257542

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030097755A KR100549041B1 (en) 2003-12-26 2003-12-26 The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of

Country Status (1)

Country Link
KR (1) KR100549041B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394699A (en) * 2013-08-19 2013-11-20 上海富大同诺环境科技有限公司 Preparation method for nano-iron particles and application thereof
CN103537688A (en) * 2013-10-11 2014-01-29 上海大学 Method for preparing Fe-Al alloy by using nano-powder

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701413B1 (en) * 2005-05-31 2007-03-30 한국과학기술연구원 Amorphous powder flakes and their preparation method thereof
CN110358986B (en) * 2019-08-05 2021-03-30 哈尔滨工业大学 Method for controlling Co-based amorphous fiber to form core-shell structure and application

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103394699A (en) * 2013-08-19 2013-11-20 上海富大同诺环境科技有限公司 Preparation method for nano-iron particles and application thereof
CN103394699B (en) * 2013-08-19 2015-08-19 上海富大同诺环境科技有限公司 The preparation method of nano iron particles and application thereof
CN103537688A (en) * 2013-10-11 2014-01-29 上海大学 Method for preparing Fe-Al alloy by using nano-powder

Also Published As

Publication number Publication date
KR100549041B1 (en) 2006-02-16

Similar Documents

Publication Publication Date Title
EP0133758B1 (en) Iron-rare earth-boron permanent magnets by hot working
CN107532239B (en) Magnetic copper alloy
Loudjani et al. Phase formation and magnetic properties of nanocrytalline Ni70Co30 alloy prepared by mechanical alloying
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JP3068155B2 (en) Soft magnetic alloy and method for producing the same
KR100721501B1 (en) Method for manufacturing a nano-sized crystalline soft-magnetic alloy powder core and a nano-sized crystalline soft-magnetic alloy powder core manufactured thereby
KR100549041B1 (en) The Soft Magnetic Fe-based Nano-alloy Powder Having Superior to Br/Bs and The Method There of
CN113365764B (en) Amorphous alloy ribbon, amorphous alloy powder, nanocrystalline alloy powder magnetic core, and method for producing nanocrystalline alloy powder magnetic core
Sharma et al. Structural ordering at magnetic seeds with twins at boundaries of a core–shell alloy Mn60Bi40 and tailored magnetic properties
JP2016162947A (en) Soft magnetic material, soft magnetic powder, powder magnetic core, and manufacturing methods thereof
CN112176246A (en) Nanocrystalline soft magnetic material, method for producing same, and Fe-based alloy for use therein
JP7326777B2 (en) Soft magnetic alloys and magnetic parts
Li et al. Nanocrystalline Fe Si phase by mechanical attrition and its soft magnetic properties
JP3184201B2 (en) Flat Fe-Ni-based alloy fine powder and method for producing the same
KR102393236B1 (en) soft magnetic flat powder
KR101562830B1 (en) composition comprising Fe based nanocrystalline phase and method for preparing the same
TW201942389A (en) Iron-based soft magnetic powder, method of manufacturing same, article including iron-based soft magnetic alloy powder, and method of manufacturing same
JP5447246B2 (en) Method for producing anisotropic rare earth magnet
US5135586A (en) Fe-Ni alloy fine powder of flat shape
US5352268A (en) Fe-Ni alloy fine powder of flat shape
JPH03295206A (en) Soft magnetic powder for magnetic shield, manufacture thereof and magnetic shield material
KR101387961B1 (en) Iron based nanocrystalline soft magnetic alloy powder cores and preparation thereof
KR20050111457A (en) The fe-based nano-alloy powders and the method there of
Alvarez et al. Extremely low coercivity of powder Co-rich amorphous alloy obtained by gas atomisation
Calka et al. Re-amorphization of crystallized metallic glass Co70. 3Fe4. 7Si15B10 ribbons by mechanical alloying

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130121

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140121

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee